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ABSTRACT 
Innate-like T lymphocytes such as mucosa-associated invariant T (MAIT) cells and invariant 
natural killer T (iNKT) cells recognize antigens presented by MR1 and CD1d molecules, 
respectively. As MR1 presents microbial riboflavin metabolite antigens, and CD1d presents 
endogenous or microbial glycolipid antigens, MAIT cells and iNKT cells survey the non-
protein fraction of the potential antigenic universe. Both these cell types respond in an innate-
like fashion without the need for priming and clonal expansion, and are thus rapidly available 
to help protect the host from viral and bacterial infections. This thesis is focused primarily on 
the role of the innate-like T cell subsets in immune defense of the human oral mucosa and 
skin, two tissues that together form a large part of the body barrier to the surrounding world 
of microbes. In paper I, we establish a set of reproducible and adaptable methods to study 
human MAIT cell activation, cytokine production, proliferation and cytolytic function in 
response to microbes expressing riboflavin metabolite antigens. These novel and optimized 
methods establish a framework and open new possibilities to study MAIT cell 
immunobiology using Escherichia coli as a model antigen. In paper II, we study the 
lymphocyte population in healthy human buccal mucosa, and establish the presence of 
MAIT cells at this site. The buccal mucosal MAIT cell population is located both in the 
epithelium and in the lamina propria and can be divided into a tissue resident CD103+ 
subset and a tissue non-resident CD103- subset. These two subsets differ in their functional 
profile both between each other and compared to the circulating peripheral blood MAIT 
cell population. Interestingly, tissue-resident MAIT cells had a specialized polyfunctional 
response profile with higher IL-17 levels, and were low in the cytolytic effector molecule 
perforin. In paper III, we investigate the involvement of oral mucosal MAIT cells in apical 
periodontitis (AP). MAIT cells were moderately enriched in AP tissue as compared to the 
surrounding healthy gingival tissue, but with higher representation of the CD4+ MAIT cell 
subset. When the abundance of MAIT cell TCR transcript was analyzed in relation to AP 
microbiome data, we could identify bacterial relative abundances that negatively correlated 
with Vα7.2-Jα33, Cα, and IL-17A transcript expressions in AP, implying that MAIT cells 
could play a role in this oral disease setting. In paper IV, we investigate the innate immune 
response to herpes simplex virus 1 (HSV1) in keratinocytes. In response to HSV1 infection 
keratinocytes rapidly upregulate surface expression of the innate immune activating 
cytokine IL-15 in a TLR3-dependent manner. Interestingly, the virus actively 
downregulates the IL-15/IL-15Ra complex in an apparent novel mode of immune evasion. 
Furthermore, we show that iNKT cells can counteract this viral effect and support the 
maintenance of IL-15 expression on the surface of infected keratinocytes. In summary, the 
research covered by this thesis unravels a series of novel aspects of immunity mediated by 
innate-like T cells at barrier sites of the human body. The findings are of considerable 
importance for our understanding of immunity against bacterial and viral antigens in the 
oral mucosa and the skin. 
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1 INTRODUCTION 
1.1 BARRIER IMMUNOLOGY 

1.1.1 Overview 

Body surfaces, such as the skin, oral mucosa, gut and lung, face a range of immunological 
challenges due to the constant contact with microbial and environmental challenges to barrier 
integrity. Barrier tissues thus need to carry out specific immunological tasks related to three 
main functions: Maintenance of physical barrier integrity, response to and control of 
pathogenic microorganisms, and maintenance of equilibrium with the commensal 
microbiome. 

Each body barrier is exposed to a variety of environmental variables, which in turn affect 
what challenges the barrier tissue faces. Each type of barrier tissue is thus specialized and 
unique in terms of structure and in the composition of the local immune system. The two 
tissues which are the focus of this thesis are the oral mucosa and the skin (Figure 1). 

1.1.2 Tissue resident cells of the immune system 

A key immunological feature of barrier tissues is the presence of tissue resident immune 
cells. This label encompasses a wide variety of immune cells, including T lymphocytes (1), 
natural killer (NK) cells (2), dendritic cells (DCs) (3), macrophages (4) and innate lymphoid 
cells (ILCs) (5) – distinguished from their circulating counterparts by the presence of cell 
surface markers, such as CD69, CD49a and CD103 (1, 6), some of which bind to ligands 
found on epithelial cells or in the extracellular matrix. Tissue-resident cell populations are 
present in their tissues for long periods of time, and generally do not recirculate (7). 

Tissue resident immune cells provide an early response mechanism at body surfaces and 
underlying tissues. While antigen-presenting cell (APC) subsets, as well as effector cells of 
the innate immune system, can provide a general rapid immune response, an important 
component of the adaptive immune system are resident T lymphocytes. These include 
conventional tissue resident memory (TRM) cells (7), as well as invariant natural killer T 
(iNKT) and mucosa-associated invariant T (MAIT) cells (8). TRM cells are antigen-specific 
ab T lymphocytes that migrate into tissues in response to infection, providing the long-
lasting ability to mount antigen-specific immune responses (1), and can also play a role in 
facilitating induction of antigen-nonspecific immune response (9). iNKT and MAIT cells in 
tissues may complement the conventional T cells and broaden the range of antigens that can 
be recognized. 

Tissue resident lymphocytes perform their local immune effector function through rapid 
release of effector molecules, including tumor necrosis factor (TNF), interferon-gamma 
(IFNg) and in particular a special barrier tissue cytokine known as interleukin 17 (IL-17) (10). 
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1.1.3 The role of IL-17 

The IL-17 family of cytokines consists of IL-17A-F, which share sequence homology (11, 
12). This cytokine family plays crucial roles in host defense against microbial organisms and 
in the development of inflammatory diseases. The prototypic member of the family, IL-17A, 
is the first discovered and best studied, and is usually referred to simply as “IL-17” (11, 13). 
IL-17 induces an inflammatory signature in tissues linked to neutrophil recruitment, 
migration and activation (11, 13, 14). The best described producers of IL-17 are a subset of 
CD4+ T lymphocytes termed Th17 cells, which accumulate in barrier tissues in response to 
cytokine release following breach of barrier integrity (15-17). Other significant IL-17 
producing T lymphocyte subsets include MAIT cells, iNKT cells (18-20), and gd T cells, 
which are considered the main sources of early IL-17 release in response to bacterial 
infection (14, 21, 22) 

IL-17 acts to regulate barrier immunity in three main ways: by stimulating neutrophil 
migration through induction of chemoattractant release in target cells, by maintaining barrier 
integrity through induction of expression of tight junction proteins in target cells, and by 
stimulating the release of antimicrobial peptides (11, 13). IL-17 has been implicated in the 
immune reactions against Mycobacterium tuberculosis, Escherichia coli, Staphylococcus 
aureus and Candida albicans, among others (14, 22-25). Dysregulated IL-17 signaling also 
plays a role in the development of multifactorial diseases, such as periodontitis and oral 
lichen planus, where increased IL-17 levels correlate with decreased microbial diversity (26-
28). 

1.1.4 The oral immune system 

 

Figure 1. Diagrams of the immune system of the oral mucosa and skin. Based on (29, 30) 
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1.1.4.1 Overview and structure of the oral mucosa 

The oral cavity serves as the point of entry for airborne and foodborne microbes and 
pathogens, in addition to being home to a rich and diverse commensal microbiota (reviewed 
in section 1.3). Additional risks to barrier integrity at the oral mucosal surface come from 
damage due to mastication (17), pH variation with food consumption (31), and allergens 
entering the mouth (32). These challenges impart the need for a robust and tightly-controlled 
immune network, capable of responding to a wide variety of threats while at the same time 
avoiding excess inflammation in response to harmless microbes. 

The oral cavity is lined with stratified squamous epithelium, which varies in thickness and 
level of keratinization between locations (29). The epithelial layer at the bucca and floor of 
the mouth is thin and exhibits little keratinization. In contrast, the palate, tongue and gums are 
covered in a thick and keratinized epithelial layer (29). Oral epithelium at different sites also 
varies with respect to permeability, with the junctional epithelium (adjacent to the tooth) 
considerably more porous than at other sites (33). Below the epithelial layer lies the basement 
layer and the lamina propria. The region of the oral cavity addressed by most studies of the 
immune system is the gingival crevice, the region where the gingiva meets the tooth. The 
local epithelial layer at this site is thinner than in other parts of the oral cavity, and close to 
the tooth it morphs into junctional epithelium, which is a thin and incompletely differentiated 
type of epithelial layer (33). This thinness of the barrier and proximity to complex bacterial 
communities attached to the tooth surface make the gingival crevice a particularly vulnerable 
site. 

1.1.4.2 Immune system of the oral mucosa 

The first physical barrier protecting the oral surface is saliva, a watery liquid produced by 
salivary glands, which covers all surfaces in the oral cavity. Saliva contains secretory 
immunoglobulin A (sIgA), defensins and antimicrobial peptides, which can either kill or 
impair the function of pathogens entering the oral cavity (34-36). It also contains epithelial 
growth factor (EGF), which activates epithelial cells through EGF receptor (EGFR), 
stimulating release of antimicrobial peptides, as well as epithelial cell growth, thus 
contributing to maintenance of barrier integrity and wound healing (37). Its function as a 
lubricant also reduces damage to oral mucosa incurred by mastication (38). Xerostomia (dry 
mouth), often observed in patients suffering from Sjögren’s syndrome and diabetes mellitus, 
is associated with higher rates of oral candidiasis (39, 40) and higher incidence of dental 
caries (41), further underscoring the critical role of saliva in protection of the oral cavity. 

The second barrier to pathogens entering the oral cavity is the epithelial layer lining the oral 
mucosa. Cells comprising the stratified squamous epithelium of the mouth, aside from their 
role as a barrier between the lumen of the oral cavity and the mucosal immune network, act 
as early detectors of pathogens through pattern-recognition receptors (PRRs) (42) and 
contribute to the immune reaction by releasing cytokines and antimicrobial peptides (29, 36). 
On top of those functions, the outermost stratum of the epithelial layer is continually shed, 
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removing pathogens which attach to the outer epithelium (29). Within the epithelium, 
populations of intraepithelial lymphocytes (IELs) and Langerhans cells are present. IELs are 
a subset of predominantly CD8+ T lymphocytes, which respond to infection by releasing 
IFNg and IL-10, as well as cytotoxic granules, inducing an inflammatory response (43). 
Research presented in this thesis suggests that this population may overlap with oral mucosal 
MAIT cells (Paper II). Langerhans cells are a DC subset, taking up antigen present in the 
epithelium and traveling to peripheral lymph nodes, where they present the antigen on MHC 
class II molecules to T lymphocytes (44). 

Below the epithelial layer and basement membrane, within the lamina propria, the main APC 
type is the interstitial DC (iDC). These cells do not enter the epithelium directly, but can take 
up antigen present there by extending dendrites towards the outer layers (45). In the lamina 
propria, CD4+ T helper (Th) and regulatory (Treg) cells are present, which contribute to the 
maintenance of barrier integrity and immune homeostasis at the oral mucosal barrier (46). A 
recent study by Dutzan et al. revealed that T lymphocytes are the dominant immune cell type 
in the oral mucosa, with about 50% of T cells being CD4+CD45RO+ “memory” lymphocytes, 
and with populations of CD8+ and gd T cells also found at the site (47). T helper 17 (Th17) 
cells accumulate in the mucosa in response to IL-6 released from epithelial cells in response 
to damage caused by mastication, and not due to the presence of commensal microbial flora, 
which is the driver of Th17 accumulation at other mucosal sites (17). 

Within the gingival crevicular fluid, which is present between the gingival surface and the 
tooth, the most numerous type of cell is the neutrophil, accounting for the majority of all 
leukocytes (48). Neutrophils maintain barrier homeostasis through control of bacterial 
populations, as well as immunoregulation and control of the inflammatory response (29). 
They continuously migrate from the gingival vasculature across the junctional epithelium into 
the gingival crevice along an intercellular adhesion molecule (ICAM)-1 expression gradient, 
regardless of pathogen presence (49).  

1.1.5 The skin immune system 

1.1.5.1 Overview and structure of the skin 

Skin is the largest organ in the human body, and the one most exposed to outside microbial 
and environmental challenges. In contrast to mucosal surfaces, healthy skin has a largely dry 
external surface, although various niches across skin surface differ in humidity, along with a 
number of other environmental variables. 

The outermost layer of the skin is the epidermis, which consists mainly of keratinocytes along 
with a small (about 5% of total cell number) minority of specialized cell types (50). The outer 
layer of the epidermis, stratum corneum, consists of flattened terminally differentiated 
keratinocytes and forms the primary physical barrier against outside dangers. This barrier 
varies in thickness according to specific site, but over most of the body it is about 10 layers 
thick (50). The basal layer of the epidermis consists of a single layer of keratinocytes. Below 
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the epidermis, the next skin layer is the dermis, largely composed of a collagen network 
controlled by fibroblasts and containing several specialized cell types. The dermis also 
contains blood vessels serving the skin. Below the dermis, the skin meets the subcutaneous 
fat layer, which contains most of the lipid content of the body (50). 

1.1.5.2 Immune system of the skin 

In contrast to mucosal surfaces such as the oral mucosa, the skin is not constitutively covered 
in a layer of mucosal secretions which could act as an antimicrobial barrier. However, skin 
secretions, sweat and sebum, contain antimicrobial peptides such as lactoferrin, cathelicidin 
LL-37 and skin-specific dermcidin (51-54) and can be considered the outermost layer of the 
skin immune system. The stratum corneum is also subject to continuous shedding of its 
outermost layers, removing pathogens adhered to it. 

Within the epidermis, the main specialized innate immune cell type is the Langerhans cell 
(55). Another DC-like cell type, the melanocyte, is primarily involved in protection of the 
keratinocytes of the basal layer against ultraviolet radiation, but possesses some immune 
characteristics, such as upregulation of CD40 in response to IFNg (56). In terms of adaptive 
responses, the epidermis is the layer into which pathogen-specific tissue-resident CD8+ T 
cells migrate and persist following infection (1, 6, 7). Aside from specialized immune cells, a 
critical role in immune defense at this layer is played by the main structural cells, 
keratinocytes (57). Keratinocytes play a role as APCs in the skin (58), initiate immune 
responses by detecting pathogens through pattern-recognition receptors (PRRs) (59), and in 
response to IL-17 and IFNg, release proinflammatory cytokines (60). Activated keratinocytes 
are also major producers of antimicrobial peptides (57), and synergize with dermal fibroblasts 
in wound healing, thus playing a critical role in maintaining tissue barrier integrity (61). 

Within the dermis, the main innate immune cell types are the dermal DCs, histiocytes, 
macrophages and Mast cells (30). The dermis is the vascularized skin layer, and thus the 
location where multiple immune cell types can extravasate and migrate into sites of infection 
and inflammation (62).  

In terms of the adaptive immune system, the dermis is the site where CD4+ Th cells are 
present. The skin shares with other barrier sites the significant presence of Th17 cells, which 
accumulate in the epithelium driven by IL-1 released in response to commensal flora (16). 
This IL-1 release induces CD69 expression in CD4+ T lymphocytes, contributing to the 
establishment of a tissue-resident phenotype (63). Th17 cells produce IL-17 and IL-22, same 
as at other body sites (12). In the skin, however, a unique T helper cell subset exists which 
expresses IL-22, but not IL-17; these cells are termed Th22 (64). Th17 and Th22 cells are 
both implicated in the pathogenesis of the skin autoimmune disease psoriasis, along with Th1 
cells (65). Interestingly, recent research on skin commensal-specific T lymphocytes indicates 
that they can switch their roles from antimicrobial to tissue repair-promoting responses (66). 
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Another T cell subset unique to the skin, and common at this site, are Th9 cells, which release 
IL-9 and are involved in the control of fungal pathogens. IL-9 released by those cells 
stimulates local inflammatory responses, contributing to IFNg and IL-17 release by Th17 
cells (67, 68). In light of the subject of this thesis, it is worth noting that invariant T cells are 
also capable of producing IL-9, IL-17 and IL-22 (18, 69-71) and are found in the skin (72, 
73). 
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1.2 INVARIANT T CELLS 

1.2.1 Overview 

Traditionally, the immune system has been sub-classified into two arms: innate (rapid, non-
specific) and adaptive (slower, antigen-specific). The innate immune system includes cells 
such as NK cells, monocytes, granulocytes, and other cell types capable of immediate 
reaction to hazards arising in the body. The adaptive immune system includes T and B cells, 
reacting by clonal expansion in response to antigen presented by APCs, producing a specific 
immune response and maintaining immune memory. 

This understanding was challenged by the discovery of T lymphocytes presenting NK cell 
surface receptors in mice (74) and humans (75). These cells were characterized by an 
invariant TCR recognizing a limited set of antigens not unique to a specific pathogen (76, 
77). These were termed NKT cells. Later, another invariant T cell subset was discovered with 
similar characteristics, termed MAIT cells (78). Both these subsets are rapidly activated in 
response to infection and have the ability to release inflammatory cytokines and to perform 
cytolysis (71, 79) 

A T cell subset characterized by expression of a gd TCR instead of an ab TCR has been 
known since 1989 (80), and is also sometimes grouped with iNKT and MAIT cells due to 
similar functionality and non-classical MHC molecule restriction (81). However, the gd T 
cells are outside of the scope of this thesis and will not be discussed further. 

NKT cells and MAIT cells share the expression of the transcription factor promyelocytic 
leukemia zinc finger protein (PLZF), which is required for the acquisition of their 
characteristic “innate-like” functions (19, 82). Another shared characteristic of these T cell 
subsets is their potential to produce IL-17 in response to stimulation (71, 79), a function 
related to their expression of CD161 which they share with conventional Th17 cells (83). The 
activation modes and cytokine production profiles of iNKT and MAIT cells is summarized in 
Figure 2. 

1.2.2 Invariant natural killer T cells 

1.2.2.1 Biology 

A subset of T lymphocytes expressing NK cell surface receptors was discovered in mouse by 
Ballas and Rasmussen (74) and later termed “NK T cells” by Makino et al. (84), a term now 
rendered as “NKT cells”. In 1993 Porcelli et al. discovered that certain invariant TCR 
rearrangements were enriched in CD4-CD8- T cells in human blood (75). Subsequently, it 
was shown that NKT cells recognize glycolipid antigens presented by the MHC class I-
related molecule CD1d (77, 85). While all NKT cells express CD161 and NKG2D, they are 
divided into two types based on TCR usage. Type I NKT cells are characterized in humans 
by an invariant TCR comprised of a Va24-Ja18 chain paired with a Vb11 chain (76). Type II 
NKT cells, which express a diverse repertoire of a and b chains in their TCR, recognize 
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phospholipid antigens (86). Type I NKT cells, also known as invariant NKT (iNKT) cells, are 
a focus of this thesis. 

 

Figure 2. iNKT and MAIT cells activation and cytokine production. GM-CSF: granulocyte-macrophage colony-
stimulating factor, Grn: granulysin, Grz: granzyme, Prf: perforin. Based on (79, 87) 

The classical model antigen for iNKT cells is alpha-Galactosylceramide (a-GalCer), 
originally derived from a deep sea sponge Agelas mauritanius (88). Since the discovery of a-
GalCer, a number of bacterial glycolipid iNKT antigens have been identified (89, 90), but 
iNKT classification remains defined by the recognition of CD1d-presented a-GalCer. In the 
context of infection with bacteria or viruses that do not encode CD1d-restricted antigen, 
CD1d can present endogenous lipid antigens, such as beta-D-glucopyranosylceramide (b-
GlcCer), which is enriched in mammalian cells in response to TLR activation (91-93). iNKT 
cell activation can also be induced and co-stimulated by cytokines such as IL-12 and IL-18, 
as well as co-stimulatory molecules CD28 and CD40 (94, 95). 

In response to activation, iNKT cells rapidly release IFNg, along with multiple other 
cytokines, as well as cytotoxic molecules like perforin, TNF-related apoptosis-inducing 
ligand (TRAIL) and Fas ligand (FasL) (20, 71, 96). This set of abilities makes iNKT cells a 
powerful arm of anti-viral defenses. 

1.2.2.2 Relevance to disease 

Despite the invariant TCR and CD1d molecule restriction, iNKT cells recognize antigens 
from a broad variety of bacterial pathogens. They have been implicated in the immune 
response against Mycobacterium tuberculosis (97), Lyme disease (90) and staphylococcal 
infection (98), among others. Thanks to their ability to respond to CD1d-presented 
endogenous lipid antigens, iNKT cells have also been implicated in the immune response to 
several viral pathogens (71), and of particular interest for the subject of this thesis, they play 
an important role in herpes simplex virus (HSV) infection (99). The importance of iNKT 
cells in the response to infectious disease is evidenced by the fact that numerous bacterial and 
viral pathogens, possess immune evasion mechanisms targeting the CD1d antigen 
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presentation pathway (100). In response to infection iNKT cells act in a cytotoxic manner, 
but also to stimulate NK cell activation (101) and B cell and memory responses (102, 103). 

iNKT cells also exhibit cytotoxic activity against tumor cells and can suppress cancer growth 
in vivo (104, 105), and are considered candidates for cell-mediated immunotherapy of cancer 
(106, 107). 

1.2.3 Mucosa-associated invariant T cells 

1.2.3.1 Biology 

Mucosa-associated invariant T cells were discovered as a distinct T cell subset in 1999 by 
Tilloy et al. (78). They are characterized by expression of a semi-invariant TCR defined by a 
Va7.2 gene segment usage coupled with Ja12, 20 or 33, as well as limited b chain diversity 
(78, 108, 109). MAIT cells recognize microbial vitamin B2 metabolite antigens presented by 
the MHC class I-related molecule MR1 (110). MR1 is highly conserved among mammals, 
underscoring its importance in response to infection and control of commensal flora (111, 
112). 

MAIT cells are activated through TCR engagement with antigen presented by MR1 on APC 
surface (113), but can also be activated in an MR1-independent manner by cytokines such as 
IL-12 and IL-18 to mediate some of their functions (114). Upon TCR-mediated activation, 
MAIT cells release primarily TNF and IFNg, but they also have the ability to produce other 
cytokines, particularly IL-17 and IL-22, depending on their tissue localization and the 
cytokine milieu (115). 

1.2.3.2 MAIT cells in peripheral tissues 

MAIT cells, as their name suggests, were initially discovered in mucosal tissues. 
Nevertheless, we now know that MAIT cells can be found in most tissues studied to date. 
MAIT cells comprise 1-10% of T cells in the blood of healthy donors, while they are most 
numerous in the liver, where they account for 30-45% of all T cells (19). Substantial MAIT 
cell populations have also been found at other body surfaces, such as in the intestines (116), 
lung (117), stomach (118), skin (72), female genital mucosa (18) and, as presented here, in 
the oral mucosa (Paper II). 

A feature of MAIT cells present at mucosal surfaces is a bias towards IL-17 production 
compared to their blood counterparts (18, 19, 72). This is consistent with a role as 
antimicrobial effector cells in such tissues. 

1.2.3.3 Relevance to disease 

MAIT cells are a relatively recently described immune cell subset, and their exact role in the 
development and immune control of various diseases is still being elucidated. They recognize 
antigen expressed by bacterial and fungal pathogens (110), and are thus mostly associated 
with the immune response to bacterial/fungal infection. MAIT cell activation has been 
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reported in bacterial diseases such as cholera (119), tuberculosis (120), Helicobacter pylori 
infection (118), as well as in vitro in response to various bacterial and fungal pathogens (121, 
122). MAIT cell activation has also been observed in multifactorial diseases with presumed 
bacterial involvement, such as Crohn’s disease and ulcerative colitis (123). In a murine 
model, MAIT cells are critical for immune responses to bacterial infection in the lungs (117). 
MAIT cell deficiency may contribute to increased susceptibility to bacterial infection in some 
cases of cystic fibrosis (124). 

MAIT cells are activated in viral infection, such as hepatitis C, influenza and dengue, where 
they are activated in an MR1-independent manner through cytokine release and can mediate 
some immune functions (125). Interestingly, recent findings suggest that MAIT cells can 
confer some protection against influenza virus infection in mice (126). 

MAIT cell depletion is associated with systemic immune disorders, such as in human 
immunodeficiency virus (HIV) infection (127-129) and systemic lupus erythematosus (130), 
which lends further credence to MAIT cells’ central role for antimicrobial defense at body 
surfaces. 
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1.3 MICROBIOME OF THE ORAL CAVITY 

1.3.1 Overview 

The oral cavity is characterized by a rich and unique microbiome, differing from other 
mucosal sites of the body, with some similarities to the microbiome of the nasal mucosa 
(131). Microorganisms which colonize the oral cavity can enter with food, through bodily 
contact with other humans, as well as through the respiratory route. Whether they 
successfully colonize the oral cavity depends on a variety of factors, including nutrition, local 
pH, individual immune system characteristics, and microbiota already present at the site. The 
oral microbiome is a complex ecosystem, characterized by a multifaceted network of multi-
actor relationships between commensals, pathogens, and opportunistic pathogens, such as the 
complex relation between commensal oral fungus C. albicans and various members of the 
oral bacteriome within biofilm communities (132). 

While it can be tempting to consider commensal microbiota as largely benign, it is a driver of 
immune responses (133), although it was not implicated in attracting Th17 lymphocytes to 
the oral mucosal site, a process which is rather driven by mechanical damage (17). Some 
commensal microorganisms can become opportunistic pathogens under conditions of 
immunosuppression or immunodeficiency, such as HIV infection. Examples of such 
organisms are the fungi C. albicans and Candida glabrata, which normally cannot form large 
colonies in the oral cavity of the healthy host (134, 135). The expansion of opportunistic 
pathogens in the absence of fully competent immune system can be reduced by other 
members of the oral commensal microbiota, such as Pichia pastoris, which was shown by 
Mukherjee et al. to inhibit growth of Candida, Aspergillus and Fusarium species, with which 
it competes for nutrients (136). 

Pathogenic microorganisms, such as the “red complex” bacteria associated with periodontitis 
(reviewed in section 1.3.2), but also cariogenic Streptococcus mutans, Bifidobacterium and 
Actinomyces species (137), are normally present within the healthy oral microbiome at low 
abundance, but expand rapidly under favorable conditions created by factors such as nutrition 
and host immunosuppression and can lead to the establishment of a chronic dysbiotic state 
(41). 

Dysbiosis in the oral microbiota drives the development of oral diseases, such as dental 
caries, periodontitis and oral cancers (41). It can also have systemic effects, and disordered 
oral microbiome has been linked to a range of diseases, ranging from vascular, to 
neurological, to pancreatic (138-142). An oral disease particularly associated with systemic 
diseases and linked to an altered oral microbiota is periodontitis. 

1.3.2 Periodontitis 

Periodontitis is a multifactorial inflammatory disease of the periodontum, the part of the oral 
tissue surrounding the tooth. The initial phase is recognized as gingivitis, which in the long 
term leads to the destruction of soft tissue and bone surrounding the root of the tooth and 
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eventually tooth loss in the final stage. It is the most common cause of tooth loss worldwide 
(143) and also a major chronic disease which, at various levels of severity, affects the 
majority of adults (144), while severe periodontitis affects up to 12% of adults worldwide 
(145). Another common condition is apical periodontitis (AP), a particular form of 
periodontal disease which is caused by the inflammatory response around the root of the 
tooth, initiated by an endodontic infection (146). 

The role of the host inflammatory response in periodontitis was first shown by Assuma et al. 
(147), who found that blocking IL-1 and TNF responses inhibited bone loss in an 
experimental mouse model of periodontitis. Levels of IL-1 and TNF, as well as IL-2 and 
IFNg were also found to be increased at disease sites in human periodontitis patients 
compared to healthy controls (148). Further research showed that periodontitis can be 
induced by overexpression of IL-1a independent of any variance in bacterial load at the 
mucosal surface (149). Mice lacking IL-10 were also found to suffer from more severe 
periodontitis, indicating that periodontal disease develops as a result of imbalance between 
pro- and anti-inflammatory host factors at the mucosal barrier (150). In addition, Niederman 
et al. showed that host immune deficiencies and oral microflora both combine to induce the 
development of periodontitis (151). These findings reaffirm the status of periodontitis as a 
disease driven by the host inflammatory response. 

The host inflammatory response which leads to periodontitis has been associated with a shift 
in the species composition of dental plaque at affected sites from Gram-positive to Gram-
negative (152). Analysis of microbial samples from disease sites found a strong association 
between the development of periodontitis and three bacterial species now termed the “red 
complex”: Porphyromonas gingivalis, Tannerella forsythia and Treponema denticola (153). 
All three of those pathogens can inhibit the release of IL-8 from oral epithelial cells, thus 
interfering with host neutrophil trafficking and dysregulating the healthy inflammatory 
response (143). Later research has questioned the importance of the “red complex” as a 
requirement for development of periodontal disease, and instead suggested changes in a 
complex polymicrobial community, not driven by any single agent, to be responsible for the 
process (154). Interestingly, P. gingivalis, as well as other bacterial species known to 
associate with periodontitis including Streptococcus mutans, Actinobacillus 
actinomycetemcomitans and Prevotella intermedia, are strongly susceptible to growth 
inhibition by oral Lactobacillus species (155), which highlights the importance of preserving 
healthy commensal microbiota in periodontitis prevention. While the most common driver of 
inflammation in periodontitis is the bacterial flora, in rare cases periodontitis can also result 
from other sources of severe inflammation, such as viral infection (156). 

Dysregulated IL-17 signaling is implicated in the development of periodontitis, as IL-17 
levels are increased at periodontal inflammation sites (28). However, IL-17 mediated 
recruitment of neutrophils can alleviate periodontal disease progression and prevent disease-
associated bone loss (157). It is worth noting that immunodeficiencies which cause 
dysregulated neutrophil response are also strongly associated with the development of severe 



 

 13 

periodontitis (26). As the loss of normal neutrophil function enables the proliferation of 
multispecies bacterial communities (158), progress of the disease becomes driven primarily 
by the adaptive immune system, as B cells, T cells and plasma cells are recruited into the site 
of inflammation (159). An inflammatory cascade contributes further to tissue destruction and 
bone loss. In tissue, receptor-activator of NF-kB ligand (RANKL) causes alveolar bone 
degradation through signaling to osteoclast precursors, a process which in healthy tissue is 
inhibited by osteoprotegerin (OPG), a soluble RANKL ligand (160). RANKL expression is 
induced by pro-inflammatory cytokines TNFa and IL-1 (161). The resultant imbalance in the 
RANKL/OPG ratio causes excess alveolar bone loss, which in turn leads to loosening of the 
tooth root and tooth loss. 
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1.4 HERPES SIMPLEX VIRUS TYPE 1 

1.4.1 Overview and pathology 

HSV1 is a member of the alphaherpesvirus family, which comprises large enveloped dsDNA 
neurotropic viruses. The HSV1 genome has 72 open reading frames, grouped into two 
regions: the long unique region (UL) and the short unique region (US) (162). 

HSV1 establishes primary and recrudescent infection mainly in the skin, although HSV1 
primary infections can also be oral, ocular, genital or anal (162). Oral infection is rare, as 
human saliva has the ability to neutralize HSV1 through soluble IgG and other factors (163). 
The virus can rapidly penetrate the epithelial layer and basement membrane (164) and upon 
reaching peripheral neurons, travels through direct cell-cell contact, via formation of a 
virological synapse (165), to the dorsal root ganglion, where it establishes latency (162). 
HSV1 spreads within neural tissue, possibly contributing to the development of 
neurodegenerative disease (166), and it can also spread to other sites, including cartilage and 
bone (167), although routes of viral spread to these latter sites and the effects of viral 
presence there on human health are poorly understood. While HSV1 infection is usually 
benign, in newborns, elderly and immunocompromised, it can cause lethal encephalitis (168). 
Recurrent ocular HSV1 infection is a significant cause of pathogen-induced blindness (162), 
and genital HSV1 infection is associated with male infertility (169). HSV1 infection has been 
associated with development of Alzheimer’s disease, although this association is not fully 
understood (170). In addition, some evidence exists that HSV1 can contribute to the 
development of periodontitis in immunocompromised patients (156). 

The main way by which HSV1 enters the host cell is by membrane fusion between viral 
envelope and the cell membrane through viral glycoprotein binding to cell surface heparan 
sulphates (171). However, it can also infect the cell through endocytosis of viral particles 
(172), or direct cell-to-cell spread via formation of a virological synapse (165). Cell-to-cell 
spread enables the virus to evade the humoral immune response, and sera from HSV1-
infected individuals show minimal capacity to inhibit cell-to-cell spread of the virus in vitro 
(173). 

Once the virus has entered the cell, it uses the host cell microtubule network to travel into the 
nucleus by use of tegument proteins (174). Inside the nucleus, the virus hijacks the host RNA 
polymerase II to transcribe its DNA (175). Expression of the HSV1 genome is carried out in 
three steps. First, immediate-early proteins are produced, which shut off host mRNA 
translation mechanisms and enable the virus to take control of it. Second, early proteins are 
produced, which replicate viral DNA. Last, early-late and late genes are expressed, which 
encode structural proteins of the virion (176). Tegument and capsid proteins assemble in the 
cytoplasm and travel into the nucleus, where they join with newly replicated viral DNA. The 
complete virion is enveloped at the inner nuclear membrane, and then travels through the 
outer nuclear membrane into the Golgi apparatus and to the cell membrane where is buds off 
(177). The complete virion consists of the genome inside a capsid formed of six proteins: 
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UL18, UL19, UL26, UL26.5, UL35 and UL38 (178). The HSV1 genome encodes eleven 
glycoproteins, of which five – gB, gC, gD, gH and gL – are known to play a role in viral 
entry into the cell and are thus assumed to be present on the viral envelope (171). 

1.4.2 Immune reaction to primary HSV1 infection 

1.4.2.1 Pattern recognition receptors 

HSV1 is recognized by a number of pattern recognition receptors expressed by host cells. 
Toll-like receptor 2 (TLR2), expressed on the cell surface, recognizes viral glycoproteins gB 
and gH/gL (179). Nucleic acid of the virus, on the other hand, is detected by TLR3, which 
recognizes viral dsRNA, and TLR9, which recognizes unmethylated DNA (180, 181). Viral 
nucleic acid is also recognized by cytosolic DNA sensors, such as the RIG-I-like receptor 
MDA5 (182) and DNA-dependent activator of IRF (DAI) (183). 

TLR3 is of particular interest, as defects in this receptor and its signaling pathway are 
associated with the development of herpes simplex encephalitis (168, 184). TLR3 is widely 
expressed, and from the point of view of HSV1 infection, it is worth noting that it is 
expressed both by skin keratinocytes (185) and neurons (186), the two cell types where the 
virus primarily propagates. TLR3 is mainly localized within the early endosome (187), 
although in some cell types it can be present at the cell surface (188). After binding nucleic 
acid, TLR3 signals through adaptor protein TIR-domain-containing adapter-inducing 
interferon-b (TRIF) to activate transcription factors activator protein 1 (AP-1), interferon 
regulatory factor 3 (IRF3) and nuclear factor k-light-chain-enhancer of activated B cells (NF-
kB), leading to the production of type I interferons (particularly IFNb) and inflammatory 
cytokines (189). Interferon production and release results in the establishment of an antiviral 
state in infected cells, as well as activation of NK cells and DC maturation, inducing 
downstream innate and adaptive immune responses (190). 

1.4.2.2 The role of iNKT cells 

Mice lacking either CD1d or iNKT cells suffer from a more severe HSV1 infection and 
higher morbidity than wild-type when infected with HSV1 strain SC16 (99). These results 
were challenged by Cornish et al., who found no effect of iNKT cells on infection severity in 
mice infected with HSV1 strain KOS, and therefore suggested that the need for iNKT cells to 
control HSV1 infection might be dependent on viral strain (191). While the ability of iNKT 
cells to contribute to control HSV1 infection in mice has been further demonstrated using 
strain SC16 again (192), the question of whether iNKT cells are necessary to control HSV1 
infection in humans has so far not been resolved. Data obtained from in vivo studies of HSV1 
infection in mice do not necessarily mirror the course of infection in humans, as for instance 
viral immune evasion mechanisms have evolved to target the human immune system, and 
may be inefficient within a mouse model, as seen with CD1d downregulation (193). 

A number of lines of evidence point to an importance of the CD1d-iNKT axis in the response 
to HSV1 infection. HSV1 possesses several immune evasion mechanisms specifically 
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targeting CD1d (reviewed in section 1.4.3.2). Bosnjak et al. have also described a mechanism 
of HSV1 evasion of iNKT cell activation which is independent of CD1d targeting, but instead 
acts through direct cell-to-cell contact between the iNKT cell and the infected cell, possibly 
via galectin-9 signaling through T-cell immunoglobulin and mucin-domain containing-3 
(TIM-3), or viral protein transfer (194). Myeloid DCs have been found to upregulate CD1d 
mRNA in response to HSV1 infection (195). Additional support comes from HSV1’s close 
relative, HSV2. Mice lacking iNKT cells failed to control genital HSV2 infection (196), and 
a-GalCer was shown to be a powerful adjuvant enhancing the protective effect of mucosal 
vaccination against HSV2 (197). All of those lines of evidence point to an important role of 
iNKT cells in protection against and response to infection with HSV1 and HSV2. 

The exact function of iNKT cells in HSV1 infection remains to be determined. iNKT cells are 
known to be capable of activating NK cells via IFNg release, induce DC maturation through 
CD40-CD40L signaling, and stimulate the induction of antibody response and memory 
establishment via IFNg and IL-4 signaling to B cells (71), all of which contribute to the 
immediate immune response to acute viral infection, as well as to the control of latent 
infection. iNKT cells are not productively infected by HSV1 (194), in contrast to activated 
conventional T cells (198). Research presented in this thesis suggests that iNKT cells 
contribute to the immune response against primary HSV1 infection in keratinocytes by 
slowing down viral replication and maintaining interleukin 15 (IL-15) production in response 
to infection, via their production of IFNg (Paper IV). 

1.4.2.3 Function and significance of IL-15 

IL-15 is a 14 kDa cytokine expressed by a variety of cells, including DCs and keratinocytes 
(199). It is structurally and biologically similar to IL-2, and signals through the IL-2 receptor 
b subunit (200). In contrast to IL-2 however, very little of IL-15 is secreted and the majority 
of IL-15 produced by the cell is retained on the cell surface, where it acts via trans-
presentation in direct cell-to-cell contact (201). In the context of inflammatory reactions, cis-
presented IL-15 produced by NK cells themselves can contribute to their activation, but is not 
necessary (202). IL-15 is presented bound to its receptor, the IL-15 receptor a (IL-15Ra), 
which serves as its chaperone protein within the Golgi apparatus and the two proteins remain 
bound to each other both when presented on cell surface and when secreted (203, 204). IL-15 
has a variety of functions, but in terms of the immune response its three main mechanisms of 
action are: activation of NK cells, promotion of survival of T lymphocytes in the absence of 
antigen, and induction of cytotoxic T cell proliferation upon infection (205). In the specific 
context of invariant T lymphocytes, IL-15 promotes long-term survival of peripheral iNKT 
cells (206), but it can also activate both iNKT cells and MAIT cells (207). 

Fawaz et al. found that human monocytes upregulate IL-15 in response to HSV1 infection 
and that this upregulation results in enhancement of NK cell cytotoxicity (208). This 
upregulation was later shown to be dependent on TLR2 activation (209). Research presented 
in this thesis indicates that in human keratinocytes, HSV1 infection induces IL-15 expression 
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via TLR3 (Paper IV). The exact mode by which IL-15 contributes to the immune defense 
against HSV1 has not been experimentally defined, but it is required for immune clearance of 
the closely related HSV2 (196). In this context, IL-15 can act independently of NK and iNKT 
cell activation by stimulating TNF and IFNb expression in infected cells (210). IL-15/IL-
15Ra upregulation on cell surface and trans-presentation to NK cells is an important 
mechanism of NK cell activation in virus infection, as shown in hantavirus-infected 
endothelial cells, where IL-15 blocking inhibits NK activation (211). IL-15 may also play a 
role in establishing the adaptive immune response, as CD8+ T lymphocytes are activated and 
proliferate rapidly after HSV1 infection (212), and in the long term are involved in control of 
latent HSV1 and response to new primary infection over the lifetime of the host (7, 213, 214). 
In an experimental mouse HSV1 infection model, IL-15 was required for the development 
and maturation of virus-specific tissue-resident memory CD8+ T cells in the skin (1). 

1.4.3 Immune evasion mechanisms 

1.4.3.1 Overview 

HSV1 is a large dsDNA virus, and possesses a large number of mechanisms countering the 
host antiviral immune response (215). The first HSV1 immune evasion mechanism was 
described by York et al. (216), who discovered that HSV1 ICP47 protein inhibits antigen 
presentation by MHC class I. This is accomplished by the viral protein binding to transporter 
associated with antigen processing (TAP) complex and blocking MHC class I transport from 
the endoplasmic reticulum to cell surface (217). The advantage for the virus is the inhibition 
of the cytotoxic T cell response, although reduced levels of MHC class I on cell surface 
render the infected cells vulnerable to killing by NK cells (218). 

Some immune evasion mechanisms do not target specific steps of the immune response, but 
are more generalized. For instance, HSV1 depends on its ability to co-opt the translational 
mechanism of the host cell for reproduction. To this end, the virion host shutoff (vhs) protein 
combines with tegument protein UL47 to degrade host mRNA (219). This has an additional 
effect of inhibiting the host immune response by blocking cytokine production. The vhs is 
early acting and its levels decrease rapidly, which protects viral mRNA from being degraded 
by it (220). It also inhibits the host protein tetherin, which acts to prevent mature HSV1 
virions from budding off the host cell membrane (221). In the general context of infection, 
the virus can inhibit type I interferon production through the action of viral latency associated 
transcript (LAT), thus preventing apoptosis of the infected cell (222). 

Up to now, a wide variety of immune evasion mechanisms possessed by HSV1 has been 
described, and highlighted here are mechanisms targeting the TLR3 signaling pathway and 
CD1d antigen presentation, both of which are relevant to research described in paper IV. 
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1.4.3.2 TLR3 pathway-targeting mechanisms 

As TLR3-mediated recognition of viral nucleic acid is crucial to the maintenance of effective 
cellular immunity against HSV1 (180), the virus has developed a number of immune evasion 
mechanisms targeting this pathway (215). 

The viral serine/threonine protein kinase US3 has been found to downregulate TLR3 
expression in HSV1 infected monocytes, resulting in downstream inhibition of IRF3 
activation and downregulation of type I interferon production (223). US3 can also act directly 
on IRF3, as shown by Wang et al. (224), who showed that US3-mediated 
hyperphosphorylation of IRF3 blocks production of IFNb in virus-infected cells. Another 
viral protein affecting IRF3 function is VP16, which associates with CREB binding protein 
(CBP), inhibiting the formation of IRF3-CBP complex required for transcriptional activation 
of type I interferon genes (225). VP16 also affect another TLR3 downstream effector, NF-
kB, by associating with the p65 subunit and inhibiting activation (225). The same NF-kB p65 
subunit is another target of US3 hyperphosphorylation, blocking its translocation into the 
nucleus (226). Nuclear translocation of p65 is also blocked by viral E3 ubiquitin ligase ICP0, 
which also degrades the NF-kB subunit, p50 (227). 

It should be noted that IRF3 is key to antiviral immunity, and can be activated by pathways 
independent of TLR3 signaling, such as the cyclic GMP-AMP synthase-stimulator of 
interferon genes-TANK-binding kinase 1 (cGAS-STING-TBK1) pathway. In human 
macrophages, HSV1 protein ICP27 blocks this activation pathway at the TBK1-IRF3 step, 
associating with activated STING and TBK1 and preventing phosphorylation of IRF3 (228). 

1.4.3.3 CD1d-targeting mechanisms 

As iNKT cells recognizing antigen presented by CD1d serve an important role in the immune 
response to HSV1 (99), CD1d expression is a prime target for viral immune evasion in 
infected cells. In fact, immune evasion mechanisms targeting CD1d antigen presentation are 
common among herpesviruses (229). 

CD1d molecules synthesize in the endoplasmic reticulum, where they form a complex with 
b2-microglobulin and associate with endogenous glycolipid. The successfully folded complex 
travels through the Golgi apparatus to cell surface, from where they are internalized into 
endosomes. Pathogen-derived glycolipid antigen, or endogenous glycolipid antigen, binds to 
CD1d in the maturing endosome. CD1d then recycles back to the cell surface, where it can be 
recognized by the iNKT TCR (230). The process consists of several steps which can be 
specifically targeted by specialized immune evasion mechanisms possessed by viral and 
bacterial pathogens (100). 

The ability of HSV1 to evade iNKT cell activation by targeting CD1d was first described by 
Yuan et al. in 2006 (231), who discovered that HSV1 infection reduced CD1d cell surface 
expression in HeLa cells by inhibiting CD1d recycling. It was later established that the 
process depends on two viral proteins, glycoprotein gB and protein kinase US3 (232). gB 
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binds to CD1d in the endosome, and US3 can inhibit CD1d recycling by several mechanisms: 
through phosphorylating gB, promoting gB internalization and colocalization with CD1d 
(232), through direct phosphorylation of CD1d, thus targeting it for lysosomal degradation 
(233), or through phosphorylation of kinesin motor protein KIF3A, inhibiting CD1d transfer 
to the cell surface (234). Later studies also identified HSV1 tegument protein VP22 as 
necessary for inhibition of CD1d antigen presentation, although whether this is accomplished 
by VP22 directly affecting CD1d trafficking or interaction with other virus-encoded proteins 
is not clear (235). It should be pointed out that HSV1-induced downregulation of cell surface 
CD1d is not observed in some cell types, such as keratinocytes (194), suggesting it is cell 
type-dependent. Importantly, HSV1’s ability to disrupt CD1d trafficking specifically targets 
human, not mouse CD1d, which underscores the importance of iNKT cells in control of 
HSV1 infection in humans, despite iNKT cells being a rather small T cell subset in humans 
compared to mice (193). 
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2 AIMS 
The overall aim of the project was to characterize the involvement of invariant T cell subsets, 
MAIT cells and iNKT cells, in the immune defense at two barrier sites, the oral mucosa and 
the skin. This included ex vivo studies of human blood and tissue samples, as well as cell 
culture experiments for specific infection studies. Specific goals were: 

1. To establish and optimize methods to study MAIT cell responses to bacteria in human 
samples derived from both blood and peripheral tissues. 
 

2. To characterize the presence, phenotype and function of MAIT cells in the human 
oral mucosal tissue, in comparison to the circulating MAIT cell population in blood. 
 

3. To investigate possible relationships between oral mucosal MAIT cell characteristics 
and health and environmental factors which could affect the compartment across the 
general population. 
 

4. To define oral mucosal MAIT cell involvement in apical periodontitis in relation to 
the tissue-associated bacterial profile. 
 

5. To characterize the expression of IL-15 in human keratinocytes in response to HSV1 
infection, and investigate possible viral countermeasures to this response. 
 

6. To determine if iNKT cells can act to inhibit HSV1 immune evasion mechanisms. 
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3 STUDY DESIGN 
All experimental methods are described in detail in in the prospective papers included in the 
thesis. This section contains information about the selection of specific methods and reagents. 

3.1 ETHICAL CONSIDERATIONS 

All four papers included in the thesis involved the use of material obtained from human 
donors. This included peripheral blood for all four papers, as well as tissues for papers II 
and III. Ethical approval was obtained from the Ethical Review Board and written informed 
consent was obtained from all donors. Samples analyzed for papers II and III were de-
identified for purposes of the analysis. Specific information about donor selection criteria and 
sample collection is listed in the methods section of each paper. 

3.2 CHOICE OF CELL LINES AND VIRAL STRAIN 

For the cytotoxicity assay described in paper I, we used human kidney cell line 293T stably 
transfected with human MR1 gene (293T-hMR1) (112). This cell line was chosen as it is 
relatively resistant to bacteria-induced cell death (Paper I suppl. figure 3G).  

For paper IV, we decided to use HaCaT cells, a spontaneously immortalized human 
keratinocyte cell line (236). An immortalized cell line was used rather than a primary cell line 
like for example NTERT-1, because it does not feature a cell density-dependent terminal 
differentiation switch, which could confound results obtained over long-term timecourse 
experiments. 

Viral strain used in paper IV was HSV1 strain F, isolated in 1967 from a facial lesion at the 
University of Chicago Hospital (237) and commonly used since then in laboratory studies, as 
a viral strain with its infectivity and replication mechanisms fully intact. 

3.3 SELECTION OF ANALYTICAL METHODS 

3.3.1 Flow cytometry 

The main analytical method used in papers I, II and IV, as well as for part of the data 
presented in paper III, was flow cytometry. Single-cell suspension samples were acquired on 
an LSRFortessa flow cytometer equipped with 355, 405, 488, 561, and 639 nm lasers (BD 
Biosciences). Data collected by flow cytometry were analyzed using FlowJo 10 software 
(FlowJo LLC). The advantage of flow cytometry over other analytical methods is the ability 
to rapidly create large datasets containing single-cell phenotypic data, making it well-suited 
to analysis of immune cell responses. Gating strategy used for identifying T cell subsets in 
the oral tissue samples (used in papers II and III) is shown in Figure 3. 
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Figure 3. Gating strategy for detection of T cell subsets in the oral mucosa by flow cytometry. Overall T cells 
are defined as CD45+CD3+. MAIT cells: Va7.2+CD161hi. iNKT cells: Va24+Vb11+. Conventional T cells are 
assumed to be all CD45+CD3+ cells outside the MAIT and iNKT gates. 

For all MAIT cell experiments, we defined MAIT cells in flow cytometric analysis as 
CD45+CD3+Va7.2+CD161hi cells. During the time of the project, after most of the data had 
already been gathered, human MR1:5-OP-RU tetramer became available for researchers from 
the NIH Tetramer Core Facility (238). While it was too late in the process to change 
established experimental methods, we ensured that cells we identified as MAIT using our 
definition were positive for MR1:5-OP-RU tetramer staining (Paper II figure 1B and paper 
III figure 4). 

3.3.2 Microscopy 

To obtain microscopic data featured in paper II, we used in situ antibody staining for either 
immunohistochemical or fluorescent imaging. As CD161 is an unreliable marker for in situ 
staining, we defined MAIT cells as Va7.2+IL-18Ra+, similar to a previous study which 
examined MAIT cells in the female genital mucosa (18). After the MR1:5-OP-RU tetramer 
became available (238), we considered using it for in situ MAIT cell staining, but pilot stains 
were unsuccessful and we decided to continue using the previously established staining 
method. 
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4 RESULTS AND DISCUSSION 
4.1 ESTABLISHING METHODS FOR ANALYSIS OF MAIT CELL RESPONSES 

MAIT cells are involved in the immune response to a range of microbes (79) and have been 
studied in infectious diseases and conditions of inflammation and immunodeficiency (120, 
128, 239-241). Experimental approaches to study the involvement of MAIT cells in diseases 
can be affected by variability in MAIT cell extrinsic factors such as APC type and 
availability, antigen type and concentration, and cytokine milieu. To that end, we sought to 
develop a reasonably standardized and adaptable MAIT cell response assay which could 
produce consistent results and be easily modified when necessary. We chose the E. coli strain 
D21, which expresses the riboflavin synthesis pathway (110), as the model microbial antigen 
in this project. 

4.1.1 Development of an E. coli activation assay for MACS-purified MAIT 
cells 

4.1.1.1 MACS purification does not affect MAIT cell phenotype 

In order to control MAIT:APC ratio in the assay, we isolated Va7.2+ cells from healthy 
donor blood using magnetic cell selection (MACS) purification, the quality of which was 
subsequently confirmed using flow cytometry (Paper I suppl. figure 1A). To determine 
whether this purification method affects the phenotype of MAIT cells, we measured 
CD4/CD8 expression, as well as surface activation marker CD69, CD25, CD38, Human 
leukocyte antigen – DR isotype (HLA-DR) and TIM-3 expression, in purified MAIT cells 
(Paper I suppl. figure 1B-C). The data showed that the CD4/CD8 phenotype of purified 
MAIT cells does not differ from that of their parent population in the blood, and that the 
process does not activate the cells. 

4.1.1.2 Optimization of the MAIT cell activation assay 

We next sought to optimize a MAIT cell bacterial stimulation and activation assay with 
regards to several variables: E. coli fixation time, microbial dose, co-activation by anti-CD28 
antibody, Va7.2+ cell:monocyte ratio, and co-culture time (Paper I figure 1). As readout for 
MAIT cell activation, CD69/IFNg co-expression was used, measured by flow cytometry 
(Paper I figure 1A). 

To avoid bacterial overgrowth in the medium during co-culture incubation as part of the 
assay, E. coli was fixed with 1% formaldehyde prior to addition to the monocytes. However, 
this fixation procedure carries the risk of destroying the MAIT cell-activating riboflavin 
metabolite antigen, and therefore the MAIT cell activation capacity depending on the length 
of E. coli fixation was assessed (Paper I figure 1B). CD69/IFNg expression was roughly 
unchanged with E. coli fixation times of 1-10 minutes, but dropped sharply at fixation times 
of 32 and 64 minutes. The alternative approach of preventing bacterial overgrowth by heat-
killing of E. coli led to loss of MAIT cell activation, indicating that the antigen is heat-
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sensitive. Further, comparison of MAIT cell activation in response to live and mildly fixed E. 
coli showed similar activation levels (Paper I figure 1C). MAIT cell activation also 
increased with higher microbial dose up to 100 colony-forming units (cfu) per monocyte, 
dropping at a higher dose, indicating the dose of 100 cfu/monocyte as optimal to provoke 
strong responses (Paper I figure 1D) in this assay. The addition of anti-CD28 antibody to the 
assay enhanced E. coli-induced MAIT cell activation at anti-CD28 levels of 1.25 µg/ml and 
higher, whereas the antibody did not activate MAIT cells on its own (Paper I figure 1E). 
Further, adjusting the number of purified Va7.2+ cells in the assay revealed the optimal 
Va7.2+ cell-to-monocyte ratio at between 1 and 2 (Paper I figure 1F), with decreased MAIT 
cell activation at ratios lower than 1 or higher than 4. Optimization of assay duration showed 
that CD69/IFNg co-expression increases with longer co-culture times, reaching a plateau at 
about 16 hours, although in cells from one of the donors, MAIT cell activation kept 
increasing up to 24 hours of co-culture (Paper I figure 1G). Paper I figure 1H shows an 
optimized assay timeline established following optimization. 

4.1.2 Identification of CD25 expression as readout for MR1-dependent MAIT 
cell activation 

Screening surface markers of activation in MAIT cells exposed to E. coli-pulsed monocytes 
revealed that while CD38, HLA-DR and TIM-3 expression remained little changed, CD69 
and CD25 were both robustly upregulated (Paper I figure 2A). This co-expression of CD69 
and CD25 was inhibited by blocking MR1 (Paper I figure 2B-C), a pattern mirroring that 
seen with CD69/IFNg co-expression (Paper I figure 2D-E). Together, these results establish 
CD69/CD25 co-expression as an alternative readout for measuring MR1-dependent MAIT 
cell activation. Usage of this readout presents an additional advantage in not requiring 
intracellular staining. 

4.1.3 Development of an E. coli-induced MAIT cell proliferation assay 

We next sought to optimize an assay for measuring MAIT cell proliferation in response to E. 
coli (Paper I figure 3, suppl. figure 2). To that end, purified Va7.2+ cells were labeled with 
CellTrace Violet (CTV) prior to being co-cultured with E. coli-pulsed monocytes for 3, 5 or 7 
days. In select assay conditions, anti-CD28 and anti-MR1 antibodies (or relevant isotype 
control) were added to the cells, and IL-2 was added at days 1 and 3 of culture, with anti-
MR1 also added again after 3 days (Paper I figure 3C). Blocking of MR1 inhibited MAIT 
cell proliferation at all assessed time points, regardless of microbial dose (Paper I figure 3A-
B). MAIT cells showed little proliferation regardless of microbial dose after 3 days, whereas 
after 5 days there was a clear difference in expansion index (EI) between microbial doses, 
with the dose of 30 cfu/monocyte resulting in EI of around 2, and the dose of 100 in EI of up 
to 8 (Paper I figure 3B). The longest assay time of 7 days produced the highest EI values of 
up to 45 at the microbial dose of 100 cfu/monocyte (Paper I figure 3B), but also rendered 
CTV peaks difficult to discern (Paper I figure 3A), and thus was deemed suboptimal. We 
observed a slight downregulation of CD161 in proliferating MAIT cells, which however 
rebounded back to baseline levels with more cell divisions (Paper I suppl. figure 2A-B). 
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4.1.4 Development of a MAIT cell cytotoxicity assay 

We next set out to develop and optimize an assay to measure MAIT cell cytotoxicity against 
E. coli-exposed 293T-hMR1 cells. First, the efficiency of bacterial internalization by 293T-
hMR1 target cells was assessed by incubating them with pHrodo Red dye-labelled E. coli for 
3 hours at different microbial doses and measuring fluorescence with flow cytometry (Paper 
I figure 4A-B). pHrodo Red increases in fluorescence in an acidic environment such as the 
lysosomal compartment, and thus fluorescence intensity can be used to assess E. coli 
internalization. The majority of 293T-hMR1 cells internalized E. coli at microbial doses of 30 
cfu/target cell and higher. This microbial dose was selected for use in the following 
experiments. 

MACS-purified Va7.2+ cells were pre-treated with IL-7 for 72 hours to prime MAIT cells for 
cytolytic response (242). Afterwards, they were incubated with E. coli-pulsed 293T-hMR1 
cells at varying effector-to-target cell (E:T) ratios for 24 hours (Paper I figure 4C-D) to 
assess the optimal E:T ratio for cytotoxicity. As readout for target cell death, we used a 
combination of the fluorescent inhibitor of caspases (FLICA) reagent (apoptosis indicator) 
and dead cell marker (DCM). At E:T ratios of 10 and higher, FLICA+DCM+ cells reached a 
plateau of between 70-80% of total target cell number (Paper I figure 4D). To assess the 
involvement of MR1 in MAIT cytotoxicity, we measured target cell death and MAIT cell 
degranulation (assessed by CD107a expression) in the presence or absence of anti-MR1 
blocking antibody at different co-incubation durations (Paper I figure 4E-F). The majority 
of target cells became apoptotic (FLICA+) already after 1 hour of incubation, and the entire 
target cell population was apoptotic by 6 hours of incubation. However, target cell death 
progressed slower, and total target cell death (defined as the whole population being 
FLICA+DCM+) only happened after 24 hours of incubation. MAIT cell degranulation showed 
a similar pattern over time as target cell death, with essentially all MAIT cells becoming 
CD107a+ after 24 hours. Blocking of MR1 partially inhibited the cytotoxic process, with both 
cell death and MAIT cell degranulation occurring at substantially at lower levels than with no 
anti-MR1 blocking antibody added; however, the majority of target cells still became 
apoptotic by the end of the assay duration. The efficiency of blocking of cytotoxicity by anti-
MR1 antibody was not improved by increasing antibody concentration (Paper I suppl. 
figure 3F). This may be caused by the continuous cycling of MR1 between cell surface and 
the endosome (and, possibly, other compartments) (243), or by high MR1 expression on the 
cell surface of 293T-hMR1 cells. 

4.2 MAIT CELLS OF THE ORAL MUCOSA 

MAIT cells can be identified in a variety of mucosal barrier tissues and are implicated in 
functional responses to bacterial infections at those sites (reviewed in section 1.2.3). The oral 
mucosa, a site hosting a rich and unique bacterial microbiome (reviewed in section 1.3), is a 
potential locale for robust MAIT cell activity. To determine the involvement of MAIT cells in 
immune defense of the oral mucosa, we sought to characterize this cell population within the 
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healthy oral mucosal tissue (paper II), and to examine their involvement in a common and 
clinically important disease condition, apical periodontitis (paper III). 

4.2.1 MAIT cells in the healthy buccal mucosa 

4.2.1.1 MAIT cells reside in the healthy buccal mucosa 

We gathered punch biopsies from the buccal mucosa of healthy, 20-50 years old, non-
smoking and non-HIV positive donors. In addition, clinicians collecting the samples 
examined the overall health of the donors’ oral cavities at the time of sample collection 
(appendix 7.2) to avoid sampling of donors with abnormalities stemming from active 
inflammation or disease at the site. 

We were able to identify MAIT cells within the buccal mucosa of all 94 donors evaluated, 
whether by flow cytometry, microscopy, or qPCR analysis (Paper II figures 1A, 1D and 
2E). MAIT cells were usually found close to the basement membrane, although they were 
also present in the epithelium and lamina propria (Paper II figure 1D), and importantly, in 
the same regions where MR1-expressing APCs could be identified (Paper II figure 1E). 
Moreover, CD3+ T lymphocytes also clustered in the same regions (Paper II figure 1F), 
although we did not identify specific subsets. Importantly, the Va7.2+CD161hi definition 
used to identify oral mucosal MAIT cells via flow cytometry defined the same subset as 
staining with an MR1 tetramer loaded with the 5-OP-RU antigen (Paper II figure 1B). 

To determine the relative abundance of MAIT cells in the oral mucosa compared to blood, we 
stained single cell suspensions obtained from processing buccal biopsies for MAIT cells, 
iNKT cells and conventional T cells (Figure 4, paper II figure 1C). Overall, there was no 
significant pattern of differential MAIT cell levels in the oral mucosa compared to blood 
across the cohort, although there was heterogeneity among individual donors where many 
showed different levels in oral mucosal MAIT cells as percentage of CD3+ cells compared to 
blood. For other T cell subsets analyzed, we found buccal mucosal biopsies to be enriched in 
conventional CD8+ T cells and CD4-CD8- T cells and with lower percentage of CD4+ T cells, 
with no difference in iNKT cell content compared to peripheral blood (Figure 4B, paper II 
figure 1C). 

 

Figure 4. (A) Frequency of MAIT cells in the blood and oral mucosa. (B) Frequency of various T cell subsets in 
the oral mucosa in proportion to peripheral blood. ***p<0.01 ****p<0.001 
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4.2.1.2 The oral mucosal MAIT cell population is phenotypically distinct from blood 

Within the oral MAIT cell population, we enumerated CD4+, CD8+ and CD4-CD8- subsets 
(Paper II figure 2A), and identified enrichment of CD4+ and CD4-CD8- subsets and lower 
representation of CD8+ MAIT cells in the oral mucosa compared to blood. Further, we 
analyzed the size of the CD8aa and CD8ab subpopulations within the CD8+ populations of 
MAIT cells and conventional T cells (Paper II figure 2B-D). In both peripheral blood and 
oral mucosa, MAIT cells contained a significantly higher proportion of CD8aa+ cells than 
did conventional T cells, consistent with earlier results (244). However, there was no 
significant difference in the proportion of CD8aa+ cells between the blood and oral mucosal 
MAIT cell populations. MAIT cells formed, on average, 50% of cells in the CD8aa+ T cell 
subset within the oral mucosa (Paper II figure 2D) with significant donor variation, although 
intriguingly, data points appeared to cluster into two separate subpopulations. We were 
unable to identify a specific factor which could explain this phenomenon. 

Furthermore, we used qPCR analysis to determine Ja TCR segment usage in buccal MAIT 
cells, including the three commonly used MAIT cell Jas, the Ja12, Ja20 and Ja33, in six 
donors (Paper II figure 2E). While the pattern of Ja usage in the blood MAIT cells was 
consistent, with dominant involvement of Ja33, lower usage of Ja20, and lowest proportion 
of Ja12, the pattern in oral mucosal MAIT cells was much more varied, with dominant Ja 
inconsistent across the donors. Of particular interest were donors A44 and A60, who 
exhibited either undetectable or low usage of the blood-dominant Ja33 segment and more 
frequent usage of segment Ja12, usually low in the blood. 

4.2.1.3 Oral mucosal MAIT cells exhibit a perforinlow and activated PD-1+ phenotype 

To further characterize the phenotype of the oral mucosal MAIT cell population, we stained 
them for activation markers HLA-DR, CD38 and programmed cell death protein 1 (PD-1) 
(Paper II figure 3A-C). An activated HLA-DR+CD38+ subpopulation was readily identified 
within the oral MAIT cell compartment (Paper II figure 3B). Overall, oral mucosal MAIT 
cells expressed higher levels of HLA-DR as well as the checkpoint inhibition receptor PD-1, 
but lower levels of CD38 than their blood counterparts (Paper II figure 3C), indicating an 
activated phenotype. 

We also measured expression levels of the cytolytic proteins perforin and granulysin, as well 
as the innate-like T lymphocyte master transcription factor PLZF, in MAIT cells from the 
oral mucosa (Paper II figure 3D-E). Oral Mucosal MAIT cells showed no difference 
compared to their blood counterparts in PLZF and granulysin expression, but the expression 
of perforin was significantly lower (Paper II figure 3E). These results suggest that oral 
mucosal MAIT cells exhibit an activated phenotype, with relatively low cytolytic potential. 
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4.2.2 MAIT cells of the oral mucosa can be divided into resident and non-
resident subsets by CD103 expression 

Having identified that MAIT cells are present within the oral mucosal tissue (Paper II figure 
1D,F), we sought to determine whether they express a tissue-resident phenotype. To that end, 
we stained single cell buccal mucosal suspensions with antibodies against tissue residency 
markers CD69 and CD103 for analysis by flow cytometry (Paper II figure 4A-B). We 
identified a substantial CD69+CD103+ subpopulation, along with smaller CD69-CD103+, 
CD69+CD103- and CD69-CD103- subpopulations (Paper II figure 4A). CD69 expression in 
oral mucosal MAIT cells differed quite a lot between donors (ranging from 10% up to 90%), 
but in all donors tested CD69 was higher in oral mucosal MAIT cells than in their blood 
counterparts. CD103 expression ranged from 20% up to 80% of oral mucosal MAIT cells 
with a mean around 50%, compared to less than 5% of blood MAIT cells. Within the CD103+ 
oral mucosal MAIT subset, the majority were also CD69+ (Paper II figure 4B). 
CD69+CD103+ and CD69-CD103+ subpopulations shared a similar CD4/CD8 expression 
pattern, different than the one shared by CD69+CD103- and CD69-CD103- subpopulations 
(Paper II figure 4C). We therefore focused the analysis on the differences between the total 
CD103- and total CD103+ subpopulations (Paper II figure 4D-F). CD103+ oral MAIT cells 
included a significant enrichment of CD8+ cells and lower abundance of CD4-CD8- cells, 
with no difference in CD4+ cells. Within the CD8+ subset, there was no difference in the 
proportion of CD8aa+ cells (Paper II figure 4D). CD103+ mucosal MAIT cells exhibited a 
more activated profile than the CD103- MAIT cells, with higher expression of HLA-DR and 
CD38 (Paper II figure 4E). Finally, the CD103+ oral mucosal MAIT cells expressed lower 
levels of perforin than their CD103- counterparts, whereas PLZF levels showed no difference 
between the two subpopulations (Paper II figure 4F). 

4.2.3 MAIT cells of the oral mucosa are biased towards IL-17 release and 
produce less IFNg than their blood counterparts 

There are several recent observations supporting the notion that MAIT cells located at body 
surfaces have a superior capacity to produce IL-17 when activated (18, 19, 72). To determine 
if oral mucosal MAIT cells express a similar functional profile to those previously described, 
and whether a difference in functional profile between CD103+ and CD103- oral MAIT cell 
subsets exists, we stained single cell suspensions of PMA/ionomycin-activated blood and oral 
mucosal cells for TNF, IFNg, IL-2, IL-17 and granzyme B (GrzB) for analysis by flow 
cytometry (Paper II figure 5). In oral mucosa, as well as in the blood, the majority of MAIT 
cells responded to PMA/ionomycin activation by producing at least one of these proteins 
(Paper II figure 5C). All three populations analyzed (blood, oral CD103- and oral CD103+) 
produced IL-2 upon activation at a similar rate. Interestingly, while it was shown by 
Gherardin et al. that IL-2 production by MAIT cells in the blood is associated with the CD4+ 
subset (244), the enrichment of CD4+ MAIT cells which we observed in the oral mucosa 
(Paper II figure 2A) does not correspond to higher IL-2 production. All three populations 
also produced large amounts of TNF, although the numbers of TNF+ MAIT cells in the blood 
were higher than in both CD103+ and CD103- oral mucosal populations. More blood MAIT 
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cells produced IFNg on activation than in either of the oral mucosal populations, and in fact 
CD103+ oral mucosal MAIT cells did not show any significant increase in IFNg production in 
response to activation, although they did exhibit a low baseline positive IFNg expression level 
even when not treated with PMA/ionomycin. Blood MAIT cells, with the exception of one 
outlier donor, produced little to no IL-17 upon activation, consistent with previous 
observations (79). Meanwhile, CD103+ buccal MAIT cells produced IL-17 at a higher level 
than either their blood, or CD103- mucosal counterparts. Finally, GrzB was released by a 
small proportion of blood MAIT cells upon activation and while neither of the oral mucosal 
MAIT cell subsets showed a significant increase in this marker, activated CD103+ MAIT 
cells released it at a higher level than their activated CD103- counterparts. 

Analysis of the MAIT cell polyfunctionality profile using SPICE 5 software (245) suggested 
a slight preference towards 4- or 5-functionality in CD103+ resident oral mucosal MAIT 
cells, although differences between the analyzed populations were not significant (Paper II 
figure 5D). In terms of specific polyfunctional response profiles, blood MAIT cells mainly 
expressed TNF, alone or in conjunction with other cytokines, whereas CD103+ resident oral 
mucosal MAIT cells mainly expressed IL-17 alone or with other cytokines, and CD103- non-
resident oral mucosal MAIT cells occupied the space in between the other two in terms of 
cytokine preference (Paper II figure 5E). Particularly interesting polyfunctional subsets are 
TNF+IL-2+IL-17+, TNF+IL-17+, IL-2+IL-17+ and IL-17+, all of which are absent or near-
absent from the blood MAIT cell population, but comprising a major part of CD103+ resident 
oral mucosal MAIT cells, and also markedly present in the CD103- non-resident oral mucosal 
MAIT cell population. Worth noting are also IFNg+ polyfunctional subsets, only one of which 
(TNF+IFNg+IL-2+) is present in CD103+ oral MAIT cell population at a level above 5% of 
total activated cells. This analysis, even more than the single-parameter analysis (Paper II 
figure 5B), highlights the bias of tissue-resident oral mucosal MAIT cells towards IL-17 
production. 

4.2.4 Possible involvement of MAIT cells in protection against oral 
candidiasis 

IL-17 is critical in the control of oral candidiasis (23, 25), which is a common opportunistic 
infection in HIV-1 infected patients (134). MAIT cells can mount effector responses against 
the most common culprit, C. albicans (113), and circulating MAIT cells are depleted in the 
blood and lymph nodes of HIV-infected individuals and do not recover due to highly active 
antiretroviral therapy (HAART), in contrast to conventional CD4+ T cells (127-129). 
Notably, while HAART leads to a decrease in active oral candidiasis, it does not significantly 
reduce Candida colonization in HIV-1 infected patients (246). These previous findings, along 
with our identification of oral mucosal MAIT cells as significant local producers of IL-17 
(Paper II figure 5), suggest that MAIT cells may be an important antifungal component of 
the local mucosal immune system in the oral cavity, contributing to control of opportunistic 
pathogens along with elements of the adaptive immune system such as Th9 and Th17 cells 
(23). 
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4.2.5 MAIT cells in apical periodontal lesions 

To determine whether oral mucosal MAIT cells are present in periodontal tissues, we 
measured MAIT cell content in surgically resected gingiva and apical periodontal (AP) 
lesions using PCR for MAIT cell TCR rearrangements (Paper III figure 1). The 
measurements revealed the presence of the three common MAIT TCR rearrangements 
Va7.2-Ja12, Va7.2-Ja20 and Va7.2-Ja33, in AP lesions, at levels significantly higher than 
in adjacent gingival tissue. The Va7.2-Ja33 rearrangement was the most abundant in AP 
lesions, followed by Va7.2-Ja20 and Va7.2-Ja12, similarly to what is normally observed in 
blood (Paper III figure 2). To confirm the presence and identity of MAIT cells in these 
periodontal tissues, we used flow cytometry, following tissue processing and staining 
protocols developed for paper II (Paper III figure 4). Flow cytometric analysis confirmed 
the presence of Va7.2+CD161hi cells in the CD3+ population in both AP lesions and healthy 
gingival tissue, and staining with MR1 tetramer loaded with 5-OP-RU antigen confirmed 
their identity as MAIT cells. Further analysis of CD4 and CD8 expression showed an 
enrichment of CD4+ and reduction of CD4-CD8- MAIT cells within the AP lesions compared 
to healthy gingival tissue (Paper III figure 5). 

A PCR analysis also revealed upregulation of TNF, IFNg and IL-17 gene expression within 
the AP lesions (Paper III figure 3a). We did not determine whether those cytokines were 
predominantly produced by MAIT cells present in the lesions, as the minute tissue amount 
permitted no functional analysis; however, as shown in paper II figure 5, oral mucosal 
MAIT cells readily express TNF and IL-17 upon activation, but not IFNg. 

Further analysis of the MAIT cell population in the lesions could potentially elucidate the 
contribution of these cells to the cytokine release in periodontitis. Measuring the baseline and 
post-activation expression of TNF, IFNg and IL-17, as well as other cytokines, such as IL-22, 
which is associated with chronic periodontitis (247), and which tissue-resident MAIT cells 
can produce (18), in MAIT cells, but also other cell types such as Th17, within the AP 
lesions, would provide valuable information about MAIT cell involvement in disease 
conditions in the oral cavity. Another intriguing question is about the source of MAIT cells in 
AP lesions, or whether they infiltrate from neighboring tissue or from the blood. 
Measurement of the expression of tissue residency markers CD69 and CD103 in MAIT cells 
detected in AP lesions, and their relation to the cytokine expression profile, would provide 
data about the mechanism of MAIT cell recruitment to infection sites at barrier tissues. 

4.2.6 Factors influencing the MAIT cell population in the healthy oral 
mucosa 

As part of the research project into oral mucosal MAIT cells, donors were asked to fill out a 
questionnaire about health and lifestyle parameters which could possibly be linked with the 
oral mucosal T cell compartment (Appendix 7.1). For most of the parameters in this 
questionnaire, we found no association or correlation with the frequency, phenotype or 
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function of the oral MAIT cell compartment. However, some association were found, as 
described in the following paragraphs. 

4.2.6.1 Higher percentage of MAIT cells in the oral mucosa of men than in women 

While there was no difference in the frequency of MAIT cells as percentage of T 
lymphocytes in PBMC between men and women (median for both sexes close to 2%), men 
exhibited a higher frequency of MAIT cells among the oral mucosal T cells than women 
(median around 3% for men, around 2% for women) (Figure 5A). However, the difference 
between frequency of oral and blood MAIT cells in men was below the threshold of 
significance. This suggests a local immune difference between men and women. At the same 
time, oral MAIT cells in men expressed significantly lower levels of CD38 than both their 
blood counterparts and oral MAIT cells of women (Figure 5B). In women there was no 
difference in MAIT cell CD38 expression between the two sites. 

 

Figure 5. Differences in oral mucosal MAIT cells between men and women. (A) Frequency of MAIT cells in 
blood and oral mucosa (B) CD38 expression in blood and oral MAIT cells. *p<0.05 **p<0.01 

Sex differences in susceptibility to disease have long been known, and multiple underlying 
differences in the immune system which may contribute to this have been described (248), 
most likely driven primarily by sex hormones (249). Adult men have a higher blood CD8+ T 
cell frequency than women (248). In the context of mucosal immunity, male patients 
suffering from irritable bowel syndrome had more T lymphocytes in general and CD8+ cells 
within the T lymphocyte population at the gut mucosal barrier than female patients (250). 
Men also showed a Th17 bias compared to women among ankylosing spondylitis patients 
(251). Intriguingly, naïve CD4+ T cells from blood of men are biased towards IL-17 and 
away from IFNg expression compared to those of women (252), a similar phenotype as we 
observed in oral mucosal MAIT cells (Paper II, figure 5). It is possible that a similar bias in 
MAIT cells in men leads to increased IL-17 expressing MAIT cell recruitment to mucosal 
surfaces in response to the local cytokine milieu, particularly IL-6 at the oral mucosal barrier, 
which is known to attract Th17 cells (17), thus resulting in higher oral MAIT cell frequencies 
in men than women. 

CD38 is a multifunctional ectoenzyme with cADP-ribose hydrolase activity present on 
multiple cell types, but in T lymphocytes functionally dependent on the CD3/TCR complex, 
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and can be used as a marker of activation (253). Systemic expression of CD38 in male mice 
is negatively correlated with testosterone levels (254). Interestingly, we observed that mean 
CD38 level in peripheral blood MAIT cells from men tended to be lower than in women, 
although this trend did not reach statistical significance. On the other hand, Meier et al. found 
that CD8+ T cells from women expressed significantly higher levels of CD38 in response to 
higher amounts of IFNa released from DCs activated by HIV-1 derived TLR7 ligands (255). 
Perhaps the difference in CD38 expression by oral mucosal MAIT cells is secondary to sex 
differences in cytokine production by local APCs in the oral mucosa. 

It is also possible that the differences in oral MAIT cells between men and women might be 
related to differences in the oral microbiota. Oral microbiome is affected by female sex 
hormones (256), and oral bacteriome differs between men and women (257, 258) as does the 
oral virome (259). Those differences may bear consequences for MAIT cell migration into 
the oral mucosa and activation status. 

4.2.6.2 Alcohol and Lactobacillus-containing product consumption is associated with the 
frequency and CD8 expression of oral and blood MAIT cells 

Based on frequency of alcohol consumption stated in the questionnaire answers, we divided 
the donors into two groups: those who consume alcohol on at least a weekly basis and rarer 
consumers, including non-consumers. We did the same for Lactobacillus-containing product 
(LCP) consumers, including such products as yoghurt and soured milk (260). Frequent 
alcohol consumers had fewer MAIT cells in the oral mucosa than in the blood, as well as 
fewer oral mucosal MAIT cells than infrequent/non-consumers (Figure 6A). Additionally, 
while we observed lower representation of CD8+ MAIT cells among oral mucosal MAIT 
cells compared to blood across the population (Paper II figure 2), frequent alcohol 
consumers showed further reduced CD8+ MAIT subset in both oral mucosa and peripheral 
blood compared to infrequent/non-consumers (Figure 6B). 

 

Figure 6. Effects of alcohol consumption on blood and oral MAIT cells. (A) Frequency of MAIT cells in blood 
and oral mucosa (B) Frequency of CD8+ cells within the MAIT population. *p<0.05 **p<0.01 ***p<0.001 
****p<0.0001 

We initially considered the possibility that the difference in the oral mucosal MAIT cell 
population in alcohol consumers may be due to the local effect of alcohol. Alcohol has long 
been known as a factor in local oral tissue damage (261). However, we did not observe any 



 

 35 

effect on oral MAIT population in donors reporting use of alcohol-based mouthwash 
(Listerine) versus non-alcohol based (Flux). As alcohol-based mouthwash has previously 
been shown to contribute to development of oral cancer through local tissue effect (262), this 
suggests that the effect of alcohol may be systemic. Additional evidence against local effect 
of alcohol is that alcohol consumption alone does not affect the oral microbiome (263), and 
hence likely secondary immune parameters. Liver damage due to chronic hepatitis C virus 
(HCV) infection causes an irreversible loss and dysfunction of MAIT cells in the blood (239) 
and it is possible that alcohol-induced liver damage may similarly affect the MAIT cell 
compartment at non-liver sites. This possible interpretation is strengthened by our 
observation of a reduced CD8+ MAIT cell population in the blood of frequent alcohol 
consumers, despite that the overall MAIT cell population is maintained. 

 

Figure 7. Effects of combined alcohol and Lactobacillus-containing product (LCP) consumption on the size of 
the CD8+ MAIT compartment in the (A) oral mucosa and (B) peripheral blood. *p<0.05 

Interestingly, we found that the relative loss of oral mucosal CD8+ MAIT cells in frequent 
alcohol consumers was counteracted by the frequent consumption of LCPs (Figure 7A). At 
the same time, contrary to alcohol, LCP consumption had no effect on blood CD8+ MAIT 
cell frequency (Figure 7B). This suggests that the effect of soured milk products is local. 

Lactobacillus species are capable of robust riboflavin synthesis (264) and one could speculate 
that frequent consumption of products containing Lactobacilli may affect oral MAIT cell 
population by local riboflavin metabolite antigen concentration. While Lactobacilli are 
present at various sites in the oral cavity, including the epithelial surface, they are less robust 
colonizers than many keystone oral microbes (265). However, oral application of 
Lactobacillus-containing preparations enables their efficient colonization and growth at sites 
throughout the body (266), suggesting that frequent consumption could maintain a higher 
Lactobacillus representation within the mucosa. Another explanation for the increased CD8+ 
oral mucosal MAIT cell population might be that Lactobacillus species, which are known to 
efficiently inhibit growth of multiple bacterial pathogens (155, 267, 268), act by maintaining 
a healthy oral microbial composition, thus preventing oral MAIT cell exhaustion and 
activation-induced loss of CD8 expression. The same effect can be mediated by Lactobacillus 
strains dampening local MAIT cell activation (269). The possibility of reduced MAIT cell 
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activation is supported by the observation that LCP consumption did not affect total oral 
MAIT cell frequency. 

4.3 BACTERIAL PROFILE OF APICAL PERIODONTAL LESIONS 

As part of the research presented in paper III, we identified bacterial taxa associated with 
periodontal lesions to elucidate their correlation to patient data and possible involvement in 
MAIT cell activation. 

4.3.1 Total bacterial load in AP tissues 

Measuring 16S rRNA gene copy number by qPCR indicated similar levels of bacteria present 
in control and AP tissue (Paper III figure 3b). However, in AP tissue with fistulas, 16S gene 
copies were about 10 times more numerous than in control tissues, and a weak positive 
correlation was found between 16S gene copy number and patient age in AP tissues (Paper 
III table 1A). 

4.3.2 Similar microbial composition between AP and control tissues 

We next analyzed the microbial composition of AP and control tissues through 16S rRNA 
gene-based microbiome sequencing, grouping the data at phylum and genus levels (Paper III 
figures 6-9). In terms of phyla, dominant taxa in both AP and control tissues were 
Proteobacteria, Bacterioidetes, Firmicutes, Fusobacteria, Spirochaetes and Synergistetes; no 
difference was found in the relative abundance of taxa between AP and control tissues 
(Paper III figures 6 and 8). At the genus level, dominant taxa in both AP and control tissues 
were Burkholderia-Paraburkholderia, Pseudomonas, Achromobacter and Fusobacterium 
with, similarly to phyla, no significant differences in relative abundance between AP and 
control tissues (Paper III figures 7 and 9). We also observed a large variation between 
patients in microbial composition of AP lesions. 

4.3.3 IL-17+ MAIT cell involvement in immune reaction in AP lesions 

Next, we sought to elucidate the potential availability of riboflavin-producing bacterial taxa 
in the AP lesions that could be potential sources of MAIT cell-activating antigens at the site 
(Paper III figure 10). We found that the cumulative relative abundance of riboflavin-
producing bacterial taxa (identified in paper III table 3) was significantly higher in AP 
tissues than in control tissues (Paper III figure 10a). Furthermore, the riboflavin 
biosynthesis pathway gene RibD was expressed at a higher level in AP lesions than in control 
tissues (Paper III figure 10d), even though other genes from the same pathway, RibA and 
RibC, were not (Paper III figure 10b-c). 

We then used sparse partial least squares discriminant analysis (sPLS-DA) to identify 
correlations between TCR and cytokine expression levels and bacterial taxa abundance 
(Paper III figure 11). In total, we found 23 different bacterial taxa which were negatively 
correlated to Ca, Va7.2-Ja33 and IL-17A expression within AP lesions. Of those, the 
majority were identified as riboflavin producers (Paper III table 3). Together, the data 
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suggest that MAIT cell antigens are present within AP lesions, and that MAIT cells function 
as local IL-17 producers that may be involved in the pathogenesis of AP. 

4.4 HSV1 AND INKT CELLS INFLUENCE IL-15 EXPRESSION PROFILE IN 
INFECTED KERATINOCYTES 

4.4.1 Upregulation of the IL-15/IL-15Ra complex in HSV1-infected 
keratinocytes 

4.4.1.1 The IL-15/IL-15Ra complex is upregulated in human keratinocytes shortly after 
HSV1 infection at both mRNA and protein levels 

It was previously shown that expression of IL-15 is upregulated in HSV1-infected human 
monocytes (209). Since skin keratinocytes are usually the first cell type infected in the course 
of primary HSV1 infection, we investigated the dynamics of IL-15 and IL-15Ra expression 
in the human immortal keratinocyte cell line HaCaT. We infected HaCaT cells with HSV1 
strain F virus for 6, 12 or 18 hours and found that the surface expression of both IL-15 and 
IL-15Ra was progressively upregulated. At the early 6 hours post infection (hpi) time point 
IL-15 was upregulated by about 50% and IL-15Ra not at all at, while at 18 hpi both IL-15 
and IL-15Ra surface expression was upregulated to between 4 and 5 times the level seen in 
uninfected cells (Paper IV figure 1B). We also found that IL15 and IL15RA mRNA was 
upregulated at 3 hpi, albeit IL15 only by about 30% and IL15RA at over 2 times compared to 
uninfected cells (Paper IV figure 1C). Together, these results show that HSV1 infection 
induce IL-15/IL-15Ra complex expression both at mRNA and at surface protein levels. This 
induction in vivo may play a role in the local immune response to primary HSV1 infection 
(reviewed in section 1.4.2.3), and could also play a secondary role as a proliferative signal to 
self- or neighboring keratinocytes in order to restore barrier integrity, as IL-15 induces 
epidermal proliferation in HaCaT cells (270). 

4.4.1.2 TLR3 is involved in the upregulation of IL-15Ra 

In HSV1-infected monocytes, IL-15 upregulation is induced by TLR2 (209). However, IL-
15 is produced in response to various stimuli depending on cell type (60, 271-273), and we 
thus investigated the mechanism involved in IL-15/IL-15Ra upregulation in HSV1-infected 
HaCaT cells (Paper IV figure 2). HSV1-induced IL-15Ra expression was partially 
blocked by the addition of bafilomycin A1, which inhibits endosome acidification and is an 
indirect inhibitor of endosome-associated PRRs (Paper IV figure 2A). This suggested that 
such PRRs might be involved. HSV1 is known to be detected by TLRs 2, 3 and 9, aside 
from cytosolic DNA sensors (179-183). We first screened HaCaT cells for TLR expression 
by qPCR (Paper IV figure 2B and suppl. figure 1) and found high level of TLR3, low 
levels of TLR2 and no TLR9 expression. Further, we treated HaCaT cells with zymosan 
(TLR2 ligand), poly(I:C) (TLR3 ligand) and E. coli DNA (TLR9 ligand) (Paper IV figure 
2C). Of the three, only poly(I:C) induced upregulation of IL-15Ra, with no effect on IL-
15Ra expression induced by either zymosan or E. coli DNA. 
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To further investigate if IL-15Ra upregulation by HSV1 is indeed dependent on TLR3, we 
treated HSV1-infected HaCaT cells with the specific TLR3 inhibitor Cu CPT 4a or the NF-
kB inhibitor TPCA-1 (Paper IV figure 2D-E). We found that HSV1-induced upregulation of 
IL-15Ra surface expression at 15 hpi was completely blocked by both inhibitors, acting 
either alone or together. Similarly, at the transcriptional level, induction of IL15RA mRNA at 
3 hpi was inhibited by these inhibitors both in HSV-1 infected and poly(I:C)-treated cells. 
Those results confirm that IL-15Ra upregulation in HSV-1 infected keratinocytes is driven 
by TLR3 recognition and signaling. 

While the results presented here contrast with previous research in human monocytes by 
Ahmad et al., which indicated TLR2 as the driver of IL-15 upregulation in HSV1 infection 
(209) it should be noted that IL-15 is upregulated by DCs in response to poly(I:C), which 
points to TLR3 involvement (273). As infected keratinocytes in the skin can be expected to 
exhibit similar APC responses as local DCs, engagement of this signaling pathway may be 
involved in primary skin HSV1 infection. 

4.4.2 HSV1 downregulates IL-15/IL-15Ra expression in a viral replication-
dependent manner 

4.4.2.1 The IL-15/IL-15Ra complex is downregulated in human keratinocytes at later 
timepoints in HSV1 infection 

To investigate the dynamics of IL-15/IL-15Ra expression in HSV1 infection further, we 
measured surface expression of IL-15 and IL-15Ra, as well as IL15 and IL15RA mRNA 
levels, over a 36 hour infection time course (Figure 8, paper IV figure 3A-B). We found 
that after peaking at 18 hpi (for surface protein expression), or 3 hpi (for mRNA expression), 
both surface protein and mRNA levels declined to levels below those in uninfected cells. 
Moreover, measurement of levels of intracellular IL-15/IL-15Ra during a time course assay 
through a late 48 hpi time point revealed that intracellular protein was also severely 
downregulated to about 5% of uninfected control levels for IL-15 and about 45% of 
uninfected control levels for IL-15Ra (Paper IV figure 3C). 

 

Figure 8. Dynamics of IL-15/IL-15Ra complex surface expression over 36 hours of primary HSV1 infection. 
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4.4.2.2 The downregulation of the IL-15/IL-15Ra complex is dependent upon HSV1 
replication 

To determine whether the downregulation of the surface IL-15/IL-15Ra complex is 
dependent on viral factors, we measured levels of surface IL-15Ra in HaCaT cells treated 
with poly(I:C) for 18 and 36 hours (Paper IV figure 3D). After 36 hours of poly(I:C) 
treatment, surface IL-15Ra returned to levels similar to untreated control, but did not go 
lower. This suggested that a viral mechanism might be driving IL-15/IL-15Ra surface 
downregulation at later time points. In order to investigate this possibility, we measured 
surface levels of IL-15 and IL-15Ra in HSV1-infected HaCaT cells treated with 
phosphonoacetic acid (PAA) or acyclovir, inhibitors of viral replication and late gene 
expression (274, 275) (Paper IV figure 3E-F). We observed at least partial inhibition of 
HSV1-driven IL-15Ra surface downregulation in cells treated with either agent, as well as 
inhibition of IL-15 downregulation in cells treated with acyclovir. This suggests that IL-
15/IL-15Ra complex downregulation in HSV1-infected keratinocytes at later time points is 
caused by an active viral mechanism dependent on viral DNA replication. 

The loss of intracellular protein may be due to several factors. For example, surface-bound 
protein may be released from the surface. However we have not detected any IL-15 in the 
supernatant of HaCaT cells in the HSV1-infection assays. Another possibility is that the IL-
15/IL-15Ra complex may be degraded. Under normal conditions, the complex recycles 
through the endosome back to the surface, and IL-15Ra, which is not ubiquitinylated, 
protects the complex from degradation (276). However, in HSV1 infection, two possibilities 
for protein degradation are present. First, HSV1 infection induces an autophagic reaction, 
which leads to degradation of both viral and cellular proteins (277). Second, the viral protein 
ICP0 has a robust ubiquitin E3 ligase activity, which is known to target various host cell 
proteins for proteasomal degradation (278). Either of those processes may lead to degradation 
of existing IL-15/IL-15Ra and, in the absence of new protein being produced, depletion of 
the complex altogether. 

4.4.3 iNKT cells maintain the IL-15/IL-15Ra upregulation in HSV1-infected 
keratinocytes through IFNg release 

iNKT cells are known to play a part in the immune response to HSV1 (reviewed in section 
1.4.2.2). Previous research has shown that HSV1-infected primary keratinocytes do not 
downregulate CD1d and retain the ability to activate iNKT cells (194). In the HaCaT 
keratinocyte cell line, we found that CD1d is not significantly downregulated by HSV1 
infection at either early or late time points (Paper IV figure 4A), and thus the cells may 
retain the ability to activate iNKT cells through TCR engagement. To determine whether 
iNKT cells are capable of influencing the dynamics of IL-15/IL-15Ra, we co-cultured them 
with infected HaCaT cells for 18 and 42 hours in the presence or absence of anti-IFNg 
blocking antibody (Figure 9, paper IV figure 4B). We found that in the presence of iNKT 
cells, infected HaCaT cells at 42 hpi maintained the level of IL-15Ra expression seen at 18 
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hpi. Furthermore, the addition of anti-IFNg blocking antibody significantly reduced that 
effect. 

 

Figure 9. IL-15Ra expression on HaCaT cell surface at 42h post infection (relative to 18h). *p<0.05 **p<0.01 

IFNg is robustly produced by iNKT cells in response to CD1d-presented antigen (279) and 
thus IFNg in the co-culture might have been effected by TCR engagement by HaCaT cells 
presenting endogenous danger signal antigen on CD1d. However, IL-15 can itself induce 
IFNg production in DCs, NK cells, T lymphocytes and ILCs (5, 273, 280, 281), and an 
interesting possibility is that keratinocyte-produced IL-15 and iNKT-produced IFNg could 
take part in a positive feedback loop in response to HSV1 infection. 

IL-15 induction is normally associated with type I interferons IFNa and b (272), rather than 
IFNg. However, in human keratinocytes, IFNg induces IL15 mRNA expression and IL-15 
release into the supernatant (60) and in monocytes, IFNg stimulation results in upregulation 
of surface-bound IL-15 specifically (282). This is similar to what we observe in 
keratinocytes, suggesting that iNKT-produced IFNg may counteract HSV1-driven 
downregulation of IL-15 by inducing its expression. Such mechanism however might be in 
turn inhibited by viral immune evasion mechanisms blocking the protein synthesis machinery 
of the infected cell (reviewed in section 1.4.3). Another way of IFNg-induced maintenance of 
IL-15 upregulation in infected keratinocytes might be through interference with viral 
infection progress. IFNg slows down HSV1 infection progress by inhibiting viral replication 
through induction of nitric oxide synthase (283, 284). As our results show, IL-15/IL-15Ra 
downregulation is dependent on HSV1 replication (Paper IV figure 3 E-F). The presence of 
iNKT cells also slows down the progress of infection in vitro (Paper IV figure 4C). These 
findings suggest that IL-15/IL-15Ra upregulation in infected keratinocytes might be 
maintained by iNKT cell-produced IFNg by blocking viral replication, while the upregulation 
itself might still be driven by TLR3 signaling, or through synergy with IL-15 production 
induced by IFNg. The paper’s findings are summarized in paper IV figure 5. 

4.4.4 Possible clinical application of iNKT cell activation in treatment of 
drug-resistant HSV1 infection 

HSV1 infection usually carries low risk of complications, but it can involve serious acute 
symptoms, and cause potentially lethal neurological disease, in the elderly and 
immunocompromised, particularly in patients suffering from TLR3 deficiency (168, 184). 
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Thus, effective treatment strategies against primary and recrudescent HSV1 infection are 
necessary. The most common treatment in HSV1 infection is acyclovir, and several other 
antiviral drugs can be used, but single- and multidrug-resistant HSV1 strains cause problems 
in clinical care (285). Alternative treatment strategies are being actively sought, and proposed 
strategies include novel synthetic pharmaceuticals, naturally occurring antivirals, and 
antibody-based immunotherapy (286-289). A viable alternative might be cell-based 
immunotherapy. In the research presented here, we have shown that iNKT cells can slow 
down progress of HSV1 infection in keratinocytes (Paper IV figure 4C), and potentially 
induce upregulation of surface IL-15 through IFNg release (Paper IV figure 4B), thus 
contributing to the broader immune response against HSV1, known to be dependent on IL-15 
signaling (196, 208). Activation of iNKT cells through local administration of aGalCer is 
thus one possible anti-HSV1 treatment strategy. Using aGalCer as a vaccine adjuvant has 
been shown to enhance antiviral protection (197, 290), and in fact Iversen et al. demonstrated 
that local administration of aGalCer conveys protection against intravaginal HSV2 infection 
in mice by iNKT expansion and activation (103). This research, together with the iNKT-
HSV1 interaction explored herein, raises the possibility of using aGalCer or other CD1d-
presented antigens to treat drug-resistant HSV1 infection in susceptible patients. 
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5 CONCLUSIONS AND FUTURE OUTLOOK 
In this thesis project, we aimed to characterize the involvement of MAIT cells and iNKT cells 
in the immune defense of two body barrier tissues, oral mucosa and skin. This involved 
developing methods to study MAIT cell responses, characterization of oral MAIT cells in 
health and periodontal disease, and analysis of iNKT cell involvement in the immune 
response against primary HSV1 infection. 

In paper I, we established a standardized methodology for in vitro analysis of MAIT cell 
activation, cytokine production, proliferation, and cytotoxicity in response to bacterial 
antigens. The assays, optimized for measuring responses to E. coli, can be adapted to involve 
other pathogens and APCs. In the context of oral mucosal MAIT cell responses, this can 
involve specific local pathogens, like C. albicans or P. gingivalis. 

In paper II, we performed the first comprehensive characterization of the MAIT cell 
population in the oral mucosa. We discovered that buccal mucosal MAIT cells exhibit an 
activated, perforinlow phenotype, and that the major CD103+ resident MAIT cell 
subpopulation is biased towards IL-17 production. Further characterization of the tissue 
resident MAIT cell population in the oral mucosa and other barrier tissues may identify 
multiple cell subsets exhibiting different surface markers and distinct functionality. Of 
particular interest is the epithelial tissue residency marker CD49a, which defines an IFNg+, as 
opposed to IL-17+ population in the conventional CD8+ TRM cells in the human skin (6). 
Identification and investigation of distinct polyfunctional subsets of tissue resident MAIT 
cells may shed more light on MAIT cell involvement within the body barrier immune 
network. 

Additional data was collected to investigate associations between the characteristics of oral 
mucosal MAIT cells and a variety of health and lifestyle variables provided through self-
reporting by tissue donors. We identified differences in the abundance and activation status of 
steady-state oral MAIT cells between men and women, as well as the correlation between 
alcohol and Lactobacillus-containing product consumption and the local oral mucosal MAIT 
cell population. These data provide some leads on possible variables influencing the 
development of diseases affecting the oral mucosa, in particular ones where MAIT cell 
involvement can be identified. 

In paper III, we sought to identify the involvement of MAIT cells in a common and 
clinically important oral disease, apical periodontitis. MAIT cells were present within the AP 
tissues analyzed, as shown by either qPCR analysis or flow cytometry, and the local cytokine 
signature, as defined by qPCR, pointed to cytokines characteristic of MAIT cell responses. 
Additionally, the abundance of bacterial taxa expressing MAIT cell antigens was negatively 
correlated to MAIT cell and cytokine signatures, pointing to an active involvement of MAIT 
cells in the maintenance of AP lesions studied here. Further in-depth studies will lead to 
further understanding of MAIT cell involvement in recognition and elimination of AP-
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associated microbiota, as well as their origin (migration from blood or from neighboring 
mucosal tissue) and their effector function profile. 

In paper IV, we investigated human keratinocyte expression of the IL-15/IL-15Ra complex 
in response to HSV1 infection, and the iNKT cell involvement in its control. We found that 
the IL-15/IL-15Ra complex is upregulated by HSV1-infected keratinocytes in a TLR3-
dependent manner, and that this upregulation is counteracted by a viral mechanism dependent 
on viral replication. In turn, iNKT cells are able to inhibit the virus-driven IL-15/IL-15Ra 
downregulation through IFNg release. This study lays the groundwork for the identification 
of a possible novel viral immune evasion mechanism specifically targeting IL-15 expression 
in infected cells, a cytokine which is critical in the immune response against the virus (196). 
In addition, the study sheds light on the specific role of iNKT cells in the control of HSV1 
infection, a role which until now had been incompletely characterized. 

Invariant innate-like T lymphocyte populations are present in tissue sites across the human 
body, and have been implicated in the immune response to a number of bacterial and viral 
infections, as well as being associated with some autoimmune and inflammatory conditions. 
The field of invariant T cell immunology has been growing steadily since their original 
discovery, and the work presented in this thesis represents a significant contribution to the 
understanding of role these T cell subsets play in the immune defense at body surfaces. 
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7 APPENDIX 
7.1 HEALTH AND LIFESTYLE QUESTIONNAIRE 

 

  

Institutionen för odontologi, Karolinska Institutet, Alfred Nobels Alé 8, 141 04, Huddinge 
Institutionen för medicin, CIM och Gastrocentrum, Karolinska Institutet, F59, 14186 Huddinge 

Questionnaire 

 
Your name:____________________________________________________________ 
 
 

Sex	 	 Age	 	
Height	 	 Weight	 	

     
Please provide your answer below by indicating Yes (Y) or No (N)  
  
General health 
Are you taking any medication? (Y/N)    
 If Yes, please indicate which ………………………………………………………….. 
Have you taken any antibiotics in the past 3 months? (Y/N)  
 If Yes, please indicate which and duration…………………………………………… 
Do you use vitamin supplements? (Y/N) 
 If Yes, please indicate which and frequency…………………………………………… 
Do you suffer from any allergies/chronic inflammatory conditions? (Y/N)  
 If Yes, please indicate which …………………………………………………………… 
Have you had any infections in the past 3 months? (Y/N)  
 If Yes, please indicate which …………………………………………………………… 
 
Smoking and food habits 
Do you smoke? (Y/N) 
 If yes, how many cigarettes a day? (NUMBER) Which brand(s)?................................... 
Do you use snus? (Y/N) 
 If yes, how many times a day? (NUMBER)……………………………………………. 
Do you drink alcohol? (Y/N) Alcohol type/content? 
 If yes, how often? (daily/weekly/monthly)……………………………………………… 
Do you eat yoghurt, filmjölk, or other products containing “good bacteria”? (Y/N) 
 If yes, please indicate which products ………………………………………………… 
 And how often…………………………………………………………………………. 
Do you eat any other foods based on fermentation processes (e.g. mozzarella, chorizo, 
surkål)? (Y/N/Don’t know)  
 If yes, please indicate which products ………………………………………………… 
 And how often…………………………………………………………………………. 
Are you vegetarian? (Y/N) 
 
Oral hygiene 
How many times a day do you brush your teeth? (NUMBER) …………………………. 
Do you use mouthwash? (Y/N) 
 If yes, what brand and how often?…………………………………………………… 
Have you had any dental treatment the past 3 months? (Y/N) 
 - If yes, which treatment did you receive……………………………………………. 
Have you had mouth ulcers the past 3 months? (Y/N) 
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7.2 CLINICAL PROTOCOL 

Institutionen för odontologi, Karolinska Institutet, Alfred Nobels Alé 8, 141 04, Huddinge 
Institutionen för medicin, CIM och Gastrocentrum, Karolinska Institutet, F59, 14186 Huddinge 

MAIT Study: Clinical Protocol        Date for biopsy:………………………. 

 

Patient 

1. Patient code: ………………… 

2. Ethnic origin: Europe (    )    Africa (  )      Asia  (    )  

 

Sampling procedure 

3. Anesthesia:  Nerve block (  )   Infiltration (   )   Xylocain-Adrenalin(   )  

4. Punsch (   )    Scalpel (    ) 

5. Total number of biopsies (    ) Mark excision site(s) below: 

 

Biopsy data 

6. Inflammation grade:  0 (  )healthy,    1 (  )erythema,      2 (  )erythema/ulcer,   3 (  ) 

erythema/ulcer/psuedomembrane 

7. Diagnosis Mucosa:…………………………………………………………… 

8. Diagnosis Dental:…………………………………………………………….. 

9. Diagnosis Medical, if applicable…………………........................................... 

10. Clinician´s name: …………………………………………………………….. 
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