
STABLE REPRESENTATION THEORY OF CATEGORIES

AND APPLICATIONS TO FAMILIES OF (BI)MODULES

OVER SYMMETRIC GROUPS

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Amin Saied

December 2018

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by eCommons@Cornell

https://core.ac.uk/display/196232395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

c© 2018 Amin Saied

ALL RIGHTS RESERVED

STABLE REPRESENTATION THEORY OF CATEGORIES AND APPLICATIONS

TO FAMILIES OF (BI)MODULES OVER SYMMETRIC GROUPS

Amin Saied, Ph.D.

Cornell University 2018

This work deals with the stable representation theory of categories related to var-

ious families of symmetric groups. In particular, we study the categories FB,FI, and

introduce the new category PD. The notion of representation stability is recast in the

setting of FB-bimodules.

The first part of the present work is an application of theory of FI-modules to a

family of groups Γn,s arising in the study of free group automorphisms. We observe

that the cohomology of these groups determines an FI-module H i(Γn,•) which we show

is finitely generated of stability degree n and weight i. It follows that the sequence

{H i(Γn,s)}s is representation stable in the range s ≥ i + n, an improvement on the

previously known stable range. Another consequence of this finitely generated FI-

module structure is the existence of character polynomials which determine the stable

characters of H i(Γn,s). In particular, this implies that the dimension of H i(Γn,s) is

given by a single polynomial in s for s ≥ i+ n. We compute explicit examples of such

character polynomials to demonstrate this phenomenon.

Next we provide an algorithm that computes certain structural coefficients cλµ re-

lated to the n-th tensor power of the free associative algebra on a vector space T (V)⊗n.

By extending the known range of computation by a factor of over 750 we reveal striking

patterns that motivate our recasting of representation stability to families of bimodules.

Finally, we develop the theory of PD-modules. Our main result is that finitely

generated PD-modules give rise to representation stable families of bimodules over

symmetric groups. We provide two main examples of this framework. First we show

that the coefficients cλµ determine a finitely generated PD-module and thus provide a

first example of this new representation stability. Second, we introduce the extended

Whitney homology of the lattice of set partitions, and show that it determines a finitely

generated PD-module. It is known that the ordinary Whitney homology of the lattice

of set partitions forms a finitely generated FI-module, and we are able to recover, and

generalize this result.

iii

This thesis is dedicated to my parents, Julie and Fawzi,

for always believing in me.

ACKNOWLEDGEMENTS

To my wife, Clare, for taking this journey with me, and for keeping me sane along the

way. To my mum for her eternal support and love. To my siblings, for leading the

way. To my friends, for so many fond memories. And to my son, Harris, the light at

the end of the tunnel. Love, always.

I would like to thank my thesis advisor Martin Kassabov, not only for his inspiration

and guidance, but also for his kindness and support. I would also like to thank my

committee members, Tim Riley and Marcelo Aguiar for all their advice, and the entire

Mathematics department at Cornell University.

iv

TABLE OF CONTENTS

Dedication . iii
Acknowledgements . iv

1 Introduction 1

2 Preliminaries 9
2.1 Representation theory of finite groups 9

2.1.1 Representation theory of symmetric groups 12
2.1.2 S-modules and Schur functors 15
2.1.3 Induction of representations . 19
2.1.4 Inductions involving products of bimodules. 23
2.1.5 Plethysm . 25
2.1.6 Character theory . 26

2.2 Category theory . 30
2.2.1 Representations of categories . 33
2.2.2 Useful notions for representations of categories 36
2.2.3 Representable functors . 37
2.2.4 Tensor product over a category 39
2.2.5 Frobenius reciprocity, take two 42
2.2.6 The free object paradigm . 43

2.3 FI-modules . 45
2.3.1 Representation stability . 47
2.3.2 Stability degree and weight of an FI-module 48
2.3.3 Free FI-modules . 50
2.3.4 Finite generation in FI-Mod. 52
2.3.5 The FI-modules M(λ) and P (λ) 53
2.3.6 Homological techniques for FI-modules 54
2.3.7 Character Polynomials . 57

3 On the FI-module Structure of H i(Γn,s) 58
3.1 The cohomology of Γn,s . 59
3.2 The FI-module structure . 63

3.2.1 The case in rank 1 . 66
3.3 Higher ranks: A spectral sequence argument 66

4 Decomposing Schur Functors on L(V) 71
4.1 Coefficients arising in the study of T (V)⊗n 73
4.2 Decomposition puzzles . 77

4.2.1 Lie pieces . 78
4.2.2 µ-decompositions . 80
4.2.3 Assembly . 81
4.2.4 Shape analysis . 88

v

TABLE OF CONTENTS vi

4.3 The algorithm . 95
4.4 Data analysis . 98

4.4.1 Visualisations . 99
4.4.2 Clustering . 100

4.5 Running time experiments . 102
4.5.1 Baseline Algorithm . 104

5 The Theory of PD-modules 106
5.1 The category PD . 107
5.2 Representation theory of PD . 110

5.2.1 Free PD-modules . 111
5.3 Finite Generation of PD-modules . 116

5.3.1 Representation instability . 117
5.4 Endofunctors on FI-Mod arising from PD-modules 120
5.5 Representation stability in the context of families of (Si, Sn)-bimodules 123
5.6 Constructing PD-modules from S-modules 127

5.6.1 Application to the structure coefficients cλµ 131
5.7 The category PDI . 132
5.8 Endofunctors on FI-Mod arising from PDI-modules 135
5.9 Free PDI-modules . 136

6 Extended Whitney Homology 139
6.1 Whitney homology of the lattice of set partitions 139

6.1.1 Order homology of a poset . 139
6.1.2 The lattice of set partitions . 142
6.1.3 Whitney complexes and Whitney homology 146
6.1.4 Sn-module structure on the Whitney homology 148

6.2 Extending the action . 160
6.2.1 Ordered set partitions . 160
6.2.2 The extended action . 161
6.2.3 Extended Whitney complexes and Whitney homology. 163
6.2.4 The (Si, Sn)-bimodule structure of W̃Hλ in terms of the twisted

Lie operad . 177
6.3 Extended Whitney homology as a PD-module 185

6.3.1 Restriction of a set partition . 185
6.3.2 Extended Whitney homology as a PD-module 190
6.3.3 Stability of the PD-module W̃H• 192
6.3.4 Relation to configuration spaces on Rd 194

Bibliography 198

CHAPTER 1

INTRODUCTION

The central object of this thesis is the representation theory of categories. That is,

for a category C, we study functors,

V : C → Vect,

where Vect is the category of vector spaces. Such functors form a category C-Mod,

which we informally refer to as the representation theory of C. A single representation

is called a C-module.

As a first example, any group G can be viewed as a category G with a unique

object and with (endo)morphisms labelled by g ∈ G. The representation theory of the

category G coincides precisely with the usual representation theory of the group G by

which we mean that an ordinary representation of G determines and is determined by

a functor V ∈ G-Mod (see Section 2.2.1). The ‘atomic unit’ of this thesis is the repre-

sentation theory of symmetric groups Sn. It is natural to view the category associated

to Sn as having a single object n := {1, . . . , n} the finite set of n elements, and with

(endo)morphisms given by the bijections f : n → n. Functors from this category to

Vect are precisely representations of Sn, and are well-studied (see Section 2.1.1). We

view this category as atomic in the sense that we will construct larger categories from

multiple copies of it. One well-studied example of this is the (skeleton of the) category

FB, with one object n for each n ∈ N, and with morphisms given by bijections. A

functor FB → Vect is nothing more than a sequence of representations of symmetric

groups Sn, one for each n ∈ N. In their seminal paper [7], Church-Ellenberg-Farb ob-

served that many interesting examples of representations of FB that appear throughout

the literature enjoy a powerful representation theoretic constraint they call representa-

1

CHAPTER 1. INTRODUCTION 2

tion stability (see [7, 9]). This phenomenon can be seen as a representation theoretic

analog of homological stability (e.g., [5, 15, 17]) and has many useful consequences,

among them converting an a priori infinite amount of data (an infinite sequence of

representations of Sn, one for each n ∈ N), into a finite amount of data (see Section

2.3.1 for more details). Conceptually, you should care about representation stability

because it appears in many disparate places throughout mathematics (it is ubiquitous)

and because it imposes tight constraints on sequences of representations that might

allow one to better understand the underlying object (it is desirable).

In [7] and [8] the authors completely characterize representation stability as a single

structural property of a functor in the ‘representations of categories’ framework. Con-

cretely, the category FB embeds into a larger category FI, with the same objects, but

with morphisms given by injections (of which, bijections are a special case!). There is a

notion of a finitely generated FI-module (see Definition 2.3.5), which the authors prove

is equivalent to representation stability (see Theorem 2.3.9 for a precise statement).

The advantage of this perspective is two-fold.

First, by providing a single concept one is able to simplify statements and proofs

involving representation stability. There is a growing literature taking advantage of

this approach to representation stability [6, 7, 8, 25, 27, 28, 29]. In Chapter 5 we add

to this by providing another example of a finitely generated FI-module that appears

in the study of free group automorphisms and their homology. Concretely, we study a

sequence of cohomology spaces of certain groups Γn,s,

{H i(Γn,s) : s ∈ N},

The groups Γn,s have appeared frequently in the study of free group automorphisms

CHAPTER 1. INTRODUCTION 3

[3, 10, 16, 17]. More recently, their cohomology H i(Γn,s) was used in [10] to construct

new, so-called unstable homology classes for Out(Fn). Their approach relied on the fact

that the spaces H i(Γn,s) admit an action of the symmetric group Ss. Building on this

observation, we show in Chapter 3, for fixed i, n ∈ N, the sequence {H i(Γn,s) : s ∈ N}

forms an FI-module. Our first main result is that the FI-module, which we denote

H i(Γn,•), enjoys the property of finite generation (see Theorem 3.1.2).

Theorem A. The FI-module H i(Γn,•) is finitely generated of stability degree n and

weight i.

Here, stability degree and weight are properties of an FI-module that enforce bounds

on the underlying representation theory. Concretely, the sequence H i(Γn,s) is said to

satisfy representation stability (Definition 2.3.7), and the stability degree (Definition

2.3.10) and weight (Definition 2.3.11) control the stable range. In particular, we deduce

the following as an immediate consequence (see Theorem 3.1.1).

Theorem B. For fixed i and n, the sequence,

{H i(Γn,s) : s ∈ N},

is uniformly representation stable with stable range s ≥ n+ i.

The second advantage of this perspective is that the framework of finitely gener-

ated representations of categories itself can be taken as a template and applied more

generally. In Chapter 5 we introduce a new category PD and study its representation

theory. Moreover, we show that the analogous notion of finite generation in the setting

of PD-modules corresponds to a new representation theoretic constraint modeled on

the representation stability of the one-dimensional setting. Concretely, we regard the

category FB as a one-dimensional extension symmetric groups whose representation

theory gives rise to sequences of Sn-modules with n ∈ N. Similarly we consider the

CHAPTER 1. INTRODUCTION 4

product category FB × FB as a two dimensional analog whose representation theory

gives rise to arrays of (Si, Sn)-bimodules with both i ∈ N and n ∈ N. Just as the

category FI was seen to be an enlargement of FB, so too the category PD can be seen

as an enlargement of the product category FB × FB. This point of view allows us to

recast the notions of finite generation and representation stability (Definition 5.5.2) in

this two-dimensional setting. In particular we prove (see Theorem 5.5.3 for a stronger

and more precise statement),

Theorem C. Let W be a finitely generated PD-module. Then W satisfies representa-

tion stability.

We provide two detailed examples of finitely generated PD-modules. The first ex-

ample arises as a family of coefficients cλµ indexed by pairs of partitions λ, µ arising

from study of the Johnson homomorphism of the mapping class group, and in par-

ticular, from the n-th tensor power of the free associative algebra on a vector space

T (V)⊗n. In Chapter 4 we give an efficient algorithm computing these coefficients, and

present visualizations that motivate our two-dimensional analog of representation sta-

bility. We are able to prove in Chapter 5 that these coefficients do indeed arise from

a finitely generated PD-module. The following theorem is thus a corollary to Theorem

C. See Theorem 5.6.5.

Theorem D. The coefficients cλµ satisfy representation stability.

Our second key example is discussed in Chapter 6 where we define a new combi-

natorial object, the extended Whitney homology, as a generalization of the Whitney

homology of the lattice of set partitions. The extended Whitney homology W̃Hi,n

is a (Si, Sn)-bimodule whose Si-invariants recover the usual Whitney homology of the

lattice of set partitions. We give a careful combinatorial description of this object, and

CHAPTER 1. INTRODUCTION 5

show that it forms a finitely generated PD-module and thus its representation theory

is stable. See Corollary 6.3.14 for a precise statement.

Theorem E. The (Si, Sn)-bimodules W̃Hi,n satisfy representation stability.

It is known that the ordinary Whitney homology of the lattice of set partitions

forms a finitely generated FI-module [18]. We recover this result in Proposition 6.3.15.

In both of these examples we provide explicit computations. First we present an

algorithm that computes the coefficients cλµ. Our approach is to reinterpret these co-

efficients as counting the number of ways to solve certain decomposition puzzles (Fig.

1.1). This perspective allows the design of an efficient algorithm (Algorithm 4) extend-

ing the range of computation by a factor of over 750. In particular, we compute all

coefficients cλµ for |λ|, |µ| < 15, which amounts to 257,049 coefficients. Furthermore,

we are able to visualize these computations by plotting a matrix (Fig. 1.2) whose (λ, µ)

entry is colored according to the coefficient cλµ. The patterns present in this data are

striking and motivate the construction of the category PD. Full details of the algorithm

and discussion of the data above are given in Chapter 4.

Our second computation is of the irreducible structure of the extended Whitney

homology W̃H of the lattice of set partitions, presented in Chapter 6. This new

combinatorial object arises from the well-studied lattice of set partitions by extending

the action to products of symmetric groups. We provide a detailed description of its

underlying combinatorics in Section 6.2, and of its representation theory in Section

6.3. We present an explicit description of bimodule structure of W̃H in terms of the

twisted Lie operad L̂ie (see Theorem 6.2.19).

CHAPTER 1. INTRODUCTION 6

µ = λ =

Lie pieces
Section 4.2.1

...

µ-decomposition
Section 4.2.2

cλµ-contribution

Assembly
Section 4.2.3

Figure 1.1: A schematic overview of a solution to a decomposition puzzle. See Section 4.2.2
for a complete description

Theorem F. Fix i, n ∈ N and let λ ` n be a partition of length i. There is an

isomorphism of (Si, Sn)-bimodules,

W̃Hλ
∼=
⊕
µ`i

Pµ ⊗ P∨µ
[[
L̂ie
]]
λ
.

The notation here is detailed in Chapter 6. As well as being consistent with the

examples computed, and with the representation stability of Theorem E, this theorem

can also be seen as a generalization of a result in [18]. In particular, in [18] Eq. (26)

they state (albeit in the language of characters) that,

WHλ
∼=
(
~P(mj) ◦ L̂iej

)
︸ ︷︷ ︸

j odd

~
(
~P(1mj) ◦ L̂iej

)
︸ ︷︷ ︸

j even

.

CHAPTER 1. INTRODUCTION 7

Figure 1.2: A visualization of all coefficients cλµ of degree < 15. These represents the
full range of computations made by our algorithm. For readability we no longer label the
partitions on the axes, instead we label the degree (or size) of the partitions at the point at
which the degree changes.

CHAPTER 1. INTRODUCTION 8

This follows from taking the Si-invariants of Theorem 6.2.19 (see Remark 6.2.21). An-

other application of this theorem allows us to bootstrap Algorithm 4 and compute the

irreducible decomposition of W̃Hi,n for i, n < 11 (see Remark 6.3.16) providing another

visualization of a finitely generated PD-module.

CHAPTER 2

PRELIMINARIES

2.1 Representation theory of finite groups

We start by recording some basic notions from the representation theory of groups.

Good references for this material include Brown [4], Etingof et. al. [12], Fulton-Harris

[13] and James-Liebeck [19].

Fix a ground field k (of characteristic 0) throughout. Let G be a finite group.

A vector space V (over k) is a representation of G if there is a homomorphism

ρ : G → GL(V). Alternatively, consider the group ring k[G]. That V is a repre-

sentation of G is equivalent to the assertion that V is a left k[G]-module. We thus

interchangeably refer to such vector spaces V as representations and as k[G]-modules.

When the ground field k is understood, we simply refer to G-modules.

More often than not, the homomorphism ρ will be understood implicitly, and we

will suppress the notation, writing g · v (or even gv when no ambiguity can arise) to

denote ρ(g)(v) for elements g ∈ G and v ∈ V . In this case we will speak of defining

the action of G on V .

A G-module homomorphism φ between representations V and W of G is a linear

map φ : V → W such that the following diagram commutes for all g ∈ G.

V W

V W

g

φ

g

φ

9

CHAPTER 2. PRELIMINARIES 10

A subrepresentation of V is a vector subspace W ⊆ V that is invariant under G. A

representation V is called irreducible if its only non-zero subrepresentation is itself. A

fundamental result in the representation theory of finite groups is complete-reducibility

(also known as semisimplicity) which says that any representation V of G is a direct

sum of irreducible representations.

Proposition 2.1.1 (e.g., Proposition 1.8, [13]). For any representation V of a finite

group G, there is a decomposition,

V = V ⊕a11 ⊕ · · · ⊕ V ⊕akk ,

where the Vi are distinct irreducible representations of G. The decomposition of V

into a direct sum of the k factors is unique, as are the Vi that occur as well as their

multiplicities ai.

This result tells us that to understand the representations of a finite group G, we

should understand its irreducible representations. It is well-known that if G is a finite

group then there are only finitely many non-isomorphic irreducible G-modules. In fact,

the number of irreducible G-modules is exactly the number of conjugacy classes of G.

Combining representations. Let G and H be groups and consider the G-module

V and the H-module W . We construct a representation V �W of G ×H called the

outer product of V and W as follows. As a vector space V �W is simply the tensor

product V ⊗W . The action of G×H on V �W is as follows,

(g, h) · v � w := (g · v)� (h · w),

where g ∈ G, h ∈ H, v ∈ V and w ∈ W and the actions g · v and h · w are determined

by the G-module and H-module structure on V and W respectively. Here we are

tacitly assuming that W is a left H-module, but we could equally well apply the above

construction with a right action.

CHAPTER 2. PRELIMINARIES 11

Bimodules. The interplay between left and right modules will play a significant role

in what follows. Of particular interest will be when a vector space admits compatible

left and right module structures. Concretely, if G and H are two groups, then a (G,H)-

bimodule will mean a vector space V which is both a left G-module, a right H-module

and satisfies g · (v · h) = (g · v) · h for all g ∈ G, h ∈ H and v ∈ V . Equivalently, a

(G,H)-bimodule V is a left module over G × H in which the action of H on V is a

right action.

Example 2.1.2. An important example is the group ring k[G] itself which is a (G,G)-

bimodule with left and right actions given by left and right multiplication, respectively.

A useful result in this context describes the irreducible (G,H)-bimodules.

Lemma 2.1.3 (Theorem 4.25, [12]). Let V1, . . . , Vn be a complete list of irreducible

G-modules, and W1, . . . ,Wm a complete list of irreducible H-modules. Then,

{Vi �Wj : 1 ≤ i ≤ n, 1 ≤ j ≤ m},

is a complete list of irreducible representations of G×H. Equivalently, this is a complete

list of irreducible (G,H)-bimodules if the Wj are understood to be right H-modules.

(Co)Invariants. If G is a group and V is a G-module, then the vector space of

coinvariants VG is the largest quotient of V on which G acts trivially. Concretely, it

is the quotient of V under the subspace generated by elements of the form v − g · v

for g ∈ G and v ∈ V . The vector space of invariants V G is the largest subspace of V

on which G acts trivially, and so consists of elements v ∈ V such that g · v = v for all

g ∈ G. The following descriptions are well-known (see Brown [4]).

VG ∼= k⊗G V, V G ∼= HomG(k, V),

where k is taken to be the G-module with trivial action of G.

CHAPTER 2. PRELIMINARIES 12

2.1.1 Representation theory of symmetric groups

The central tool underlying all of the following theory is the representation theory

of symmetric groups. We denote the symmetric group on n letters by Sn. A key

property of representations of symmetric groups that facilitates all of these results

is that they admit a uniform description in a common language. Concretely, the

irreducible representations of Sn are in bijection with the set of partitions of n. This

description allows us to meaningfully compare representations of different symmetric

groups in a way we now make precise.

Definition 2.1.4. (Partitions.) A partition of n is a weakly decreasing sequence

λ = (λ1, . . . , λl) of positive integers λi such that
∑

i λi = n. We write λ ` n to

mean λ is a partition of n. We also write |λ| = n. For convenience, we also allow

the empty partition ∅. To such a partition λ we associate its Young diagram, that is

the collection of (left-justified) boxes, with λi boxes in the i-th row. For example, the

partition λ = (5, 3, 3, 1) has corresponding Young diagram,

.

The conjugate partition of λ is denoted λ′, and is the partition obtained by flipping the

Young diagram along its main diagonal. Continuing with the example above we have,

λ = λ′ = ,

and λ′ = (4, 3, 3, 1, 1). A tableau T of shape λ is a numbering of the boxes in its Young

diagram (bijectively) with the numbers 1, . . . , n = |λ|.

It is well-known (see, for example, Fulton-Harris [13]) that from a tableau T of

shape λ ` n, a certain idempotent cλ in the group algebra k[Sn] called the Young

CHAPTER 2. PRELIMINARIES 13

symmetrizer can be used to construct an irreducible representation as follows,

Pλ := k[Sn] · cλ.

It turns out that this representation only depends on the underlying partition λ, and so

we denote it by Pλ. Moreover, this construction gives every irreducible representation

of symmetric groups. That is, the irreducible representations of Sn are in bijection with

the partitions λ ` n. For example, for any n ≥ 0, we have that P(n) is the 1-dimensional

trivial representation of Sn and that P(1n) is the 1-dimensional sign representation of Sn.

It will frequently be useful to denote the representation Pλ by the Young diagram

for λ.

Yet another useful way to describe a partition will be in terms of its exponents.

Write a partition λ as 1m12m2 · · · . We call mi the exponents of λ. For example,

λ = (5, 3, 3, 1) has exponents m1 = 1,m3 = 2,m5 = 1 (and all other mi = 0).

Twisted representations. Given two representations V,W of Sn, their tensor prod-

uct V ⊗W is also an Sn-module with diagonal action of Sn. As an example of this,

take the sign representation P(1n), which we often denote as εn. Given an Sn-module

V , we form the Sn-module,

V ⊗ εn.

The representation V is said to have been twisted by the sign. It is well-known that

for any λ ` n we have,

Pλ ⊗ εn ∼= Pλ′ ,

where λ′ is the conjugate partition of λ.

CHAPTER 2. PRELIMINARIES 14

Padded partitions. In what follows we frequently compare representations of dif-

ferent symmetric groups using the following notation.

Definition 2.1.5. Given a partition λ = (λ1, . . . , λl), define, for any n ≥ λ1 + |λ|, the

padded partition

λ[n] = (n− |λ|, λ1, . . . , λl).

Accordingly, we denote by P (λ)n the irreducible Sn-module Pλ[n] corresponding to the

padded partition λ[n].

In this way we find a notational similarity between the Sn-module P (λ)n and the

Sm-module P (λ)m. For example, the trivial representation of any symmetric group

Sn corresponds to the padding of the empty partition P (∅)n. While this similarity in

notation may seem like nothing more than a convenience at this point, we will see that

it facilitates much of the theory that follows! This will first become evident when we

discuss the theory of FI-modules (Section 2.3).

Bimodules over symmetric groups

We will frequently have cause to consider (Si, Sn)-bimodules. By Lemma 2.1.3, we have

that all irreducible (Si, Sn)-bimodules are of the form,

Pµ � Pλ,

for partitions µ ` i, λ ` n.

Example 2.1.6. (The group algebra, k[Sn].)

The group algebra k[Sn] is a (Sn, Sn)-bimodule. It is well-known to admit the following

decomposition into irreducible bimodules.

k[Sn] ∼=
⊕
λ`n

Pλ � Pλ.

CHAPTER 2. PRELIMINARIES 15

2.1.2 S-modules and Schur functors

Fix a vector space V throughout this section. Good references for material include

Aguiar-Mahajan [1] and Loday-Vallette [22].

Definition 2.1.7. An S-module (over k) is a sequence,

M = (M(0),M(1), . . . ,M(n), . . .),

of right k[Sn]-modules M(n). We say that M(n) is the degree n term of M . The

twisted S-module M̂ is the S-module obtained from M by twisting each M(n) by the

sign representation. That is,

M̂ = (M(0)⊗ ε0,M(1)⊗ ε1, . . . ,M(n)⊗ εn, . . .),

Fix a vector space V . Its n-th tensor power V ⊗n is a left Sn-module where Sn acts on

the left by permuting the tensor factors. It can also be seen as a right GL(V)-module,

where GL(V) acts diagonally on the tensor factors (after inverting). Moreover, these

actions are seen to commute, and so we have that V ⊗n is a (Sn,GL(V))-bimodule. In

particular, if U is a right Sn-module, then,

U ⊗Sn V
⊗n,

is a right GL(V)-module, and, if W is a left GL(V)-module, then,

V ⊗n ⊗GL(V) W,

is a left Sn-module.

Definition 2.1.8. Given an S-module M , we associate its Schur functor,

SM(V) :=
⊕
n≥0

M(n)⊗Sn V
⊗n.

CHAPTER 2. PRELIMINARIES 16

An Sn-module W can be considered as an S-module with zeros everywhere except W

in degree n. Its associated Schur functor is denoted,

SW (V) = W ⊗Sn V
⊗n.

In this case the GL(V)-module SW (V) and the Sn-module W are said to be Schur-Weyl

dual to one another.

Example 2.1.9.

1. (Tensor algebra.) The S-module defined by M(n) = k[Sn] for all n ∈ N, deter-

mines the Schur functor,

SM(V) =
⊕
n≥0

V ⊗n.

This is the tensor algebra T (V), and is a graded vector space,

T (V) =
⊕
n≥0

Tn(V),

where Tn(V) := V ⊗n. We denote the element v1 ⊗ · · · ⊗ vn of Tn(V) as v1 · · · vn

when no ambiguity can arise. This is the free associative algebra on V and is

easily seen to be a GL(V)-module with diagonal action on the tensor factors. In

particular, this action respects the grading, and so each graded piece Tn(V) is a

GL(V)-submodule of T (V).

2. (Symmetric algebra.) The S-module defined by M(n) = k for all n ∈ N deter-

mines the Schur functor,

SM(V) =
⊕
n≥0

k⊗Sn V
⊗n,

which is the symmetric algebra S(V). Indeed, for any σ ∈ Sn, the tensors v1 · · · vn

and vσ(1) · · · vσ(n) are identified under the tensor product −⊗Sn −. This is again

a graded vector space with Sn(V) corresponding to the n-th summand above.

CHAPTER 2. PRELIMINARIES 17

In both of these examples we started from an S-module and recovered a well-known

algebra. We now present an example going in the other direction, starting with the

free Lie algebra L(V) and recovering an S-module Lie.

First, recall that a Lie algebra over k is a k-vector space g equipped with a bilinear

map,

[−,−] : g× g→ g,

called the bracket, satisfying, for all x, y, z ∈ g:

1. [x, x] = 0,

2. [[x, y], z] + [[y, z], x] + [[z, x], y] = 0.

A homomorphism between Lie algebras g, g′ is a linear map φ : g→ g′ such that,

φ([x, y]) = [φ(x), φ(y)],

for all x, y ∈ g.

There are many formulations of the free Lie algebra L(V) on a vector space V . We

record the following from [22].

Proposition 2.1.10 ([22], Proposition 13.2.3 (a)). The following characterizes the free

Lie algebra L(V) as a subspace of tensor algebra T (V). The subspace L(V) ⊂ T (V) is

generated by V under the bracket operation.

Let Vn be the n-dimensional vector space with basis {x1, . . . , xn}. Let Lien denote

the subspace of L(Vn) which is linear in each variable xi. For example, Lie1 is one

dimensional and is spanned by x1, and Lie2 is one dimensional and is spanned by

[x1, x2]. In general, the n-th subspace Lien admits an action of Sn, giving rise to an

S-module.

CHAPTER 2. PRELIMINARIES 18

Definition 2.1.11. Let Lie be the S-module,

Lie = (Lie0, Lie1, . . . , Lien, . . .)

The associated Schur functor SLie(V) is precisely the free Lie algebra L(V),

L(V) ∼=
⊕
n≥0

Lien ⊗Sn V
⊗n,

and the n-th graded piece Ln(V) is Schur-Weyl dual to the Sn-module Lien [22].

Let Cn denote the cyclic subgroup of Sn generated by a n-cycle c, and let ζ denote

a(ny) one-dimensional (complex) representation sending c to a primitive n-th root

of unity. As a (complex) representation of Sn it can be shown (e.g. [20]) that Lien

isomorphic to the induced module,

IndSn
Cn
ζ.

Using this description one can compute the decomposition into irreducible Sn-modules

of Lien. For example,

Lie0
∼= ∅, Lie1

∼= , Lie2
∼= Lie3 = ,

Lie4
∼= ⊕ ,

Lie5
∼= ⊕ ⊕ ⊕ ⊕ .

The twisted counterpart to Lie will play a significant role in our story. For example we

have

Lie2
∼= L̂ie2

∼=

CHAPTER 2. PRELIMINARIES 19

Schur-Weyl duality theorem.

Definition 2.1.12. The Schur functor associated to the irreducible Sn-module Pλ is

denoted simply,

Sλ(V) := Pλ ⊗Sn V
⊗n.

The Schur-Weyl duality theorem gives a decomposition of V ⊗n into irreducible

bimodules ([12], Corollary 4.59).

Theorem 2.1.13 (The Schur-Wely Duality Theorem.). As a (Sn,GL(V))-bimodule,

V ⊗n decomposes as,

V ⊗n ∼=
⊕
λ`n

Pλ � Sλ(V),

where Sλ(V) are distinct irreducible representations of GL(V) or zero.

2.1.3 Induction of representations

Let H be a subgroup of G. Then any G-module V can be regarded as an H-module

via the inclusion α : H ↪→ G. That is, for h ∈ H and v ∈ V , define,

h · v := α(h) · v.

For any G-module V , we denote by ResGH V the H-module obtained in this way. This

construction is referred to as restriction.

Going in the other direction is the operation of induction, which turns H-modules

into G-modules. Concretely, for any H-module W , we define the induction from H to

G of W as,

IndGHW := k[G]⊗H W,

where k[G] is regarded as a right k[H]-module as follows: for x ∈ k[G] and h ∈ H

define the right action of H via x · h := xα(h). By associativity, the left action of k[G]

CHAPTER 2. PRELIMINARIES 20

on itself commutes with this right action, and thus IndGHW is can be made a G-module

via,

g · (x⊗ w) := gx⊗ w,

where w ∈ W,x ∈ k[G] and g ∈ G.

We now present a useful characterization of induced modules. Although this pre-

sentation is well-known (see [4], for example), we present its proof as its methods

foreshadow many of the techniques we will use throughout.

Proposition 2.1.14 (Proposition 5.1, [4]). The G-module IndGHW contains W as an

H-submodule, and is the direct sum of its transforms,

IndGHW =
⊕
g∈G/H

gW.

Proof. Let E be a set of (left) coset representatives for G/H. Then k[G] is a free

(right) H-module where we can take E as a basis. We therefore have the following

decomposition on the level of vector spaces,

IndGHW =
⊕
g∈E

g ⊗W,

where g⊗W := {g⊗w : w ∈ W} is an isomorphic copy of W . Furthermore, by taking

1 as the representative for its coset, we have a canonical inclusion,

i : W ↪→ IndGHW, (2.1)

defined by w 7→ 1⊗ w. This is a map of H-modules, where IndGHW is regarded as an

H-module via restriction. Indeed, let w ∈ W and h ∈ H. By definition,

1⊗ h · w = α(h)⊗ w = α(h) · (1⊗ w),

CHAPTER 2. PRELIMINARIES 21

in W ⊗k[H]k[G], and so i(h ·w) = α(h) · i(w), as required. Finally, the summand g⊗W

can be seen as the transform of W under the action of g ∈ G via,

g · (1⊗ w) = g ⊗ w,

in W ⊗k[H] k[G].

This result completely characterizes induced G-modules. In particular, we have the

following.

Lemma 2.1.15 (Proposition 5.3, [4]). Let V be a G-module whose underlying vector

space is a direct sum,

V =
⊕
i∈I

Wi.

Further, assume that the G-action transitively permutes the summands of V . Fix a

summand W = Wi and let H be the isotropy group of i. Then W is an H-module and,

V ∼= IndGHW.

It is useful to note here that it is possible to compose inductions and restrictions.

Proposition 2.1.16. Let K ≤ H be subgroups of G and let U be a K-module. There

is an isomorphism of G-modules,

IndGK U
∼= IndGH IndHK U.

Similarly, for a G-module V , there is an isomorphism of K-modules,

ResGK V
∼= ResHK ResGH V.

Proof. Let E be a set of coset representatives for G/H, and F be a set of coset rep-

resentatives for H/K. Then {gh : g ∈ E, h ∈ F} is a set of coset representatives for

G/K. Write,

W = IndHK U =
⊕
h∈F

hU.

CHAPTER 2. PRELIMINARIES 22

Then,

IndGH(W) =
⊕
g∈E

W =
⊕

g∈E,h∈F

ghU = IndGK U.

The parallel statement for restriction is immediate.

Example: Symmetric groups

We start by defining the induction product for symmetric groups. Given d non-negative

integers k1, . . . , kd and representations Vi of Ski we construct a representation,

V1 ~ · · ·~ Vd,

of Sn, where n :=
∑

i ki as the induction to Sn of the outer product,

V1 � · · ·� Vd,

a representation of Sk1 × · · · × Skd . That is,

V1 ~ · · ·~ Vd := IndSn
Sk1 ×···×Skd

V1 � · · ·� Vd.

This product is both commutative and associative (see Fulton-Harris [13], Section 4).

It will frequently be useful to have a rule for decomposing such a representation

into irreducibles. To that end, define the Littlewood-Richardson coefficients aνλµ as

the number of times the irreducible Pν appears in Pλ ~ Pµ. There is combinatorial

procedure, called the Littlewood-Richardson rule that determines the coefficient aνλµ

(see Fulton-Harris [13], Appendix A.8). We state a useful special case of this rule

known as branching which addresses the case µ = (k) corresponding to the trivial

Sk-module P(k).

Lemma 2.1.17 (Branching rules.). Let λ ` n a partition, and Pλ the corresponding

irreducible Sn-module.

CHAPTER 2. PRELIMINARIES 23

1. The induction of the Sn× Sk-module Pλ�P(k) to an Sn+k module decomposes as,

Pλ ~ P(k) = Ind
Sn+k
Sn× Sk

Pλ � P(k)
∼=
⊕
µ

Pµ,

where the sum is over all partitions µ ` n+ k obtained from λ by adding one box

to k different columns.

2. The Sk-coinvariants of the restriction of the the Sn-module Pλ to a Sn−k× Sk-

module decomposes as,

(
ResSn

Sn−k × Sk
Pλ

)
Sk

∼=
⊕
µ

Pµ,

where the sum is over all partitions µ ` n− k obtained from λ by removing one

box from k different columns.

Example 2.1.18. Denoting irreducible representations of Sn by their corresponding

Young diagrams, we have the following isomorphism of S4-modules as an example of

the branching rule.

~ · · ∼= · · ⊕ ·
· ⊕

·

·
⊕ ·
·

Here the sum is over partitions µ obtained from by adding one box · to two

different columns.

2.1.4 Inductions involving products of bimodules.

We discuss a special case of induction that will crop up frequently. Let S(a, b) :=

Sa× Sb denote the product of two symmetric groups. By Lemma 2.1.3, the irreducible

representations of S(a, b) are of the form,

Pµ � Pλ

CHAPTER 2. PRELIMINARIES 24

for µ ` a and λ ` b. Consider now the product S(a, b)× S(c, d). Another application

of Lemma 2.1.3 tells us that its irreducible representations are of the form,

(Pλ � Pµ)� (Pν � Pη),

for µ ` a, λ ` b, ν ` c and η ` d.

We are interested induction defined by the subgroup,

S(a, b)× S(c, d) ≤ S(a+ c, b+ d),

which can be described in terms of its irreducible S(a, b)× S(c, d) modules as,

Ind
S(a+b,c+d)
S(a,b)×S(c,d) (Pµ � Pλ)� (Pν � Pη) ∼=

(
Ind

Sa+c
S(a,c) Pµ � Pν

)
�
(

Ind
Sb+d
S(b,d) Pλ � Pη

)
,

(2.2)

using the isomorphism,

S(a, b)× S(c, d) ∼= S(a, c)× S(b, d).

Example 2.1.19. Consider the irreducible S2× S1-module,

�

and the irreducible S2× S2-module,

� .

We have,

Ind
S(4,3)
S(2,1)×S(2,2)

(
�

)
�

(
�

)
∼=

(
IndS4

S(2,2) �

)
�

(
IndS3

S(1,2) �

)
∼=

 ⊕

�
 ⊕

 .

CHAPTER 2. PRELIMINARIES 25

2.1.5 Plethysm

Denote the (permutational) wreath product of Sn with Sm by Sn[Sm]. Recall that this

is the normalizer subgroup of (Sm)n in Smn, or equivalently it is the semidirect product

Snn(Sm)n where Sn acts on (Sm)n by permuting coordinates. Given an Sn-module V

and an Sm-module W , let,

V [W] := V ⊗ (W⊗n). (2.3)

Then V [W] admits the structure of an Sn[Sm]-module, where,

• (Sm)n acts componentwise on W⊗n, and,

• Sn acts simultaneously on V and by permuting the tensor factors in W⊗n.

The plethysm is the induced Smn-module,

V ◦W := IndSmn
Sn[Sm] V ⊗ (W⊗n).

The plethysm problem is to decompose,

Pλ[Pµ] =
⊕
ν

mν
λµPν , (2.4)

for partitions λ ` n, µ ` m and ν ` nm. Computing the coefficients mν
λµ is an

important general problem in representation theory [23].

Remark 2.1.20. The computer algebra package SAGE can compute mν
λµ for small

partitions. For example,

◦ = ,

◦ ∼= ⊕ .

CHAPTER 2. PRELIMINARIES 26

2.1.6 Character theory

Associated to a representation ρ : G→ GL(V) is its character,

χ : G→ k

g 7→ Tr(ρ(g))

that assigns to each element of G the trace of its corresponding linear map under ρ.

We record some basic properties of characters of representations. A good reference for

this material is [19]. For convenience, we temporarily fix our ground field k = C.

Suppose that V and W are G-modules with characters χV and χW , respectively.

Then V and W are isomorphic as G-modules if and only if their characters are equal

χV = χW . Given a complete set of irreducible G-modules, V1, . . . , Vn, denote their

characters, χ1, . . . , χn. These are the irreducible characters of G. The character table

of G is a means to record each irreducible character. It is easy to see that characters are

class functions (see [19] for a definition), and it will thus suffice to give the characters

of each conjugacy class of G. We present a simple example.

Example 2.1.21. (Character table of S4.)

There are five conjugacy classes of elements in S4: 1, (12), (12)(34), (123) and (1234),

and thus five irreducible S4-modules,

, , , , .

We denote their characters χ(4), χ(3,1), χ(2,2), χ(2,1,1) and χ(1,1,1,1), respectively. The char-

acter table for S4 is:

CHAPTER 2. PRELIMINARIES 27

1 (12) (12)(34) (123) (1234)

χ(4) 1 1 1 1 1

χ(1,1,1,1) 1 −1 1 1 −1

χ(3,1) 3 1 −1 0 −1

χ(2,1,1) 3 −1 −1 0 1

χ(2,2) 2 0 2 −1 0

Notice that the character of 1 records the dimension of the representation.

The character table provides a useful means for decomposing an arbitrary repre-

sentation into its irreducible pieces. We now briefly describe this process. The space

of complex-valued class functions on any finite group G has a natural inner product,

〈f, f ′〉G :=
1

|G|
∑
g∈G

f(g)f ′(g).

Since f is a class function we can rewrite this sum as,

〈f, f ′〉G :=
1

|G|
∑
g∈C

|C(g)|f(g)f ′(g),

where C is the set of conjugacy classes in G, and |C(g)| is the size of the corresponding

conjugacy class. If the group G is understood we denote this inner product simply as

〈−,−〉.

The inner products of characters of representations is related to the space of G-

module homomorphisms between representations. Concretely,

Proposition 2.1.22 (Theorem 14.24, [19]). Let V and W be G-modules with characters

χV and χW , respectively. Then,

dim HomG(V,W) = 〈χV , χW 〉.

CHAPTER 2. PRELIMINARIES 28

The fact that dim HomG(
⊕

i Vi,
⊕

jWj) =
∑

i,j dim HomG(Vi,Wj) combined with

Schur’s lemma, which says that dim HomG(Vi, Vj) = δij if Vi, Vj are irreducible G-

modules, gives us the following tool for computing decompositions into irreducible

G-modules.

Lemma 2.1.23. (Orthogonality relations.) Let V1, . . . , Vn be a complete list of irre-

ducible G-modules, with corresponding characters χ1, . . . , χn. Let W be a G-module

with corresponding character ψ.

1. Then 〈ψ, χi〉 is equal to the multiplicity with which Vi appears in W .

2. We have the decomposition,

W =
n⊕
i=1

V
⊕〈ψ,χi〉
i ,

of W into irreducible G-modules.

The orthogonality relations provide a technique for computing the decomposition

into irreducible G-modules that we will use in several places. It is therefore worth

providing a simple example.

Example 2.1.24. Consider the permutation representation ρ : S3 → GL(k3) where S3

acts by permuting the basis elements. We have the following descriptions,

ρ(1) =


1 0 0

0 1 0

0 0 1

 , ρ((12)) =


0 1 0

1 0 0

0 0 1

 , ρ((123)) =


0 1 0

0 0 1

1 0 0

 ,

with corresponding characters ψ(1) = 3, ψ(12) = 1 and ψ(123) = 0. The character

table for S3 is,

1 (12) (123)

χ(3) 1 1 1

χ(1,1,1) 1 −1 1

χ(2,1) 2 0 −1

CHAPTER 2. PRELIMINARIES 29

We use the orthogonality relations to compute,

〈ψ, χ(3)〉 =
1

6
(1 · 3 · 1 + 3 · 1 · 1 + 0) = 1

〈ψ, χ(1,1,1)〉 =
1

6
(1 · 3 · 1 + 3 · 1 · (−1) + 0) = 0

〈ψ, χ(2,1)〉 =
1

6
(1 · 3 · 2 + 0 + 0) = 1

and hence the decomposition,

k
3 ∼= ⊕ .

Notice that the dimensions agree:

dim

(
⊕

)
= dim

()
+dim

()
= 1+2 = 3 = dim

(
k

3
)
.

Frobenius reciprocity. The language of characters also enables us to state a power-

ful duality between induced and restricted representations. Let H ≤ G be groups, let V

be a G-module, and let W an H-module. Denote the character of V by χ and the char-

acter of W by ψ. Induction and restriction can be applied to characters. In particular,

let IndGH ψ be the character corresponding to the representation IndGHW . Similarly,

let ResGH χ denote the character of the representation ResGH V . Frobenius reciprocity

can be stated as a relationship between these induced and restricted characters. This

result is well-known (see, [19], for example).

Theorem 2.1.25 (The Frobenius Reciprocity Theorem). Let H ≤ G and let χ and ψ

be as above. Then,

〈IndGH ψ, χ〉G = 〈ψ,ResGH χ〉H .

CHAPTER 2. PRELIMINARIES 30

2.2 Category theory

A lot of what follows is phrased in the language of categories. The following quote is

taken from from Weibel [33]:

The word “category” is due to Eilenberg and MacLane (1947) but was taken

from Aristotle and Kant. It is chiefly used as an organizing principle for

familiar notions.

That sentiment will hold firm here, where we will recast much of the theory above

in the language of categories. This reorganization will be the foundation upon which

our theory is built. We recall the basic notions here. See [24] for futher details.

Given a category C, we let ob(C) denote its objects, and for two such objects A,B we

denote by HomC(A,B) the morphisms A→ B in C. Given objects A,B,C ∈ ob(C) and

morphisms φ ∈ HomC(A,B) and ψ ∈ HomC(B,C), composition defines a morphism in

the category,

ψ ◦ φ ∈ HomC(A,C).

A subcategory D ⊆ C is a category whose objects are a subcollection of ob(C), and

whose morphisms are a subcollection of morphisms of C, and where composition and

identities are inherited from C. We say a subcategory is full if,

HomD(A,B) = HomC(A,B),

for all A,B ∈ ob(D). A category is skeletal if no two distinct objects are isomorphic.

Given a category C, a skeleton of C is an equivalent category that is skeletal (see [24]

for more details). The opposite of a category C is the category with the same objects

but with all the arrows reversed. We denote this category Cop.

CHAPTER 2. PRELIMINARIES 31

An important and ubiquitous concept in category theory is that of an adjunction

between categories.

Definition 2.2.1. Two functors F : C → D and G : D → C between categories C,D

are called adjoint functors if there is a natural bijection,

HomD(F (A), B) ∼= HomC(A,G(B)),

for all A ∈ ob(C), B ∈ ob(D). We say F is left-adjoint to G, that G is right-adjoint to

F , and we write,

F : C� D : G.

We introduce some important examples of categories that we will return to through-

out the text.

Example 2.2.2.

1. (Basic examples.) Let Set denote the category of sets, whose objects are sets

and whose morphisms are functions. Let Vectk denote the category of k-vector

spaces, whose objects are k-vector spaces and whose morphisms are linear maps.

When the ground field k is understood we denote this simply as Vect.

A useful functor is the linearization functor L : Set→ Vect that sends a set S to

the free k-vector space spanned by S. Given an arbitrary functor F : C → Set,

we define its linearization as the composition with L ◦ F : C→ Vect.

2. (Groups as categories.) Given a group G we consider the category G with one

object •, and with morphisms HomG(•, •) = G. If H ≤ G is a subgroup then its

corresponding category H is a subcategory of G.

CHAPTER 2. PRELIMINARIES 32

3. (Finite sets and bijections.) Let FB denote the category whose objects are finite

sets, and whose morphisms are bijections. That is, given sets S, T ∈ ob(FB), we

have that,

HomFB(S, T) =

 Sym(S, T) |S| = |T |

∅ else

By assigning to the natural number n ∈ N, the finite set n := {1, . . . , n}, we

realize the skeleton of FB as having objects natural numbers, and where the only

morphisms are of the form HomFB(n,n) = Sn.

4. (Finite sets and injections.) Let FI denote the category whose objects are finite

sets and whose morphisms are injections. Notice that FB is a subcategory of

FI. We can similarly define the skeleton of FI as having objects of the form n as

above.

5. (Products of categories.) Let C and D be two categories. Then the product

category C × D is the category whose objects are pairs (A,B) where A ∈ ob(C)

and B ∈ ob(D), and whose morphisms are pairs (f, g) where f is a morphism in

C and g a morphism in D. A functor from a product category is called a bifunctor.

For example, the product FB × FB has objects pairs of finite sets (S, T). A

morphism,

(S, T)→ (S ′, T ′),

in FB×FB is of the form (f, g) where f ∈ HomFB(S, S ′) and g ∈ HomFB(T, T ′). In

particular, we require |S| = |S ′| and |T | = |T ′| in order for (f, g) to be non-zero.

CHAPTER 2. PRELIMINARIES 33

2.2.1 Representations of categories

The prototypical example is that of representations of groups, or in other words, G-

modules. Thinking of groups as categories as in Example 2.2.2(2) we see that a G-

module V is exactly a functor,

V : G→ Vect.

Indeed, the single object • ∈ ob(G) is sent to the vector space V . Moreover, each

element g ∈ G defines a linear map ρ(g) ∈ GL(V), and this is precisely the image

of the functor V on the endomorphisms labelled by g. We find the following picture

instructive.

G

•

Vect

V

V

g ∈ G ρ(g) ∈ GL(V)

Remark 2.2.3. We will often merge these notations, and refer to the functor V as V .

It is routine to verify that the functors G→ Vect form a category, whose morphisms

are natural transformations. We denote this category G-Mod. Our philosophy is that

the study of the category of G-modules is equivalent to the representation theory of G.

In particular, we have the following dictionary.

CHAPTER 2. PRELIMINARIES 34

Representation theory Category of modules

Group G Category G

Left G-module V V ∈ G-Mod

Right G-module W W ∈ Gop-Mod

G-module homomorphism

φ : V1 → V2

φ ∈ HomG-Mod(V, V
′)

A natural generalization, then, is to consider C-Mod, the category of functors from

C to Vect for an arbitrary category C. We take the perspective that the study of C-Mod

should be thought of as studying the representation theory of C by analogy with groups.

Example 2.2.4. The category FB-Mod consists of functors W : FB → Vect. Con-

sidering the skeleton of FB, the functor W assigns to each n ∈ N a vector space Wn.

Moreover, for each f ∈ HomFB(n, n) there is a linear map f∗ : Wn → Wn. Functoriality

of W amounts to insisting that Wn inherits the structure of an Sn-module, for each

n ∈ N. Thus an FB-module W is exactly an S-module W = (W0,W1, . . . ,Wn, . . .). We

find the following picture instructive.

FB

n

m

...

...

...

...

...

...

Vect

Wn

Wm

W

Sn

Sm

Sn

Sm

The representation theory of FI provides another important example. The category

FI-Mod has been extensively since the seminal papers of Church-Ellenberg-Farb [7] and

CHAPTER 2. PRELIMINARIES 35

Church-Ellenberg-Farb-Nagpal [8]. We recall that theory Section 2.3.

A fundamental notion in the theory of group representations (and in the study of R-

modules more generally) is that of a bimodule. We make the appropriate generalization

to this setting.

Definition 2.2.5. (Bimodules over product categories.) Let C and D be categories.

Then a (C,D)-bimodule W is a bifunctor over the product category C× D, i.e.,

W : C× D→ Vect.

The (C,D)-bimodules form a functor category (C,D)-BiMod as usual. In particular,

given any object d ∈ ob(D) we have that,

W (•, d) ∈ C-Mod

sending c 7→ W (c, d). Similarly, for any c ∈ ob(C) we have that W (c, •) ∈ D-Mod. For

simplicity, let C-BiMod denote the category of (C,Cop)-bimodules.

Example 2.2.6. Consider the category (G,Gop)-BiMod of bimodules over the product

category G × Gop. Such a bimodule W ∈ (G,Gop)-BiMod corresponds precisely to a

G-bimodule. Indeed, let • denote the unique object in the category G, and ◦ the

unique object in the category Gop. Then the vector space W (•, ◦) ∈ Vect admits

the structure of a G-bimodule, with left action g · w := W (g, ◦)(w), and right action

w · h := W (•, h)(w) for all g, h ∈ G and w ∈ W (•, ◦). Finally, the compatibility of

these actions is equivalent to the commutativity of

W (•, ◦) W (•, ◦)

W (•, ◦) W (•, ◦)

W (•,h)

W (g,◦)

W (•,h)

W (g,◦)

CHAPTER 2. PRELIMINARIES 36

which follows from the functoriality of W . Moreover, it is straightforward to see that

the G-bimodule structure of W (•, ◦) completely determines the functor W .

2.2.2 Useful notions for representations of categories

Any category of functors from a small category C to Vect (or indeed, to any abelian

category) is abelian [33]. In particular, the representation category C-Mod pointwise

inherits the notions of submodule (or subrepresentation), direct sum, (co)kernel, injec-

tion, surjection and quotient from the parallel notions in Vect. So, for example, the

C-module W is said to be a submodule of the C-module V if W (A) is a subspace of V (A)

for all objects A ∈ ob(C), and any functor W (A)
W (f)−−−→ W (B) for f ∈ HomC(A,B) is

obtained by restriction on V (f). For another example, we write, for V ∈ C-Mod,

V = V1 ⊕ V2,

if V (A) = V1(A)⊕ V2(A) for all A ∈ ob(C) where V1, V2 ∈ C-Mod.

(Bi)Degree of a C-module. Let C be a category whose objects are finite sets. Then

the category of representations C-Mod has a notion of degree.

Definition 2.2.7. (Degree) Let C be a category whose objects are finite sets and let

V ∈ C-Mod. For a ∈ N, the degree a submodule dega(V) ⊆ V is the C-module defined

by,

dega(V)(S) =

 V (S) |S| = a

0 else

and we have that,

V =
⊕
a≥0

dega(V).

We say that V is supported in degree a if V = dega(V).

CHAPTER 2. PRELIMINARIES 37

Similarly, let D be a category whose objects are pairs of finite sets. Then D-Mod

has a notion of bidegree.

Definition 2.2.8. (Bidegree) Let D be a category whose objects are pairs of finite sets

and let V ∈ D-Mod. For (a, b) ∈ N×N, the bi-degree (a, b) submodule dega,b(V) ⊆ V

is the D-module defined by,

dega,b(V)(S, T) =

 V (S, T) |S| = a, |T | = b

0 else

and we have that,

V =
⊕
a,b≥0

dega,b(V).

We say that V is supported in bidegree (a, b) if V = dega,b(V).

2.2.3 Representable functors

An important example of a bimodule over a product category is the representable

functor RC, the appropriate setting for which is locally small categories. That is,

categories C for which HomC(A,B) is a set for all A,B ∈ ob(C).

Definition 2.2.9. (The representable functor RC.) Let C be any locally small category.

• Fix an object A ∈ ob(C) and define a functor,

HomC(A, •) : C→ Set,

sending B 7→ HomC(A,B) and sending the morphism g ∈ HomC(B,B′) to the

map,

HomC(A,B)→ HomC(A,B′),

obtained by post-composition with g. Its linearization is a C-module k[HomC(A, •)].

CHAPTER 2. PRELIMINARIES 38

• Similarly, fix an object B ∈ ob(C) and define a functor,

HomC(•, B) : Cop → Set,

sending A 7→ HomC(A,B) and sending the morphism f ∈ HomCop(A,A′) to the

map,

HomC(A,B)→ HomC(A′, B),

obtained by pre-composition with f . Its linearization is a Cop-module k[HomC(•, B)].

• These functors are compatible in the sense that they extend to a bifunctor,

HomC(•, •) : Cop × C→ Set,

sending (A,B) ∈ ob(Cop×C) to HomC(A,B). Morphisms in the product category

Cop×C are of the form (f, g) where f ∈ HomCop(A,A′) is a morphism in Cop and

g ∈ HomC(B,B′) is a morphism in C. The morphism (f, g) is sent to the map,

HomC(A′, B)→ HomC(A,B′),

obtained by simultaneously pre-composing with f and post-composing with g.

Its linearization is the representable functor RC(•, •) := k[HomC(•, •)],

RC(•, •) : Cop × C→ Vect

sending the pair (A,B) to the vector space k[HomC(A,B)].

Example 2.2.10. (The group algebra as the representable functor RG.)

Consider a group G and its corresponding category G. The category G only has a single

object, which we temporarily denote ◦. The representable functor RG is given as,

RG(◦, ◦) = k[HomG(◦, ◦)] = k[G].

That is, the representable functor RG is precisely the group algebra with its correspond-

ing bimodule structure.

CHAPTER 2. PRELIMINARIES 39

Remark 2.2.11. Following Definition 2.2.9, we have that RG(•, •) ∈ (Gop,G)-BiMod.

For notational consistency, it is preferable to consider the group algebra a (G,Gop)-

bimodule. This is done by applying the representable functor construction to the

opposite category Gop,

RGop(•, •) ∈ (G,Gop)-BiMod.

We are now able to state the Yoneda lemma.

Theorem 2.2.12 (Yoneda lemma.). Let C be a (locally small) category and let A ∈

ob(C). Then for any functor F : A→ Set, there is a one-to-one correspondence between

the set of natural transformations Nat(HomC(A, •), F) and the set F (A).

Example 2.2.10, cont. Let V ∈ G-Mod, and let ◦ be the unique object in G. In

this setting, natural transformations correspond to G-module homomorphisms, and

thus the Yoneda lemma states that the G-module homomorphisms k[G] → V are in

bijection with V . Indeed, any G-module homomorphism φ : k[G] → V is determines

and is determined by the image of the identity φ(1) in V .

2.2.4 Tensor product over a category

Recall the definition of tensor product over a category (e.g., [24]).

Definition 2.2.13. (Tensor product over C.) Let V ∈ C-Mod and W ∈ Cop-Mod. The

tensor product V ⊗C W ∈ Vect can be defined as the coend,∫ c∈C
V (c)⊗W (c).

Concretely, this is the largest quotient of

⊕
c∈ob(C)

V (c)⊗W (c)

CHAPTER 2. PRELIMINARIES 40

in which

vc ⊗ f ∗(wc′) ∈ V (c)⊗W (c) is identified with f∗(vc)⊗ wc′ ∈ V (c′)⊗W (c′)

for all c, c′ ∈ ob(C), f ∈ HomC(c, c′), and all vc ∈ V (c), wc′ ∈ W (c′).

This construction is entirely functorial, and thus we have defined a bifunctor,

−⊗C − : C-Mod× Cop-Mod→ Vect.

Symmetrically we have a bifunctor,

−⊗C − : Cop-Mod× C-Mod→ Vect.

Example 2.2.14. Consider a group G and its corresponding category G. Let V ∈

Gop-Mod andW ∈ G-Mod. Then V⊗GW is the largest quotient of V (•)⊗W (•) = V⊗W

in which,

v · g ⊗ w ∈ V ⊗W is identified with v ⊗ g · w ∈ V ⊗W

for all v ∈ V,w ∈ W and g ∈ G. This coincides with the definition of the tensor

product V ⊗GW of a right G-module V with a left G-module W .

Properties of the tensor product. We record here some useful properties that

the tensor product enjoys. A useful observation is that this categorical tensor product

respects direct sums. This is an example of the well-known fact that coends commute

with colimits (see, e.g., [26]).

Lemma 2.2.15. Let C be a small category and let V1, V2,W ∈ C-Mod. Then,

(V1 ⊕ V2)⊗C W ∼= (V1 ⊗C W)⊕ (V2 ⊗C W)

CHAPTER 2. PRELIMINARIES 41

We continue the analogy with R-modules, where we have the standard result that

the tensor product over R of a right R-module V with an (R, S)-bimodule W is a right

S-module V ⊗RW . This generalizes to our setting as follows.

Lemma 2.2.16. Let V ∈ C-Mod and let W ∈ (Cop,D)-BiMod. Then there is a functor

V ⊗C W : D→ Vect

sending d ∈ ob(D) to the vector space V ⊗CW (•, d). That is, W determines a functor,

• ⊗C W : C-Mod→ D-Mod.

Proof. Everything in sight is functorial.

Example 2.2.17. The representable functors RC ∈ (C,Cop)-BiMod naturally give rise

to functors,

RC ⊗C • : C-Mod→ C-Mod.

Dual to the categorical tensor product is the categorical Hom-functor. Concretely,

given W ∈ Dop-Mod and U ∈ D-Mod, then HomD(W,U) can be defined as the end,∫
d∈D

Hom(W (d), U(d)).

Similarly to above, given a bimodule W ∈ (Cop,D)-BiMod this can be extended to a

functor,

HomD(W, •) : D-Mod→ C-Mod.

and there is an adjunction,

• ⊗C W : C-Mod� D-Mod : HomD(W, •)

called the tensor-hom adjunction.

CHAPTER 2. PRELIMINARIES 42

2.2.5 Frobenius reciprocity, take two

We restate the Frobenius reciprocity theorem in the language of categories. Recall the

setting was a subgroup H of a group G. This translates to considering a subcategory

H of a category G. We first reinterpret the operations of restriction and induction in

this setting. It is easy to see that restriction corresponds to the functor,

ResGH(•) : G-Mod→ H-Mod,

obtained by precomposition with the inclusion of categories functor H ↪→ G. In the

setting of G-modules, the induction functor was defined as the tensor product over H

with the group ring,

k[G]⊗H −.

where k[G] was interpreted as a (G,H)-bimodule. This corresponds to taking the

tensor product over the category H with the representable functor RGop(•, •) considered

as a (G,Hop)-bimodule, where the right action is obtained by restriction. By Lemma

2.2.16, we see that this determines the induction functor,

IndG
H(•) = RGop ⊗H • : H-Mod→ G-Mod.

Now the Frobenius reciprocity theorem manifests itself as a duality between the

functors ResGH(•) and IndG
H(•).

Theorem 2.2.18 (The Frobenius reciprocity theorem.). There is an adjunction,

IndG
H(•) : H-Mod� G-Mod : ResGH(•).

Proof. We need to show that there is a natural bijection,

HomG(IndG
H(W), V) ∼= HomH(W,ResGH(V)).

This follows from the original statement of the theorem (Theorem 2.1.25) in light of

Proposition 2.1.22.

CHAPTER 2. PRELIMINARIES 43

2.2.6 The free object paradigm

One upshot of this reorganization into the language of categories is that paves a clear

path for a generalization of the Frobenius reciprocity theorem to relate representations

theories of various categories. Concretely, let C be a subcategory of a small category

D. We start by defining restriction and induction in this setting.

Definition 2.2.19.

1. The restriction functor,

ResDC(•) : D-Mod→ C-Mod,

is defined by precomposition with the inclusion functor C ↪→ D. In particular, it

takes the D-module V to the C-module defined as the composition,

C Vect

D

ResDC (V)

V

2. Let RD(•) be the representable functor in the category D, considered as a (Cop,D)-

bimodule. Define the induction functor IndD
C(•) as the tensor product over C,

IndD
C(•) = • ⊗C RD : C-Mod→ D-Mod.

The analogue of the Frobenius reciprocity theorem is the statement that these

functors form an adjoint pair.

Theorem 2.2.20. Let C ⊆ D as above. There is an adjunction,

IndD
C(•) : C-Mod� D-Mod : ResDC(•).

Proof. We need to show that there is a natural bijection,

HomD-Mod(IndD
C(W), V) ∼= HomC-Mod(W,ResDC(V)).

CHAPTER 2. PRELIMINARIES 44

Applying the tensor-hom adjunction to the LHS we have,

HomD-Mod(IndD
C(W), V) = HomD-Mod(W ⊗C RD, V)

∼= HomC-Mod(W,HomD-Mod(RD, V))

Finally, we claim that the D-module homomorphisms HomD-Mod(RD, V) coincide with

the restriction ResDC(V) as desired. First, note that D-module homomorphisms HomD-Mod(RD, V)

are, by definition, the natural transformations, Nat(RD, V). Further, note that this has

the structure of a C-module, sending the object A ∈ ob(C) to

Nat(RD, V) ∼= V (A),

where the isomorphism follows from the Yoneda Lemma (Theorem 2.2.12). It follows

immediately that this C-module is exactly ResDC (V), as claimed.

Remark 2.2.21. Informally, a free functor is one arising as a left adjoint to a forgetful

functor. The restriction functors deserve to be called forgetful, and as such, their left

adjoint, the induction functors, deserve to be called free.

Definition 2.2.22. Let C ⊆ D as above, and let W ∈ C-Mod. We call the induced

module,

IndD
C(W) ∈ D-Mod,

the free D-module on W relative to the inclusion C ↪→ D. When the inclusion of

categories is understood we will simply call these free D-modules.

We will turn to this construction of free D-modules in multiple settings. In the next

section we will recall the theory of FI-modules in which this construction arises as a

central construction. It will be useful to note that induction respects direct sums.

Lemma 2.2.23. Let C ⊆ D as above. Let V,W ∈ C-Mod. Then,

IndD
C(V ⊕W) = IndD

C(V)⊕ IndD
C(W).

CHAPTER 2. PRELIMINARIES 45

Proof. This follows immediately from Lemma 2.2.15 since induction is defined as a

tensor product.

2.3 FI-modules

Sequences {Vn}n≥0 of Sn-modules naturally arise in many places in mathematics, from

combinatorics, to topology through to algebraic geometry and beyond. In [9] Church

and Farb noticed that many of these sequences satisfy strong representation theoretic

constraints governing, for example, their decomposition into irreducible Sn-modules

and the growth of their dimension. These well-behaved sequences were said to sat-

isfy representation stability (see Definition 2.3.7). Later, and together with Ellenberg

and then with Nagpal ([7, 8]), they introduced a single notion encapsulating this phe-

nomenon; a finitely generated FI-module. We recall the basic notions here.

Let FI be the category whose objects are finite sets and whose morphisms are given

by injections. Concretely, HomFI(S, T) is the set of injections from S into T . Recall

that we denote by n the set {1, . . . , n}, and that the full subcategory FI′ with objects

n is a skeleton of FI. By convention, if n = 0 let n = ∅.

Definition 2.3.1. An FI-module V is a covariant functor from FI to Vect.

We follow the standard notation of [7]. For simplicity we denote the vector space

V (S) by VS and the vector space V (n) by Vn. If f ∈ HomFI(S, T) then we denote the

linear map V (f) : VS → VT simply by f∗.

Remark 2.3.2. The advantages of this perspective are numerous. On the one hand,

bundling together all of the data in the sequence {Vn}n≥0 into a single object V serves

as a conceptual simplification. Additionally, in only considering the linear map φn,

CHAPTER 2. PRELIMINARIES 46

consistent sequences missed most of the maps Vn → Vn+1 implicit in the FI-module

structure. Lastly, this framework of functors from small categories similar to FI into

Vect is rich and has many applications outside of representation stable sequences. For

a more comprehensive discussion on representation stability see [9].

It will be instructive in what follows to have a toy example to hand.

Example 2.3.3. (Toy example.) Let V be the FI-module sending the finite set S to

QS, the free Q-vector space on S. Denote the basis element corresponding to s ∈ S by

es. A morphism f ∈ HomFI(S, T) sends a basis element es in VS to the basis element

ef(s) in QT . Denote this FI-module by Q•.

The fundamental notion in the theory of FI-modules is that of finite generation.

Definition 2.3.4. (Span.) Let V ∈ FI-Mod and let S ⊂
⊔
i Vi. Let SpanV (S) denote

the minimal sub-FI-module of V containing S.

Definition 2.3.5. (Finite generation.) We say V is generated by S if V = SpanV (S).

We say V is finitely generated if it is generated by a finite set S, and we say it is

generated in degree ≤ d if it is generated by a set S ⊂
⊔d
i=0 Vi.

Example 2.3.6. (Toy example, cont.) The FI-module V = Q• above is finitely gener-

ated. To see this, let S = {e1} ⊂ V1 = Q{1}. Any sub-FI-module W of V containing

e1 also contains f∗(e1) = ef(1) ∈ VS for every f ∈ HomFI({1}, S). It therefore contains

every basis element es in QS for every finite sets S, and therefore contains V as a

sub-FI-module. In short, we have W = V as FI-modules.

CHAPTER 2. PRELIMINARIES 47

2.3.1 Representation stability

An important feature of FI-modules is that they give rise to sequences of Sn-modules.

Indeed, let V ∈ FI-Mod and consider the sequence {Vn}n≥0. Since endomorphisms in FI

of n are naturally isomorphic to the symmetric group Sn, each vector space Vn inherits

the structure of a Sn-module. Moreover, the natural inclusions,

in : {1, . . . , n} ↪→ {1, . . . , n, n+ 1},

(defined by in(j) = j) give rise to linear maps φn = V (in) : Vn → Vn+1 for all n.

Functoriality implies that the following diagram commutes,

Vn Vn+1

Vn Vn+1

σ

φn

σ

φn

for all n ≥ 0 and all σ ∈ Sn. Here σ acts on Vn+1 by its image under the standard

inclusion Sn ↪→ Sn+1. In [9] such sequences were called consistent, and it was in this

setting that representation stability was defined. Concretely, Maschke’s theorem tells

us that each Vn decomposes into irreducible Sn-modules Pλ for various partitions λ ` n.

Church and Farb’s key insight was that in many important examples the irreducible

representations that appeared stabilised in a sense that we now make precise.

Definition 2.3.7. ([9], Definition 1.1) Let {Vn}n≥0 be a consistent sequence of Sn-

modules. The sequence is representation stable if, for n sufficiently large, the following

three conditions hold.

1. (Injectivity) The maps φn are injective.

2. (Surjectivity) The span of the Sn+1-orbit of φ(Vn) ⊆ Vn+1 is all of Vn+1.

3. (Multiplicities) The Sn-module Vn admits a decomposition into irreducible Sn-

modules,

Vn ∼=
⊕

cλ,nP (λ)n, (2.5)

CHAPTER 2. PRELIMINARIES 48

with 0 ≤ cλ,n ≤ ∞. For each λ, the coefficient cλ,n is eventually independent of

n.

The sequence is called uniformly representation stable with stable range n ≥ N

if in addition, the multiplicities cλ,n are independent of n for all n ≥ N with no

dependence on λ.

Example 2.3.8. (Toy example, cont.) Returning to our toy example, it is not hard

to see that the maps φn : Vn → Vn+1 defined above satisfy the first two conditions.

Further, we have the well-known decomposition into irreducible Sn-modules,

Vn = Qn = {a(e1 + · · ·+ en) : a ∈ Q} ⊕ {a1 · e1 + · · ·+ an · en :
∑

ai = 0}

The summand on the left is the trivial representation of Sn, namely P(n) = P (∅)n.

What’s left is the standard representation of Sn, and corresponds to the partition

(n− 1, 1). Thus we have, for all n ≥ 2, the decomposition,

Qn ∼= P (∅)n ⊕ P ()n,

and the sequence {Qn}n≥0 satisfies uniform representation stability with stable range

n ≥ 2.

In [7] representation stability was recovered as a finite generation property of FI-

modules.

Theorem 2.3.9 ([7], Theorem 1.13). Let V ∈ FI-Mod. Then V is finitely generated if

and only if {Vn}n≥0 is representation stable and each Vn is of finite dimension.

2.3.2 Stability degree and weight of an FI-module

There are two useful properties of an FI-module, stability degree and weight, that can

be seen to control the underlying representation theory. Let Vs be an Ss-module. Recall

that we denote by (Vs)Ss the Ss-coinvariant quotient Vs ⊗kSs k.

CHAPTER 2. PRELIMINARIES 49

Definition 2.3.10. An FI-module V has stability degree t if for all a ≥ 0, the

maps (Vs+a)Ss → (Vs+1+a)Ss+1 induced by the standard inclusions Is : {1, . . . , s} →

{1, . . . , s+ 1}, are isomorphisms for all s ≥ t.

We say V has injectivity degree I (resp. surjectivity degree S) if the maps (Vs+a)Ss →

(Vs+1+a)Ss+1 are injective ∀ s ≥ I (resp. surjective ∀ s ≥ S). We say V has stability

type (I,S).

Definition 2.3.11. An FI-module V has weight ≤ d if for all s ≥ 0 every irreducible

component P (λ)s of Vs has |λ| ≤ d.

Remark 2.3.12. A key property of weight is that it is preserved under subquotients

and extensions. In fact, there is an alternate definition of weight: the collection of FI-

modules over k of weight ≤ d is the minimal collection which contains all FI-modules

generated in degree ≤ d and is closed under subquotients and extensions. For more

details see [7].

Together, finite weight and stability of an FI-module V imply representation stabil-

ity of the corresponding sequence of Ss-modules {Vs}. Moreover, the stability degree

and weight give a measure of control on the representation stable range. The follow-

ing result of Church-Ellenberg-Farb is the key to deducing representation stability of

{H i(Γn,s)}s≥0 from our FI-module H i(Γn,•).

Proposition 2.3.13 ([7], Proposition 3.3.3). Let V be an FI-module of weight d and

stability degree t. Then the sequence {Vs} is uniformly representation stable with stable

range s ≥ t+ d.

CHAPTER 2. PRELIMINARIES 50

2.3.3 Free FI-modules

In the course of the next few sections we define two important functors in the theory

of FI-modules. This material is by now well-established. We largely follow Church-

Ellenberg-Farb’s original paper [7], albeit with a slightly modified notation.

1. The free functor. We define,

IndFI
FB(•) : FB-Mod→ FI-Mod,

the left-adjoint to the restriction functor ResFIFB : FI-Mod → FB-Mod. We will

realise this functor as a tensor product over FB following our free-object paradigm,

IndFI
FB(•) = • ⊗FB RFI.

2. The functor H0(•). We define,

H0(•) : FI-Mod→ FB-Mod,

a left-adjoint to a certain functor ζ(•) : FB-Mod → FI-Mod. We will realise this

functor as a tensor product over FI,

H0(•) = • ⊗FI K

where K is a certain (FIop,FI)-bimodule defined below.

We apply the free object paradigm described in Section 2.2.6. Concretely, consider

the inclusion of categories,

FB ↪→ FI.

This gives rise to two functors,

ResFIFB : FI-Mod→ FB-Mod, IndFI
FB : FB-Mod→ FI-Mod,

CHAPTER 2. PRELIMINARIES 51

which by Theorem 2.2.20 determines an adjunction,

IndFI
FB : FB-Mod� FI-Mod : ResFIFB .

Let W ∈ FB-Mod. In [7] they give an explicit description of IndFI
FB(W). Note that

in [7] they refer to the functor IndFI
FB(•) simply as M .

Proposition 2.3.14. Let W ∈ FB-Mod. Then the FI-module IndFI
FB(W) = W ⊗FB RFI

sends the finite set S to the vector space,⊕
T⊆S

WT .

Proof. We have that,

IndFI
FB(W) =

⊕
a≥0

IndFI
FB(degaW)

where Wa is the degree a submodule of W . Therefore, without loss of generality, assume

that W is supported in degree a. Let S ∈ ob(FI). We have,(
IndFI

FBW
)
S

=
⊕

T :|T |=a

WT ⊗FB k[HomFI(T, S)] ∼= WT ⊗Sym(T) k[HomFI(T, S)],

for a fixed set T ∈ ob(FI) of size a. Observe that we can write HomFI(T, S) as a sum

HomFI(T, S) =
⊕
I⊆S
|I|=|T |

HomFI(T, S; I),

where HomFI(T, S; I) ⊆ HomFI(T, S) consists of those injections f : T ↪→ S such that

im(f) = I. Note that HomFI(T, S; I) ∼= Sym(T), and thus we have,(
IndFI

FBW
)
S

=
⊕
I⊆S
|I|=|T |

WT ⊗Sym(T) k[Sym(T)] ∼=
⊕
T⊆S
|T |=a

WT .

The result follows.

Yet another useful description of the free functors comes from making the same

construction in the skeletal subcategories of FB′ ⊆ FB and FI′ ⊆ FI. Recall, these are

the full subcategories of FB and FI with objects the finite sets {n : n ∈ N}.

CHAPTER 2. PRELIMINARIES 52

Proposition 2.3.15. Let W ∈ FB′-Mod. Then the FI′-module IndFI′

FB′(W) satisfies,

IndFI′

FB′(W)n ∼=
⊕
a≤n

IndSn
Sa×Sn−a

Wa � k.

Proof. Similarly to the proof above, we assume, without loss of generality, that W is

supported in degree a, so that W = Wa. By definition,

IndFI′

FB′(Wa) = Wa ⊗FB′ RFI′
∼= Wa ⊗Sa k[HomFI′(a,n)].

Again, as above, observe that HomFI′(a,n) spits as a sum,

HomFI′(a,n) =
⊕
I⊆n
|I|=a

HomFI′(a,n; I),

where HomFI′(a,n; I) ⊆ HomFI′(a,n) consists of those injections f : a ↪→ n with

im(f) = I. We have that HomFI′(a,n; I) is isomorphic to Sa. Concretely, fix an

identification of a with the subset I ⊆ n. This gives the isomorphism between the

bijections a → I and Sa. Further, the complement of I in n identifies a subgroup of

Sn isomorphic to Sn−a which acts trivially on Sa. Putting this together gives,

Wa ⊗Sa k[HomFI′(a,n; I)] ∼= Wa ⊗Sa k[Sa] ∼= Wa

Furthermore, the subsets I are in bijection with the cosets A := Sn / Sa× Sn−a and we

have,

IndFI′

FB′(Wa) ∼=
⊕
A

Wa.

Finally, observe that the stabilizer of Wa in Sn is Sa× Sn−a, and the result follows from

Lemma 2.1.15.

2.3.4 Finite generation in FI-Mod.

The following is an important example of an induced module central to the notion of

finitely generation in the category FI-Mod. It was originally introduced in [7], where

they called it M(m).

CHAPTER 2. PRELIMINARIES 53

Definition 2.3.16. For any m ≥ 0, let M(m) denote the representable functor,

RFI(m, •) = k[HomFI(m, •)] ∈ FI-Mod.

It takes any finite set S ∈ ob(FI) to the vector space k[HomFI(m, S)] and any morphism

f ∈ HomFI(S, S
′) to the map induced by post-composition with f . Notice that M(m)

is exactly the FI-module IndFI
FB(k[Sm]), where here k[Sm] is considered as an FB-module

supported in degree m.

Remark 2.3.17. The Yoneda lemma implies that

HomFI-Mod(M(m), V) ∼= Vm.

In other words, the morphism of FI-modules M(m)→ V is completely determined by

the image v? of (idm : m→m) ∈M(m)m in Vm. In particular, notice that the image of

M(m) in V coincides with SpanV (v?). This observation motivates the following result

of [7].

Lemma 2.3.18. ([7], Proposition 2.3.5) An FI-module V is finitely generated if and

only if there exists a surjection ⊕
i

M(mi)� V.

for some finite sequence of integers {mi}.

Remark 2.3.19. An FI-module V is free if it is of the form V =
⊕

iM(mi). This

is consistent with the notion of a finitely generated R module as one admitting a

surjection from a free R-module.

2.3.5 The FI-modules M(λ) and P (λ)

Fix a partition λ = (λ1, λ2, · · ·) ` a. Recall the padded partitions λ[n] and their

associated irreducible Sn-module P (λ)n from Definition 2.1.5. In [7] they prove that

these determine a finitely generated FI-module. We briefly recall that construction.

CHAPTER 2. PRELIMINARIES 54

Definition 2.3.20. Fix a partition λ. Denote the free FI-module IndFI
FB(Pλ) simply by

M(λ). Explicitly M(λ) takes a finite set s = {1, . . . , s} to Pλ ~ P(s−|λ|).

Remark 2.3.21. This notation is consistent with the notation in [7].

In [7] they describe the stability degree and weight of M(λ). We stress that we

are working over a field k of characteristic zero, otherwise we cannot guarantee such

strong bounds on surjectivity degree.

Proposition 2.3.22 (see [7]). The FI-module M(λ) has stability type (0, λ1) and weight

at most |λ|.

Proof. This follows from three results in [7]. The injectivity degree is given in Propo-

sition 3.1.7, the surjectivity degree in Proposition 3.2.6 and the weight in Proposition

3.2.4.

Lemma 2.3.23 ([7], Proposition 3.4.1). For any partition λ, there is a finitely gener-

ated FI-module P (λ), obtained as a sub-FI-module of the free FI-module M(λ), satis-

fying,

P (λ)n =

 Pλ[n] n ≥ |λ|+ λ1

0 else

Remark 2.3.24.

1. This justifies the notation P (λ)n for irreducible Sn-module associated to the

padded partition λ[n].

2. The FI-module P (λ)n is readily seen to be an FI-submodule of IndFI
FB(Pλ)n.

2.3.6 Homological techniques for FI-modules

One advantage of the FI-modules viewpoint is that it brings homological techniques to

bear. In particular, the following result governs the dynamics of stability type through

CHAPTER 2. PRELIMINARIES 55

our spectral sequence. Recall that k has characteristic 0.

Proposition 2.3.25 ([7], Lemma 6.3.2).

1. Let U , V , W be FI-modules with stability type (∗, A), (B,C), (D, ∗) respectively,

and let

U
f−→ V

g−→ W

be a complex of FI-modules (i.e., g ◦ f = 0). Then ker g/ im f has injectivity

degree ≤ max(A,B) and surjectivity degree ≤ max(C,D).

2. Let V be an FI-module with a filtration

0 = FjV ⊆ Fj−iV ⊆ · · · ⊆ F1V ⊆ F0V = V

by FI-modules FiV . The successive quotients FiV/Fi+1V have stability type (I,S)

for all i if and only if V has stability type (I,S).

The functor HFI
0 . We have analyzed the inclusion FB ↪→ FI and its associated ad-

junction,

IndFI
FB(•) : FB-Mod� FI-Mod : ResFIFB .

Consider now the inclusion of categories,

ζ(•) : FB-Mod→ FI-Mod

that extends an FB-module W to an FI-module ζ(W) by declaring the image of any

non-bijective injection f ∈ HomFI(S, T) to be the zero map in ζ(W). In [7] the define a

left-adjoint to ζ(•). We recall that construction now (also following notions from [6]).

Definition 2.3.26. Define a bimodule K ∈ (FBop,FB)-BiMod as follows. Let (S, T) ∈

ob(FIop × FI) be a pair of finite sets and declare,

K(S, T) = k[HomFB(S, T)],

CHAPTER 2. PRELIMINARIES 56

In particular, if |S| 6= |T | then K(S, T) = 0. Morphisms are of the form (f, g) where

f ∈ HomFBop(S, S ′) and g ∈ HomFB(T, T ′). Declare that (f, g)∗ acts simultaniously by

pre-composition with f and post-composition with g.

We promote K to an (FIop,FI)-bimodule by declaring any non-bijective morphisms

to induce the zero map.

Definition 2.3.27. Define the functor H0(•) as the tensor product over FI with K

considered as a (FIop,FI)-bimodule,

• ⊗FI K : FI-Mod→ FB-Mod,

We extend this to a functor HFI
0 : FI-Mod→ FI-Mod defined as the composition ζ ◦H0

Lemma 2.3.28 ([6]). The functor H0(•) is the left-adjoint to ζ(•). Explicitly, it

satisfies

H0(V)S = VS/(SpanV (V<S)S). (2.6)

Remark 2.3.29. The functor HFI
0 captures the notion of minimal generators of an

FI-module. In particular, comparing (2.6) with Definition 2.3.5 gives:

1. An FI-module V is finitely generated if and only if the vector space,

⊕
n≥0

HFI
0 (V)n,

is finitely dimensional.

2. An FI-module V is generated in degree ≤ d if and only if,

HFI
0 (V)S = 0,

for all |S| > d.

CHAPTER 2. PRELIMINARIES 57

2.3.7 Character Polynomials

For j ≥ 1, let Xj : Ss → N be the class function defined by

Xj(σ) = number of j-cycles in σ.

A polynomial in the variables Xj is called a character polynomial. We define the degree

of a character polynomial by setting deg(Xj) = j. The following theorem of Church-

Ellenberg-Farb says that characters of finitely generated FI-modules are eventually

described by a single character polynomial, and moreover gives explicit bounds on the

degree and the stable range of this polynomial in terms of weight and stability degree

of the FI-module.

Theorem 2.3.30 ([7], Theorem 3.3.4). Let V be a finitely generated FI-module of

weight ≤ d and stability degree ≤ t. There exists a unique polynomial fV ∈ Q[X1, . . . , Xd]

of degree at most d such that for all n ≥ d+ t and all σ ∈ Sn,

χVn(σ) = fV (σ).

CHAPTER 3

ON THE FI-MODULE STRUCTURE OF H i(Γn,s)

It is well known that the group of outer automorphisms of the free group of rank n

can be described as the space of self-homotopy equivalences of a graph Xn of rank n,

up to homotopy, i.e.,

Out(Fn) ∼= π0(HE(Xn)).

Similarly the full group of automorphisms of the free group of rank n is the space of

homotopy equivalences of a graph Xn,1 of rank n with a distinguished basepoint ∂, up

to homotopy,

Aut(Fn) ∼= π0(HE(Xn,1)),

where homotopies are required to fix the basepoint throughout.

X3 X3,1

∂•

Figure 3.1: Examples of rank 3 graphs that can be used to define Out(F3) and Aut(F3).

There is a natural generalisation then, where we let Xn,s be a graph, by which we

mean a connected finite 1-dimensional CW-complex, of rank n with s marked points

∂ = {x1, · · · , xs}. We should then consider the group of self-homotopy equivalences of

Xn,s fixing ∂ pointwise, modulo homotopies through such maps, i.e.,

Γn,s := π0(HE(Xn,s)).

58

CHAPTER 3. ON THE FI-MODULE STRUCTURE OF H i(Γn,s) 59

3.1 The cohomology of Γn,s

In this section we study the structure of the cohomology H i(Γn,s), always over a field

of characteristic zero, as a sequence of Ss-modules. The symmetric group Ss acts on

H i(Γn,s) as follows. A homotopy equivalence h : Xn,s → Xn,s permuting ∂ induces an

automorphism of Γn,s by conjugation. This automorphism depends, a priori, on the

choice of h, however, on the level of cohomology it depends only on the permutation.

Indeed, if h fixes ∂ pointwise then the induced automorphism is inner, and thus induces

the identity on cohomology.

The groups Γn,s have been used, for example, to show that Out(Fn) and Aut(Fn)

satisfy homological stability in [16, 17], and they appeared in [3] in the proof that

Out(Fn) is a virtual duality group. More recently they were used in [10] to investigate

the so called unstable cohomology of Out(Fn) and Aut(Fn) by means of an ‘assembly

map’

H i(Γn1,s1)⊗ · · · ⊗H i(Γnk,sk)→ H i(Γn,s).

In particular, in [10] they compute H i(Γn,s) as an Ss-module for rank n = 1, 2 and

use these computations to assemble homology classes in the unstable range of Out(Fn)

and Aut(Fn). Moreover these computations show that, in rank n = 1, 2 and for fixed

i ≥ 0 the sequence {H i(Γn,s)}s≥0 satisfies representation stability (see Definition 2.3.7).

In [10] they use an alternate description of Γn,s as a quotient of a certain mapping class

group of a three-manifold, together with general results about representation stability

of mapping class groups, to deduce that for any fixed i and n the groups H i(Γn,s)

satisfy representation stability with stable range s ≥ 3i. However, the calculations

made in [10] in rank n = 1, 2 actually adhere to a bound of s ≥ i + n. In this section

we improve the stable range to agree with these low rank calculations.

CHAPTER 3. ON THE FI-MODULE STRUCTURE OF H i(Γn,s) 60

Theorem 3.1.1. For fixed i and n, the sequence,

{H i(Γn,s) : s ∈ N},

is uniformly representation stable with stable range s ≥ n+ i.

We show this by exhibiting that H i(Γn,s) defines an FI-module. Building on their

work in [9], and together with Jordan Ellenberg and Rohit Nagpal, the theory of FI-

modules was developed [7, 8], facilitating the application of homological techniques to

sequences of Ss-modules. We use these techniques to prove the following theorem.

Theorem 3.1.2. The FI-module H i(Γn,•) is finitely generated of stability degree n and

weight i.

An important feature of finitely generated FI-modules is the existence of character

polynomials; integer-valued polynomials in Q[X1, X2, . . .] where Xi : Ss → N is the

class function that counts the number of i-cycles. Let χHi(Γn,s) denote the character of

the Ss-module H i(Γn,s).

Corollary 3.1.3. There exists a character polynomial f ∈ Q[X1, . . . , Xi] depending on

i and n such that for all s ≥ i+ n and all σ ∈ Ss,

χHi(Γn,s)(σ) = f(σ).

In particular, the dimension of H i(Γn,s) is given by the polynomial f(s, 0, . . . , 0).

One consequence of this result is that, for s sufficiently large, the character χi,n is

insensitive to cycles of length greater than i. We highlight this phenomenon by com-

puting examples of these stable character polynomials in Section 2.3.7.

Theorem 3.1.1 and Corollary 3.1.3 follow immediately from Theorem 3.1.2 in light

of Proposition 2.3.13 and Proposition 2.3.30.

CHAPTER 3. ON THE FI-MODULE STRUCTURE OF H i(Γn,s) 61

Recall, for P an Sa-module, and Q an Sb-module, we denote the induced represen-

tation by

P ~Q := Ind
Sa+b
Sa× Sb

P ⊗Q

We denote by V ∧k the Sk-module which is isomorphic as a vector space to V ⊗k where

Sk acts by permuting the factors and multiplying by the sign of the permutation. That

is,

V ∧k = V ⊗k ⊗ εk.

With this in hand it is clear that Theorem 3.1.1 is an immediate corollary to The-

orem 3.1.2. Another consequence of Theorem 3.1.2 is the existence of stable character

polynomials. Corollary 3.1.3 will thus follow immediately from Theorem B. It is worth

pointing out that in particular, this shows that the dimension of H i(Γn,s) is eventually

polynomial (as s grows but i and n remain fixed) given by a single character polynomial.

In [10] Conant-Hatcher-Kassabov-Vogtmann describe the Ss-module structure of

H i(Γn,s) for n = 1, 2, from which one can read off their irreducible Ss-module decom-

position, that is, a decomposition into terms of the form P (λ)s. We have the following

classical fact, which underpins the theorem above. Fix a partition λ. There exists a

unique character polynomial fλ such that for any s ≥ |λ| + λ1, the character of the

Ss-module P (λ)s is given by fλ. In [14] they describe an algorithm constructing fλ

that we will use in conjunction with calculations from [10] to compute some explicit

examples of character polynomials of various H i(Γn,s). It is cleanest to describe these

character polynomials in terms of the notation (x)j := x(x− 1) · · · (x− j + 1).

CHAPTER 3. ON THE FI-MODULE STRUCTURE OF H i(Γn,s) 62

Example. Fix n = 1 and i = 2. From [10], Proposition 2.7 we obtain the following

decomposition of H2(Γ1,s) into irreducible Ss-modules.

H2(Γ1,s) = P
()

s
.

Using the algorithm from [14] we obtain the character polynomial f for P
()

.

Corollary 3.1.3 implies that, for s ≥ 3, the character χ2,1 of H2(Γ1,s) is given by the

polynomial,

f2,1(X1, X2) = f (X1, X2) =
1

2
· (X1)2 − (X1)− (X2) + 1.

We can use this, for example, to obtain that for s ≥ 3 the dimension of H2(Γ1,s) is

s(s− 1)

2
− s+ 1 =

(
s− 1

2

)
.

Notice that this agrees with the description of H2(Γ1,s) =
∧2

k
s−1 given in [10].

Example. Fix n = 2 and i = 4. From [10], Theorem 2.10 we obtain the following

stable decomposition of H4(Γ2,s) into irreducible Ss-modules. For s ≥ 6,

H4(Γ2,s) = P ()s ⊕ P
()

s
⊕ P

()
s
.

Using the algorithm from [14] we obtain the character polynomials f , f and f .

Corollary 3.1.3 implies that, for s ≥ 6, the character χ4,2 of H4(Γ2,s) is given by the

sum of these three character polynomials,

f4,2(X1, X2, X3, X4) =
1

12
(X1)4 + (X2)2 −X1 ·X3.

For instance, let τ = (1 2)(3 4)(5 6 · · · 100) ∈ S100. Then χ4,2(τ) = 2.

Both the stable decomposition of H i(Γn,s) and the stable character polynomials de-

scribing χi,n evident in these examples are general features of being a finitely generated

CHAPTER 3. ON THE FI-MODULE STRUCTURE OF H i(Γn,s) 63

FI-module. It thus remains to prove Theorem 3.1.2, which we will do by analysing a

spectral sequence of FI-modules. It turns out that the E2-page of that spectral sequence

admits a particularly nice description in terms of free FI-modules.

3.2 The FI-module structure

Let Xn,s be a graph of rank n with s marked points ∂ := {x1, . . . , xs}. We defined

Γn,s as the space of self homotopy equivalences of Xn,s fixing ∂ (pointwise) modulo

homotopies that fix ∂ throughout. The group operation on Γn,s is induced by com-

position of homotopy equivalences, which is clearly associative and admits an identity

element. In [10] they prove the existence of inverse as follows. Let f : X → Y be

a homotopy equivalence of graphs that sends ∂X = {x1, . . . , xs} ⊂ X bijectively to

∂Y = {y1, . . . , ys} ⊂ Y . Consider the mapping cylinder of f , or rather its quotient Z

obtained by collapsing the s intervals xi× I. By observing that the inclusion of Y into

Z is a homotopy equivalence, and that Z deformation retracts onto X we obtain an

inverse to f that acts as f−1 on ∂Y as desired. Moreover, this argument shows that

Γn,s does not depend on the choice of graph Xn,s up to isomorphism.

The proof of Theorem 3.1.2 in the case when n > 1 relies on a spectral sequence

argument that itself is borne of certain short exact sequences we describe now (for full

details see [10], Section 1.2).

Let n > 1, s ≥ 0 and write X = Xn,s. Let E denote the space of homotopy

equivalences of X with no requirement that ∂ be fixed, and let D be the space of

homotopy equivalences of X that are required to fix ∂. Thus Γn,s ∼= π0(D) and Γn,0 =

Out(Fn) ∼= π0(E). There is a map E → Xs by f 7→ (f(x1), . . . , f(xs)) which is a

CHAPTER 3. ON THE FI-MODULE STRUCTURE OF H i(Γn,s) 64

fibration with fiber D over the point (x1, . . . , xs). The long exact sequence of homotopy

groups of this fibration ends,

π1(E)→ π1(Xs)→ Γn,s → Out(Fn)→ 1. (3.1)

To see that π1(E) = 1 we consider the case s = 1, when (3.1) says,

π1(E)→ Fn → Aut(Fn)→ Out(Fn)→ 1.

The map Fn → Aut(Fn) can be seen to be conjugation, and it’s kernel, π1(E), is thus

trivial. Thus we have proved the following.

Proposition 3.2.1 (see [10], Proposition 1.2). If n > 1 there is a short exact sequence,

1→ F s
n → Γn,s → Out(Fn)→ 1

The group cohomology H i(Γn,s) admits an action of the symmetric group Ss, and

thus defines an FB-module H i(Γn,•) taking the finite set s to H i(Γn,s). We now show

that H i(Γn,•) actually determines an FI-module.

Proposition 3.2.2. Fix i, n ≥ 0. H i(Γn,•) is an FI-module.

Proof. It suffices to describe a functorial way to assign to an injection φ ∈ HomFI(t, s)

a linear map H i(Γn,t) → H i(Γn,s). Fix a graph Xn,s obtained by attaching s hairs to

the rose Rn at its single vertex. The marked points are the 1-valent vertices of Xn,s,

which we identify with s. Define Xn,t similarly and identify its marked points with t.

Pick a homotopy equivalence f : Xn,t → Xn,s that acts as φ on the marked points of

Xn,t; that is, the marked point x in Xn,t should be sent to the marked points φ(x) in

Xn,s. Let g be a self homotopy equivalence of Xn,s fixing the hairs so that g determines

an element of Γn,s. Now the conjugate fgf−1 is a self homotopy equivalence of Xn,t

fixing its marked points t and as such determines an element h of Γn,t.

CHAPTER 3. ON THE FI-MODULE STRUCTURE OF H i(Γn,s) 65

This procedure determines a map Γn,s → Γn,t that depends on the choice of f .

However, up to conjugation by Γn,t this element h only depends on φ, and thus induces

a well-defined map on cohomology, which doesn’t see inner automorphisms.

Remark 3.2.3. If we choose f that it only permutes the hairs of Xn,t (i.e., induces

the identity on π1) then the map Γn,s → Γn,t can be thought of as forgetting the s− t

points not in the image of φ, and relabelling the hairs according to φ.

Remark 3.2.4. It is perhaps tempting to draw on the FI structure at the level of

groups and try and make Γ1,• a (contravarient) functor from FI to the category of

groups; a co-FI-group in the language of [7]. Indeed, to an injection φ ∈ HomFI(t, s)

we described maps from Γn,s to Γn,t in the proof of Proposition 3.2.2. However, the

element fgf−1 in Γn,t depended on the choice of homotopy equivalence f and as such it

is false that Γn,• forms a co-FI-group in general. That being said, it is straightforward

to show that Γ1,• does form a co-FI-group. We have no need for that result here, and

therefore don’t do so.

A useful observation is that the structure maps are always injective.

Proposition 3.2.5. The structure maps of H i(Γn,•) are injective.

Proof. It suffices to show that the maps Γn,s → Γn,t used to build the structure maps

are split. In the case t 6= 0 this is a straightforward adaptation of a result in [10]

(see Proposition 1.2) where they prove that there is a splitting Γn,s → Γn,s−k when

k < s. The remaining case where t = 0 is also dealt with in [10], (see Theorem 1.4)

where they prove that natural map Aut(Fn)→ Out(Fn) splits on the level of (rational)

(co)homology.

CHAPTER 3. ON THE FI-MODULE STRUCTURE OF H i(Γn,s) 66

3.2.1 The case in rank 1

In rank 1 the situation is somewhat simpler and we don’t need to appeal to a spectral

sequence argument to witness Theorem 3.1.2.

Proposition 3.2.6. As FI-modules

H i(Γ1,•) =

 P (1i) i even

0 i odd

and as such H i(Γ1,•) satisfies Theorem 3.1.2.

Proof. The Ss-module structure of the cohomology in rank 1 was computed in [10],

Proposition 2.7 to be

H i(Γ1,s) =

 P(s−i,1i) i even

0 i odd

We need only consider the even case, where we have an FI-module which behaves like

P (1i) when evaluated at any finite set. The fact that the irreducible decomposition

contains exactly one irreducible at each finite set implies that the structure maps either

agree with those of P (1i) or are zero. Proposition 3.2.5 says that the structure maps

are injective, so we have an equality of FI-modules H i(Γ1,•) = P (1i) when i is even. As

for satisfying Theorem 3.1.2, P (1i) has stability degree ≤ 1 and weight ≤ i by Lemma

2.3.23, as desired.

3.3 Higher ranks: A spectral sequence argument

With the rank 1 case taken care of we proceed to prove Theorem 3.1.2 in higher rank

by establishing a spectral sequence of FI-modules converging to H i(Γn,•). Throughout

this section fix i ≥ 0 and n ≥ 2.

CHAPTER 3. ON THE FI-MODULE STRUCTURE OF H i(Γn,s) 67

Lemma 3.3.1. There is a spectral sequence of FI-modules

Epq
2 =

⊕
|λ|=q,λ1≤n

Cp,λ ⊗M(λ)⇒p H
i(Γn,•),

converging to the FI-module H i(Γn,•), where Cp,λ is a constant FI-module depending

only on p and λ.

Proof. Let

Cp,λ = Hp(Out(Fn);Sλ′H)

where H := H1(Fn) = k
n and where Sλ′ is the Schur functor corresponding to the

conjugate partition λ′. Define Epq
2 as in the statement of the lemma.

We will show that, when evaluated at the finite set s = {1, . . . , s}, this gives the

second page of the Leray-Serre spectral sequence of groups associated to the short exact

sequence

1→ F s
n → Γn,s → Out(Fn)→ 1

from Proposition 3.2.1. In other words, we will show that

(Epq
2)s = Hp(Out(Fn);Hq(F s

n))⇒p H
p+q(Γn,s)

as a spectral sequence of groups. Functoriality of the Leray-Serre spectral sequence

will complete the proof.

First observe that, by the Künneth formula, Hq(F s
n) = H∧q~P(s−q) as an Ss-module

(this is proved carefully in [10], Lemma 2.4). We have,

Hp(Out(Fn);Hq(F s
n)) = Hp(Out(Fn);H∧q ~ P(s−q)).

CHAPTER 3. ON THE FI-MODULE STRUCTURE OF H i(Γn,s) 68

The Out(Fn) action on H∧q factors through a GLn(Z) action. We decompose using

Schur-Weyl duality giving,

Hp(Out(Fn);H∧q ~ P(s−q)) =
⊕
|λ|=q

Hp(Out(Fn);SλH ⊗ Pλ′ ~ P(s−q))

=
⊕
|λ|=q

Hp(Out(Fn);SλH)⊗ Pλ′ ~ P(s−q)

=
⊕
|λ|=q

Hp(Out(Fn);SλH)⊗M(λ′)s

where λ′ is the conjugate partition of λ. Now observe that SλH = 0 if λ has more

than n rows by the character formula (for details see [13]). Therefore λ′ has at most n

columns, i.e., λ′1 ≤ n. Therefore

Hp(Out(Fn);Hq(F s
n)) =

⊕
|λ′|=q
λ′1≤n

Hp(Out(Fn);SλH)⊗M(λ′)s = (Epq
2)s.

Swapping λ with λ′ completes the proof.

We now describe the stability type and weight of the FI-module Epq
2 .

Lemma 3.3.2. Epq
2 has stability type (0, n) and weight q.

Proof. Cp,λ are constant FI-modules and thus do not contribute to weight or stability

type. M(λ) has stability type (0, λ1) and weight |λ| by Proposition 2.3.22. Epq
2 is

obtained by summing over partitions λ ` q with at most n columns. In particular,

each λ satisfies λ1 ≤ n and |λ| = q.

We are ready to give the spectral sequence argument.

Lemma 3.3.3. The FI-modules Epq
k on the kth page of the spectral sequence have

stability degree n.

CHAPTER 3. ON THE FI-MODULE STRUCTURE OF H i(Γn,s) 69

Proof. We denote the stability type of Epq
k by (Ipqk ,S

pq
k). We use Lemma 2.3.25 and

the fact that the spectral sequence is concentrated in the first quadrant to inductively

produce bounds on stability type in subsequent pages.

On the 2nd page all terms Epq
2 have stability type at most (0, n). To compute the

terms on the third page we use the differentials dpq2 of bidegree (2,−1). We indicate

the stability type of terms for convenience.

Ep−2,q+1
2

dp+2,q−1
2 Epq

2

dpq2
Ep+2,q−1

2

(0,Sp−2,q+1
2) (0, n) (0, n)

where

Sp−2,q+1
2 =

 0 p = 0, 1

n p ≥ 2

depending on whether or not Ep−2,q+1
2 is in the first quadrant. Now Lemma 2.3.25

gives us that

Ipq3 = max(Sp−2,q+1
2 , Ipq2) =

 0 p = 0, 1

n p ≥ 2

Spq3 = max(Spq2 , I
p+2,q−1
2) = n.

We proceed similarly with the inductive step. We have

Ep−k,q+k−1
k

dp+k,q−k+1
k Epq

k

dpqk
Ep+k,q−k+1
k

(∗,Sp−k,q+k−1
k) (Ipqk , n) (n, ∗)

and can finally conclude that

Ipqk+1 = max(Sp−k,q+k−1
k , Ipqk) =

 0 p = 0, 1

n p ≥ 2

Spqk+1 = max(Spqk , I
p+k,q−k+1
k) = n,

CHAPTER 3. ON THE FI-MODULE STRUCTURE OF H i(Γn,s) 70

since Sp−k,q+k−1
k = n unless p < k when it is 0, and Ipqk = n unless p = 0, 1 when it is

0.

We are now ready to prove our main result.

Proof of Theorem 3.1.2. First observe that Ep,i−p
∞ has weight ≤ i and stability degree

≤ n. Indeed Ep,i−p
∞ is a subquotient of Ep,i−p

2 and thus has weight ≤ i − p ≤ i by

Lemma 3.3.2, and Ep,i−p
∞ has stability degree n by Lemma 3.3.3.

We have that Epq
2 is a first quadrant spectral sequence of FI-modules converging to

the FI-module Hp+q(Γn,•). This tells us that there exists a natural filtration of H i(Γn,•)

whose graded quotients are Ep,i−p
∞ and so, by Proposition 2.3.25, H i(Γn,•) has stability

degree n. Moreover, since weight is preserved under extensions, H i(Γn,•) has weight

≤ i.

Remark 3.3.4. In [27] Jiménez Rolland develops a general framework for dealing with

spectral sequences of FI-modules. In particular, the description given in the proof of

Lemma 3.3.1 shows that Hq(F s
n) has weight and stability degree ≤ q. Thus, in the

notation of [27] Theorem 5.3 we have shown that β = 1 and that H i(Γn,•) has weight

≤ i and stability type (2i, i). We note that this recovers the representation stability

bounds of [10] upon which we just improved.

CHAPTER 4

DECOMPOSING SCHUR FUNCTORS ON FREE LIE ALGEBRAS

Certain coefficients cλµ ∈ N, indexed by pairs of partitions λ, µ, naturally arise in

the study of the Johnson homomorphism of the mapping class group. They can be

thought of as describing the decomposition of Schur functors on the free Lie algebra

L(V) into Schur functors on V itself (see Section 4.1). In this section we present an

algorithm computing the coefficients cλµ. Our approach is to reinterpret the coefficients

as counting solutions to a certain combinatorial problem we call decomposition puzzles.

In particular, we prove the following theorem.

Theorem 4.2.21. The coefficient cλµ counts the number of (weighted) solutions to

(µ, λ) decomposition puzzles.

This combinatorial description provides a discretisation of the problem into several

steps outlined in Fig. 4.1. By analysing the computational complexity of each step

we are able to make key optimisations to the algorithm. In so doing we are able to

compute 257, 049 coefficients, extending the known range of coefficients by a factor of

over 750.

At a high level, a solution to a (µ, λ) decomposition puzzle can be represented as a

path from µ to λ.

µ µ-decomposition Assembly λ

Figure 4.1: Path representing the steps involved in solving a (µ, λ) decomposition puzzle.

71

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 72

µ

λ λ λ

· · ·

· · · · · · · · · · · ·

·· ·· ·· ·· ·· ·· ·· ··

Figure 4.2: Tree representation of all decomposition puzzles. The root here is labelled by the
partition µ and Theorem 4.2.21 reinterprets cλµ as counting the number of leaves labelled by
λ. Shape analysis prunes unwanted assemblies (nodes at depth 2), avoiding much unwanted
computation.

We collect all such paths into a tree (see Fig. 4.2), whence Theorem 4.2.21 rein-

terprets cλµ as counting the number of its leaves labelled by λ. The major hurdle in

computing cλµ is a combinatorial explosion arising in the number of possible assemblies

of a given µ-decomposition as the size of µ grows (Eq. 4.7). Our key optimisation is

the so called shape analysis of a µ-decomposition (Section 4.2.4) which allows us to

more efficiently search the leaves of the tree by fixing the degree of the target partition

λ in question.

With the algorithm in hand, we turn to the analysis of the data. Visualizing the

data appropriately we notice clustering patterns among the coefficient data (see Fig.

4.3). One striking observation is a stability pattern akin to the representation stability

of Church-Farb-Ellenberg [9, 7]. In particular, their theory of FI-modules has strong

parallels with the stability patterns that emerge from our coefficient data. It is these

parallels that lead to a new representation theoretic framework akin to that FI-modules.

We develop this in Chapter 5.

The source code for our algorithm is publicly available on GitHub:

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 73

Figure 4.3: Two visualisations of the coefficient data computed by our algorithm. The
patterns emerging from these visualisations are suggestive of a stability phenomenon akin to
FI-modules. The plot on the left is a representation of all 257,049 coefficients computed by
our algorithm. The plot on the right shows the evolution of those coefficients in a certain
stable direction. See Section 4.4 for more detail.

https://github.com/aminsaied/composition_factors

4.1 Coefficients arising in the study of T (V)⊗n

In [11] they describe an action of Aut(Fn) on H⊗n for any cocommutative Hopf algebra

H. In particular, the case H = T (V) is shown to be closely related to the cokernel of

the Johnson homomorphism.

An important step in this vein is thus to determine structure of the T (V)⊗n. In

this section we leverage the close relationship between the tensor algebra T (V) and

the free Lie algebra L(V) to translate this problem into determining certain structure

coefficients,

cλµ ∈ N,

https://github.com/aminsaied/composition_factors

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 74

arising from applying Schur functors Sµ to the free Lie algebra.

A word on notation There are two flavors of tensor product running throughout

this section. Those tensor products internal to the tensor algebra T (V), which we

denote by ·, and those that are external which we denote with ⊗. So, for example, we

write v1 · v2, w1 · w2 · w3 ∈ T (V) and v1 · v2 ⊗ w1 · w2 · w3 ∈ T (V)⊗2.

The tensor algebra T (V) admits a natural grading, which extends to a grading on

T (V)⊗n. This degree can be described simply as counting the number of elements of

V appearing, so for example,

deg(v1 · v2 ⊗ w1 · w2 · w3) = 5,

where v1 · v2 ∈ V ⊗2 and w1 · w2 · w3 ∈ V ⊗3.

Definition 4.1.1. Let T (V)⊗nd denote the degree d part of T (V)⊗n.

Remark 4.1.2. The Aut(Fn) action on T (V)⊗n described in [11] is seen to be degree

preserving, and thus induces an action of Aut(Fn) on the degree d part T (V)⊗nd . More-

over this action is readily seen to commute with the natural action of GL(V), and thus

T (V)⊗nd has the structure of an (GL(V),Aut(Fn))-bimodule.

Lemma 4.1.3. Let d ∈ N. There is an isomorphism of GL(V)-modules,

T (V)⊗nd
∼= V ⊗d ⊗ Symd(kn).

Proof. There is a natural isomorphism between Symd(kn) and the vector space formally

spanned by symbols (a1| · · · |an) where ai are non-negative integers that sum to d. The

isomorphism is given by

v11 · · · v1a1 ⊗ · · · ⊗ vn1 · · · vnan 7→ v11 · · · v1a1 · · · vn1 · · · vnan ⊗ (a1| · · · |an)

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 75

One should think of the ai’s as describing the positions of the external tensor product

symbols.

Fix n ∈ N a partition λ and define,

Mn
λ := Pλ ⊗ Symd(kn).

We are able to decompose the degree d part T (V)⊗nd in terms of these Mn
λ as follows.

Lemma 4.1.4. As a (GL(V),Aut(Fn))-bimodule, T (V)⊗nd decomposes as

T (V)⊗nd
∼=
⊕
λ`d

Sλ(V)⊗Mn
λ .

Proof. Schur-Weyl duality says that

V ⊗d ∼=
⊕
λ`d

Sλ(V)⊗ Pλ,

which in turn gives,

T (V)⊗nd
∼= V ⊗d ⊗ Symd(kn) ∼=

⊕
λ`d

Sλ(V)⊗ Pλ ⊗ Symd(kn) ∼=
⊕
λ`d

Sλ(V)⊗Mn
λ .

Theorem 4.1.5. The Aut(Fn)-module Mn
λ admits an increasing filtration of length at

most |λ|. Moreover, the associated graded grMn
λ is a GLn(Z)-module.

Proof. The tensor algebra T (V) is the universal enveloping algebra of the free Lie

algebra T (V) ∼= U(L(V)). As such it admits an increasing filtration, and the PBW

theorem gives the isomorphism,

T (V)i/T (V)i−1 ∼= Symi(L(V)).

This filtration induces a filtration on T (V)⊗n, and it follows that its associated graded

gr(T (V)⊗n) =
⊕
i≥1

(T (V)⊗n)i/(T (V)⊗n)i−1 ∼= Sym∗(L(V)⊗ kn).

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 76

Furthermore, we have that (for example see [13]),

Symi(L(V)⊗ kn) ∼=
⊕
λ`i

Sλ(L(V))⊗ Sλ(kn),

Putting this together we obtain the isomorphism of GL(V)×GLn(Z)-modules,

gr(T (V)⊗n) ∼=
⊕
λ

Sλ(L(V))⊗ Sλ(kn).

The Schur functor Sλ(L(V)) can be expressed as a sum of Schur functors of V as,

Sλ(L(V)) ∼=
⊕
µ

cλµSµ(V).

Regrouping terms we have,

gr(T (V)⊗n) ∼=
⊕
λ,µ

cλµSµ(V)⊗ Sλ(kn).

The filtration of T (V)⊗n, together with the decomposition,

T (V)⊗n ∼=
⊕
µ

Sµ(V)⊗Mn
µ ,

induces a filtration of the modules Mn
µ . Comparing the two decompositions we see

that,

gri(Mn
µ) ∼=

⊕
λ`i

cλµSλ(V),

which is an isomorphism of GLn(Z)-modules.

Putting this together we arrive at the following definition of the structure coeffi-

cients cλµ.

Definition 4.1.6. Fix partitions λ, µ. The structure coefficients cλµ ∈ N are defined

as the multiplicities,

Sµ (L(V)) ∼=
⊕
λ

cλµSλ(V), (4.1)

In other words, we define cλµ as the number of times Sλ(V) appears in the decompo-

sition of Sµ(L(V)).

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 77

4.2 Decomposition puzzles

In this section we recast the definition of the structure coefficients cλµ in combinatorial

terms well suited to an algorithmic approach.

In the introduction we represented a decomposition puzzle as a path in a certain

tree. We start by expanding that path into a schematic overview of decomposition

puzzles. We will go on to describe the component moves in the remainder of the

section.

µ = λ =

Lie pieces
Section 4.2.1

...

µ-decomposition
Section 4.2.2

cλµ-contribution

Assembly
Section 4.2.3

Figure 4.4: A schematic overview of a solution to a decomposition puzzle. This also serves
as an example, where in this case we have a partition µ = (3, 2) decomposing into three
partitions (2), (1, 1) and (1). These are then assembled with Lie pieces when finally we arrive
at the partition λ = (4, 3, 2, 1)

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 78

4.2.1 Lie pieces

Central to this point of view is the decomposition of the free Lie algebra into its

irreducible GL(V)-modules.

Definition 4.2.1. A standard Young tableaux of shape λ ` n is a Young diagram

of shape λ filled in (bijectively) with the numbers {1, . . . , n} so that the numbers are

increasing along the rows and columns.

Definition 4.2.2. Given a tableaux T of shape λ, define maj(T) as the sum of i such

that i+ 1 lies below i in T .

Example 4.2.3. Let λ = (2, 1, 1) ` 4, then,

T =

1 2

3

4

is a standard tableaux of shape λ. We have that maj(T) = 2 + 3 = 5.

Theorem 4.2.4 (Stanley). Let λ ` d. Then the multiplicity of Pλ in Lied is given by

the number of Young tableaux T of shape λ satisfying maj(T) ≡ 1 mod d.

This theorem governs the partitions λ appearing in the irreducible decomposition

of the Whitehouse modules Lied for all d > 0. Moreover, it gives the multiplicity with

which each partition appears. We collect all such partitions, counted with multiplicity

into an (infinite) collection L of Lie pieces. Consequently, we can use L to describe the

Whitehouse modules Lied and the free Lie algebra Ld(V).

Lied =
⊕
λ`d
λ∈L

Pλ Ld(V) =
⊕
λ`d
λ∈L

Sλ(V) (4.2)

Definition 4.2.5. A Lie piece is a Young diagram appearing in L.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 79

Remark 4.2.6.

1. It is important to note that there are duplicates in the collection of Lie pieces.

For example, the term S[3,2,1](V) appears with multiplicity 3 in L6(V), so there

are three copies of

in the collection of Lie pieces.

2. It will be convenient in what follows to fix, once and for all, an order on L. We

order the pieces first in increasing size order. If Lie pieces are of the same size

then we order the partitions lexicographically (lex order), putting those partitions

with largest lex order first. We list the first few terms in L.

Index 1 2 3 4 5 6 7 8

Lie pieces

The free Lie algebra is an infinite-dimensional vector space, a fact which does not

lend itself well to the kinds of finite computation we are interested in here. In practice

we therefore work with a truncated, finite-dimensional piece of the free Lie algebra.

Definition 4.2.7. (Truncation.) The truncation (of degree d) of the free Lie algebra

is,

L≤d(V) :=
⊕
i≤d

Li(V).

The truncation of Lie pieces, denoted L≤d, is the subcollection of L consisting of Young

diagrams with size at most d.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 80

Remark 4.2.8. The truncation L≤d(V) is also known as the free d-step nilpotent Lie

algebra on V .

Remark 4.2.9. We point out that the number of Lie pieces in L≤d grows rapidly as a

function of d. Here are the sizes of the first ten truncations.

d 1 2 3 4 5 6 7 8 9 10

|L≤d| 1 2 3 5 10 22 55 149 439 1388

It is the rapid growth indicated here that causes the dramatic slowdown in computing

cλµ for partitions λ, µ of large degree (see (4.7) for example).

4.2.2 µ-decompositions

Definition 4.2.10. Let µ be a partition. A µ-decomposition is a collection of (not

necessarily distinct) partitions (µ1, . . . , µk) such that,

|µ| = |µ1|+ · · ·+ |µk|.

We consider two µ-decompositions (µ1, . . . , µk), (µ
′
1, . . . , µ

′
l) equivalent if k = l and

there exists some permutation of the indices σ ∈ Symk such that the ordered collections

agree:

(µ′1, . . . , µ
′
k) = (µσ(1), . . . , µσ(k)).

We tacitly impose this equivalence relation, and choose representatives of equivalence

classes as those µ-decompositions (µ1, . . . , µk) where |µi| ≥ |µi+1|, and if |µi| = |µi+1|

we order them lexicographically.

Iterated Littlewood-Richardson coefficients

Definition 4.2.11. The iterated Littlewood-Richardson coefficient Lµµ1···µk of a parti-

tion µ and a k-tuple of partitions (µ1, . . . , µk) is defined, for k > 2, in terms of usual

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 81

Littlewood-Richardson coefficients as,

Lµµ1···µk :=
∑

ν1,...,νk−2

Lµµ1ν1L
ν1
µ2ν2
· · ·Lνk−2

µk−1µk
, (4.3)

where νi are partitions with sizes given below:

1. |ν1| = |µ| − |µ1|

2. |νi| = |νi−1| − |µi| for 2 ≤ i ≤ k − 2

For convenience we extend the definition to collections of size k = 1, 2 by declaring

that the coefficient Lµµ1µ2 is the usual Littlewood-Richardson coefficient, and that the

coefficient Lµµ1 is the indicator function on the partition µ.

Definition 4.2.12. We say a µ-decomposition (µ1, . . . , µk) is good if Lµµ1···µk > 0.

There is a recursive algorithm computing these iterated Littlewood-Richardson co-

efficients, and thus determining if a given µ-partition is good.

4.2.3 Assembly

We now describe assembly; the process by which partitions λ are constructed from a

µ-decomposition and a tuple of Lie pieces.

Definition 4.2.13. A pairing of a µ-decomposition Dµ = (µ1, . . . , µk) is a collection

of k distinct1 Lie pieces L = (li1 , . . . , lik) together with a bijection φ on the indices of

Dµ and of L.

1Distinct indices of Lie pieces, as opposed to distinct partitions. The distinction is important as
there are multiplicities > 1 appearing in the decomposition of the free Lie algebra.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 82

Algorithm 1: Iterated Littlewood-Richardson Coefficient

Input: A partition µ and an array D of k partitions [µ1, . . . , µk].

Result: Return the iterated Littlewood-Richardson coefficient Lµµ1···µk .

iter lr(µ,D)

1 if length D = 1:

2 p← D[0]

3 return Indicator Iµ(p)

4 elif length D = 2:

5 p, q ← D[0], D[1]

6 return Lµp,q

7 else:

8 p← D[0]

9 m← |µ| − |p|

10 c← 0

11 for ν ∈ {ν ` m : ν ⊆ µ}:

12 l = Lµpν

13 if l > 0:

14 x = iter lr(ν,D[1 :])

15 c← c+ l ∗ x

16 return c

For clarity, we consider straightening the pairing by relabelling the Lie pieces according

to the bijection φ so that µj is paired with lij . We denote such a pairing by

(µ1, . . . , µk) ^ (li1 , . . . , lik).

We depict a pairing, together with its straightened counterpart in Fig. 4.5 below.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 83

µ1

µ2

...

µk

li1

li2

...

lik

φ

µ1

µ2

...

µk

li1

li2

...

lik

Figure 4.5: On the left we depict a pairing of (µ1, . . . , µk) with a collection of Lie pieces
(li1 , . . . , lik). On the right is the straightened version of this pairing, with the indices of the
Lie pieces shuffled and relabelled according to the bijection φ.

We are now ready to describe the assembly of a (straightened) pairing.

Definition 4.2.14. An assembly2 of a (straightened) pairing,

(µ1, . . . , µk) ^ (li1 , . . . , lik),

is the collection of partitions arising in,

(µ1 ◦ li1)⊗ (µ2 ◦ li2)⊗ · · · ⊗ (µk ◦ lik). (4.4)

We denote this assembly by,

(µ1, . . . , µk)~ (li1 , . . . , lik).

Remark 4.2.15. The expression (4.4) is where a lot of the work is being done in

computing cλµ. Here we iteratively apply plethysms and tensor products of various

partitions. When our partitions are relatively small, this can be done quickly, but as

2Here both senses of the word are employed. On the one hand, we think of assembling two
collections of partitions, and on the other we think of the assembled collection of partitions that arise
from the construction.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 84

our partitions become large enough it becomes infeasible. There is no getting around

this fact, and so our goal is to make the minimal number of applications of ~ as

possible.

The following result forms the basis of our approach to computing cλµ.

Lemma 4.2.16. Fix a partition µ ` m, and a µ-decomposition (µ1, . . . , µk). Then any

assembly with (µ1, . . . , µk) consists of partitions of size at least m. Moreover, if,

(µ1, . . . , µk) ^ (li1 , . . . , lik)

is a pairing, then every partition appearing in its assembly is of size,

|µ1| · |li1|+ . . . |µk| · |lik |.

Proof. The first statement follows immediately from the second. The second is a

straightforward consequence of the definition of an assembly as a sequence of plethysms

and tensor products.

In light of this lemma we make the following definition.

Definition 4.2.17. We say an assembly (µ1, . . . , µk)~ (li1 , . . . , lik) has target-size,

|µ1| · |li1|+ . . . |µk| · |lik |.

Example 4.2.18. We are ready to give an example of a solution to a decomposition

puzzle. Let µ = [2, 1]. Then an example of a good µ-decomposition is,

µ1 = µ2 =

An example of a (straightened) pairing of this µ-decomposition is,

l2 = l1 =

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 85

We compute the corresponding assembly of (µ1, µ2) ^ (l2, l1).

µ1 ◦ l2 = ◦ = ⊕ µ2 ◦ l1 = ◦ =

(µ1, µ2)~ (l2, l1) =

 ⊕

 ⊗ = ⊕ ⊕ ⊕

Observe that all partitions appearing in (µ1, µ2)~ (l2, l1) are of size

5 = |µ1| × |l2|+ |µ2| × |l1|.

Therefore this assembly has target-size 5. In Fig. 4.6 we show the four paths in the

µ-decomposition tree corresponding to the above computation.

⊕

⊕

Figure 4.6: An example of four paths in the tree representation of a µ-decomposition puzzle
in the case µ = (2, 1)..

We can now formally describe the decomposition puzzle and their solutions.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 86

Definition 4.2.19. A solution s to a (µ, λ) decomposition puzzle is a pairing,

(µ1, . . . , µk) ^ (li1 , . . . , lik)

of a good µ-decomposition such that λ appears in (µ1, . . . , µk)~ (li1 , . . . , lik).

Definition 4.2.20. We say a solution contributes,

Contrib(s) := α · β,

where α is the iterated Littlewood-Richardson coefficient Lµµ1···µk and β is the multi-

plicity with which λ appears in the assembly (µ1, . . . , µk)~ (li1 , . . . , lik).

Let Σ = Σ(µ,λ) denote the set of all distinct solutions to (µ, λ) decomposition

puzzles.

Theorem 4.2.21. The coefficient cλµ is the weighted sum of all solutions to (µ, λ)

decomposition puzzles. That is,

cλµ =
∑

s∈Σ(µ,λ)

Contrib(s).

Proof. From Eq. (4.1), we have that,

Sµ(L(V)) ∼=
⊕
λ

cλµSλ(V).

A basic property of Schur functors Sµ is that,

Sµ(A⊕B) ∼=
⊕
µ1,µ2

Lµµ1µ2Sµ1(A)⊗ Sµ2(B), (4.5)

where |µ| = |µ1| + |µ2| (see, for example, [13]). It follows from our decomposition of

the free Lie algebra into its Lie pieces in (4.2), and by iterative applications of (4.5),

that,

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 87

Sµ(L(V)) ∼=
⊕

Lµµ1···µk · Sµ1(Sli1 (V))⊗ · · · ⊗ Sµk(Slik (V)), (4.6)

where the sum is over all pairings of all µ-decompositions.

By definition the coefficient cλµ is the multiplicity with which Sλ(V) appears in

Sµ(L(V)). Consider a summand appearing in the RHS of (4.6) indexed by a pairing,

(µ1, . . . , µk) ^ (li1 , . . . , lik).

This pairing is a solution to a (µ, λ) decomposition puzzle if and only if λ appears

as a summand in the assembly of the pairing. Moreover, it is easy to see that the

multiplicity with which λ appears in this summand is precisely the contribution of

that solution.

We can immediately say something about coefficients cλµ when |λ| = |µ|.

Lemma 4.2.22. Let λ, µ partitions such that |λ| = |µ|. Then,

cλµ =

 1 λ = µ

0 else

Proof. Let (µ1, . . . , µk) be a µ-decomposition. By Lemma 4.2.16, the size of partitions

in an assembly is,

|µ1| · |li1|+ · · ·+ |µk| · |lik |.

Furthermore, we have that |µ1| + · · · + |µk| = |µ|. Observe that there is only one Lie

piece of size 1, namely,
l1 = ,

and so the only way to obtain partitions of size |µ| in the assembly is if k = 1 and

li1 = l1. There is only one µ-decomposition of length 1, µ itself! The result follows.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 88

With this result in hand we have a potential strategy for computing the coefficients

cλµ, namely, enumerate all possible solutions to (µ, λ) decomposition puzzles. The

problem, as we outline below, is that the naive approach is computationally infeasi-

ble. In the next section we highlight the source of this infeasibility, and provide a

workaround that considers the shape of a decomposition.

4.2.4 Shape analysis

Before we define the shape of a decomposition, we outline the the problem it seeks to

address. Fix partitions µ, λ. By Theorem 4.2.21, our strategy for computing cλµ is to

find all solutions to (µ, λ) decomposition puzzles. Fix a µ-decomposition (µ1, . . . , µk).

A priori, finding corresponding solutions involves checking the assemblies of all pair-

ings (li1 , . . . , lik) in L. As stated this problem is not even finite! Of course, we don’t

need to consider all of L. By Lemma 4.2.16 we need only consider Lie parts of size at

most |λ| = d, so we can restrict our search to the truncation L≤d.

Our problem is now finite, but it is too large. Indeed, we are left to check all

possible ordered k-tuples in L≤d. For each such pairing we form an assembly, which

involves computing k plethysms and (k− 1) tensor products. All together, the number

of computations for the single µ-decomposition (µ1, . . . , µk) is

O
(

f(d)!

(f(d)− k)!
· k2

)
, (4.7)

where f : N→ N is the function taking d 7→ |L≤d|.

Remark 4.2.23. There are two major problems with (4.7).

1. (4.7) represents the number of plethysm and tensor products that need to be

computed - and these operations (especially the plethysm) are computationally

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 89

expensive.

2. The function f grows very quickly (see Remark 4.2.9), causing the expression

(4.7) to explode.

We address each of these points in turn in the next two sections.

Avoid unnecessary plethysms and tensor products

The following proposition follows immediately from Lemma 4.2.16 and provides a

workaround to Remark 4.2.23 (1).

Proposition 4.2.24. Fix partitions µ, λ. If s = (µ1, . . . , µk) ^ (li1 , . . . , lik) is a

solution to the (µ, λ) decomposition puzzle, then,

|µ1| · |li1|+ · · ·+ |µk| · |lik | = |λ|. (4.8)

Notice that this condition can be checked without computing plethysms or tensor

products. Our modified strategy therefore is only to check assemblies of pairings for

which (4.8) holds.

Definition 4.2.25. The shape of µ-decomposition (µ1, . . . , µk) is the partition θ ` |µ|

with parts given by the sizes of its constituent partitions µj. That is,

θ = (|µ1|, |µ2|, . . . , |µk|)

(possibly after reordering). See Fig. 4.7.

The figure below depicts the simplification this analysis affords us.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 90

µ1

µ2

µk

li1

li2

lik

�

�

�

⊗

⊗
...

⊗

θ1

θ2

θk

ri1

ri2

rik

×

×

×

+

+
...

+

Figure 4.7: On the left we depict a (straightened) pairing of (µ1, . . . , µk) with a collection
of Lie pieces (li1 , . . . , lik). On the right is the associated shape partition θ together with the
sizes ri corresponding to the Lie pieces li. Notice that plethysms and tensor products on the
LHS become multiplications and additions on the RHS (resp.).

Strategy. Our strategy will be to restrict attention to those pairings satisfying (4.8).

We describe the algorithm producing such pairings in Algorithm 2. Observe that it

is possible for two different µ-decompositions to have the same shape. It is therefore

more efficient to find solutions to (4.8) among the set of shapes, and to cache these

solutions in a hash table,

{shape : indices of Lie pieces}. (4.9)

This strategy means we only compute tensor products and plethysms when their

target-size is valid. It therefore addresses Remark 4.2.23 (1), as promised.

Example 4.2.26. To illustrate the scale of savings this makes; when k = 3 and d = 9,

the number of pairings of target size 9 is 148, whereas the number of possible 3-element

subsets of L≤9 is 84027234. Of course as d increases and as k increases this difference

only increases.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 91

Improved upper bound on the size of Lie pieces

We now address the second problem, Remark 4.2.23 (2). Recall that the source of this

problem was that the number of Lie pieces of size ≤ d grows very quickly as a function

of d. Our strategy is to find an improved upper bound on the truncation of Lie pieces.

Definition 4.2.27. Fix a shape θ = (θ1, . . . , θk) and a degree d ∈ N. Define ϕ =

ϕ(θ, d) ∈ N by,

ϕ =

⌊
d− (θ1 · r1 + · · ·+ θk−1 · rk−1)

θk

⌋
where ri = |li| is the size of the i-th Lie piece.

Lemma 4.2.28. Fix partitions µ, λ and a µ-decomposition of shape θ. Let ϕ =

ϕ(θ, |λ|). Then any solution to the (µ, λ) decomposition puzzle involving this µ-decomposition

can be found in the truncation,

L≤ϕ.

Proof. As usual, let ri denote the size of the i-th Lie piece. Consider the set,

X = {ρ ∈ L|·| : θ1 · r1 + · · ·+ θk−1 · rk−1 + θk · ρ ≤ |λ|}.

First observe that by construction ϕ = max(X). Since the θi’s are weakly decreasing

and the ri’s are weakly increasing, it is clear that,

θ1 · r1 + · · · θk · rk (4.10)

is minimal among {θ1 · ri1 + · · ·+ θk · rik : (ri1 , . . . , rik) ∈ Lk|·|}.

Suppose for a contradiction that there exists a k-tuple (ri1 , . . . , rik) ∈ Lk|·| with some

rij > ϕ such that the assembly-size,

θ1 · ri1 + · · · θk · rik ≤ λ.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 92

Let σ ∈ Symk be a(ny) permutation of the sizes rij such that rσ(i1) ≤ rσ(i2) ≤ · · · ≤

rσ(ik). Then our contradictory hypothesis is that rσ(ik) > ϕ.

We have,

|λ| ≥ θ1 · ri1 + · · ·+ θk−1 · rik−1
+ θk · rik

≥ θ1 · rσ(i1) + · · ·+ θk−1 · rσ(ik−1) + θk · rσ(ik)

≥ θ1 · r1 + · · ·+ θk−1 · rk−1 + θk · rσ(ik)

where the last inequality follows from the minimality of (4.10). This shows that rσ(ik) ∈

X, contradicting the maximality of ϕ.

The upshot of this result is that we can restrict our search for solutions to the

smaller set L≤ϕ. This addresses Remark 4.2.23 (2) as promised.

Example 4.2.29. We demonstrate the scale of improvement afforded by our improved

upper bound ϕ. Consider the shape θ = (2, 2, 1) and the target-size 9. We see that

ϕ(θ, 9) = 3. The number of 3-element subsets of L≤3 is 6, whereas the number of

3-element subsets of L≤9 is 84027234.

Implementation of shape analysis

We are ready to turn the discussion above into a procedure that we call shape analysis.

Fix a target-size d ∈ Z>0 and a shape θ = (θ1, . . . , θk) ` m ≤ d. We compute

ϕ = ϕ(θ, d) and then search in L≤ϕ for all k-tuples (li1 , . . . , lik) such that,

θ1 · ri1 + · · ·+ θk · rik = d,

caching the indices (i1, . . . , ik) as we go.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 93

Definition 4.2.30. We refer to such a k-tuple of indices as an instruction.

We implement a recursive algorithm computing all instructions for a given shape θ

and target-size d. The psuedo-code for this algorithm is given below.

This algorithm caches its results in a hash table. We give that a hash a name.

Definition 4.2.31. (Instructions.) Let I = I(d) denote the hash table (of target-size

d) mapping shapes θ to the set of instructions computed in Algorithm 2.

Before presenting our algorithm computing composition factors, there is one sub-

tlety that needs to be addressed.

Over counting. Certain cases arise when we can over count the number of solutions

to a (µ, λ)-decomposition puzzle. These are best explained by way of an example.

Suppose we have a µ-decomposition of shape [2, 2] and we have a target-size of 5. In

this case we see that there are two instructions I1, I2:

I1 = (1, 2) θ1 × | |+ θ2 ×
∣∣ ∣∣ = 5

I2 = (2, 1) θ1 ×
∣∣ ∣∣+ θ2 × | | = 5

In the case that the underlying µ-decomposition is,

µ1 = µ2 = ,

then both of these instructions give rise to potential solutions. However, suppose

the underlying µ-decomposition is as follows.

µ1 = µ2 =

In this case, both instructions correspond to the same assembly and any solution arises

twice as often as it should.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 94

Algorithm 2: Build instructions

Input: A target-size d ∈ Z>0 and a shape θ ` m ≤ d.;

Due to the recursive nature of the algorithm we also pass an instruction

I (default empty array []) and a pointer p (default int 0) as input.

Result: We cache completed instructions along the way in a hash

table.

1 Compute upper bound ϕ = ϕ(θ, d).;

2 L← L|≤ϕ|;

build instructions(d, θ, L, I, p)

(base case)

3 if length θ[p :] = 1:

4 for l ∈ L:

5 if d = θ[p] · |l|:

6 Create new instruction I ′ from instruction by adding index

of l ∈ L.

7 Cache new instruction I ′.

8 else:

9 t← θ[p]

10 p← p+ 1

11 for l ∈ L:

12 d′ ← d− t · l

13 Create new instruction I ′ from instruction I by adding index of

l ∈ L.

14 build instructions(d′, θ, L\{l}, I ′, p)

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 95

It is easy to see that a solution involving the µ-decomposition (µ1, . . . , µk) is over

counted in this way if and only if it contains repeated partitions µi = µj. Moreover,

we can explicitly calculate the size of the over-count.

Definition 4.2.32. Let (µ1, . . . , µk) be a µ-decomposition and let {ν1, . . . , νt} be the

set of its distinct partitions. Say that νi appears in the µ-decomposition ni times.

Define the over-count factor of (µ1, . . . , µk) as,

over(µ1, . . . , µk) = (n1! · · ·nl!)−1 .

In the implementation of our algorithm we will account for over counting by com-

puting the over-count factor. Concretely, the contribution of a given solution s to

a (µ, λ)-decomposition puzzle with µ-decomposition (µ1, . . . , µk) is multiplied by the

over-count factor over(µ1, . . . , µk).

4.3 The algorithm

We are now ready to outline the algorithm computing cλµ. Our strategy is to compute

all coefficients cλµ with |λ| = d fixed at once. By Lemma 4.2.22 we already know the

coefficients cλµ in the case |µ| = d. Our algorithm will therefore iterate through all

partitions µ of size at most d− 1. Fix a partition µ ` m < d.

µ-decompositions. We first describe how to generate all possible µ-decompositions.

Recall from Section 4.2.4 that many µ-decompositions can have the same underlying

shape θ. Fix a shape θ = (θ1, . . . , θk) ` m and form the product,

Mθ := Partitionsµ(θ1)× · · · × Partitionsµ(θk),

where,

Partitionsµ(θi) := {µi ` θi : µi ⊆ µ}.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 96

Notice that a k-tuple in Mθ is precisely a µ-decomposition of shape θ. We are then

left to enumerate the set of distinct k-tuples in Mθ, which we denote Xθ. In our

implementation we store this in a hash table.

Definition 4.3.1. (µ-decomposisions.) LetM =M(µ) be the hash table (associated

to the partition µ) that maps a shape θ to the set of distinct µ-decompositions Xθ.

Assembly. Fix a shape θ ` m. Given a µ-decomposition (µ1, . . . , µk) ∈ M[θ] and

an instruction I = (i1, . . . , ik) ∈ I[θ] we need to form the assembly,

(µ1, . . . , µk)~ I := (µ1, . . . , µk)~ (li1 , . . . , lik).

This involves applying a sequence of plethysm and tensor product operations3. We then

collect all Lie pieces λ appearing in (µ1, . . . , µk)~ I, together with their multiplicities

β. Of course, implementing this assembly involves having a representation for the free

Lie algebra.

Definition 4.3.2. (Assembly of instructions.) Let A = A(µ1, . . . , µk; I) denote the set

of tuples (λ, β) arising in the assembly (µ1, . . . , µk)~ I.

3We implement our algorithm in SAGE, which has optimised implementations of both plethysm
and tensor product.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 97

Algorithm 3: Compute composition factors of fixed degree.

Input: A target-size d ∈ Z>0.

Result: Compute composition factors cλµ for all partitions λ of size d.

1 Initialise all coefficients cλµ = 0 for λ 6= µ and cλλ = 1.

2 for m < d:

3 for θ ` m:

4 I[θ]← build instructions(d, θ)

5 for µ ` m < d:

6 θ ← shape of µ

7 if θ ∈ I:

8 M←M(µ) the hash table of µ-decompositions.

9 instructions ← I[θ]

10 for (µ1, . . . , µk) ∈ decompositions:

11 α← iter lr (µ, [µ1, . . . , µk])

12 if α > 0:

13 A← A(µ1, . . . , µk; I) the assembly with I.

14 for (λ, β) ∈ A:

15 contribution ← α · β

16 over ← over(µ1, . . . , µk)

17 cλµ += contribution ∗ over

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 98

4.4 Data analysis

We are now ready to implement our algorithm. The source code for our implementation

is publicly available on GitHub4. Recall that the coefficient cλµ can be regarded as the

multiplicity of Sλ in

Sµ(L(V)). (4.11)

As such we are able to use SAGE’s symmetric functions libraries to compute the coef-

ficients cλµ directly from (4.11) (see Section 4.5.1). We use this as a baseline against

which we can measure the performance of our algorithm (see Section 4.5).

The baseline algorithm is only able to compute those composition factors cλµ where

λ is of degree at most 5. See Section 4.5 for running time experiments. The optimisa-

tions in our algorithm allow us to extend this considerably and compute all composition

factors of degree at most 14.

Degree Number of coefficients
Baseline 5 324

Our algorithm 14 257,049

Table 4.1: Comparison of our algorithm’s range of computation against the baseline algorithm
using SAGE’s built-in methods.

We are therefore able to extend the range of computation by a factor of over 750.

In the next section we begin analysis of the coefficients by visualising the data.

4https://github.com/aminsaied/composition_factors

https://github.com/aminsaied/composition_factors

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 99

4.4.1 Visualisations

In Fig. 4.8 we display the data computed by our baseline algorithm. The axes are

labelled by partitions and the colour of the square in position (µ, λ) is determined by

the coefficient cλµ (as per the colour-bar on the right of the plot).

Figure 4.8: Composition factors of degree up to 5. The (µ, λ)-entry is coloured according to
the coefficient cλµ, with the scale indicated on the right.

We notice some features even from the small amount of data produced by the

baseline algorithm.

1. The diagonal entries are all 1.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 100

2. The matrix is lower-diagonal.

3. If |µ| = |λ| and µ 6= λ then cλµ = 0.

All of these observations are easy to prove and follow immediately from the defini-

tion of cλµ. In short, we don’t gain much insight from this plot. In Fig. 4.9 we plot

cλµ for all partitions λ, µ of size ≤ 14. As well as being consistent with the previous

observations we now notice some more interesting features.

4.4.2 Clustering

At this scale it becomes apparent that there are clusters in the data (see Fig. 4.9). The

clusters are confined to rectangular blocks determined by sizes of partitions. Concretely,

the pair (µ, λ) lies in the same cluster as (µ′, λ′) if and only if |µ| = |µ′| and |λ| =

|λ′|. We therefore refer to the cluster containing (µ, λ) as the (|µ|, |λ|)-cluster. A key

observation is that the clusters appear to propagate down and to the right. That is,

there is a strong similarity between the (m, d)-cluster and the (m + 1, d + 1)-cluster.

We investigate this similarity in the next section.

Stabilising plateaus. Fix an initial pair of partitions µ, λ such that cλµ > 0 and

consider the process of adding boxes to the top row of these partitions. We introduce

some notation.

Definition 4.4.1. For n ∈ N, let µ+n denote the partition obtained from µ by adding

n boxes to the top row of µ.

For example,

µ = µ+1 = µ+2 = · · ·

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 101

Figure 4.9: A visualization of all coefficients cλµ of degree < 15. These represents the
full range of computations made by our algorithm. For readability we no longer label the
partitions on the axes, instead we label the degree (or size) of the partitions at the point at
which the degree changes.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 102

Definition 4.4.2. Define the diagonal push operation by,

∆ : (λ, µ) 7→ (λ+1, µ+1).

Notice that if a pair of partitions (µ, λ) is in the (m, d)-cluster, then ∆(µ, λ) lies

in the (m + 1, d + 1)-cluster. We are motivated to investigate the behaviour of cλµ

under repeated applications of the operation ∆. In Fig. 4.10 we plot the sequence of

coefficients corresponding to,

(λ, µ),∆(λ, µ),∆2(λ, µ), . . .

for different initial pairs of partitions µ, λ.

The behavior is quite striking. Observe that under the operation of ∆, the coeffi-

cients rise to a plateau and stabilize. As the sequences progress the data suggests that

the coefficients increase to a point, beyond which the sequences flatten into horizontal

tails. In Chapter 5 we formalize this observation by redefining representation stability

in this context (Definition 5.5.2). In particular, it will follow from Theorem 5.6.5 that

the above stabilization holds in general. In particular, we will prove that, for fixed

partitions µ, λ, there exists numbers x,N such that,

cλ+rµ+r = x,

for all r ≥ N .

4.5 Running time experiments

In this section we present the results from an experiment comparing the running times

of our algorithm against the baseline algorithm. We first describe our experimental set

up. All our running time experiments were performed on computer with a 2.3 GHz

Intel Core i7 processor and 16GB RAM. Computations were repeated 10 times and

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 103

Figure 4.10: The stabilizing effect of adding boxes to the top row. Here we plot data from
composition factors of size ≤ 10. Notice the distinctive plateaus.

averaged. We compute all composition factors up to degree d using both the baseline

and our own algorithm. Here are the corresponding running times (in seconds).

Degree 1 2 3 4 5 6 7 8 9
Baseline 0.00189 0.009 0.107 2.35 119 ∞ ∞ ∞ ∞

Our algorithm 0.00237 0.0109 0.0394 0.0979 0.239 0.703 1.82 5.64 21.9

Table 4.2: Running times (in seconds) comparing our algorithm’s performance with the
baseline.

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 104

We plot these against a log-scale to account for the differences in running times in

seconds.

Recall that the number of coefficients is increasing rapidly as a function of maximum

degree. Below we plot the running times per coefficient. We use the same logarithmic

scale in milliseconds.

4.5.1 Baseline Algorithm

We present the baseline algorithm using SAGE’s built-in methods. We first assem-

ble the symmetric function lie corresponding to the truncation L≤n(V). For this

CHAPTER 4. DECOMPOSING SCHUR FUNCTORS ON L(V) 105

we use the same implementation for free Lie algebra class Lie (see our source code

on GitHub5). The key step of this simple algorithm is to compute the plethysm

Sµ(L≤d(V)), which is implemented in SAGE as follows.

sage: f = s(mu).plethysm(lie)

Our baseline algorithm just iterates this over all partitions µ ` m ≤ d.

Algorithm 4: Baseline algorithm computing cλµ.

Input: A target-size d ∈ Z>0.

Result: Compute composition factors cλµ for all partitions λ of size d.

1 Initialise all coefficients cλµ = 0.

2 Lie← array of Lie pieces of size at most d

3 for m ≤ d:

4 for µ ` m:

5 f ← µ� Lie

6 for λ ∈ f :

7 cλµ ← cλµ + 1

5https://github.com/aminsaied/composition_factors

https://github.com/aminsaied/composition_factors

CHAPTER 5

THE THEORY OF PD-MODULES

In this section, we develop the representation theory of the category PD (Definition

5.1.1). Just as FI-modules determine sequences

{Vn : n ∈ N}, (5.1)

of Sn-modules, so too PD-modules determine collections

{Wi,n : i, n ∈ N}, (5.2)

of (Si, Sn)-bimodules. We start by establishing a framework in parallel with that of

the theory of FI-modules. In particular, we will define free PD-modules (Section 5.2.1)

and finitely generated PD-modules (Section 5.3). The notion of a finitely generated

FI-module is central to that theory, and imposes tight constraints on the sequence (5.1)

in the form of representation stability (see Section 2.3.1). To make an analogous state-

ment in the PD setting, we require an analog of representation stability in the context

(5.2). We present this in Section 5.5. In Theorem 5.5.3 we show that finitely generated

PD-modules give rise to representation stable collections (5.2).

Of course, this notion of representation stability differs from its one-dimensional

counterpart. We discuss some of those differences in Section 5.3.1 where we see that

the representation theory of finitely generated PD-modules is not as constrained as in

the finitely generated FI case.

The following definition will be useful.

Definition 5.0.1. Given an injection α : X ↪→ X ′ let αC ⊆ X ′ denote the compliment

of the image of α in X ′.

106

CHAPTER 5. THE THEORY OF PD-MODULES 107

5.1 The category PD

Definition 5.1.1. (The category PD.) Let PD be the category with:

• Objects: Pairs of finite sets (X, Y).

• Morphisms. Given objects (X, Y), (X ′, Y ′) ∈ ob(PD), a morphism,

∆ : (X, Y)→ (X ′, Y ′),

is given by the triple,

∆ = (α, β, γ),

consisting of,

(a) An injection α : X ↪→ X ′,

(b) An injection β : Y ↪→ Y ′,

(c) A bijection on the complements of α and β,

γ : αC → βC .

Composition of morphisms in PD is defined as follows. Given objects (X, Y),

(X ′, Y ′), (X ′′, Y ′′) ∈ ob(PD), and morphisms,

∆1 = (α1, β1, γ1) ∈ HomPD((X, Y), (X ′, Y ′)),

∆2 = (α2, β2, γ2) ∈ HomPD((X ′, Y ′), (X ′′, Y ′′)),

then,

∆ = ∆2 ◦∆1 ∈ HomPD((X, Y), (X ′′, Y ′′)),

is given by the triple,

∆ = (α, β, γ),

CHAPTER 5. THE THEORY OF PD-MODULES 108

where α = α2 ◦ α1 and β = β2 ◦ β1 are the respective compositions. To describe

the bijection γ, first note that αC = α2(αC1) t αC2 and βC = β2(βC1) t βC2 . Then

we have,

γ = (β2 ◦ γ1 ◦ α−1
2) t γ2 : α2(αC1) t αC2 → β2(βC1) t βC2 ,

which is readily seen to be a bijection.

This map is perhaps most easily understood with the aid of a picture (Fig. 5.1).

∆1

∆2

α1

β2 ◦ γ1 ◦ α−1
2

α2

β1

β2

γ1

γ2

∆

α β

γ

Figure 5.1: Symbolic representation of a composition in the category PD. On the left we
have two morphisms ∆1,∆2 of PD, and on the right we see their composition ∆ = ∆2 ◦∆1.

Remark 5.1.2.

1. By convention there is a unique bijection ∅→ ∅.

2. The endomorphisms EndPD(X, Y) are isomorphic to Sym(X)× Sym(Y).

3. The category PD is locally small.

4. It will often be convenient to restrict attention to the skeleton category with

objects given by pairs (i,n). To save ink we will often just denote pairs of finite

sets by (i, n) where there is no ambiguity.

CHAPTER 5. THE THEORY OF PD-MODULES 109

Remark 5.1.3. Any morphism f ∈ HomPD((X, Y), (X ′, Y ′)) satisifes |X ′| − |X| =

|Y ′| − |Y |. If we picture the pair of finite sets (X, Y) as occupying the coordinates

(|X|, |Y |) on the plane, then we see that PD-morphims lie on lines of slope 1. This

point of view is presented in Fig. 5.2.

0 1

1

2

2

3

3

4

4

5

5

6

6

7

7

∆

(2,2) (4,4)
∆ = (α, β, γ)

γ

α

β

Figure 5.2: A sketch of a morphism in the (skeleton) category PD. On the left is a schematic
view of the category PD in which integer lattice points represent (isomorphism classes of)
objects in PD. We present an example morphism ∆ : (2, 2)→ (4, 4) in PD. On the right we
see this morphism expanded into its three constituent parts, maps α : 2→ 4, β : 2→ 4 and
a map γ defining a bijection on the complements.

We present alternative descriptions of the morphisms in PD. These follow immedi-

ately from the definition above.

Lemma 5.1.4.

1. HomPD((∅,∅), (X, Y)) ∼= HomFB(X, Y) ∼= HomFB(Y,X),

2. HomPD((S,∅), (X, Y)) ∼= HomFB(Y t S,X),

3. HomPD((∅, T), (X, Y)) ∼= HomFB(Y,X t T),

4. HomPD((S, T), (X, Y)) ∼= {ψ ∈ HomFB(Y t S,X t T) : T ⊆ ψ(Y), ψ(S) ⊆ X}.

Proof. The first three statements follow from the last, which follows directly from

Definition 5.1.1.

CHAPTER 5. THE THEORY OF PD-MODULES 110

5.2 Representation theory of PD

The category PD is small, and thus we have an abelian category PD-Mod of its repre-

sentations. We have pointwise notions for submodule, direct sum, (co)kernel, injection,

surjection and quotient as described in Section 2.2.2.

Let W ∈ PD-Mod and (X, Y) ∈ ob(PD). We denote the image of (X, Y) under W

simply by WX,Y ∈ Vect. Since EndPD((X, Y)) ∼= Sym(X)× Sym(Y) we have that each

vector space WX,Y is a module over Sym(X) × Sym(Y). In this way, the PD-module

W can be thought of as a collection of (Sym(X), Sym(Y))-bimodules WX,Y together

with diagonal linear maps compatible with this bimodule structure.

Remark 5.2.1. To emphasis that a PD-module is a functor from a category whose

objects are pairs of finite sets, we occasionally write V (••) : PD→ Vect. Similarly, for

a PD-bimodule V : PDop × PD→ Vect, we emphasis its functoriality by writing,

V (••, ••) : PDop × PD→ Vect.

Following Definition 2.2.9, the representable functor RPD(••, ••) ∈ (PDop,PD)-BiMod

sends the pairs of finite sets (S, T), (X, Y) to the free k-vector space,

k[HomPD((S, T), (X, Y))].

The morphism f ∈ HomPDop((S, T), (S ′, T ′)) = HomPD((S ′, T ′), (S, T)) acts by precom-

position, and the morphism g ∈ HomPD((X, Y), (X ′, Y ′)) acts by postcomposition,

(f, g)∗(∆) : (S ′, T ′)
f−−→ (S, T)

∆−−→ (X, Y)
g−−→ (X ′, Y ′),

for ∆ ∈ HomPD((S, T), (X, Y)). Fixing (S, T) ∈ ob(PDop) results in PD-module.

Definition 5.2.2. Fix an object (S, T) ∈ obPDop = ob(PD). Let N(S, T)•• ∈ PD-Mod

denote the evaluation RPD((S, T), ••) which sends the object (X, Y) ∈ ob(PD) to the

CHAPTER 5. THE THEORY OF PD-MODULES 111

free vector space,

k[HomPD((S, T), (X, Y))],

and where PD-morphisms act by post-composition.

Example. We have the following characterizations of these PD-modules.

1. N(∅,∅)X,Y = k[HomFB(X, Y)]

2. N(S,∅)X,Y = k[HomFB(Y t S,X)]

3. N(∅, T)X,Y = k[HomFB(Y,X t T)]

5.2.1 Free PD-modules

In Section 2.3.3 we applied the free object paradigm (Section 2.2.6) in the setting of

the inclusion,

FB ↪→ FI

to obtain the free FI-modules IndFI
FB(•). We now apply that same paradigm in the

setting of the inclusion,

FB× FB ↪→ PD.

giving an adjunction,

IndPD
FB×FB(•) : (FB,FB)-BiMod� PD-Mod : ResPDFB×FB(•).

Concretely, we define the inclusion functor,

FB× FB→ PD.

The objects of PD and FB × FB coincide, and so the inclusion is the identity on

objects. Morphisms in FB × FB are of the form (f, g) for f ∈ HomFB(A,A′) and

CHAPTER 5. THE THEORY OF PD-MODULES 112

g ∈ HomFB(B,B′), for finite sets A,A′, B,B′. This is sent to the PD-morphism,

(f, g,∅→ ∅) ∈ HomPD((A,B), (A′, B′)).

The restriction functor ResPDFB×FB(•) is obtained by precomposition with the inclu-

sion FB× FB ↪→ PD. The induction functor arises as the tensor product,

IndPD
FB×FB(•) = • ⊗FB×FB RPD,

where RPD is considered a (FBop × FBop,PD)-bimodule.

Given an (FB,FB)-bimodule W , our goal is to describe the (Si, Sn)-module struc-

ture on IndPD
FB×FB(W)i,n. We detailed a similar analysis for free FI-modules in Section

2.3.3. We restrict our attention to the skeletal subcategories of PD and FB× FB with

objects of the form (i, n) ∈ N× N.

Observe that an (FB,FB)-bimodule W determines, and is determined by, a collec-

tion {Wi,n : i, n ∈ N} of Si× Sn-modules Wi,n. In this setting we have the following

characterization of induced modules. Recall that we occasionally denote Sa× Sb by

S(a, b) for legibility.

Lemma 5.2.3. Let W ∈ (FB,FB)-BiMod. Then the PD-module IndPD
FB×FB(W) satisfies,

IndPD
FB×FB(W)i,n ∼=

⊕
m∈N

Ind
S(i,n)
S(i−m,n−m)×S(m,m) Wi−m,n−m � k[Sm].

Proof. As in the proof of Proposition 2.3.15, we assume, without loss of generality,

that W is supported in bidegree (l, k) so that W = Wl,k. We have, by definition of the

tensor product, that,

IndPD
FB×FB(W)i,n ∼= Wl,k ⊗Sl× Sk k[HomPD((l, k), (i, n))].

CHAPTER 5. THE THEORY OF PD-MODULES 113

The set HomPD((l, k), (i, n)) is empty unless there exists m ∈ N such that i = l + m

and n = k +m. Assume such an m exists. Observe that HomPD((l, k), (i, n)) splits as

a sum,

HomPD((l, k), (i, n)) =
⊕
I∈I
J∈J

HomPD((l, k), (i, n); (I, J)),

where HomPD((l, k), (i, n); (I, J)) is the subset of HomPD((l, k), (i, n)) consisting of

those PD-morphisms,

(α : l ↪→ i, β : k ↪→ n, γ : αC ↔ βC),

such that im(α) = I and im(β) = J .

Under the natural identification of HomPD((l, k), (i, n); (I, J)) with Sl× Sk× Sm we

can identify,

k[HomPD((l, k), (i, n); (I, J)],

with,

k[Sl× Sk]⊗ k[Sm].

We are thus able to write,

IndPD
FB×FB(W)i,n ∼=

⊕
I∈I
J∈J

Wl,k ⊗Sl× Sk k[Sl× Sk]⊗ k[Sm] ∼=
⊕
I∈I
J∈J

Wl,k ⊗ k[Sm].

Fix I = {1, . . . , l} and J = {1, . . . , k} and consider the corresponding summand,

U := k[Sl× Sk]⊗ k[Sm].

Under the identification with k[HomPD((l, k), (i, n); (I, J))] we have that a basis of U

consists of elements (α, β, γ) ∈ HomPD((l, k), (i, n)), so that,

α : l ↪→ i β : k ↪→ n γ : αC ↔ βC ,

CHAPTER 5. THE THEORY OF PD-MODULES 114

and such that im(α) = I and im(β) = J . We see that Sl acts be precomposition with

α, Sk acts by precomposition with β, Si acts by postcomposition with α and Sn acts

by postcomposition with β. It follows directly from this description of the action that

the stabilizer of U in Si× Sn is isomorphic to,

(Sl× Sk)× (Sm× Sm).

We see that we are in the setting of Lemma 2.1.15, and the result follows.

Lemma 5.2.4. Fix finite sets S, T . The PD-module N(S, T) is the free PD-module,

IndPD
FB×FB(k[Sym(S)× Sym(T)]).

Proof. We have,

IndPD
FB×FB(k[Sym(S)× Sym(T)]) = k[Sym(S)× Sym(T)]⊗FB×FB RPD,

where k[Sym(S)×Sym(T)] is considered an FB-module supported in bidegree (|S|, |T |).

The tensor product over FB × FB with an FB-module supported in a single bidegree

reduces to the tensor product over the group ring k[Sym(S)× Sym(T)]. We therefore

have,

IndPD
FB×FB(k[Sym(S)× Sym(T)])

∼= k[Sym(S)× Sym(T)]⊗Sym(S)×Sym(T) k[HomPD((S, T), ••)]

∼= k[HomPD((S, T), ••)].

This is precisely the PD-module N(S, T) as required.

Visualizing PD-modules in terms of Young diagrams. It can be helpful to

depict PD-modules in terms of its underlying irreducible representations. Concretely,

any PD-module V determines a family {Vi,n : i, n ∈ N} of S(i, n)-bimodules. The

CHAPTER 5. THE THEORY OF PD-MODULES 115

decomposition of Vi,n into its irreducible S(i, n)-bimodules can be depicted as an array

of young diagrams, as in the example below in which we apply Lemma 5.2.3 using the

techniques outlined in Section 2.1.4 to compute the irreducible decompositions.

Example 5.2.5. Let B be the FB× FB-bimodule supported in bidegree (2, 1) by the

irreducible S(2, 1)-module,

� .

Then IndPD
FB×FB(B) is a PD-module with the following irreducible decomposition (for

small bidegrees).

�

(
⊕

)
�
(

⊕
)

(
⊕

)
�
(

⊕
)
⊕(

⊕ ⊕
)
�
(

⊕
)

IndPD
FB×FB(B)2,1

IndPD
FB×FB(B)3,2

IndPD
FB×FB(B)4,3

Remark 5.2.6. The free PD-module construction is to be compared with the free

FI-module construction where we have,

IndFI
FB(W) ∼= IndSn

Sa× Sn−a
Wa � k,

given an FB-module W . Consider the FB-module supported in degree 2 by the irre-

ducible S2-module,

W2 = .

We have

CHAPTER 5. THE THEORY OF PD-MODULES 116

IndFI
FB(W)2

⊕

IndFI
FB(W)3

⊕

IndFI
FB(W)4

Notice that these Young diagrams appear on the LHS of the free PD-module of Example

5.2.5 corresponding to the (LHS of the) trivial part P(m) � P(m) in the decomposition,

k[Sm] ∼=
⊕
µ`m

(Pµ � Pµ) .

5.3 Finite Generation of PD-modules

Here we recast the definitions of finite generation for FI-modules from [7] in the setting

of the category PD. Many of the notions introduced by Church-Ellenberg-Farb (in

particular see [7], Section 2.3) translate with only slight modification to this setting.

The reader familiar with those notions will find no surprises here. Indeed, many of the

proofs are so similar as to not bear repeating, and in that event we simply refer to the

relevant result in [7].

Definition 5.3.1. (Span) Given W ∈ PD-Mod let Σ ⊆
∐

i,nWi,n and define SpanW (Σ)

to be the minimal sub-PD-module of W containing Σ.

Lemma 5.3.2. Let W ∈ PD-Mod. Then an element w ∈ Wl,k determines a map

N(l, k)→ W , the image of which coincides with SpanW (w).

Proof. See [7], Lemma 2.3.2.

Definition 5.3.3. (Finite generation) A PD-module W is finitely generated if there

exists a surjection, ⊕
j

N(lj, kj)� W.

where the sum is finite.

CHAPTER 5. THE THEORY OF PD-MODULES 117

It turns out that in this two dimensional setting, having a notion of finitely gener-

ated along a diagonal will be useful.

Definition 5.3.4. (Restriction to rank-r.) Let W ∈ PD-Mod. Define the restriction

of W to rank-r, W (r) ∈ PD-Mod by,

W
(r)
i,n =

 Wi,n i = n− r

0 else

Say that a PD-module is supported in rank-r if Wi,n = W
(r)
i,n for all pairs (i, n).

Definition 5.3.5. (Finitely generated in rank.) A PD-module W is finitely generated

in rank if the restriction to rank-r W (r) is finitely generated for all r ∈ N.

5.3.1 Representation instability

One important consequence of finite generation in the category of FI-modules is the

highly constrained representation theory of the underlying Sn-modules. In particular,

given V ∈ FI-Mod a finitely generated FI-module, there exist a finite collection of parti-

tions λ1, . . . , λr that describe the irreducible decomposition of Vn for any n sufficiently

large. Concretely,

Vn =
r⊕
i=1

P (λi)n,

for n sufficiently large. We will contrast this behaviour with an example of a finitely

generated PD-module W that needs infinitely many partitions to describe its decom-

position into irreducible Si× Sn-modules. First we define the number of corners of a

partition.

Definition 5.3.6. (Corners of a partition.) A corner of a partition λ = (λ1, . . . , λk) ` n

is an index i ∈ {1, . . . , k} such that the following two conditions hold (where defined):

CHAPTER 5. THE THEORY OF PD-MODULES 118

1. λi > λi+1

2. λi ≤ λi−1

Notice that the number of corners of λ, Corners(λ), counts the number of ways that λ

can be obtained from a partition µ ` n− 1 by adding a single box in accordance with

Pieri’s rule. For example, the partition λ = (7, 4, 4, 3, 1) ` 19 has 4 corners.

∗

∗
∗

∗

Lemma 5.3.7. Let W = N(1, 1) ∈ PD-Mod. Then

Wn,n =
⊕
λ,λ′`n

mλλ′Pλ ⊗ Pλ′

where the multiplicity mλλ′ is given by,

mλλ′ =


0 |λ ∩ λ′| ≤ n− 1

1 |λ ∩ λ′| = n− 1

Corners(λ) λ = λ′

.

This result shows that, unlike for finitely generated FI-modules, this finitely gen-

erated PD-module’s representation theory cannot be described by finitely many parti-

tions.

Proof. By Lemma 5.2.4 we have,

N(1, 1) = IndPD
FB×FB(k[S1× S1]).

We have the decomposition into irreducible S1× S1-bimodules,

k[S1× S1] ∼= P(1) � P(1).

CHAPTER 5. THE THEORY OF PD-MODULES 119

By definition,

Wn,n = IndSn× Sn
(S1× S1)×(Sn−1× Sn−1)

(
P(1) � P(1)

)
� k[Sn−1]

∼=
⊕
µ`n−1

IndSn× Sn
(S1× S1)×(Sn−1× Sn−1)

(
P(1) � P(1)

)
� (Pµ ⊗ Pµ)

∼=
⊕
µ`n−1

IndSn
S1× Sn−1

(
P(1) � Pµ

)
� IndSn

S1× Sn−1

(
P(1) � Pµ

)
Notice that,

IndSn
S1× Sn−1

(
P(1) ⊗ Pµ

) ∼= ⊕Pλ

where the sum is over all λ ` n such that λ is obtained from µ by adding one box in

accordance with Pieri’s rule. The result follows.

Example 5.3.8. We compute W3,3 directly. Notice that

IndS3
S1× S2

(
⊗

) ∼= ⊕

and

IndS3
S1× S2

(
⊗

)
∼= ⊕

Therefore,

W3,3
∼=
[(

⊕
)
⊗
(

⊕
)]

⊕

 ⊕

⊗
 ⊕

 .
∼=
(

⊗
)
⊕
(

⊗
)⊕2

⊕

 ⊗


⊕
(

⊗
)
⊕
(

⊗
)
⊕

 ⊗

⊕
 ⊗


which is seen to agree with the multiplicities mλλ′ .

CHAPTER 5. THE THEORY OF PD-MODULES 120

5.4 Endofunctors on FI-Mod arising from PD-modules

Although we cannot hope for such strong representation theoretic constraints on finitely

generated PD-modules, as demonstrated by this example, we can still say something.

Our strategy will be to construct from a finitely generated PD-module, a finitely gen-

erated FI-module.

Let W ∈ PD-Mod. Fix a finite set Y . There is an FBop-module,

W (•, Y) : FBop → Vect,

sending the finite set X to the vector space W (X, Y), and sending the morphism

f ∈ HomFBop(X,X ′) = HomFB(X ′, X) to the map,

∆
(1)
f := (f : X ′ ↪→ X, 1Y : Y → Y,∅→ ∅). (5.3)

Given an FI-module V , we can define the tensor product,

V ⊗FB W (•, Y) ∈ Vect,

where V is considered an FB-module by restriction. To the finite set Y we associate

the vector space,

(V ⊗̂W)(Y) := V ⊗FB W (•, Y).

This determines an FB-module.

Lemma 5.4.1. The assignment Y 7→ (V ⊗̂W)(Y) determines an FB-module.

Proof. The morphism g ∈ HomFB(Y, Y ′) determines a linear map,

g∗ : (V ⊗̂W)(Y)→ (V ⊗̂W)(Y ′),

as follows. The vector space (V ⊗̂W)(Y) is the quotient of,⊕
X∈ob(FB)

V (X)⊗W (X, Y),

CHAPTER 5. THE THEORY OF PD-MODULES 121

in which,

vX ⊗ f ∗(wX′Y) is identified with f∗(vX)⊗ wX′Y ,

for all vX ∈ VX , wX′Y ∈ W (X ′, Y), f ∈ HomFB(X,X ′) for all X,X ′ ∈ ob(FB). The

map g determines a PD-morphism ∆g ∈ HomPD((X, Y), (X, Y ′)) where,

∆(2)
g = (1X : X → X, g : Y → Y ′,∅→ ∅),

where 1X is the identity on X. This defines a map,

⊕
X∈ob(FB)

V (X)⊗W (X, Y)→
⊕

X∈ob(FB)

V (X)⊗W (X, Y ′),

sending v ⊗ w → v ⊗∆
(2)
g (w). It remains to verify that this map factors through the

quotient, ⊕
X∈ob(FB)

V (X)⊗W (X, Y)� (V ⊗̂W)(Y).

This follows from the relation,

∆
(1)
f ◦∆(2)

g = ∆(2)
g ◦∆

(1)
f ,

where ∆
(1)
f is as in Eq. 5.3.

Lemma 5.4.2. Let V ∈ FI-Mod and W ∈ PD-Mod. The FB-module V ⊗̂W can be

promoted to an FI-module.

Proof. Let f ∈ HomFI(Y, Y
′). We define the map,

f∗ : (V ⊗̂W)(Y)→ (V ⊗̂W)(Y ′)

as follows. Let ψ = ψX : X ↪→ X t fC be the canonical inclusion. Notice that ψ

induces a map

ψ∗ : V (X)→ V (X t fC).

CHAPTER 5. THE THEORY OF PD-MODULES 122

In addition, ψC = fC and there is a bijection 1fC on the compliments of ψ and f . That

is,

∆ = ∆X = (ψ, f, 1fC) ∈ HomPD((X, Y), (X t fC , Y ′)).

Putting this together, for any X ∈ obFB, we have a canonical map, induced by f ∈

HomFI(Y, Y
′),

ψ∗ ⊗∆∗ : V (X)⊗W (X, Y)→ V (X t fC)⊗W (X t fC , Y ′).

For convenience, we call this map Ff,X . This induces a map on the quotient (V ⊗

W)(Y)→ (V ⊗W)(Y ′) and it remains to show this map is well-defined. In particular,

it suffices to show that the following diagram commutes,

V (X)⊗W (X, Y) V (X t fC)⊗W (X t fC , Y ′)

V (X ′)⊗W (X ′, Y) V (X ′ t fC)⊗W (X ′ t fC , Y ′)

φ∗⊗φ∗

(ψX)∗⊗(∆X)∗

ξ∗⊗ξ∗

(ψX′)∗⊗(∆X′)∗

where ξ = φt 1fC ∈ HomFB(X t fC , X ′ t fC). The commutativity of this diagram

follows from the commutativity of,

X X t fC

X ′ X ′ t fC

ψX

φ ξ

ψX′

This construction is functorial in V , and as such, any PD-module W determines a

functor,

• ⊗̂W : FI-Mod→ FI-Mod (5.4)

sending the FI-module V to the FI-module V ⊗̂W . If W is a finitely generated PD-

module, then this funtor restricts to an endofunctor on the subcategory of finitely

generated FI-modules. That is,

CHAPTER 5. THE THEORY OF PD-MODULES 123

Theorem 5.4.3. Let V ∈ FI-Mod and W ∈ PD-Mod both finitely generated. Then

V ⊗̂W is a finitely generated FI-module.

Proof. It suffices to show that the FI-module Λ := M(S) ⊗̂N(T, U) is finitely generated

for arbitrary finite sets S, T and U . In particular, it suffices to show ∃N ≥ 0 such that,

Λ = Span(Λ≤N).

The vector space Λ(Y) is a quotient of,⊕
X∈ob(FB)

M(S)X ⊗N(T, U)X,Y ,

and as such, a basis element a ∈ Λ(Y) is determined by maps of the form,

ξ : S ↪→ X, α : T ↪→ X, β : U ↪→ Y, γ : αC → βC .

for a fixed set X ∈ ob(FB). Notice that ξ, α and β factor through maps,

S ↪→ im(ξ) ∪ im(α), T ↪→ im(ξ) ∪ im(α), U ↪→ im(β),

which themselves determine an element z ∈ Λ(im(β)). Since | im(β)| ≤ |U | we see that

a ∈ Span(Λ≤|U |), as desired.

5.5 Representation stability in the context of families of (Si, Sn)-

bimodules

Let {Wi,n : i, n ∈ N} be a family of (Si, Sn)-bimodules.

Definition 5.5.1. Fix r ∈ Z and partitions λ, µ. Let c
(r)
λ,µ(n) = cλ,µ(n) denote the

multiplicity of the irreducible bimodule,

P (λ)n−r � P (µ)n,

in Wn−r,n.

CHAPTER 5. THE THEORY OF PD-MODULES 124

Inspired in equal parts by the representation stability inherited by finitely generated

FI-modules and by our observations from Part 4, we make the following definition.

Definition 5.5.2. (Representation stability in the context of (Si, Sn)-bimodules) We

say that the family {Wi,n : i, n ∈ N} of (Si, Sn)-bimodules satsifies representation

stability if, for all r ∈ Z and all partitions λ, µ, there exist constants N,C (depending

on r, λ, µ) such that,

c
(r)
λ,µ(n) = C,

for all n ≥ N .

We say that a PD-module W•• satisfies representation stability if the associated

family {Wi,n : i, n ∈ N} of (Si, Sn)-bimodules does.

With this construction we are able to put some control on the underlying represen-

tation theory of finitely generated PD-modules in the form of the following stability

statement.

Theorem 5.5.3. Let W be a PD-module finitely generated in rank. Then W satisfies

representation stability. That is, fix a rank r ∈ Z. Let c
(r)
λ,µ(n) denote the multiplicity

of,

P (λ)n−r � P (µ)n

in Wn−r,r. Then there exist constants N,C such that,

cµ,λ(n) = C,

for all n ≥ N .

Proof. Fix λ, µ partitions. The restriction to rank r, W (r) is a finitely generated PD-

module. In Lemma 2.3.23 we introduced a finitely generated FI-module P (λ) sending

CHAPTER 5. THE THEORY OF PD-MODULES 125

the finite set n to the irreducible Sn-module P (λ)n for n sufficiently large. Consider

the FI-module,

P (λ) ⊗̂W (r).

We start by computing the decomposition of,

(P (λ) ⊗̂W (r))n,

into irreducible Sn-modules. Observe that W
(r)
a,n is zero unless a = n− r. We therefore

have that,

(P (λ) ⊗̂W (r))n

is the quotient of,

P (λ)n−r ⊗Wn−r,n,

in which,

p⊗ σ · w is identified with σ · p⊗ w,

for all p ∈ P (λ)n−r, w ∈ Wn−r,r, σ ∈ Sn−r. This coincides with the definition of the

tensor product over,

P (λ)n−r ⊗Sn−r Wn−r,n,

over the group ring k[Sn−r]. We write the (Sn−r, Sn)-bimodule Wn−r,n as,

Wn−r,n =
⊕
ν,µ

dνη(n)P (ν)n−r � P (µ)n,

where the sum is over partition ν, µ, and where dνµ(n) is the multiplicity of P (ν)n−r �

P (µ)n in Wn−r,n. We therefore have that,

(P (λ) ⊗̂W (r))n ∼=
⊕
ν,µ

dνµ(n)P (λ)n−r ⊗Sn−r (P (ν)n−r � P (µ)n)

∼=
⊕
ν,µ

dνµ(n)
(
P (λ)n−r ⊗Sn−r P (ν)n−r

)
� P (µ)n

∼=
⊕
λ,µ

cλµ(n)P (µ)n,

CHAPTER 5. THE THEORY OF PD-MODULES 126

where the last isomorphism follows from Schur’s lemma (e.g., [12]), which implies that,

for any partitions ξ, ζ ` a,

Pξ ⊗Sa Pζ
∼=

 k ξ = ζ

0 else
.

In other words, we have shown that the multiplicity with which P (µ)n appears in,

(P (λ) ⊗̂W (r))n,

is exactly the multiplicity with which P (λ)n−r �P (µ)n appears in Wn−r,n. By Lemma

5.4.3, P (λ) ⊗̂W (r) is a finitely generated FI-module. Hence by [7] Theorem 1.13, this

multiplicity, cλµ(n), stabilizes for n sufficiently large.

Taking invariants of PD-modules. A special case of this operation is the reduction

of a PD-module to an FI-module by taking invariants. Concretely,

Definition 5.5.4. Let W ∈ PD-Mod. Define,

I(W) := P (∅) ⊗̂W ∈ FI-Mod.

It follows from the proof of Theorem 5.5.3 that the multiplicity of P (µ)n in I(W (r))n

is exactly the multiplicity with which,

P (∅)n−r � P (µ)n ∼= P(n−r) � P (µ)n,

appears in Wn−r,n. The following observation follows immediately.

Lemma 5.5.5. Fix a rank r ∈ Z and let W ∈ PD-Mod be finitely generated in rank.

Then I(W (r)) is a finitely generated FI-module satisfying,

I(W (r))n ∼=
(
W

(r)
n−r,n

)Sn−r
.

CHAPTER 5. THE THEORY OF PD-MODULES 127

5.6 Constructing PD-modules from S-modules

In this section we construct from an S-module M a PD-module W(M)•• ∈ PD-Mod.

Concretely, let V,W ∈ Vect and fix an S-module M . Recall from Definition 2.1.8 the

Schur functor,

SM(V) ∈ Vect,

and consider the (possibly infinite dimensional) vector space,

SM(V)⊗W.

The symmetric algebra on this vector space naturally has the structure of a bimodule

over GL(V)×GL(W). In particular, we have the decomposition (see [13]),

Sym(SM(V)⊗W) ∼=
⊕
µ

Sµ(SM(V))⊗ Sµ(W)

∼=
⊕
µ,λ

c
(M)
λµ Sλ(V)⊗ Sµ(W),

where the sum is over all pairs of partitions λ, µ, and where the multiplicities c
(M)
λµ ∈ N

are the structure coefficients defined by,

Sµ(SM(V)) ∼=
⊕
λ

c
(M)
λµ Sλ(V).

Remark 5.6.1. The coefficients c
(M)
λµ are a special case of the plethysm problem de-

scribed in Eq. (2.4).

Note that this determines a bigrading on Sym(SM(V)⊗W) with,

Sym(SM(V)⊗W)i,n :=
⊕
µ`i
λ`n

c
(M)
λµ Sλ(V)⊗ Sµ(W),

for all i, n ∈ N. This bigrading is seen to respect the algebra structure on,

Sym(SM(V)⊗W).

CHAPTER 5. THE THEORY OF PD-MODULES 128

Definition 5.6.2. Let W(M) ∈ FB-BiMod be the bimodule Schur-Weyl dual to,

Sym(SM(V)⊗W).

In particular, for any i, n ∈ N, we have,

W(M)i,n :=
⊕
µ`i
λ`n

c
(M)
λµ Pµ � Pλ,

which determines a (Si, Sn)-bimodule W(M)i,n.

Lemma 5.6.3. Let M be an S-module satisfying M(1) = k. Then the FB-bimodule

W(M) can be promoted to a PD-module.

Proof. Fix a ∈ N. Observe that an element x ∈ Sym(SM(V) ⊗ W)a,a determines a

GL(V)×GL(W)-equivariant map,

Sym(SM(V)⊗W)0,0
fx−→ Sym(SM(V)⊗W)a,a,

by multiplication with x. Furthermore, for partitions λ, µ ` a, the coefficient,

c
(M)
λµ = δλµ,

and so the bigraded component,

Sym(SM(V)⊗W)a,a =
⊕
µ`a
λ`a

c
(M)
λµ Sλ(V)⊗ Sµ(W),

is Schur-Weyl dual to the group algebra,

k[Sa] ∼=
⊕
µ`a

Pµ � Pµ.

Under this duality, any element x ∈ Sym(SM(V)⊗W)a,a is of the form,

(v1 · · · va ⊗ w1 · · ·wa)⊗ y ∈
(
V ⊗a ⊗W⊗a)⊗Sa k[Sa],

CHAPTER 5. THE THEORY OF PD-MODULES 129

with vi ∈ V and wj ∈ W and y ∈ k[Sa], and the map fx is given by,

fx : k→
(
V ⊗a ⊗W⊗a)⊗ k[Sa]

b 7→ b(v1 · · · va ⊗ w1 · · ·wa)⊗ y

In particular, any element σ ∈ Sa determines an element,

xσ = (1 · · · 1⊗ 1 · · · 1)⊗ σ ∈
(
V ⊗a ⊗W⊗a)⊗ k[Sa],

and thus a map fxσ , which we denote simply fσ. Note that multiplication by xσ

determines maps,

(fσ)i,n : Sym(SM(V)⊗W)i,n → Sym(SM(V)⊗W)i+a,n+a,

for all i, n ∈ N.

Any morphism ∆ ∈ HomPD((0, 0), (a, a)) is equivalent to an element σ ∈ Sa. Denote

the morphism corresponding to σ ∈ Sa by ∆σ. To ∆σ we assign the map,

W0,0 → Wa,a,

induced by fσ. Furthermore, for any morphism,

∆ = (α, β, γ) ∈ HomPD((i, n), (i+ a, n+ a)),

there is a canonical identification of γ with an element of σ ∈ Sa. To such a morphism

we associate the map,

(fσ)i,n : Sym(SM(V)⊗W)i,n → Sym(SM(V)⊗W)i+a,n+a,

which induces a map W(M)i,n →W(M)i+a,n+a as desired.

CHAPTER 5. THE THEORY OF PD-MODULES 130

Theorem 5.6.4. Let M be an S-module such that M(1) = k. The PD-module W(M)

is finitely generated in rank.

Proof. Fix k > 0 and partitions λ, µ such that |λ| = |µ|+ k. We have that,

Sym(SM(V)⊗W) ∼=
⊕
µ

Sµ(SM(V))⊗ Sµ(W).

It therefore suffices to consider the decomposition,

Sµ(SM(V)) ∼=
⊕
λ

c
(M)
λµ Sλ(V),

and in particular, we restrict out attention to those partitions λ such that |λ| = |µ|+k.

In Chapter 4 we detailed this decomposition for the case M = Lie, and the same

reasoning applies here. Concretely, for a fixed partition µ, the subspace,

⊕
λ:|λ|=|µ|+k

c
(M)
λµ Sλ(V)

is determined by all ways to decompose µ into a good µ-decomposition µ1, . . . , µj such

that λ appears with positive multiplicity in the assembly (see Definition 4.2.14),

(µ1, . . . , µj) ^ (mi1 , . . . ,mij),

where mi∗ are distinct partitions appearing in the S-module M .

For |µ| sufficiently large, any assembly,

(µ1, . . . , µj) ^ (mi1 , . . . ,mij),

of target size |µ|+ k is forced to have |µ1| ≥ |µ| − k and mi1 = m1 = k.

For |µ| > k, any assembly of target size |µ| + k must involve m1. Indeed, once

|µ| ≥ k+ 1, the smallest target size possible of an assembly that does not involve m1 is

CHAPTER 5. THE THEORY OF PD-MODULES 131

2 ·(k+1) > |µ|+k. Without loss of generality, then, say that µ1 is paired with m1 = k.

Observe that |µ1| ≥ |µ| − k. Indeed, suppose for a contradiction that |µ| = |µ| − l with

l > k. Then the target size of the resulting assembly is at least,

|µ1|+ (|µ| − |µ1|) · 2 = 2 · l > |µ|+ k,

contradicting the assumption that the assembly is of size |µ| + k. It follows that any

contribution to the (λ, µ)-decomposition puzzle associated to M is obtained from a

contribution to a (λ◦, µ◦)-decomposition puzzle where |µ◦| ≤ k by taking the induction

product with a partition of size |µ| − |µ◦|. That is to say, the subspace,

⊕
λ:|λ|=|µ|+k

c
(M)
λµ Sλ(V)

lies in the PD-span of the subpace,

⊕
λ:|λ|=|µ|+k
|µ|≤k

c
(M)
λµ Sλ(V).

We have therefore shown that the PD-module is finitely generated in rank.

5.6.1 Application to the structure coefficients cλµ

Recall the definition of the coefficients cλµ from Chapter 4,

Sym(L(V)⊗ kn) ∼=
⊕
λ,µ

cλµSλV ⊗ Sµ(kn).

It follows from Definition 2.1.11 that the coefficients cλµ are exactly the coefficients

c
(Lie)
λµ arising from the PD-module,

W(Lie),

with W = k
n. In particular, it is an immediate corollary to Theorem 5.6.4 that the

coefficients cλµ satisfy representation stability as stated in Definition 5.5.2.

CHAPTER 5. THE THEORY OF PD-MODULES 132

Theorem 5.6.5. The coefficients cλµ satisfy representation stability.

Remark 5.6.6. This result completes the story started in Chapter 4 of the coefficients

cλµ. In that chapter we provided evidence, in the form of large amounts of computation

and some visualizations, that there was a generalization of the representation stabil-

ity of Church-Farb [9] to a two-dimensional setting. In particular the visualizations

provided patterns suggestive of some stability phenomenon, and the theorem above

confirms that these patterns were a consequence of some latent general structure.

5.7 The category PDI

The category PD was obtained from the product category FB× FB by the addition of

so-called diagonal maps (see Definition 5.1.1). It turns out that these diagonal maps

interact nicely with the larger product category FIop × FI, giving rise to the larger

category PDI, which we now define.

Definition 5.7.1. Let PDI be the category with

1. Objects. Pairs of finite sets (X, Y).

2. Morphisms. Generated by

(a) FI-morphisms. A map (X, Y)→ (X ′, Y) for a map in HomFI(X,X
′).

(b) FIop-morphisms. A map (X, Y ′)→ (X, Y) for a map HomFIop(Y
′, Y).

(c) PD-morphisms. A map (X, Y)→ (X ′, Y ′) for a map in HomPD((X, Y), (X ′, Y ′)).

subject to the following compatibility condition. Given,

∆ = (α, β, γ) ∈ HomPD((X, Y), (X ′, Y ′)),

CHAPTER 5. THE THEORY OF PD-MODULES 133

we have that α ∈ HomFI(X,X
′) and β ∈ HomFIop(Y

′, Y). The following diagram

commutes for any choice of bijection γ.

(X ′, Y ′)

β

��

(X, Y) α //

∆=(α,β,γ)
99

(X ′, Y)

We give the following simple characterization of morphisms in PDI.

Lemma 5.7.2. A morphism (X, Y)→ (X ′, Y ′) in PDI determines, and is determined

by, the following data.

1. An injection f : X ↪→ X ′, and

2. A injection g : Y ′ ↪→ Y t fC.

Proof. We first use f to build a diagonal morphism (X, Y) → (X ′, Y ′′) where Y ′′ =

Y tf . Notice that there is a natural inclusion ι : Y ↪→ Y ′′ with ι = f . Such a morphism

is obtained from the triple of data,

(f : X ↪→ X ′, ι : Y ↪→ Y ′′, γ = id : ι ' f).

Then g defines an FIop-morphism (X ′, Y ′′)→ (X ′, Y ′).

Conversely, given a diagonal morphism (α, β, γ) : (X, Y) → (X ′′, Y ′) and an FIop-

morphism g : (X ′, Y ′′) → (X ′, Y ′) whose composition is a map (X, Y) → (X ′, Y ′) we

first set f = α : X ↪→ X ′. Then we can use β−1 t γ to identify Y ′′ = β(Y) t β with

Y t f whence the map g can be viewed as a map Y ′ ↪→ Y t f , as desired.

As a simple application of this lemma we have the following characterization of

morphisms in PDI. This should be compared with Lemma 5.1.4.

CHAPTER 5. THE THEORY OF PD-MODULES 134

Lemma 5.7.3. (Characterization of morphisms in PDI.)

1. HomPDI((∅,∅), (X, Y)) = HomFI(Y,X) = HomFIop(X, Y),

2. HomPDI((S,∅), (X, Y)) = HomFI(Y t S,X) = HomFIop(X, Y t S),

3. HomPDI((∅, T), (X, Y)) = HomFI(Y,X t T) = HomFIop(X t T, Y),

Definition 5.7.4. (PDI-modules) A PDI-module is a functor PDI→ Vect. We denote

the category of PDI-modules by PDI-Mod.

Recall from the representable functors construction in Definition 2.2.9 that there is

a standard way to produce PDI-modules from objects (S, T) ∈ ob(PDI).

Definition 5.7.5. Fix a pair of finite sets (S, T) ∈ ob(PDI). Define,

W(S,T) := RPDI((S, T), ••) ∈ PDI-Mod,

Concretely, W(S,T) sends the pair of finite sets (X, Y) ∈ ob(PDI) to the free k-vector

space

k[HomPDI((S, T), (X, Y))].

PDI-morphisms naturally act on the basis by post-composition.

The following examples follow immediately from Lemma 5.7.3.

Example 5.7.6.

1. W(∅,∅)(X, Y) = k[HomFI(Y,X)]

2. W(S,∅)(X, Y) = k[HomFI(Y t S,X)]

3. W(∅,T)(X, Y) = k[HomFI(Y,X t T)]

CHAPTER 5. THE THEORY OF PD-MODULES 135

5.8 Endofunctors on FI-Mod arising from PDI-modules

We unpack Definition 2.2.13 in the case C = FI.

Definition 5.8.1. (Tensor product over FI) Given V ∈ FI-Mod and W ∈ FIop-Mod the

tensor product over FI,

V ⊗FI W ∈ Vect,

is defined by,

V ⊗FI W =

 ⊕
Y ∈Ob(FI)

V (Y)⊗W (Y)

 /〈f∗(uX)⊗ vY ≡ uS ⊗ f ∗(vY) : f : X ↪→ Y 〉,

or equivalently by,

V ⊗FI W =

(⊕
n≥0

Vn ⊗Sn Wn

)
/〈f∗(un)⊗ vn+1 ≡ un ⊗ f ∗(vn+1) : f : [n] ↪→ [n+ 1]〉.

Remark 5.8.2. If W ∈ FI-BiMod then V ⊗FI W ∈ FI-Mod. Indeed, given a finite set

X, then W (−, X) ∈ FIop-Mod and

(V ⊗FI W)(X) := V ⊗FI W (−, X) ∈ Vect (5.5)

Furthermore this evaluation is readily seen to be functorial. This gives us a recipe

for creating functors FI-Mod → FI-Mod from PDI-modules. Concretely, given W ∈

PDI-Mod we obtain a functor − ⊗FI W : FI-Mod → FI-Mod from (5.5) by considering

W as an FI-bimodule.

Example 5.8.3.

1. Consider W(∅,∅) ∈ PDI-Mod. Given a finite set X the evaluation,

W(∅,∅)(−, X) = k[HomFIop(X,−)],

is the representable functor RFIop(X, •). The tensor product,

V ⊗FI RFIop(X, •) ∼= V (X),

CHAPTER 5. THE THEORY OF PD-MODULES 136

by the Yoneda Lemma (Lemma 2.2.12). It follows from the construction that,

V ⊗FI W(∅,∅)
∼= V.

2. By considering,

W(S,∅)(−, X) = k[HomFIop(X, • t S)],

a similar argument to that above gives that,

V ⊗FI W(S,∅)
∼= V (• t S).

5.9 Free PDI-modules

In this section we present another application of the free object paradigm (Section

2.2.6), this time in the context of the inclusion of categories,

FB× FB ↪→ PDI.

Following Definition 2.2.19 we have a restriction functor,

ResPDI
FB×FB : PDI-Mod→ FB-BiMod,

defined by precomposition with the inclusion. By a similar argument to Lemma 5.2.3

we have that the left adjoint,

IndPDI
FB×FB : FB-BiMod→ PDI-Mod

satisfies,

IndPDI
FB×FB(W)i,n−k ∼=

⊕
m∈N

(
Ind

S(i,n)
S(i−m,n−m)×S(m,m) Wi−m,n−m � k[Sm]

)1×Sk
(5.6)

Remark 5.9.1. We omit the proof of the above for two reasons. First, as was already

mentioned, the proof of Lemma 5.2.3 is very similar. Second, this statement is not

used anywhere beyond the current section.

CHAPTER 5. THE THEORY OF PD-MODULES 137

Example 5.9.2. Let A be the FB-bimodule supported in bidegree (2, 0) by the (S2, S0)-

module,

A2,0 = .

In Fig. 5.3 we show the decomposition into irreducible bimodules of IndPDI
FB×FB(A)

in small bidegree.

(
⊕

)
�

(
⊕

)
�(

⊕ ⊕
)
�

⊕ ⊕

(
⊕ ⊕ ⊕ ⊕

)
�

Figure 5.3: The diagonal lines represent the induction to at PD-module. The bold vertical
lines represent the induction from a PD-module to a PDI-module by applying Eq. (5.6). The
dashed lines show an FI-module sitting in the 0-th row.

Notice in the example above that the PD-module IndPD
FB×FB(B) is sitting along the

top diagonal. This is a general feature of the construction, and can be seen directly

from Eq. 5.6 by setting k = 0. Furthermore, given that the inclusion,

FB× FB ↪→ PDI,

factors through the inclusion,

FB× FB ↪→ PD,

we have that the functor IndPDI
FB×FB(•) factors through PD-Mod,

CHAPTER 5. THE THEORY OF PD-MODULES 138

FB-BiMod PDI-Mod

PD-Mod

IndPDI
FB×FB(•)

IndPD
FB×FB(•) IndPDI

PD (•)

By uniqueness of adjoints, we can describe the free functor,

IndPDI
PD : PD-Mod→ PDI-Mod,

associated to the natural inclusion of categories,

PD ↪→ PDI.

In particular, we have that,

IndPDI
PD (W)i,n =

⊕
k≥0

(Wi,n+k)
(1×Sk) .

Remark 5.9.3. Notice that there is a forgetful functor,

F1 : PDI-Mod→ FI-Mod,

by restricting to objects of the form (X,∅). We use this to construct a functor,

F2 : PD-Mod→ FI-Mod,

defined as the composition F1 ◦ IndPDI
PD . Given a PD-module W , we have that,

F2(W)i ∼=
⊕
k≥0

(Wi,k)
(1×Sk).

That is, F2 is precisely the invariants functor constructed in Definition 5.5.4.

CHAPTER 6

EXTENDED WHITNEY HOMOLOGY

6.1 Whitney homology of the lattice of set partitions

We recall definitions of the order complex ∆(P) of a finite graded poset P , and its

Whitney homology. Much of this material is standard. See, for example, Stanley [31],

or Aguiar and Mahajan [2].

6.1.1 Order homology of a poset

Fix a ground field k. Let P be a finite poset with unique minimal element ⊥ ∈ P and

unique maximal element > ∈ P . A maximal chain in P is a totally ordered subset

which is maximal under inclusion. Say that P is graded if all its maximal chains have

the same length. If P is graded then, for x ∈ P , define rank(x) to be the length r of

a(ny) maximal chain,

⊥ < x1 < · · · < xr < x,

from ⊥ to x. We say that the rank of P is rank(>).

Remark 6.1.1. There is a definition of rank presented in the theory of PD-modules.

It turns out that in our context, these two otherwise distinct notions coincide. In

addition, there can be no ambiguity over the rank to which we refer, and as such we

do not attempt to distinguish them in the nomenclature.

Homology of a poset. The strict chains in P between ⊥ and > have the structure

of a simplicial complex, called the order complex ∆(P) of P . Concretely, suppose P is

of rank r. For −1 ≤ j ≤ r − 2, the chain group Cj(P) is the vector space with basis

139

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 140

consisting of strict chains,

⊥ < x1 < · · · < xj+1 < >,

of length j + 1. Otherwise Cj(P) is zero. Note that C−1(P) is one dimensional and

spanned by the chain ⊥ < >. The differential ∂j is defined via the formula,

∂j(⊥ < x1 < · · · < xj+1 < >) =

j+1∑
l=1

(−1)l(⊥ < x1 < · · · < x̂l < · · · < xj+1 < >),

where x̂l denoted the omission of xl from the chain. The order complex ∆(P) of P is

the simplicial complex (C∗(P), ∂). Write H∗(P) for the homology of this complex.

Homology of an interval. For elements x < y ∈ P , define the interval (x, y) =

{z ∈ P : x < z < y}. We can make a similar definition for the order complex ∆(x, y) of

the interval (x, y) as the simplicial complex arising from the strict chains in P between

x and y. Namely, a basis for the j-th chain group Cj(x, y) of ∆(x, y) consists of strict

chains,

x < z1 < · · · < zj+1 < y.

Similarly we have that C−1(x, y) is one dimensional and spanned by x < y, and

the differential ∂ is defined exactly as above. The homology H∗(x, y) of the inter-

val (x, y) is the homology of this complex. It is not hard to see that dim(x, y) =

rank(y)− rank(x)− 2.

Remark 6.1.2. A poset P is Cohen-Macaulay if every interval (x, y) in P has homology

concentrated in top degree. That is,

Hj(x, y) = 0,

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 141

for all j < dim(x, y). It is well-known (see, for example, [30]) that the property of

being Cohen-Macaulay is inherited by rank-selected sub-posets, i.e., by posets,

P S = {x ∈ P : rank(x) ∈ S},

where S ⊂ {0, . . . , rank(P)} is a subset of the possible ranks of the graded, Cohen-

Macaulay poset P .

In the upcoming definition of Whitney homology, which is standard, we introduce

a non-standard grading. For that purpose we first define, for x ∈ P , the length of x as,

l(x) = rank(P)− rank(x) + 1. (6.1)

We are now ready to present the definition of Whitney homology, with this modified

grading.

Definition 6.1.3. (Whitney homology) The i-th Whitney homology WHi(P) of P is

the direct sum,

WHi(P) =
⊕
x∈P
l(x)=i

H∗(⊥, x),

of interval homologies H∗(⊥, x) for x ∈ P of length i.

Remark 6.1.4. The usual grading is over x of rank i. Our modification is intended

to simplify notation down the line.

Remark 6.1.5. Let G be a group of poset automorphisms of P . Then the poset homol-

ogy H∗(P) of P is a G-module [30]. Similarly, if G is a group of poset automorphisms

of an interval (x, y) then the interval homology,

H∗(x, y),

of (x, y) is a G-module. Understanding the G-module structure of certain interval and

poset homologies is a central theme of this work, specifically in the context of the

lattice of set partitions, which we now recall.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 142

6.1.2 The lattice of set partitions

Definition 6.1.6. Fix n ∈ N. A set partition x = {B1| . . . |Bi} of {1, 2, . . . , n} is a

decomposition,

{1, 2, . . . , n} =
i⊔

j=1

Bj,

into disjoint sets Bj called blocks of x. The set, Πn, of all such blocks naturally admits

the structure of a poset, ordered by refinement. Concretely, x ≤ y if each block of y if

a union of blocks of x. The lattice of set partitions Πn has unique maximum element

and minimum elements,

> = {1, 2, · · · , n},

⊥ = {1|2| · · · |n}.

We define the length and type of a set partition. These notions provide natural

decompositions of the lattice Πn.

Remark 6.1.7. We use the symbol Πn to refer to the lattice of set partitions. To

avoid ambiguity, the symbol
d

is used to denote the cartesian product.

Definition 6.1.8. Fix n ∈ N and consider a set partition x = (B1, . . . , Bi) ∈ Πn.

1. We define1 the length of x, denoted l(x), to be i. Further, let Πi,n denote the

subset of Πn consisting of set partitions of length i:

Πi,n = {x ∈ Πn : l(x) = i}.

We have the following decomposition Πn =
⊔n
i=1 Πi,n by lengths.

1In fact, we redefine length. Note that this definition agrees with the generic definition given in
Eq. 6.1.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 143

2. We associate a partition type(x) ` n, called the type of x, determined by the

sizes of the blocks in x. Concretely, type(x) = (|B1|, . . . , |Bi|) ` n.

Further, let Πλ denote the subset of Πn consisting of set partitions of type λ:

Πλ = {x ∈ Πn : type(x) = λ}.

We have the following decomposition,

Πn =
⊔
λ`n

Πλ,

by types.

Example. (Lattice of set partitions Π3)

Consider the set partition x = {12|3} ∈ Π3. It has blocks B1 = {1, 2}, B2 = {3} and

type(x) = (2, 1) ` 3. This fits into the full lattice of set partitions Π3 as follows.

Π3

{1|2|3}

{12|3} {13|2} {23|1}

{123}

Type

(3) ` 3

(2, 1) ` 3

(1, 1, 1) ` 3

Rank

2

1

0

Length

1

2

3

Notice that the rank and the length determine one another, and that elements x ∈ Π3

of the same type are also of the same rank and length. These will be seen to be general

features of the type, rank and length of a set partition (see Lemma 6.1.9).

Example. (Lattice of set partitions Π4)

For n = 4 the poset structure is somewhat more complex. We first present the poset

diagram for Π4:

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 144

Π4

{1|2|3|4}

{12|3|4} {13|2|4} {14|2|3} {23|1|4} {24|1|3} {34|1|2}

{1|234} {2|134} {3|124} {4|123} {12|34} {13|24} {14|23}

{1234}

The type, rank and length are summarized below:

Type

(1, 1, 1, 1)

(2, 1, 1)

(3, 1) (2, 2)

(4)

Rank

3

2

1

0

Length

1

2

3

4

Rank determines length. The type, rank and length of a set partition are related

to one another by the following simple observation which we present without proof.

Lemma 6.1.9. Fix n ∈ N and let x ∈ Πn. The rank of x and the length of x determine

one another:

rank(x) = n− l(x).

Moreover, both are determined by the type λ = (λ1, . . . , λi) ` n of x:

rank(x) = |λ| − i l(x) = i.

It is also immediate to see that the rank of Πn is n− 1.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 145

Product decomposition of the interval (⊥, x). It is well-known (see [32], for

example) that the interval (⊥, x) admits a poset decomposition in terms of smaller

posets Πa.

Lemma 6.1.10. Let x ∈ Πn of type λ = 1m12m2 · · · ` n. Then there is a poset

isomorphism,

(⊥, x) ∼=
l

j

(
Π
×mj
j

)
.

Proof. Write x = (B1, . . . , Bi). Any set partition z ∈ (⊥, x) satisfies z ≤ x, and as such

consists of blocks that refine the blocks of x. So the block Bk ∈ x of size j is refined

into blocks Bk1, . . . , Bklk ∈ z. This refinement determines an element of (⊥, Bk) ∼= Πj.

Conversely, given elements (Bk1| · · · |Bklk) ∈ (⊥, Bk) ∼= Πj for each block of x we obtain

an element z ∈ (⊥, x) by concatenation.

We demonstrate this result with a simple example.

Example 6.1.11. Consider the set partition x = 12|34 of type (2, 2) in Π4. We can

represent the poset (⊥, x) via its poset diagram. Additionally we represent (⊥, 12) and

(⊥, 34) via thier poset diagrams, each of which is isomorphic to Π2.

(⊥, x)

⊥

1|2|34 12|3|4

12|34

Π2

1|2

12

Π2

3|4

34

For example, the isomorphism (⊥, x) ∼= Π2 × Π2 sends 1|2|34 ∈ (⊥, x) to (1|2, 34) ∈

Π2 × Π2.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 146

6.1.3 Whitney complexes and Whitney homology

In this section we apply the general machinery described in Definition 6.1.3 to the case

P = Πn. Three threads will be running in tandem:

1. We consider the entire poset Πn.

2. We consider the type-selected subsets Πλ for λ ` n.

3. We consider the length-selected subsets Πi,n for i < n.

Definition 6.1.12. Fix n ∈ N. For x ∈ Πn, let Cx denote the order complex ∆(⊥, x).

1. For λ ` n, let,

Cλ :=
⊕
x∈Πλ

Cx. (6.2)

We call Cλ the type-selected order complex of Πn (of type λ). The Whitney

homology of type λ, WHλ, is the homology of the complex Cλ.

2. We further group these complexes by length, defining the length-selected order

complex Ci,n as,

Ci,n :=
⊕
λ`n
l(λ)=i

Cλ =
⊕
x∈Πi,n

Cx. (6.3)

The i-th Whitney homology, WHi,n, is the homology of the complex Ci,n.

Remark 6.1.13.

1. By Lemma 6.1.9 and Remark 6.1.2 we see that the homology of Cλ and Ci,n

are concentrated in top-degree. We therefore use WHλ and WHi,n to refer to

homology in this top degree.

2. In the literature (e.g., [1], [18]) it is more common to define the rank-selected order

complex Ci,n (and correspondingly, the rank-selected Whitney homology WHi,n)

as summing over terms of rank i, but in our context, this modified grading will be

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 147

more succinct. Of course, by Lemma 6.1.9, fixing the length l(x) = i is equivalent

to fixing the rank rank(x) = n− i, so this change of grading is only cosmetic.

Example 6.1.14. Consider the set partition x = {1|234} ∈ Π4. In order to describe

the complex Cx we consider the interval (⊥, x) in Π4, that is:

⊥

{23|1|4} {24|1|3} {34|1|2}

{1|234}

We see that the chain complex C1|234 is of the form,

C1|234 : A B,∂

where A and B are of homological degree −1 and 0 respectively, and:

• A is one-dimensional with basis {⊥ < 1|234}, and

• B is three-dimensional with basis,

{ a := ⊥ < 23|1|4 < 1|234,

b := ⊥ < 24|1|3 < 1|234,

c := ⊥ < 34|1|2 < 1|234 }.

It is easy to see that ker(∂) is two-dimensional with basis {a − b, a − c}, and so the

homology is,

H0

(
C1|234

) ∼= k
⊕2.

Notice that we recover the same calculations for any set partition x of type (3, 1). That

is,

H0 (Cx) ∼= k
⊕2,

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 148

for any x ∈ Π4 with type(x) = (3, 1). There are exactly four such elements, 1|234, 2|134, 3|124

and 4|123, therefore,

WH(3,1)
∼=

⊕
x∈Π4

type(x)=(3,1)

H0(Cx) ∼= k
⊕8.

This is an isomorphism on the level of vector spaces. However, the order complexes

and their homology have a richer structure, which we now descirbe.

6.1.4 Sn-module structure on the Whitney homology

Sn-module structure on Hn−3(Πn).

Fix n ∈ N. A set partition x ∈ Πn consists of a decomposition of {1, . . . , n} into

disjoint blocks. The symmetric group Sn acts on Πn by permuting the elements

{1, . . . , n} of these decompositions. Furthermore, it is plain to see that this action

is order-preserving, and therefore Sn acts on Πn by poset automorphisms. Therefore,

by Remark 6.1.5, the poset homology H∗(Πn) is an Sn-module.

It is worth spelling this action out in some detail. Consider a basis element c for

the j-th chain group Cj(Πn),

c = ⊥ < x1 < · · · < xj+1 < >.

The Sn-action is defined as follows. For σ ∈ Sn define,

σ · c := ⊥ < σ · x0 < · · · < σ · xj < >, (6.4)

where the action σ · xk is the action of Sn on Πn. This Sn action is readily seen to the

respect the differential on C(Πn), and thus taking homology gives that H∗(Πn) inherits

the structure of a Sn-module.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 149

In addition, it is well-known that Πn is Cohen-Macaulay of rank n−1, and as such,

has homology concentrated in degree n−3. Stanley gave a description of its Sn-module

structure.

Proposition 6.1.15 ([31], Theorem 7.3). For n ∈ N, the poset homology Hn−3(Πn) is

isomorphic as an Sn-module to εn ⊗ Lien.

Definition 6.1.16. We denote the Sn-module Hn−3(Πn) by πn.

Example 6.1.17. Consider the case n = 3, where Π3 has the following poset structure.

⊥

{1|23} {2|13} {3|12}

>

with associated chain complex,

C(Π3) : C−1(Π3) = 〈⊥ < >〉 C0(Π3) =

〈 a := ⊥ < 1|23 < >,

b := ⊥ < 2|13 < >,

c := ⊥ < 3|12 < >

〉
,∂

Similarly to Example 6.1.14 we see that,

V := ker(∂) = 〈a− b, a− c〉 ∼= k
⊕2.

We can identify this as a representation of S3 via its characters. In particular, it suffices

to compute the action of (12), (123) ∈ S3 on the basis elements a− b, a− c of V . Direct

computation shows,

(12) · a = b, (12) · b = a, (12) · c = c,

and,

(123) · a = b, (123) · b = c, (123) · c = a,

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 150

whence we readily compute the characters,

χV (12) = 0 χV (123) = −1.

It follows (by inspecting the character table for S3) that V can be identified with the

irreducible S3-module,

V ∼= P(2,1) =

Induced module structure on Cλ

We are motivated to enrich the structure of Cx for x ∈ Πn. However, the symmetric

group Sn does not act by automorphisms in analogy with Eq. 6.4. Indeed, given a

chain,

⊥ < x1 < · · · < xj+1 < x ∈ (Cx)j,

and an element σ ∈ Sn, the j-chain,

⊥ < σ · x1 < · · · < σ · xj+1 < σ · x,

is not, in general, an element of (Cx)j. We require that σ · x = x. To that end, we

consider the stabilizer subgroup StabSn(x) ≤ Sn.

First we make a simple observation about these stabilizer subgroups.

Lemma 6.1.18. Let n ∈ N and λ ` n. For any two set partitions x, x′ ∈ Πλ of the

same type, there is an isomorphism,

StabSn(x) ∼= StabSn(x′).

Proof. Let x, x′ ∈ Πλ be two such set partitions. Note that there exists an element

σ ∈ Sn such that σ · x = x′. The isomorphism StabSn(x) ∼= StabSn(x′) is given by

conjugation by σ.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 151

This lemma allows us to make the following definition.

Definition 6.1.19. Fix n ∈ N and λ ` n. Define Gλ to be the stabilizer subgroup,

Gλ := StabSn(x),

where x is any element of type λ in Πn.

It is useful to describe the stabilizers Gλ explicitly. Intuitively, the permutations of

Sn that fix an element x = (B1, . . . , Bi) are those that

(i) Permute elements within the blocks Bk, and;

(ii) Permute blocks of the same size Bk ↔ Bj where |Bk| = |Bj|.

In [32], Sundaram makes this intuition precise, giving a decomposition of Gλ in wreath

products of the form Si[Sa].

Lemma 6.1.20 ([32], Theorem 1.4). Let λ = 1m12m2 · · · ` n. The stabilizer subgroup

Gλ factors as a product,

Gλ
∼=

l

j

Smj [Sj].

Remark 6.1.21.

1. We denote an element ofG(ai)
∼= Si[Sa] as [σ; τ] where σ ∈ Si and τ = (τ1, . . . , τmj) ∈

S×ia .

2. We describe the action of Gλ on Πn. Consider an element [σ; τ] ∈ Si[Sa] and

an element x = (B1| · · · |Bi) ∈ Πλ where λ = (ai). First there is a natural

identification of the element τj ∈ Sa with an element of Sym(Bj) for all j =

1, . . . , i. Now each block Bj of x is of the form,

Bj = {bj1, . . . , bjk, . . . , bja}.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 152

We identify the permutation σ ∈ Si with the element in Sym(B1t· · ·tBi) sending

bjk 7→ bσ(j)k for all j = 1, . . . , i and k = 1, . . . , a. Under these identifications we

have that σ, τ1, . . . , τi ∈ Sym(B1 t · · · tBi) (which is naturally isomorphic to Sn)

and as such we define

[σ; τ] · x := σ · τ1 · · · τi · x.

Given two elements [σ; τ], [ω; ζ] ∈ Si[Sa] we have,

[σ; τ] · [ω; ζ] = [σω;ω−1(τ)ζ],

where ω−1(τ) :=
(
τω−1(1), . . . , τω−1(i)

)
. It is routine to verify that this defines an

action of Si[Sa] on x. This action can be read off as a permutation of Sn. Indeed,

there is a natural identification,

Sym(B1 t · · · tBj) ∼= Sn .

We use this identification to determine the action of [σ; τ] on any element of Πn.

Example 6.1.22. Fix λ = (2, 2, 2) ` 6 and x = 12|34|56 ∈ Πλ. Consider,

σ = (123) ∈ S3,

and,

τ = (1, (12), (12)) ∈ S×3
2 .

The element of S6 corresponding to [σ; τ] is determined as follows.

σ = (b1b3b5)(b2b4b6) ∈ Sym(B1 tB2 tB3),

and,

τ1 = (b1)(b2) ∈ Sym(B1)

τ2 = (b3b4) ∈ Sym(B2)

τ3 = (b5b6) ∈ Sym(B3)

 ∈ Sym(B1 tB2 tB3).

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 153

Putting this together we get [σ; τ] · x by first applying τ and then σ:

x = (12|34|56)
τ−→ (12|43|65)

σ−→ (43|65|12) =: [σ; τ] · x,

and we see that the corresponding element of S6 is,

[σ; τ]↔ (145)(236).

3. Given an Si-module V and a Sa-module W , the wreath product module V [W]

(see Eq. 2.3) admits the following action of Si[Sa]. Let [σ, τ] ∈ Si[Sa] and

v ⊗ (w1 ⊗ · · · ⊗ wi) ∈ V [W].

Then,

[σ, τ] · (v ⊗
(
w1 ⊗ · · · ⊗ wi)) = σ · v ⊗ (τ1wσ−1(1) ⊗ · · · ⊗ τiwσ−1(i)

)
4. Recall that the wreath product Si[Sa] can be constructed as the normalizer in

Si·a of S×ia . This gives us a natural identification of Gλ as a subgroup of Sn,

Gλ
∼=

l

j

Smj [Sj] ↪→
l

j

Smj ·j ↪→ Sn .

Lemma 6.1.23. Let λ ` n and x ∈ Πλ. The complex Cx is a Gλ-module with the

following action: let γ ∈ Gλ ≤ Sn and,

c = ⊥ < x1 < · · · < xj+1 < x,

a basis element for the j-th chain group (Cx)j. Then,

γ · c := ⊥ < γ · x1 < · · · < γ · xj+1 < γ · x = x.

where γ · xk is determined by the action of Sn on Πn.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 154

Proof. This is routine and follows from the fact that the action of Sn on Πn is by poset

automorphisms.

In [32] Sundaram gives an explicit description of the Gλ-module structure on the

homology of the complex Cx in terms of the Sj-modules πj.

Lemma 6.1.24 ([32], Theorem 1.7). Let x be a set partition of type λ = 1m12m2 · · · ` n.

The top homology of the interval (⊥, x) is a Gλ-module isomorphic to,⊗
j

Rmj [πj],

where,

R(mi) =

 P(mi) i odd

P(1mi) i even
.

Lemma 6.1.25. Let λ ` n and x ∈ Πλ. There is a canonical isomorphism,

Cλ ∼= IndSn
Gλ
Cx.

Proof. We have that Cλ is a Sn-module that splits as a direct sum
⊕

x∈Πλ
Cx of sub-

groups that are permuted transitively by the Sn-action. Further we have that Cx is

one of the summands, and Gλ is its stabilizer in Sn. This property is characteristic of

induced modules by Lemma 2.1.15, and it follows that Cλ is canonically isomorphic to

IndSn
Gλ
Cx.

Remark 6.1.26. It is worth describing the Sn-action on Cλ explicitly. Consider a

basis element c for the j-th chain group (Cλ)j,

c = ⊥ < x1 < · · · < xj+1 < x,

where x ∈ Πλ. Recall that the Sn-action is defined as follows. Let σ ∈ Sn, then,

σ · c = ⊥ < σ · x1 < · · · < σ · xj+1 < σ · x,

where the action σ · xk is the action of Sn on Πn.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 155

Sn-module structure on type and length selected Whitney homology.

The Sn-module structure on Hn−3(Πn) arose from the Sn-action on the poset Πn. Notice

that the action of Sn on Πn transitively permutes set partitions of the same type. That

is to say, for a given partition λ ` n, the type-selected subset Πλ admits an action of

Sn. This in turn implies that length-selected subset Πi,n admits an action of Sn. These

action give rise to interesting Sn-modules WHλ and WHi,n.

Lemma 6.1.27. Fix n ∈ N.

1. Let λ ` n. Then WHλ is an Sn-module.

2. Let i < n. Then WHi,n is an Sn-module.

Proof. In Lemma 6.1.25 we showed that Cλ is an Sn-module. Furthermore, the action

of Sn respects the differential, and thus the homology WHλ inherits the structure of

an Sn-module (see Remark 6.1.26). The complex Ci,n is a sum of complexes of the form

Cλ, and the action of Sn is diagonal. The second statement follows.

Example: S4-module structure of WH2,4

We give an explicit description of the S4-module structure of the 2nd Whitney homology

of Π4,

WH2,4
∼=WH(3,1) ⊕WH(2,2).

We separately compute the type-selected Whitney homologies WH(3,1) and WH(2,1,1).

Type λ = (3, 1). We compute the S4-module structure of WH(3,1) following from

Example 6.1.14. We recall (and extend) the notation introduced there by naming the

0-chains in C(3,1).

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 156

(C1|234)0

a := ⊥ < 1|4|23 < 1|234

b := ⊥ < 1|3|24 < 1|234

c := ⊥ < 1|4|23 < 1|234

(C2|134)0

d := ⊥ < 2|4|13 < 2|134

e := ⊥ < 2|3|14 < 2|134

f := ⊥ < 2|1|34 < 2|134

(C3|124)0

g := ⊥ < 3|4|12 < 3|124

h := ⊥ < 3|2|14 < 3|124

i := ⊥ < 3|1|24 < 3|124

(C4|123)0

j := ⊥ < 4|3|12 < 4|123

k := ⊥ < 4|2|13 < 4|123

l := ⊥ < 4|1|23 < 4|123

In Example 6.1.14 we showed that WH(3,1) is 8-dimensional with basis,

WH(3,1) = 〈a− b, a− c, d− e, d− f, g − h, g − i, j − k, j − l〉.

We will use some elementary character theory to determine the decomposition of

WH(3,1) into irreducible S4-modules (see [19], for the relevant background on character

theory). It suffices to consider the action of e, (12), (12)(34), (123), (1234) ∈ S4 on a

basis for WH(3,1).

As a first step we record the relevant actions on the 0-chains in the following mul-

tiplication table.

a b c d e f g h i j k i

(12) d e f a b c g i h j l k

(12)(34) e d f b a c j l k g i h

(123) d f e g i h a b c l j k

(1234) f d e i g h l j k a b c

(6.5)

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 157

A straightforward (if not somewhat verbose) calculation now reveals the character

of the representationWH(3,1) which we denote χW . For instance, we see that (12) ∈ S4

acts on the basis element (a− b) as,

(12) · (a− b) = (d− e).

Continuing in this way we compute the characters of each conjugacy class of S4, record-

ing them together with the character table for S4 (Example 2.1.21).

1 (12) (12)(34) (123) (1234)

χ(4) 1 1 1 1 1

χ(1,1,1,1) 1 −1 1 1 −1

χ(3,1) 3 1 −1 0 −1

χ(2,1,1) 3 −1 −1 0 1

χ(2,2) 2 0 2 −1 0

χW 8 0 0 −1 0

Taking the inner product of χW with χ(3,1), χ(2,1,1) and χ(2,2),

〈χW , χ(3,1)〉 =
1

24
(1 · 8 · 3 + 6 · 0 · 1 + 3 · 0 · −1 + 8 · −1 · 0 + 6 · 0 · −1) = 1,

〈χW , χ(2,1,1)〉 =
1

24
(1 · 8 · 3 + 6 · 0 · −1 + 3 · 0 · −1 + 8 · −1 · 0 + 6 · 0 · 1) = 1,

〈χW , χ(2,2)〉 =
1

24
(1 · 8 · 2 + 6 · 0 · 0 + 3 · 0 · 2 + 8 · −1 · −1 + 6 · 0 · 0) = 1,

(6.6)

gives the following decomposition of WH(3,1).

WH(3,1)
∼= P(3,1) ⊕ P(2,1,1) ⊕ P(2,2)

= ⊕ ⊕ .

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 158

Type λ = (2, 2). We compute the S4-module structure of WH(2,2). The 0-chains in

C(2,2) are.

(C12|34)0

a := ⊥ < 1|2|34 < 12|34

b := ⊥ < 12|3|4 < 12|34

(C13|24)0

c := ⊥ < 1|3|24 < 13|24

d := ⊥ < 13|2|4 < 13|24

(C14|23)0

e := ⊥ < 1|4|23 < 14|23

f := ⊥ < 14|2|3 < 14|23

Similarly to Example 6.1.14 we have that WH(2,2) is 3-dimensional with basis,

WH(2,2) = 〈a− b, c− d, e− f〉. (6.7)

As above we record the relevant actions on the 0-chains in a multiplication table.

a b c d e f

(12) a b f e d c

(12)(34) a b d c f e

(123) f e a b d c

(1234) f e d c a b

With this it is easy to compute the action on basis elements of WH(2,2). For

example,

(12) · (a− b) = (a− b)

(12) · (c− d) = (f − e) = −(e− f)

(12) · (e− f) = (d− c) = −(c− d)

Continuing in this fashion we are able to explicitly describe the matrices corre-

sponding to the representation determined by WH(2,2) in terms of the basis given in

Eq. 6.7.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 159

(12)↔


1 0 0

0 0 −1

0 −1 0

 (12)(34)↔


1 0 0

0 −1 0

0 0 −1



(123)↔


0 0 −1

1 0 0

0 −1 0

 (1234)↔


0 0 −1

0 −1 0

1 0 0



(6.8)

We obtain the character for WH(2,2), which we denote χU as,

1 (12) (12)(34) (123) (1234)

χU 3 1 −1 0 −1

which we recognize as the character for P(3,1). That is, we have the isomorphism,

WH(2,2)
∼= P(3,1) =

The following result of Lehrer-Solomon describes the representations of WHλ in

terms of the twisted Lie operad.

Proposition 6.1.28 ([21], Theorem 4.5). Fix n ∈ N and write λ ` n in terms of its

exponents λ = 1m12m2 · · · . There is an isomorphism of Sn-modules,

WHλ
∼=~

i

(
R(mi) ◦ L̂iei

)
, (6.9)

where,

R(mi) =

 P(mi) i odd

P(1mi) i even
.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 160

Example 6.1.4 (Continued). Write λ = (3, 1) = 1131 giving m1 = m3 = 1 and

R(m1) = R(m3) = . Plugging into Eq. 6.9 we get that,

WH(3,1)
∼=
(

◦
)
~

(
◦

)
= ⊕ ⊕ .

Similarly, writing λ = (2, 2) = 22 gives,

WH(2,2)
∼=
(

◦
)

= ,

as expected.

6.2 Extending the action

Our goal in this section is to introduce an action on the blocks of a set partition. We

therefore need to keep track of the order of the blocks.

6.2.1 Ordered set partitions

Definition 6.2.1. Fix n ∈ N. An ordered set partition x̃ = (B1, . . . , Bi) of {1, . . . , n}

is a decomposition,

{1, . . . , n} =
i⊔

j=1

Bj,

into disjoint sets Bj which we also refer to as blocks, together with an order on the

blocks.

Let Π̃n denote the set of all ordered set partitions of {1, . . . , n}. We denote an

ordered set partition with ‖ bars. For example,

(12 ‖ 34) 6= (34 ‖ 12) ∈ Π̃4

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 161

Definition 6.2.2. Define the support map by,

supp : Π̃n → Πn

(B1, . . . , Bl) 7→ {B1, . . . , Bl}

Then for x ∈ Πn, the preimage supp−1(x) ⊆ Π̃n consists of all ordered set partitions

of support x. Define,

Π̃λ =
⋃
x∈Πn

type(x)=λ

supp−1(x).

Let x̃ ∈ Π̃n an ordered set partition. Its type is defined to agree with the type of its

support, namely,

type(x̃) := type(supp(x̃)).

Example 6.2.3. As a simple example to familiarize ourselves with the notation, con-

sider the ordered set partitions (12 ‖ 34) and (34 ‖ 12) ∈ Π̃4. We have,

12 ‖ 34
�

supp

((

12|34

34 ‖ 12
. supp

66

and supp−1({12|34}) = {(12 ‖ 34), (34 ‖ 12)} ⊆ Π̃4. Let λ = (2, 2) be the type of

12|34 ∈ Π4. Then,

Π̃(2,2) = {(12 ‖ 34), (34 ‖ 12),

(13 ‖ 24), (24 ‖ 13),

(14 ‖ 23), (14 ‖ 23)} ⊆ Π̃4.

6.2.2 The extended action

We are now ready to describe an extension of the Sn-module structure on Πn.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 162

Lemma 6.2.4. Fix a partition λ ` n of length i. The set Π̃λ ⊆ Π̃n admits an action

of Si× Sn with:

1. Left action of Si on blocks. Concretely, let x̃ = (B1, . . . , Bi) ∈ Π̃λ and τ ∈ Si,

then,

τ · (B1, . . . , Bi) = (Bτ ·1, . . . , Bτ ·i). (6.10)

2. Right action of Sn on elements. Concretely, let x̃ = (B1, . . . , Bi) ∈ Π̃λ and

σ ∈ Sn, then,

(B1, . . . , Bi) · σ = (B1 · σ, . . . , Bi · σ), (6.11)

where Bj · σ = {b1, . . . , bk} · σ = {σ−1 · b1, . . . , σ
−1 · bk}.

Proof. It is routine to show that Eqs. 6.10 and 6.11 define left and right actions of Si

and Sn on Π̃λ (resp.) noting that permuting blocks and permuting elements within a

block of an ordered set partition does not alter its type. It remains to show that these

actions commute. Let τ ∈ Si, σ ∈ Sn and (B1, . . . , Bi) ∈ Π̃λ. Then,

τ · ((B1, . . . , Bi) · σ) = τ · (B1 · σ, . . . , Bi · σ)

= (Bτ ·1 · σ, . . . , Bτ ·i · σ)

= (Bτ ·1, . . . , Bτ ·i) · σ

= (τ · (B1, . . . , Bi)) · σ,

as required.

Example 6.2.5. Let λ = (2, 2) ` 4 and consider the set Π̃λ ⊆ Π̃4 from Example 6.2.3.

Consider the ordered set partition (12 ‖ 34) ∈ Π̃λ.

• (left-action) Let (12) ∈ Si = S2. Then,

(12) · (12 ‖ 34) = (34 ‖ 12).

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 163

• (right-action) Let (13) ∈ Sn = S4. Then,

(12 ‖ 34) · (13) = (23 ‖ 14).

This structure on Π̃λ ⊂ Π̃n motivates us to enlarge the type complexes Cλ and Ci,n.

We spell this out in the next section.

6.2.3 Extended Whitney complexes and Whitney homology.

There is a map from the lattice of set partitions to the category of chain complexes,

C : Πn → dgVect,

taking x to the complex Cx. Extend this to a map,

C̃ : Π̃n → dgVect,

defined as the composition C̃ = C ◦ supp. In other words, we assign to each ordered

set partition x̃ ∈ Π̃n the chain complex associated to the underlying unordered set

partition supp(x̃) ∈ Πn. Denote the complex C̃(x̃) simply as Cx̃.

Similarly, we define the extended counterparts to the type-complex Cλ and the

rank-selected order complex Ci,n in Definition 6.1.12.

Definition 6.2.6. Let λ ` n of length i.

1. Define the extended type-selected order complex C̃λ as,

C̃λ =
⊕
x̃∈Π̃n

type(x̃)=λ

Cx̃ =
⊕
x̃∈Π̃λ

Cx̃.

The extended Whitney homology of type λ, W̃Hλ, is the homology the complex

C̃λ.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 164

2. We again group these complexes by length, defining the extended length-selected

order complex C̃i,n as,

C̃i,n :=
⊕
λ`n
l(λ)=i

C̃λ,

The i-th extended Whitney homology, W̃Hi,n, is the homology of the complex

C̃i,n.

Remark 6.2.7. We note that the chain group (C̃λ)j has basis elements consisting of

chains in Cx̃ = Cx labelled by an ordering of the blocks of x ∈ Πn. We denote such a

basis element,

⊥ < x1 < · · · < xj < x̃,

where x̃ ∈ Π̃n. This corresponds to the element (⊥ < x1 < · · · < xj < x) in the

summand labelled by x̃.

Example 6.2.8. The complex C̃(2,2) admits the following decomposition,

C̃(2,2) = C̃12‖34 ⊕ C̃34‖12 ⊕ C̃13‖24 ⊕ C̃24‖13 ⊕ C̃14‖23 ⊕ C̃23‖14. (6.12)

Consider the 0-chain,

⊥ < 1|2|34 < 12|34,

a basis element in (C12|34)0, This has two corresponding extended counterparts,

⊥ < 1|2|34 < 12 ‖ 34 ↔ (⊥ < 1|2|34 < 12|34) ∈ C̃12‖34,

⊥ < 1|2|34 < 34 ‖ 12 ↔ (⊥ < 1|2|34 < 12|34) ∈ C̃34‖12,

in C̃(2,2) belonging to the first two summands in Eq. 6.12.

(Si, Sn)-bimodule structure on C̃λ and C̃i,n. We describe the (Si, Sn)-bimodule

structure on the complex C̃λ. It suffices to specify the action on a basis for the j-th

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 165

chain group (C̃λ)j. Let,

c = (⊥ < x1 < · · · < xj+1 < x̃) ∈ (C̃λ)j,

denote such a basis element, where x̃ ∈ Π̃n is of type λ.

1. Si acts on C̃λ by permuting the summands in,⊕
x̃∈Π̃λ

Cx̃.

Concretely, let τ ∈ Si. Then,

τ · c := (⊥ < x1 < · · · < xj+1 < τ · x̃) (6.13)

2. Sn acts simultaneously by permuting summands as above, and also by the un-

ordered action on the chain. Concretely, let σ ∈ Sn. Then,

c · σ := (⊥ < x1 · σ < · · · < xj+1 · σ < x̃ · σ), (6.14)

where xk ·σ := σ−1 ·xk is the usual action of Sn on Πn (written as a right action).

Proposition 6.2.9. Fix a partition λ ` n of length i.

1. The Whitney homology W̃Hλ admits the structure of an (Si, Sn)-bimodule.

2. The Whitney homology W̃Hi,n admits the structure of an (Si, Sn)-bimodule.

Proof. By the same argument as Lemma 6.1.27, the action of Sn respects the differential

on C̃λ. The Si action only permutes summands, and is readily seen to commute with

the differential. We therefore have that the homology of these complexes, W̃Hλ, inherit

the structure of a (Si, Sn)-bimodule, as desired. Finally, Si× Sn acts diagonally on,

C̃i,n :=
⊕
λ`n
l(λ)=i

C̃λ.

The differential ∂i,n on C̃i,n splits over this sum as ∂i,n = ⊕∂λ, where ∂λ is the differential

on the extended type complex C̃λ. The result follows upon taking homology, as above.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 166

Example: (S2, S4)-bimodule structure of W̃H2,4

In Example 6.1.4 we computed the S4-module structure of WH2,4. Now we consider

its extended counterpart W̃H2,4 which is an (S2, S4)-bimodule satisfying,

W̃H2,4
∼= W̃H(2,2) ⊕ W̃H(3,1).

Type (2, 2). The complex C̃(2,2) is the sum of complexes,

C̃(2,2) = C̃(12‖34) ⊕ C̃(34‖12) ⊕ C̃(13‖24) ⊕ C̃(24‖13) ⊕ C̃(14‖23) ⊕ C̃(23‖14),

where for each x̃ ∈ Π̃(2,2) the complex C̃x̃ is of the form,

Cx̃ : (Cx̃)−1 (Cx̃)0 .
∂

For each x̃ ∈ Π̃λ the −1-chain group (Cx̃)−1 is one-dimensional with basis ⊥ < x̃. We

introduce some notation for the 0-chains.

(C12‖34)0

a := ⊥ < 1|2|34 < 12 ‖ 34

b := ⊥ < 12|3|4 < 12 ‖ 34

(C13‖24)0

c := ⊥ < 1|3|24 < 13 ‖ 24

d := ⊥ < 13|2|4 < 13 ‖ 24

(C14‖23)0

e := ⊥ < 1|4|23 < 14 ‖ 23

f := ⊥ < 14|2|3 < 14 ‖ 23

(C34‖12)0

a′ := ⊥ < 1|2|34 < 34 ‖ 12

b′ := ⊥ < 12|3|4 < 34 ‖ 12

(C24‖13)0

c′ := ⊥ < 1|3|24 < 24 ‖ 13

d′ := ⊥ < 13|2|4 < 24 ‖ 13

(C23‖14)0

e′ := ⊥ < 1|4|23 < 23 ‖ 14

f ′ := ⊥ < 14|2|3 < 23 ‖ 14

As in Example 6.1.4 we see,

W̃H(2,2) = H0

(
C̃(2,2)

)
∼=
⊕
x̃∈Π̃(2,2)

H0(Cx̃) ∼= 〈a− b, a′ − b′, c− d, c′ − d′, e− f, e′ − f ′〉.

We see that W̃H(2,2) is a 6-dimensional vector space. Moreover, by Proposition 6.2.9,

this vector space is an (S2, S4)-bimodule. We compute the S4-module structure and

S2-module structure separately.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 167

As an S4-module. Recall from Eq. 6.14 the (right) action of σ ∈ Sn on j-chains is

given by,

(⊥ < x1 < . . . < xj−1 < x̃) · σ = (⊥ < x1 · σ < . . . < xj−1 · σ < x̃ · σ).

where xk · σ := σ−1 · xk is the usual action of Sn on Πn (written as a right action).

For example, consider the right action of (12) ∈ S4 on the 0-chain a ∈ (C12‖34)0:

a · (12) = (⊥ < 1|2|34 < 12 ‖ 34) · (12) = (⊥ < 2|1|34 < 21 ‖ 34) = a

and on the 0-chain c ∈ (C13‖24)0:

c · (12) = (⊥ < 1|3|24 < 13 ‖ 24) · (12) = (⊥ < 2|3|14 < 23 ‖ 14) = f ′

Continuing in this fashion we are able to record the action of each conjugacy class in

S4 on the chains a, a′, b, · · · , f, f ′ as follows.

a a′ b b′ c c′ d d′ e e′ f f ′

(12) a a′ b b′ f ′ f e′ e d′ d c′ c

(12)(34) a a′ b b′ d′ d c′ c f ′ f e′ e

(132) f ′ f e′ e a a′ b b′ d′ d c′ c

(1432) f ′ f e′ e d′ d c′ c a a′ b b′

This action on the chains induces an action on the homology. For example, consider

the basis elements a− b and c− d. We compute:

(a− b) · (12) = (a · (12)− b · (12)) = a− b

(c− d) · (12) = (c · (12)− d · (12)) = f ′ − e′ = −(e′ − f ′)

Fixing an order on our basis elements,

(a− b, a′ − b′, c− d, c′ − d′, e− f, e′ − f ′),

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 168

we can give matrix representations of our conjugacy classes as follows.

(12)↔



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 −1 0 0 0


(12)(34)↔



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 −1 0 0

0 0 −1 0 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0



(132)↔



0 0 0 0 0 −1

0 0 0 0 −1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 −1 0 0

0 0 −1 0 0 0


(1432)↔



0 0 0 0 0 −1

0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 −1 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0


Note. It is interesting to compare these matrices with the analogues in Example

6.1.4. For example, consider the element (12) ∈ S4. Let ρ : S4 → End(WH(2,2)) denote

the usual Whitney homology representation, and ρ̃ : S4 → End(W̃H(2,2)) its extended

counterpart. Then,

ρ(12) =


1 0 0

0 0 −1

0 −1 0

 ρ̃(12) =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 −1

0 0 0 0 −1 0

0 0 0 −1 0 0

0 0 −1 0 0 0



CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 169

A 1 in the matrix ρ(12) is either mapped to, 1 0

0 1

 ,

or,  0 1

1 0

 ,

depending on whether the ordered chain (ab ‖ cd) is reversed or preserved under the

action of σ ∈ S4. Similarly for −1’s.

We can now compute the character χŨ of W̃H(2,2) as an S4-module. For convenience,

we record the full character table for S4.

1 (12) (12)(34) (123) (1234)

χ(4) 1 1 1 1 1

χ(1,1,1,1) 1 −1 1 1 −1

χ(3,1) 3 1 −1 0 −1

χ(2,1,1) 3 −1 −1 0 1

χ(2,2) 2 0 2 −1 0

χŨ 6 2 2 0 0

As in Example 6.1.4, we use the inner product on the space of characters to determine

the irreducible S4-modules appearing in W̃H(2,2).

〈χŨ , χ(4)〉 =
1

24
(1 · 6 · 1 + 6 · 2 · 1 + 3 · 2 · 1) = 1,

〈χŨ , χ(3,1)〉 =
1

24
(1 · 6 · 3 + 6 · 2 · 1 + 3 · 2 · (−1)) = 1,

〈χŨ , χ(2,2)〉 =
1

24
(1 · 6 · 2 + 6 · 2 · 0 + 3 · 2 · 2) = 1.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 170

Thus we have the isomorphism of S4-modules,

W̃H(2,2)
∼= ⊕ ⊕

As an S2-module. Recall from Eq. 6.13 the (left) action of τ ∈ Si on j-chains is

given by,

τ · (⊥ < x1 < . . . < xj−1 < x̃) = (⊥ < x1 < . . . < xj−1 < τ · x̃),

where τ · x̃ acts by permuting the blocks of x̃. We see that (12) ∈ S2 acts on the

0-chains as follows.

(12) : a↔ a′ b↔ b′ c↔ c′ d↔ d′ e↔ e′ f ↔ f ′,

and we can immediate write the matrix representation of (12) as,

(12)↔



0 1 0 0 0 0

1 0 0 0 0 0

0 0 0 1 0 0

0 0 1 0 0 0

0 0 0 0 0 1

0 0 0 0 1 0


Since this is a traceless matrix, and the only irreducible representations of S2 are P(2)

and P(1,1) on which (12) has trace 1 and -1 (resp.), we see immediately that as an

S2-module W̃H(2,2) admits the following decomposition into irreducibles.

W̃H(2,2)
∼=
(

⊕
)⊕3

As an (S2, S4)-bimodule. We have computed separately the irreducible decompo-

sitions of W̃H(2,2) into S2-modules and S4-modules. These structures are compatible

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 171

and W̃H(2,2) admits a decomposition into irreducible S2× S4-modules, which are of the

form,

Pµ ⊗ Pλ,

where µ ` 2, λ ` 4. For dimension reasons we see there are only two choices for such a

decomposition. Namely, either,

W̃H(2,2)
∼= ⊗

(
⊕

) ⊕
⊗

or,

W̃H(2,2)
∼= ⊗

(
⊕

) ⊕
⊗

To determine which is correct we compute the S2-invariants of W̃H(2,2) which is readily

seen to have basis,

(
W̃H(2,2)

)S2

= 〈(a− b) + (a′ − b′), (c− d) + (c′ − d′), (e− f) + (e′ − f ′)〉.

This is a 3-dimensional subrepresentation of the S4-module W̃H(2,2). Recycling the

computations above we get the following matrix representations,

(12)↔


1 0 0

0 0 −1

0 −1 0

 (12)(34)↔


1 0 0

0 −1 0

0 0 −1



(132)↔


0 0 −1

1 0 0

0 −1 0

 (1432)↔


0 0 −1

0 −1 0

1 0 0

 ,

giving the character χRes Ũ ,

1 (12) (12)(34) (123) (1234)

χRes Ũ 3 1 −1 0 −1

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 172

which we recognize as the character for P(3,1). Putting this together, we have computed

the decomposition of W̃H(2,2) into irreducible (S2, S4)-bimodules as,

W̃H(2,2)
∼= ⊗

(
⊕

) ⊕
⊗ .

Type (3, 1). We make a similar calculation for the extended Whitney homology of

type (3, 1). However, for the sake of brevity, we don’t record quite as much detail as in

the previous case. In particular, it is not necessary to compute the matrix embeddings

as we did above, only the fixed points which correspond to the trace.

As an S4-module. We are able to reuse the calculations from Example 6.1.4. In

particular, we see from Table 6.5 that the only (non-trivial) conjugacy class which

fixes anything is (132), which sends:

j − l 7→ (j − k)− (j − l) j′ − l′ 7→ (j′ − k′)− (j′ − l′).

Therefore the character χW̃ of W̃H(3,1) as an S4-module is,

1 (12) (12)(34) (123) (1234)

χŨ 16 0 0 −2 0

A similar calculation to Eq. 6.6 gives the irreducible decomposition,

W̃H(3,1)
∼=

 ⊕ ⊕

⊕2

.

As an S2-module. Again, we see that (12) ∈ S2 acts on the 0-chains as follows.

a↔ a′ b↔ b′ c↔ c′ d↔ d′ e↔ e′ f ↔ f ′

g ↔ g′ h↔ h′ i↔ i′ j ↔ j′ k ↔ k′ l↔ l′,

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 173

The same argument as above applies here; the matrix corresponding to (12) is traceless

and so the irreducible S2-module decomposition of the 16 dimensional representation

W̃H(3,1) is,

W̃H(3,1)
∼=
(

⊕
)⊕8

As an (S2, S4)-bimodule. Similarly to above, we see that the S2-invariants
(
W̃H(3,1)

)S2

have basis,

(
W̃H(3,1)

)S2

= 〈(a− b) + (a′ − b′), (a− c) + (a′ − c′), . . . (j − l) + (j′ − l′)〉,

which is 8-dimensional. The only 8-dimensional subrepresentation of the S4-module

W̃H(3,1) is,

⊕ ⊕ .

Therefore we must have the following decomposition into irreducible (S2, S4)-bimodules:

W̃H(3,1)
∼=
(

⊕
)
⊗

 ⊕ ⊕

 .

Induced module structure on C̃λ

Recall that in Lemma 6.1.25 we recovered Cλ as an induced module,

Cλ ∼= IndSn
Gλ
Cx.

We proceed analogously here, first defining the stabilizer subgroups G̃λ.

Lemma 6.2.10. Fix a partition λ ` n of length i. For any two elements x̃1, x̃2 ∈ Π̃λ

there is an isomorphism,

StabSi× Sn(x̃1) ∼= StabSi× Sn(x̃2).

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 174

Proof. There exists an element θ ∈ Si× Sn such that θ · x̃1 = x̃2. As in Lemma 6.1.18,

the isomorphism is conjugation by this element.

Again, this result allows us to make the following definition.

Definition 6.2.11. Fix λ ` n of length i. Define G̃λ to be the stabilizer subgroup,

G̃λ := StabSi× Sn(x̃),

for any x̃ ∈ Π̃λ.

We seek to describe the subgroups G̃λ. There is a trivial embedding,

Gλ
∼= 1×Gλ ↪→ Si× Sn,

where the element g ∈ Gλ is mapped to (1, g) ∈ Si× Sn. We can therefore ask how

Gλ acts on Π̃λ under this embedding. It is not true in general that Gλ stabilizes

x̃ ∈ Π̃λ, as it may permute blocks of the same size. Given such an element g ∈ Gλ,

let νλ(g) ∈ Sym({B1, . . . , Bi}) ∼= Si denote the permutation of the blocks of x̃ ∈ Π̃λ

induced by the action of g ∈ Gλ.

We can use νλ(g) to define a twisted embedding,

Θλ : Gλ ↪→ Si× Sn

g 7→ (νλ(g), g).

Untangling this twisted embedding allows us to describe the group structure of G̃λ.

Proposition 6.2.12. Fix a partition λ = 1m12m2 · · · ` n of length i.

1. The image of Gλ under the twisted embedding Θλ is isomorphic to G̃λ. Therefore

the embedding Θλ induces an isomorphism,

Gλ
∼= G̃λ.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 175

2. The stabilizer G̃λ is isomorphic to the subgroup of,

l

j

(
Smj × Smj [Sj]

)
,

consisting of elements of the form,

l

j

(σj, [σj; τ j]).

Proof. Fix an ordered set partition x̃ ∈ Π̃λ. By Lemma 6.1.20, we can identify g ∈ Gλ

with,
l

j

[σj, τ j] ∈
l

j

Smj [Sj].

The element,

(σ1, σ2, . . .) ∈
l

j

Smj ,

is identified with the permutation νλ(g) on the blocks of x̃ under the natural inclusion,

l

j

Smj ↪→ Si .

Therefore, the twisted embedding factors through
d
j

(
Smj × Smj [Sj]

)
≤ Si× Sn as

follows:

Gλ ↪→
l

j

(
Smj × Smj [Sj]

)
↪→ Si× Sn

l

j

[σj, τ j] 7→
l

j

(
σj, [σj; τ j]

)
7→ (νλ(g), g),

and we have shown that the image of the twisted embedding is isomorphic to the sub-

group of
d
j

(
Smj × Smj [Sj]

)
consisting of elements of the form

d
j

(
σj, [σj; τ j]

)
. Restrict

attention to the j-th factor of x̃ consisting of mj blocks of size j,

(B1, . . . , Bmj).

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 176

The action of (ν, [σ; τ]) ∈ Smj × Smj [Sj] on (B1, . . . , Bmj) is given by,

ν · (B1, . . . , Bmj) · [σ; τ] = ν · (B1, . . . , Bmj) · [σ; 1] · [1; τ]

= (ν ·B1 · σ, . . . , ν ·Bmj · σ) · [1; τ],

where the right action of σ on Bk is by Bk · σ = σ−1 · Bk, and where τ only permutes

elements within the blocks and thus acts trivially on x̃. We see immediately that the

only elements that fix x̃ must satisfy ν = σ, as desired.

Lemma 6.2.13. Let λ = 1m12m2 · · · ` n and let x̃ ∈ Π̃λ of type λ. The complex Cx̃ is

a G̃λ-module and,

C̃λ ∼= IndSi× Sn
G̃λ

Cx̃.

Proof. This is almost identical to the proof of Lemma 6.1.25.

Remark 6.2.14. Of particular relevance to what follows is the special case λ = (ai).

Let n = a · i and consider x ∈ Πn of type λ. Concretely, x is a set partition of n into i

blocks each of size a. In this case we have that,

G(ai)
∼= Si[Sa],

and that, G̃(ai) is the subgroup of Si× Si[Sa] consisting of elements of the form (σ, [σ; τ])

where σ ∈ Si and τ ∈ S×ia .

Si-invariants

A simple observation is that we can recover the Sn-modules WHλ and WHi,n from

their extended counterparts W̃Hλ and W̃Hi,n by taking Si-invariants.

Lemma 6.2.15. Fix a partition λ ` n of length i. There are Sn-module isomorphisms,

(
W̃Hλ

)Si ∼=WHλ,
(
W̃Hi,n

)Si ∼=WHi,n.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 177

Proof. Equivariance of the differentials in C̃λ and C̃i,n means it suffices to exhibit Sn-

module isomorphisms, (
C̃λ
)Si ∼= Cλ,

(
C̃i,n
)Si ∼= Ci,n.

First note that the Si-module C̃λ decomposes as a sum of Si-submodules,

C̃λ =
⊕
x∈Πn

type(x)=λ

Ax,

where Ax :=
⊕

x̃∈supp−1(x) Cx̃ and where the Si-action is by permuting summands. It is

easy to see that the Si-invariants of Ax can be identified with Cx. Indeed, Si can be

identified with the permutation group of supp−1(x). Therefore, the Si-invariants of C̃λ

are isomorphic to, ⊕
x∈Πx

type(x)=λ

Cx,

which is precisely Cλ. As usual, apply this argument to C̃i,n componentwise.

6.2.4 The (Si, Sn)-bimodule structure of W̃Hλ in terms of the

twisted Lie operad

In this section we describe the decomposition of the extended type-selected Whitney

homology W̃Hλ into irreducible (Si, Sn)-bimodules. Recall that irreducible (Si, Sn)-

bimodules are of the form,

Pµ ⊗ Pν ,

for partitions µ ` i and ν ` n. Before presenting the main theorem, we introduce some

notation.

Definition 6.2.16. Fix i, n ∈ N. Let λ ` n of length i and with mj parts of length j,

and let µ ` i.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 178

1. Define a λ-tuple of µ to be a tuple,

µ := (µ1, µ2, . . .),

where µj ` mj. Let Λλ(µ) denote the set of all λ-tuples of µ. Notice that

|Λλ(µ)| <∞.

2. Given a λ-tuple of µ, define its even-conjugate,

µ∨ := (µ1, µ
′
2, . . .).

That is, conjugate every even indexed partition. Note that µ∨ is still a λ-tuple

of µ.

3. Given a λ-tuple of µ, let,

Pµ := Pµ1 ⊗ Pµ2 ⊗ · · · ,

denote the irreducible Sm1 × Sm2 × · · · -module indexed by µ.

4. Let aµ denote the multiplicity with which Pµ appears in the restriction,

ResSi
Sm1 × Sm2 ×···

Pµ.

That is, we have,

ResSi
Sm1 × Sm2 ×···

Pµ =
⊕
µ

aµPµ.

Call a λ-partition µ positive if aµ ≥ 0.

5. Let µ be a λ-tuple of µ. Denote by,

Pµ

[[
L̂ie
]]
,

the representation, [
(Pµ1 ◦ L̂ie1)~ (Pµ2 ◦ L̂ie2)~ · · ·

]
,

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 179

and define

P∨µ

[[
L̂ie
]]
λ

:=
⊕

µ∈Λλ(µ)

aµPµ∨
[[
L̂ie
]]
.

We compute some examples to help parse all of these definitions.

Example 6.2.17.

1. Let λ = (2, 2) ` 4 of length i = 2. There are only two partitions µ ` i = 2. We

have that m2 = 2 and so any λ-tuple of µ must be of the form,

µ = (∅, µ2,∅, · · ·),

where µ2 ` m2 = 2.

(a) Consider the partition µ = (2). The only positive λ-tuple of µ is,

µ = (∅, (2),∅, · · ·),

for which aµ = 1, and the corresponding summand, Pµ∨
[[
L̂ie
]]

is,

Pµ′2 ◦ L̂ie2 = ◦ = .

(b) Consider the partition µ = (1, 1). The only positive λ-tuple of µ is,

µ = (∅, (1, 1),∅, · · ·),

where again aµ = 1. The corresponding summand, Pµ∨
[[
L̂ie
]]

is,

Pµ′2 ◦ L̂ie2 = ◦ = ⊕ .

2. Let λ = (3, 1) ` 4 of length i = 2. Again there are only two partitions µ ` i to

consider. Now m1 = m3 = 1 and so any λ-tuple must be of the form,

µ = (µ1,∅, µ3,∅, · · ·),

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 180

where µ1 ` m1 = 1 and µ3 ` m3 = 1. In fact, we are forced to have,

µ = ((1),∅, (1),∅, · · ·),

regardless of µ.

(a) Consider the partition µ = (2). The only λ-tuple,

µ = ((1),∅, (1),∅, · · ·),

is positive, with aµ = 1. This has corresponding summand, Pµ∨
[[
L̂ie
]]
,

(
Pµ1 ◦ L̂ie1

)
~
(
Pµ3 ◦ L̂ie3

)
= ~ = ⊕ ⊕ .

(b) Consider µ = (1, 1). The exact same calculation above applies here too, and

and we get that, the summand Pµ∨
[[
L̂ie
]]
, corresponding to µ = (1, 1) is,

(
Pµ1 ◦ L̂ie1

)
~
(
Pµ3 ◦ L̂ie3

)
= ~ = ⊕ ⊕ .

Remark 6.2.18. The representations appearing here corresponding to λ = (2, 2) and

λ = (3, 1) may look familiar to those computed in Example 6.2.3. Concretely, we

showed that,

W̃H(2,2)
∼= ⊗

(
⊕

) ⊕
⊗ .

and that,

W̃H(3,1)
∼=
(

⊕
)
⊗

 ⊕ ⊕

 .

We point out that the not only do the same irreducible S4-modules appear, they also

appear paired with the same µ partitions.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 181

We are now ready to present the main theorem of this section describing the Si× Sn-

module structure of the extended Whitney homology of bidegree (i, n).

Theorem 6.2.19. Fix i, n ∈ N and let λ ` n be a partition of length i. There is an

isomorphism of (Si, Sn)-bimodules,

W̃Hλ
∼=
⊕
µ`i

Pµ ⊗ P∨µ
[[
L̂ie
]]
λ
.

Proof. Let λ = 1m12m2 · · · ` n and x ∈ Πn of type λ. By Lemma 6.1.10, the interval

poset (⊥, x) splits as a product of posets,

(⊥, x) ∼=
l

j

(
Π
×mj
j

)
.

It will thus suffice to consider type λ where λ is of the form (ai) ` n, and thus,

(⊥, x) ∼= Πa × · · · × Πa.

By Lemma 6.1.24 we have that the top homology H∗(⊥, x) of the interval (⊥, x) is an

Si[Sa]-module isomorphic to Ri[πa] where,

Ri
∼=

 P[i] a odd

P[1i] a even
.

Further, by Lemma 6.2.13, we have that Ri[πa] is a G̃λ-module and that,

W̃Hλ
∼= IndSi×Sn

G̃λ
Ri[πa].

As an intermediate step, let U be the Si× Si[Sa]-module,

Ind
Si× Si[Sa]

G̃λ
Ri[πa],

so that W̃Hλ
∼= IndSi× Sn

Si× Si[Sa] U .

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 182

Note that the cosets Si× Si[Sa]/G̃λ can be identified with Si, and so we have that

U is isomorphic as a vector space to,

k[Si]⊗Ri[πa].

It remains to describe the Si× Si[Sa]-module structure of U . Let, (σ, [η; τ]) ∈ Si× Si[Sa]

and x⊗ y ∈ k[Si]⊗Ri[πa] where x ∈ Si and y = r ⊗ p1 · · · pi ∈ Ri[πa]. Then we have

the following explicit description of the action.

(σ, [η; τ]) · (x⊗ y) = (σx, [η; τ])(1⊗ y)

= (σxη−1, 1Si[Sa])(η, [η; τ])(1⊗ y)

= (σxη−1, (η, [η; τ]) · y)

(6.15)

where 1Si[Sa] is the identity in Si[Sa], and where (η, [η; τ]) · y is determined by the usual

G̃λ-module structure on Ri[πa].

Recall the well-known decomposition of the group algebra k[Si],

k[Si] ∼=
⊕
µ`i

Pµ ⊗ Pµ,

as an (Si, Si)-bimodule. Concretely, the group Si× Si acts on k[Si] where the left copy,

consisting of elements of the form (σ, 1), of Si acts by left translation, and the right copy

of, consisting of elements of the form (1, η), of Si by right translation. Under the de-

composition above, elements of the form (σ, 1) act on Pµ⊗Pµ sending elements (p, q) to

(σ·p, q) and elements of the form (1, η) act on Pµ⊗Pµ sending elements (p, q) to (p, q·η).

We recognize one copy of Si sitting in Si× Si[Sa] consisting of elements of the form

(σ, 1) for σ ∈ Si. From Eq. 6.15 this is seen to act on k[Si] by left translation:

(σ, 1) · (x⊗ y) = (σx, y).

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 183

Similarly, we recognize another copy of Si sitting in Si× Si[Sa] consisting of elements of

the form (1, [η; 1]) for η ∈ Si. From Eq. 6.15 this is seen to act on k[Si] simultaneously

by right translation on k[Si] and by the usual action of G̃λ on Ri[πa]:

(1, [η; 1]) · (x⊗ y) = (x · η−1, (η, [η; 1]) · y).

This is summarized by the following isomorphism of Si× Si[Sa]-modules,

U ∼=
⊕
µ`i

Pµ ⊗ Pµ ⊗Si Ri[πa].

When a is odd, Ri is the one-dimensional trivial representation of Si, and we have

that,

Pµ ⊗Si Ri[πa] ∼= Pµ ⊗Si π
⊗i
a
∼= Sµ(πa).

When a is even, Ri is the one-dimensional sign representation of Si. This twists the

action of Si on π⊗ia by the sign and we have that,

Pµ ⊗Si Ri[πa] ∼= Pµ′ ⊗Si π
⊗i
a
∼= Sµ′(πa),

where µ′ ` i is the conjugate partition of µ. The result follows from Proposition 6.1.15

which identifies πa with εa ⊗ Liea = L̂iea.

Example 6.2.20. Putting Examples 6.2.3 and 6.2.17 together we see the theorem in

action.

• λ = (2, 2)

• µ = (2)

P(2) ⊗ P∨(2)

[[
L̂ie
]]
(2,2)

= ⊗

• µ = (1, 1)

P(1,1) ⊗ P∨(1,1)

[[
L̂ie
]]
(2,2)

= ⊗
(

⊕
)

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 184

Theorem 6.2.19 gives us,

W̃H(2,2)
∼= ⊗

(
⊕

) ⊕
⊗ .

as expected.

• λ = (3, 1)

• µ = (2)

P(2) ⊗ P∨(2)

[[
L̂ie
]]
(3,1)

= ⊗

 ⊕ ⊕


• µ = (1, 1)

P(1,1) ⊗ P∨(1,1)

[[
L̂ie
]]
(3,1)

= ⊗

 ⊕ ⊕


Theorem 6.2.19 gives us,

W̃H(3,1)
∼=
(

⊕
)
⊗

 ⊕ ⊕

 .

as expected.

Remark 6.2.21. In Lemma 6.2.15 we showed that the Si-invariants of W̃Hλ coincide

with WHλ. Together with the description given in Theorem 6.2.19 we have that,

WHλ
∼=

(⊕
µ`i

Pµ ⊗ P∨µ
[[
L̂ie
]]
λ

)Si

∼= P∨(i)

[[
L̂ie
]]
λ

This agrees with the descriptions given in [18] Section 2.3. In particular, in [18] Eq.

(26) they state (albeit in the language of characters) that,

WHλ
∼=
(
~P(mj) ◦ L̂iej

)
︸ ︷︷ ︸

j odd

~
(
~P(1mj) ◦ L̂iej

)
︸ ︷︷ ︸

j even

.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 185

This follows from taking the Si-invariants of Theorem 6.2.19 after noting that there is

only one positive λ-tuple of µ = (i), namely,

µ = ((m1), (m2), . . .),

and it satisfies aµ = 1.

6.3 Extended Whitney homology as a PD-module

In this section we realise the extended Whitney homology as a PD-module, and as such

are able to apply the theory developed in Chapter 5 to attain representation stability

results for the coefficients cλµ. Moreover, we recover stability results in [18] relating to

the usual Whitney homology.

6.3.1 Restriction of a set partition

Throughout this section we will make the following notational conventions. Let λ =

1m12m2 · · · ` n be a partition of n into i blocks. Let m := m1 be the number of parts

of size 1 in λ. Let k = n−m and l = i−m.

Definition 6.3.1. Define the restriction of λ as the partition

λ◦ = 2m23m3 · · · ` k.

obtained from λ by removing all m parts of size 1. Note that λ◦ is of length l.

Continuing to establish notation, let x̃ ∈ Π̃n be of type λ. Assume that x̃ contains

(at least) one singleton block B. Then there is a canonical way to remove the singleton

B and obtain an ordered set partition x̃−B ∈ Πn−1 by first deleting the block B, and

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 186

then by relabelling all elements j in x̃ greater than the element in B by j − 1. For

example,

x̃ = 89 ‖ 23 ‖ 4 ‖ 567 ‖ 1 x̃−{4} = 78 ‖ 23 ‖ 456 ‖ 1.

Repeating this as necessary2, there is a canonical way to remove all singleton blocks,

and obtain an ordered set partition x̃◦ ∈ Π̃k of length l. Concretely, given an ordered

set partition x̃ ∈ Π̃n, let,

Sing(x̃) :=
⊔
B∈x̃
|B|=1

B,

and define a map,

φ : n→ k

j 7→ j − ρ(j)

where ρ(j) = #{a ∈ Sing(x̃) : a ≤ j}.

Definition 6.3.2. Given an ordered set partition x̃ ∈ Π̃λ, its restriction x̃◦ ∈ Π̃k is

obtained from x̃ by removing blocks of size 1 and relabelling the remaining elements

with the function φ.

Example 6.3.3. Let x̃ = 89 ‖ 23 ‖ 4 ‖ 567 ‖ 1 ∈ Π̃9 of type (3, 2, 2, 1, 1). Then,

x̃ = 89 ‖ 23 ‖ 4 ‖ 567 ‖ 1 x̃◦ = 67 ‖ 12 ‖ 345.

and x̃◦ ∈ Π7 is of type (3, 2, 2).

Comparing complexes Cx̃ and Cx̃◦ The operation of removing singleton blocks

does not affect the vector space structure of the induced chain complexes.

2Note that the order the singletons are removed is immaterial.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 187

Lemma 6.3.4. Let x̃ ∈ Π̃n be an ordered set partition containing a singleton block B,

and let ỹ := x̃−B ∈ Πn−1 denote the ordered set partition obtained from x̃ by removing

the block B. Then there is an isomorphism of complexes,

Cx̃ ∼= Cỹ.

Furthermore, there is an isomorphism of complexes,

Cx̃ ∼= Cx̃◦ .

Proof. The second assertion follows by (possible) repeated applications of the first.

The complex Cx̃ is the order complex of the interval (⊥, x) ≤ Πn where x = supp(x̃).

Note that any set partition z ∈ (⊥, x) is a refinement of x, and, since singleton blocks

cannot be refined, we have that z must also contain the singleton B. Removing this

block from z gives a set partition z−B ∈ (⊥, y), where y := supp(ỹ). Note that,

w < z ⇐⇒ w−B < z−B,

for w, z ∈ (⊥, x).

Going in the other direction, given a set partition z′ ∈ (⊥, y), it is possible to add

the block B and obtain a set partition z′+B ∈ (⊥, x). Concretely, the set partition z′+B

is obtained from z′ be first adding B and then relabelling elements j in z′ larger than

the element in B by j+ 1. This is clearly inverse to the (−)−B operation, and it is also

seen to be order preserving. We have exhibited a poset isomorphism,

(⊥, x) ∼= (⊥, y),

and this completes the proof.

This is an isomorphism on the level of vector spaces. We are able to relate the

G̃λ-module structure of Cx̃ to the G̃λ◦-module structure of Cx̃◦ . First we compare the

respective stabilizer groups.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 188

Lemma 6.3.5. Let λ ` n be a partition with m parts of size 1. There are group

isomorphisms,

1. Gλ
∼= Gλ◦ × Sm, and

2. G̃λ
∼= Gλ◦ ×H, where H = {(σ, σ) : σ ∈ Sm} ≤ Si× Si.

where H is the subgroup of Sm× Sm consisting of elements of the form (σ, σ).

Proof. As usual, declare that λ has mj parts of size j. Recall that Gλ
∼=

d
j Smj [Sj].

The first isomorphism is nothing but observing that the summand corresponding to

j = 1 satisfies,

Sm1 [S1] ∼= Sm,

while the remaining summands are precisely Gλ◦ .

For the second isomorphism, note that H is the image of Sm under the diagonal

embedding,

d : Sm → Sm× Sm

σ 7→ (σ, σ). (6.16)

Recall that Φµ denotes the twisted embedding of type µ. We have the following diagram

of isomorphisms.

G̃λ
2. //

Φ−1
λ

��

G̃λ◦ ×H

Gλ 1.
// Gλ◦ × Sm

Φλ◦×d

OO

Concretely, the map denoted by 2. sends the element
d
j(σj, [σj; τ j]) to

(
×j≥2(σj, [σj; τ j])

)
× (σ1, σ1).

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 189

Lemma 6.3.6. Fix a partition λ ` n. The G̃λ◦-module Cx̃◦ can be promoted to a

G̃λ-module, and as such is isomorphic to Cx̃.

Proof. In order to promote the G̃λ◦-module Cx̃◦ to a G̃λ-module, we write,

G̃λ
∼= Gλ◦ ×H,

in the notation of Lemma 6.3.5, and thus it suffices to describe how H acts on Cx̃◦ . We

see that H acts trivially on Cx̃. Let k be the 1-dimensional trivial H-module. We have

the following isomorphisms,

Cx̃◦ ∼= Cx̃◦ ⊗ k ∼= Cx̃,

where the first isomorphism is on the level of vector spaces and the second is as G̃λ-

modules.

We can combine this result with Lemma 6.2.13 to compare the type selected order

complex C̃λ with the complex associated to its restriction Cx̃◦ where x̃ ∈ Π̃λ.

Proposition 6.3.7. Fix a partition λ ` n and let x̃ ∈ Π̃λ. There is an isomorphism

of Si× Sn-modules,

W̃Hλ = IndSi× Sn
(Sl× Sk)×(Sm× Sm) W̃Hλ◦ ⊗ k[Sm].

Proof. By Lemma 6.2.13 we have that,

C̃λ ∼= IndSi×Sn
G̃λ

Cx̃.

Applying Lemma 6.3.6 gives,

C̃λ ∼= IndSi× Sn
G̃λ◦×H

Cx̃ ⊗ k

∼= IndSi× Sn
(Sl× Sk)×(Sm× Sm)

(
Ind

(Sl× Sk)×(Sm× Sm)

G̃λ◦×H
Cx̃ ⊗ k

)
,

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 190

where the last isomorphism is just the standard composition of the induction operation.

Finally, the term in the parenthesis can be re-written as follows.

Ind
(Sl× Sk)×(Sm× Sm)

G̃λ◦×H
Cx̃◦ ⊗ k ∼= IndSl×Sk

G̃λ◦
Cx̃◦ ⊗ IndSm× Sm

H k ∼= C̃λ◦ ⊗ k[Sm],

and the result follows upon taking homology.

Example 6.3.8. We can use this to compute W̃H(3,1) as an (S2, S4)-bimodule from

the (S1, S3)-bimodule W̃H(3).

We have from Theorem 6.2.19 that W̃H(3)
∼= P(1) ⊗ L̂ie3, i.e.,

W̃H(3)
∼= ⊗ .

Proposition 6.3.7 gives that the extended Whitney homology W̃H(3,1) is isomorphic to,

IndS2×S4

(S1× S3)×(S1× S1) W̃H(3) ⊗ k[S1] ∼= IndS2× S4

(S1× S3)×(S1× S1)

(
⊗

)
⊗
(

⊗
)
.

∼= IndS2
S1× S1

(
⊗

)
⊗ IndS4

S3× S1

(
⊗

)
.

∼=
(

⊕
)
⊗

 ⊕ ⊕

 ,

which agrees with our previous calculations.

6.3.2 Extended Whitney homology as a PD-module

In this section we restrict our attention to the skeleton of PD whose objects are given

by pairs (i, n) (see Remark 5.1.2).

Theorem 6.3.9. There is a PD-module W̃H• taking (i, n) 7→ W̃Hi,n.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 191

Proof. We will show that there is a functor,

C̃• : PD→ dgVect,

taking (i, n) to the complex C̃i,n. The result will follow upon taking homology.

A diagonal morphism, ∆ ∈ HomPD((i, n), (i+m,n+m)), consists of the data,

1. α : i ↪→ i + m

2. β : n ↪→ n + m

3. γ : αC → βC a bijection.

To such a morphism we need to assign, in a functorial manner, a map,

C̃∆ : C̃i,n → C̃i+m,n+m.

Let x̃ be an ordered set partition of n of length i so that Cx̃ is a summand in C̃i,n. Write

x̃ = (B1, . . . , Bi). Then ∆ defines a map,

x̃ = (B1, . . . , Bi) 7→ (B′1, . . . , B
′
i+m) =: ỹ,

as follows. The injection α sends the blocks Bi of x̃ to blocks B′α(i). In addition, the

elements of the blocks are permuted according to the injection β. This leaves missing

blocks corresponding to αC , and missing elements corresponding to βC . The bijection

γ gives a rule for filling these missing blocks with singletons. Explicitly, B′α(i) = β(Bi)

and those B′i for i ∈ αC are singleton blocks filled with elements of βC determined by

the bijection γ. This map is best understood by way of example (see Example 6.3.10).

By Lemma 6.3.4, we have that Cx̃ ∼= Cỹ, and the map C̃∆ restricted to Cx̃ is defined

to be this vector space isomorphism. Preservation of the identity and of composition

are routine.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 192

Example 6.3.10. Let ∆ = (α, β, γ) ∈ HomPD((3, 7), (5, 9)), where,

α =


1 7→ 2

2 7→ 3

3 7→ 5

β =



1 7→ 1

2 7→ 7

3 7→ 8

4 7→ 2

5 7→ 9

6 7→ 3

7 7→ 5

γ =

 1↔ 6

4↔ 4

Let x̃ = (236|14|57) be an ordered set partition in of length i = 3 in the extended

Whitney complex of n = 7. Then ∆ determines a map sending x̃ to,

(6|β(2)β(3)β(6)|β(1)β(4)|4|β(5)β(7)) = (6|783|12|4|95),

which we call ∆(x) ∈ Π9. This determines a map Cx̃ 7→ C∆(x̃)

6.3.3 Stability of the PD-module W̃H•

Proposition 6.3.11. Fix a partition λ ` n of length i. There is an isomorphism of

(Si, Sn)-modules,

W̃Hλ
∼= IndPD(W̃Hλ◦)i,n.

Proof. This is just a restatement of Proposition 6.3.7.

The PD-module W̃H decomposes into two PD-submodules,

W̃H = W̃H
+
⊕ W̃H

−
,

where,

W̃H
+

i,n =
⊕
λ=λ◦

W̃Hλ, W̃H
−
i,n =

⊕
λ 6=λ◦

W̃Hλ,

and where both sums are over partitions λ ` n into i blocks.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 193

Lemma 6.3.12. The submodules W̃H
+

i,n vanish in the range n < 2i.

Proof. This follows from the simple combinatorial observation that if n < 2i then any

partition λ ` n of length i must contain singletons. Therefore, in this range, there are

no partitions λ satisfying λ = λ◦.

Recall the definition of restriction of a PD-module to a fixed rank r ∈ N given in

Definition 5.3.4. Applied to the PD-module W̃H• this reads as follows.

W̃H
(r)

i,n =

 W̃Hi,n i = n− r

0 else

Theorem 6.3.13. The PD-module W̃H is finitely generated in rank. Moreover, the

generators lie in the PD-submodule W̃H
+

.

Proof. Fix a rank r ∈ N. We show there is a surjection,

r⊕
j=1

N(j, r + j)� W̃H
(r)
,

sending f ∈ N(j, r+ j) to f∗(W̃H
+

j,r+j). By Lemma 6.3.12 we see that the sum ranges

over the support of (W̃H
+

)(r). The result now follows from Proposition 6.3.11 upon

noting that W̃H
+

contains all the modules W̃Hλ◦ .

We visualize the PD-module W̃H• in Fig. 6.1 where we highlight its generators.

The PD-module W̃H satisfies representation stability in the sense of Definition

5.5.2. Specifically, we have the following result.

Corollary 6.3.14. Fix a rank r ∈ N and partitions λ, µ. Then the multiplicity cλµ(n)

of,

P (λ)n−r � P (µ)n,

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 194

in W̃Hn−r,n stabilizes. Concretely, there exist constants N,C such that,

cλµ(n) = C,

for all n ≥ N .

6.3.4 Relation to configuration spaces on Rd

Let Confn(X) denote the n-point configuration space,

Confn(X) = {(x1, . . . , xn) ∈ Xn : xi 6= xj, 1 ≤ i < j ≤ n}.

The Sn-action permuting the coordinates on Confn(X) induces an action on the (ratio-

nal) cohomology H∗(Confn(X)). These spaces have been extensively studied, including

in the context of the FI-modules. See [5] for more details, including the celebrated re-

sult of Church that, for X a connected, orientable manifold, and for fixed i ≥ 1, the

sequence of Sn-modules,

{H i(Confn(X))}n,

satisfies representation stability.

In [18], Hersh-Reiner analyzed the case X = Rd where they improved the bounds on

the representation stability of Church. Central to that result is the connection between

the cohomology of the configuration spaces Confn(Rd) and the Whitney homology

WHi,n, and in particular, the observation (Corollary 2.10, [18]) that the Sn-modules

WHi,n form a single finitely generated FI-module. We are able to recover that result

as a corollary of Theorem 6.3.13.

Proposition 6.3.15. Fix a rank r ∈ N. There is a finitely generated FI-module V (r)

satisfying,

V (r)
n =WHn−r,n.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 195

Proof. Let V (r) := I(W̃H
(r)

). Since W̃H is finitely generated in rank, we have, by

Lemma 5.5.5, that the FI-module V (r) is finitely generated. By Lemma 5.5.5 we have,

V (r)
n = I(W̃H

(r)
)n ∼=

(
W̃Hn−r,n

)Si
,

and the result now follows from Lemma 6.2.15.

Remark 6.3.16. It is not hard to see that, in the notation of Theorem 6.2.19, the

coefficients cλµ computed by Algorithm 4 can equivalently be described as,

Pµ ⊗ Pµ
[[.

Lie
]]
∼=
⊕
λ

cλµPµ ⊗ Pλ.

It follows that with only a slight modification to the algorithm we can compute the

irreducible decomposition of the extended Whitney homology of the lattice of set par-

titions. Concretely, let dλµ denote the multiplicity of Pλ in,

P∨µ

[[
L̂ie
]]
.

We should thus modify Algorithm 4 as follows:

1. Replace the Lie pieces with twisted Lie pieces, that is, the collection of all irre-

ducible partitions appearing in L̂ie.

2. Modify the definition of an assembly map (Definition 4.2.14) as follows. Let

µ := (µ1, . . . , µk) then redefine assembly as,

µ∨ ^ (li1 , . . . , lik).

With these minor changes we are able to repurpose Algorithm 4 to compute the struc-

ture constants dλµ, which in turn completely describe the irreducible bimodule structure

of the extended Whitney homology. In Fig. 6.2 is a visualization of these structure

constants for λ, µ < 11.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 196

i

n

0 1

1

2

2

3

3

4

4

5

5

6

6

7

7

8

8

9

9

10

10

n = 2r

n = r + 1

r = 0

r = 1

r = 2

r = 3

Figure 6.1: A schematic for the PD-modules W̃H•. The coordinate (i, n) represents the

module W̃Hi,n. The generators for W̃Hi,n live in the blue triangular region along the dashed
line of the corresponding rank.

CHAPTER 6. EXTENDED WHITNEY HOMOLOGY 197

Figure 6.2: The structure coefficients dλµ, for partitions |λ|, |µ| < 11, associated to the
extended Whitney homology. These coefficients were computed by Algorithm 4.

BIBLIOGRAPHY

[1] Aguiar, M., and Mahajan, S. Monoidal Functors, Species and Hopf Algebras.
CRM Monograph Series Vol 29 (2010).

[2] Aguiar, M., and Mahajan, S. Topics in hyperplane arrangements, vol. 226 of
Mathematical Surveys and Monographs. American Mathematical Society, Provi-
dence, RI, 2017.

[3] Bestvina, M., and Feighn, M. The topology at infinity of Out(Fn). Invent.
Math. 140, 3 (2000), 651–692.

[4] Brown, K. Cohomology of Groups. Springer-Verlag, New York, NY, 1982.

[5] Church, T. Homological stability for configuration spaces of manifolds. Invent.
Math. 188, 2 (2012), 465–504.

[6] Church, T., and Ellenberg, J. S. Homology of FI-modules. Geom. Topol.
21, 4 (2017), 2373–2418.

[7] Church, T., Ellenberg, J. S., and Farb, B. FI-modules and stability for
representations of symmetric groups. Duke Math. J. 164, 9 (2015), 1669–1732.

[8] Church, T., Ellenberg, J. S., Farb, B., and Nagpal, R. FI-modules over
Noetherian rings. Geom. Topol. 18, no. 5 (2014), 2951–2984.

[9] Church, T., and Farb, B. Representation theory and homological stability.
Adv. in Math. 245 (2013), 250–314.

[10] Conant, J., Hatcher, A., Kassabov, M., and Vogtmann, K. Assembling
homology classes in automorphism groups of free groups. arXiv:1501.02351v2.
Comment. Math. Helv. 91, 4 (2016), 751–806.

[11] Conant, J., and Kassabov, M. Hopf algebras and invariants of the Johnson
cokernel. Algebr. Geom. Topol. 16, no. 4 (2016), 2325–2363.

[12] Etingov, P., Golberg, O., Hensel, S., Liu, T., Schwendner, A., Vain-
trob, D., and Yudovina, E. Introduction to representation theory, vol. 59.
American Mathematical Society, Providence, RI, 2011.

198

BIBLIOGRAPHY 199

[13] Fulton, W., and Harris, J. Representation Theory. A First Course. Graduate
Texts in Mathematics, 129. Readings in Mathematics. Springer-Verlag, New York,
1991.

[14] Garsia, A. M., and Goupil, A. Character polynomials, their q-analogs, and
the Kronecker product. Electron. J. Combin. 16, no. 2 (2009).

[15] Hatcher, A. Homological stability for automorphism groups of free groups.
Comment. Math. Helvetici, 70 (1995), 39–62.

[16] Hatcher, A., and Vogtmann, K. Rational homology of Aut(Fn). Math. Res.
Let. 5 (1998), 759–780.

[17] Hatcher, A., and Vogtmann, K. Homological stability for outer automor-
phism groups of free groups. Algebraic and Geometric Topology 4 (2004), 1253–
1272. See also Erratum (with Nathalie Wahl) in v.6 (2006), 573–579.

[18] Hersh, P., and Reiner, V. Representation stability for cohomology of config-
uration spaces in Rd. Int. Math. Res. Not. IMRN, 5 (2017), 1422–1486.

[19] James, G., and Liebeck, M. Representations and characters of groups, Sec-
ond ed. Cambridge University Press, 2001.

[20] Klyachko, A. A. e. Lie elements in a tensor algebra. Sibirsk. Mat. Ž. 15 (1974),
1296–1304, 1430.

[21] Lehrer, G. I., and Solomon, L. On the action of the symmetric group on
the cohomology of the complement of its reflecting hyperplanes. J. Algebra, 104
(1986), 410–424.

[22] Loday, J.-L., and Vallette, B. Algebraic operads, vol. 346 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences]. Springer, Heidelberg, 2012.

[23] Loehr, N., and Warrington, S. Quasisymmetric expansions of Schur-function
plethysms. Proc. Amer. Math. Soc. 140, 4 (2012), 1159–1171.

[24] MacLane, S. Categories for the working mathematician, vol. Vol. 5. Springer-
Verlag, New York-Berlin, 1971.

BIBLIOGRAPHY 200

[25] Ramos, E. Generalized representation stability and FId-modules. Proc. Amer.
Math. Soc. 145, 11 (2017), 4647–4660.

[26] Riehl, E. Categorical homotopy theory, vol. 24 of New Mathematical Monographs.
Cambridge University Press, Cambridge, 2014.

[27] Rolland, R. J. On the cohomology of pure mapping class groups as FI-modules.
Journal of Homotopy and Related Structures 10, 3 (2015), 401–424.

[28] Sam, S., and Snowden, A. Stability patterns in representation theory. Forum
Math. Sigma 3 e11, 108pp ((2015)).

[29] Sam, S., and Snowden, A. Gröbner methods for representations of combina-
torial categories. J. Amer. Math. Soc. 30, no. 1 ((2017)), 159–203.

[30] Stanley, R. P. Some aspects of groups acting on finite posets. J. Combinatorial
Theory Ser. A 32 (1982), 132–161.

[31] Stanley, R. P. Enumerative Combinatorics, vol. 2. Cambridge University Press,
1999.

[32] Sundaram, S. The homology representations of the symmetric group on Cohen-
Macaulay subposets of the partition lattice. Adv. Math., 104 (1994), 225–296.

[33] Weibel, C. An introduction to homological algebra. Cambridge Strudies in
Advances Mathematics, Cambridge University Press, Cambridge, 1994.

	Dedication
	Acknowledgements
	Introduction
	Preliminaries
	Representation theory of finite groups
	Representation theory of symmetric groups
	S-modules and Schur functors
	Induction of representations
	Inductions involving products of bimodules.
	Plethysm
	Character theory

	Category theory
	Representations of categories
	Useful notions for representations of categories
	Representable functors
	Tensor product over a category
	Frobenius reciprocity, take two
	The free object paradigm

	FI-modules
	Representation stability
	Stability degree and weight of an FI-module
	Free FI-modules
	Finite generation in FI-Mod.
	The FI-modules M() and P()
	Homological techniques for FI-modules
	Character Polynomials

	On the FI-module Structure of Hi(n,s)
	The cohomology of n,s
	The FI-module structure
	The case in rank 1

	Higher ranks: A spectral sequence argument

	Decomposing Schur Functors on L(V)
	Coefficients arising in the study of T(V)n
	Decomposition puzzles
	Lie pieces
	-decompositions
	Assembly
	Shape analysis

	The algorithm
	Data analysis
	Visualisations
	Clustering

	Running time experiments
	Baseline Algorithm

	The Theory of PD-modules
	The category PD
	Representation theory of PD
	Free PD-modules

	Finite Generation of PD-modules
	Representation instability

	Endofunctors on FI-Mod arising from PD-modules
	Representation stability in the context of families of (`39`42`"613A``45`47`"603ASi,`39`42`"613A``45`47`"603ASn)-bimodules
	Constructing PD-modules from S-modules
	Application to the structure coefficients c

	The category PDI
	Endofunctors on FI-Mod arising from PDI-modules
	Free PDI-modules

	Extended Whitney Homology
	Whitney homology of the lattice of set partitions
	Order homology of a poset
	The lattice of set partitions
	Whitney complexes and Whitney homology
	`39`42`"613A``45`47`"603ASn-module structure on the Whitney homology

	Extending the action
	Ordered set partitions
	The extended action
	Extended Whitney complexes and Whitney homology.
	The (`39`42`"613A``45`47`"603ASi,`39`42`"613A``45`47`"603ASn)-bimodule structure of WH"0365WH in terms of the twisted Lie operad

	Extended Whitney homology as a PD-module
	Restriction of a set partition
	Extended Whitney homology as a PD-module
	Stability of the PD-module WH"0365WH
	Relation to configuration spaces on Rd

	Bibliography

