

 M. Irshad, H. al-Khateeb, A. Mansour, A. Ashawa, and M. Hamisu, “Effective methods to detect metamorphic
malware: A systematic review”, International Journal of Electronic Security and Digital Forensics, vol. 10, no. 2,
pp. 138–154, 2018, ISSN: 1751-9128. DOI: 10.1504/IJESDF.2018.090948. [Online]. Available:
https://doi.org/10.1504/IJESDF.2018.090948.

Effective Methods to Detect Metamorphic Malware: A
Systematic Review

Mustafa Irshad, Haider M. al-Khateeb*, Ali Mansour*, Moses Ashawa, and

Muhammad Hamisu

School of Computer Science and Technology

University of Bedfordshire

University Square, Luton, Bedfordshire, LU1 3JU, UK.

Email: mustafa.irshad@beds.ac.uk

Email: haider.alkhateeb@beds.ac.uk

Email: ali.mansour@beds.ac.uk

Email: moses.ashawa@study.beds.ac.uk

Email: muhammad.hamisu@study.beds.ac.uk

*Corresponding authors

Abstract – The succeeding code for metamorphic Malware is routinely rewritten to

remain stealthy and undetected within infected environments. This characteristic is

maintained by means of encryption and decryption methods, obfuscation through

garbage code insertion, code transformation and registry modification which makes

detection very challenging. The main objective of this study is to contribute an

evidence-based narrative demonstrating the effectiveness of recent proposals. Sixteen

primary studies were included in this analysis based on a pre-defined protocol. The

majority of the reviewed detection methods used Opcode, Control Flow Graph (CFG)

and API Call Graph. Key challenges facing the detection of metamorphic malware

include code obfuscation, lack of dynamic capabilities to analyse code and application

difficulty. Methods were further analysed on the basis of their approach, limitation,

empirical evidence and key parameters such as dataset, Detection Rate (DR) and

False Positive Rate (FPR).

Keywords – Metaphoric malware; Malware Detection; Review; Opcode; Control Flow

Graph; API Call Graph

Biographical notes: Mustafa Irshad is a researcher in cyber security, he has MSc in

Computer Networking from the University of Bedfordshire, UK.

Haider M. al-Khateeb specialises in Cyber Security and Digital Forensics. He holds a first-

class BSc (Honours) in Computer Science and PhD in Cyber Security. He is a university

lecturer, researcher, trainer and a Fellow of the Higher Education Academy (FHEA), UK.

He is a lecturer in the School of Computer Science and Technology and conducts research

within the Institute for Research in Applicable Computing (IRAC), University of

https://doi.org/10.1504/IJESDF.2018.090948
mailto:mustafa.irshad@beds.ac.uk
mailto:haider.alkhateeb@beds.ac.uk
mailto:ali.mansour@beds.ac.uk
mailto:moses.ashawa@study.beds.ac.uk
mailto:muhammad.hamisu@study.beds.ac.uk

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 2

Bedfordshire. He is also an associate lecturer for QA Ltd. He supervises students at

MSc/MPhil and PhD levels at these institutes.

Ali Mansour is a Senior Lecturer in Computing and Information Systems at the University

of Bedfordshire. He has a BSc (Honours) in Computer Studies from Sheffield City

Polytechnic (now Sheffield Hallam University) in 1987, and PhD in Computer Science

from the University of Sheffield in 1990. He is a Fellow of the British Computer Society

(FBCS), an Engineering Council Chartered Engineer (CEng), BCS Chartered IT

Professional (CITP) and a Fellow of the Higher Education Academy (FHEA). His research

areas are in Cyber Security, Networking, e-learning, and Medical informatics.

Moses Ashawa is a System Analyst at the Federal Ministry of Communication and

Technology, Nigeria. He has a BSc (Honours) in Computer Science from Benue State

University Makurdi, Nigeria, and MSc in Computer Security and Forensics (Distinction)

from the University of Bedfordshire, UK. His keen interest is in Digital Forensics and

Cyber Security.

Muhammad Hamisu hold a Bachelor of Engineering degree (B.Engr.) in Computer

Engineering from Bayero University Kano, Nigeria in 2012, and an MSc in Computer

Security and Digital Forensics (Distinction) from University of Bedfordshire, UK.

I. INTRODUCTION

The habit of downloading unknown files over the Internet seem to be the key reason for

infecting computer systems with Malware. Malicious software has the potential to infect

system files, write extreme data on adjacent memory, leading to buffer overflow, and

change codes of other executable files. History of Malware evolution shows that many

malicious software were written for fun or testing software behaviour. However, state-of-

the-art malware is also developed for financial gain (Alam et al., 2014c), political

influence, enabling anti-social behaviour such as cyberstalking (al-Khateeb et al., 2016),

or to sabotaging the defence systems of a country. Consequently, malware coding became

extremely sophisticated. Figure 1 demonstrates a simplistic view of malware evolution

since the 1970s (Rad et al., 2012).

Figure 1. Malware evolution

Since the first malware written in the last century, a rivalry has started between defenders

(e.g. researchers) and malware developers who continue to adopt new evasion techniques

(Sharma and Sahay, 2014).

A first-generation malware is relatively easy to identify using traditional antivirus

software. Detection in this case requires a library of static byte-signatures, hash-signatures

and any code or strings depending on the technique used. Signatures of malicious files are

stored in database files (.mdb, .idb, etc.) to facilitate the detection process. Infected files

No Stealth

1970s

Encrypted

1987

Oligomorphic

1990

Polymorphic

1990

Metamorphic

1998

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 3

are usually quarantined and could also be moved to a Sandbox for further analysis.

Signature-based scanning is considered fast compared to non-signature-based detection. In

contrast, malware writers nowadays use obfuscation techniques to evade detection (Karim

et al., 2005). These techniques can be classified into pattern-based, content-based and

protocol based methods. Their functionality includes the insertion of garbage code,

changing the execution order of instruction, automatically regenerated code (through a

metamorphic engine) and variable renaming (Christodorescu and Jha, 2004). This mutation

capability of code is called ‘metamorphism’ in which the program changes the structural

properties of the executable without any change in behaviour. Metamorphic malware is

therefore a software program with the capability to change its code and signature on its

propagation. It has its own encrypted virus-body coated with a decryption routine, both of

which are changed in the propagation phase. Therefore, current antivirus programs have

difficulties detecting this type of malware (Lyda and Hamrock, 2007).

Nonetheless, various methods, frameworks and detection systems have been

proposed to encounter obfuscation techniques with the majority utilising Opcode

Sequence, Control Flow Graph, N-gram and API Calls (as shown in Table 1). While every

approach has its own benefits and limitation, a hybrid method combining two or more of

these could overcome some of the challenges and increase performance. These methods

perform static analysis prior to any file execution. Then, the process extracts Opcode and

Bytecode sequences, and generate graphs by disassembling the file (Egele et al., 2012).

Static analysis is considered robust yet suffers when the source code of the file is not

available. Further, it does not have the ability to identify new malware (Wu et al., 2011).

On the other hand, dynamic analysis does not rely on the code. Instead, it monitors the

behaviour of the file during its execution in a Sandbox, which is a securely restricted

environment to facilitate the analysis of unknown or untrusted files (Egele et al., 2012).

Behaviour is more unique and consistent compared to the static features of a malicious file,

it could therefore help to thwart the different variants of Malware and declare their

obfuscation techniques irrelevant (Dai and Kuo, 2007). However, behavioural analysis is

relatively more resource consuming, lengthy and could result in many false-positives

(Fukushima et al., 2010). Hence, an integrated system balancing the trade-off between

instant detection and long-term detection procedures could lead to effective and efficient

solutions for metamorphic malware (Shijo and Salim, 2015).

 The remaining parts of this paper are organised as follows: Section II shares the

methodology and protocol used for this systematic literature review. Section III contains

detailed critical analysis of the detection techniques surveyed. Finally, conclusions and

further discussions are stated in Section IV.

II. METHODOLOGY

A systematic review is conducted with reference to the comprehensive guidelines

published by Kitchenham and Charters, (2007). We aim to implement unbiased protocol

to include recent studies on metamorphic malware detection. The following sections

elaborates further details on the research questions, data selection and extraction strategy.

A. Research questions (RQs)

RQs. What type of detection techniques and methods have recently been presented and

tested for metamorphic malware detection? Which of these techniques is more effective in

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 4

detecting metamorphic malware? And what are the key challenges facing the detection

process?

We address these RQs with a critical analysis of the included studies.

B. Inclusion and exclusion criteria

Papers matching the following conditions will be included in this study:

✓ A recent study published within the last 5 years

✓ Papers must present a novel malware detection technique

✓ Papers must present empirical evidence e.g. statistics for evaluation purposes

Papers matching the following conditions will then excluded:

 Non-peer reviewed papers such as descriptive reports and technical reports

 Abstracts, editorials, and books.

 Papers not written in English.

 Papers focusing on malware classification methods.

C. Data Source and Search Strategy

Robust and popular databases covering the discipline of computer science and technology

had been selected to be the data sources, these were: IEEE Xplore, ACM DL, Springer,

Science Direct, and Scopus. Included studies have been published between January 2010

and June 2015. Logical operators ‘AND’ and ‘OR’, and Search keywords related to the

proposed research question and topic were used; ‘Metamorphic’, ‘Malware’, ‘Virus’,

‘Detection’, ‘Method’, ‘System’ and ‘Technique’. Targeted fields were the Title, Abstract,

and Keywords. Advance search options were applied to enforce inclusion and restriction

criteria such as publication time and article type. We have also examined the bibliographies

of selected studies.

D. Primary Study Selection Process

The selection process was performed on the databases and reviewed by the authors

accordingly. First, the retrieved number of filtered articles pulled from the databases was

113. These articles were then taken to the next process. Second, Title and abstract base

Selection: the examination was scoped at these two parts for each article. When there was

doubt, the article was included for the next phase. A total of 37 articles remained. And

finally, Full Text Selection: Remaining articles were thoroughly read. A total of 21 articles

were discarded, leaving 16 key articles most of which seem to have come from IEEE.

E. Data extraction

Data to be extracted from included studies will be: Article type (Journal, Conference, etc.);

citation details; technique used; experimental results (e.g. Detection Rate (DR), False

Positive Rate (FPR), and dataset size); strengths and limitations; and any technical

challenges reported.

F. Evaluation measures

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 5

The effectiveness of the proposed malware detection methods can be measured by means

of DR and FPR. Hence, it is also important to highlight the following:

• True Positive (TP). The number of correctly identified malicious files as malware.

• False Positive (FP). The number of incorrectly identified benign files as malware.

• True Negative (TN): The number of correctly identified benign files as benign.

• False Negative (FN): The number of incorrect identified malware files as benign.

• And DR = TP/ (TP+FN), while FPR = FP/ (TN+FP) (Alam et al., 2014c).

F. Quality assessment threshold

A list of quality assessment questions facilitated the evaluation of primary studies in this

systematic review. Studies must satisfy all the following threshold criteria with a ‘yes’:

1- Are the study objectives stated clearly?

2- Does the evaluation fulfil the purpose of the primary study?

3- Is the conclusion supported by empirical evidence?

4- Are the methods specified for data analysis and collection thoroughly described?

5- Were the DR or FPR reported?

III. Analysis of detection techniques

Included studies recovered various detection techniques, the sample have been analysed in

Table 1, while main themes conceptualised in Figure 2 and discussed in the remaining

subsections.

Figure 2 Metamorphic Malware Detection Approaches. References included in our review are

discussed for each of these categories in the following subsections A to E.

A. Operational Code (Opcode)

An executable program is a construction of a series of machine language instructions.

These instructions are composed of a pair; mostly a list of operands and operational code.

Opcode is the portion of the code that specifies the operations while Operands (the data to

be processed) could provide extra information about the executable files (Zolotukhin and

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 6

Hamalainen, 2014). The source code of a given software, including Opcode, is more

consistent and therefore suitable to produce signatures for malicious software-classes

compared to compiled code. However, processing overhead (Carrillo and Lipman, 1988;

Santos et al., 2013) and compiler optimisation (Alam et al., 2014a) are examples of

challenges to be addressed when Opcode detection is utilised. Further, Opcode distribution

has weakness against obfuscation techniques (Mahawer and Nagaraju, 2013; Alam et al.,

2014a), and it cannot be used to detect unknown malware (Rezaei et al., 2014a).

Vinod et al. (2012) used Opcode sequences to calculate the similarity among

malware executable files. Three different types of signatures were reported. Multiple

Sequence Alignment was used to create single and group signatures whereas probabilistic

signatures were constructed using Pair-wise alignment. Rezaei et al. (2014a) used the same

Opcode sequence technique to compare two pieces of code extracted from executable files

with the help of the Mishra Method and a Hidden Markov Model. According to the

proposed model, Opcode extracted from a file was compared by calculating the probability

of an existing virus, and Edit Distance was used to calculate the distance (or dissimilarity)

between two strings created by the executable’s Opcodes with the help of probability

factors and coordinate axis of a Detection Sphere. Rezaei et al. (2014b) amended the same

approach to utilise Detection Circle instead of the previously used Detection Sphere.

Alam et al. (2014a) proposed a unique approach for metamorphic malware

detection called SWOD-CFWeight (Sliding Windows of Differences and Control Flow

Weight). They used an intermediate language MAIL (Malware Analysis Intermediate

Language) (Alam et al., 2013) to transform assembly code which makes the detection

process platform-independent. SWOD represented the differences among Opcode

distribution, changes in size whereas CFWeight, monitored the controlled information flow

of a program, this has helped real-time detection to some extent.

Mahawer and Nagaraju (2013) used Opcode with histogram intersection kernel

and Support Vector Machine. Histogram intersection had been used to build an effective

detection system for metamorphic malware. In this method, the detection method was

based on Most Frequently Occurred (MFO) Opcodes in disassembled files, and code

normalisation improved the detection rate. Opcode distance between malware and benign

files was calculated with the help of the Euclidean Distance Equation.

B. Control Flow Graph (CFG)

CFG is a directed graph representation which has been in use for malware analysis and

detection for many years. It is a representation of control flow of a program during its

execution using graph notation such as nodes, straight line, edges. In CFG, statements such

as assignments, copy statements, and branches are represented by nodes whereas control

flow between every statement (i.e. what comes after next) is represented by an edge. CFG’s

performance is not affected by code modification (Paul and Mishra, 2014). However,

subgraph isomorphism consumes a high amount of time for processing and has an NP-

Complete and NP-Hard problem (Bai et al., 2009; Kim and Moon, 2010; Alam et al.,

2014a). An ideal model of CFG runs under offline mode (Paul and Mishra, 2014).

Recent CFG proposals include (Agrawal et al., 2012), where the authors presented

the use of Malware Abstraction Analysis (MAA) to compare high-level abstractions, these

are flow graphs of targeted binaries that do not take low level syntax such as function call

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 7

and return, and conditional statements into consideration. Extracted graphs are referred to

as ‘Rooted Tree’, and to compare these trees, the Edit Distance technique is used along

with Approximating, Eliminating Search Algorithm (AESA). AESA helps to determine the

nearest neighbour of the signature tree. Another proposal by Alam et al. (2014c) focused

on real-time detection that is also platform independent. This was achieved by

disassembling and translating the binary program into an intermediate language called

Malware Analysis Intermediate Language (MAIL). Overall, CFG-based solutions can be

very complex and expensive therefore may not be useful in filtering malware traffic in a

high traffic link (Li et al., 2006).

C. API Call

Graphs are built by transforming the executable file into a call graph with the help of nodes

and edges that respectively represent system calls and system call sequences. This

technique utilises the relationship between the API Calls (Elhadi et al., 2013). Lee et al.,

(2010) developed a method based on semantic analysis in which call sequences were first

converted to API Call Graphs. And to avoid the NP-complete problem, API Call Graphs

were then reduced to code graphs. They were stored and used later to measure the similarity

against code graph extracted from input program files. The method achieved a DR of 98%

and was tested against three code obfuscation techniques, namely: code insertion, code

reordering, and code replacement. Moreover, meaningless system call insertion is another

obfuscation technique that could still increase the number of FPR, in response, Elhadi et

al., (2014) developed Lee’s method further by introducing sequence profile and a scheme

for data dependency to generate more accurate call graphs. The idea is based on the

observation that more than half of the discovered malware samples are derived from known

samples. However, if polymorphic techniques are used to pack the malware, then extracted

API call lists and its parameters would be incorrect.

Kwon and Lee (2012) method applied graph mining technique to construct

semantic signatures. As graph matching leads to NP-complete, they used the matrix data

structure technique for semantic graph matching by computing XOR operations only in

contrary to (Lee et al., 2010). While in (Wu et al., 2013) call graphs were generated from

a programme’s function using assembly code adopting a breadth-first approach. Vertices

were matched with the help of a function matching process and graph colouring techniques.

Cosine similarity was used which could be problematic when similar functions or substitute

instructions are used. A key phase of this method was to disassemble executable files,

which is quite challenging, and the reliability of function matching based on graph

colouring are reduced when instructions from one class are identified as equivalent to

another e.g. the ‘ECX’ and ‘MOV’ instructions (Wu et al., 2013).

D. A Hybrid Approach

Malware with obfuscation techniques can deceive detection systems, it usually changes its

code with pre-defined impact on its key behaviour. Therefore, signature-based detection

becomes irrelevant while, as discussed earlier, behavioural analysis introduces time cost

and a requirement for extra processing. Further, DR could arguably be enhanced when two

methods are combined. To inherit advantages from multiple methods into an integrated

solution, hybrid techniques were introduced. For instance, Eskandari and Hashemi (2011)

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 8

combined API Call Graph and CFG. The proposed system consisted of three phases. First,

the executable is disassembled with a pre-processing algorithm to remove unnecessary

statements and to generate CFGs. Then, API Call Graphs can be generated with the help

of a labelling algorithm. Finally, features are generated based on the API Call Graphs.

A semantic set method was proposed by Van Nhuong et al. (2014a), it combines

data mining techniques namely N-gram with a modified Naïve Bayes classifying algorithm

to reduce processing time and increase accuracy. Semantic sets were used as an input for

the Naïve Bayes classifier. The authors have also developed an automatic tracer tool to

resist malware obfuscation. Another experiment presented in (Van Nhuong et al., 2014b)

combined three methods including Semantic Set, N-gram byte using the Naïve Bayes

Classifier and finally an API function-based signature detection method. The latter being

used to perform static detection with the help of a string matching algorithm to reduce the

detection time (Navarro, 2001). Combining three different methods helped achieving high

accuracy (DR) while the key challenge identified concerns optimisation for real-time

detection to reduce time.

E. Other Techniques

Martins et al. (2014) identified nodes on the basis of their relationship and characteristics

in a Dependency Graph extracted from an executable file. This would then help to create a

model resilient to code mutation. Further, the authors presented a method to extract graphs

from binary. The DR achieved was 70%. Another exemplar to this category is a method

proposed by Saleh et al. (2011), they have modified a face recognition technique to detect

malware. The technique assumes that every face had a linear combination of basic sets,

some of these could change over time to some extent, but not all of them. As such, the

method has the required capability of measuring the similarity and difference between

samples. The authors used a static analysis tool called Principal Composite Analysis and

the system database was trained to identify malware. A distance classifier was then

computed for the new input file to be checked against the database. If the distance was

below the threshold then the input file was considered as malware. The system used a

technique called Euclidean Distance to measure the distance of four classes which is good

for a small training set but might not deliver the same results with a high number of

malware classes (Shanmugam et al., 2013).

IV. CONCLUSIONS AND FURTHER DISCUSSION

The analysis of infection and obfuscation techniques utilised by metamorphic malware is

fundamental to develop an effective and efficient detection method. Static Analysis extract

information such as device metadata, network connection states and changes to registry

files related to suspected software. Whilst Dynamic Analysis, known as Behavioural

Analysis, observes the interactions of the malicious file within a Sandbox. A combination

of the above two techniques has potential to deliver better outcomes in terms of detection

rate and false positives. Two key elements have been extracted, reviewed and examined in

this systematic review, namely detection methods and their accompanying statistics

(empirical evidence) to evaluate their efficiency. The first technique observed was Opcode

based, Operands of Opcode provide additional information about the suspicious file

(Zolotukhin and Hamalainen, 2014) which might help in detecting other malware variants.

However, this will require large number of labelled executables for each variant, and it is

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 9

difficult to acquire such data (Santos et al., 2011). Other challenges include the cost of

extra processing time (Santos et al., 2011; Alam et al., 2014b).

Obfuscation is efficient to easily evade detection when Opcode is utilised (Preda,

2012; Mahawer and Nagaraju, 2013) this is mainly due to the change affecting Opcode

distribution which thereafter results in the creation of a vague abstract model for

metamorphic malware detection (Alam et al., 2014c). Likewise, CFG and API Call Graph

based techniques are not effective against encryption/encoding obfuscation techniques (Li

et al., 2006; Elhadi et al., 2014). CFG uses static analysis and requires human interaction

during the process causing imprecise outcome. Hence, a more dynamic approach is

recommended (Moser et al., 2007). Contrary to Opcode, CFG is unable to generate

signatures for a file with small foot prints (Paul and Mishra, 2014) which may yield a high

FPR. When API Call Graph is used, extracted API call lists and its parameters would be

incorrect when the Malware uses encryption. Furthermore, another challenge is related to

the extraction process itself using graph construction algorithms (Elhadi et al., 2014)

because operating system resources are not included as graph nodes in call graph. API Call

Graph depends upon graph construction and may not complete in terms of the number of

nodes (Park et al., 2013). Adopting a graph based approach is expensive, complex (Li et

al., 2006), and has a problem of NP Complete (Bai et al., 2009; Alam et al, 2014c).

Nonetheless, a recent study by Salehi et al. (2017) whose method generated features for

both return and argument values of recorded API call lists, obtained DR of 99.9% with less

than 1% FPR using 1211/3175 malware and benign samples respectively.

Semantic set is a recently introduced technique to identify metamorphic malware

(Van Nhuong et al., 2014a). However, it cannot detect obfuscated malware and requires a

lot of human interaction for hex conversion and information manipulation. Therefore,

while detection rate is very promising, practical implementation is technically challenging

due to the amount of manual input required.

Another recent study by Mehra et al. (2015) combined API Call Graph, CFG and

Histogram. The proposed system consisted of three phases. Firstly, the executable is

disassembled with a pre-processing algorithm to remove unnecessary statements and to

generate CFGs. Next, API Call Graphs are generated with the help of a labelling algorithm.

Then, features are generated based on the API Call Graphs. Histograms are created using

features same as that of API Call and then used to classify files as either malicious or

benign. Khodamoradi et al. (2015) used a decision tree to compute statistics about Opcode

and build thresholds. They used a tool called Opcode Statistic Extractor (OSE) to analyse

disassembled code and calculate Opcode frequency. This was then fed into a classifier to

determine whether the code is malicious. Work on classification or categorization methods

is out of scope for this survey, but it is inevitable to include a brief demonstrate on how it

can be utilised to counteract malware since it is incorporated within many Hybrid detection

approaches as shown below. In principle, the classification process consists of pre-

processing and dimensionality reduction techniques, feature selection, feature

representation (term weighting), and then selected algorithms (classifiers) are trained on

the data set. To increase accuracy, a hybrid approach can also be deployed by integrating

multiple algorithms and stemming techniques into this process (Alabbas et al., 2016).

O’Kane et al., (2016) proposed using reduced Opcode set for detecting obfuscated

malware. In their research, Support Vector Machine was used to classify files. The Opcode

data set is created by extracting Opcode density histogram during program execution.

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 10

Mirzazadeh et al. (2015) demonstrated how to detect metamorphic malware

particularly NGVCK and MWOR using a Linear Discriminant Analysis method. The

research framework was based on Opcode Graph Similarity (OGS) of Runwall et al. (2015)

which trimmed lifeless ciphers from the graph. Basic Linear Discriminant Analysis (LDA)

features such as modifications among class and unpredictability within class were selected

as detection criteria. The LDA method used the following phases: pre-processing, training,

set threshold and prediction (Raphel & Vinod, 2015). The result of the method obtained

detection accuracy rate of 99.7% for MWOR and 100% for NGVCK malwares

respectively. Analogous to the LDA based technique is the research of Kuriakose and

Vinod (2015) which detected NGVCK and MWORM metamorphic malware with 100%

accuracy when 125 features ranking Opcode techniques were deployed to calculate

similarity in their file execution. The technique arrived at a Markov Blanket detection

correctness of 100% for both NGVCK and MWORM with 1.0 precision. It can be inferred

that the LDA technique suppresses feebleness of OGS when results were contributed from

all edges and nodes, whereas LDA pruned the junk edges from the graphs thus establishing

a distinguished detection threshold between benign programs and metamorphic malware.

Nevertheless, another new proposal by Saleh et al. (2011) utilised a modified

version of a face recognition technique to detect malware. This technique uses static

analysis which always requires human interaction to train and update data. Any approach

that requires direct human interaction is time consuming and should be automated (Moser

et al., 2007). This technique is based on pattern matching and therefore liable to issues such

as the 2D pattern matching problem in image making.

The included studies emphasised on several key challenges particularly facing the

detection process for metamorphic malware, some of which have been briefly discussed in

the literature in studies such as (Yoshioka and Matsumoto, 2009) and (Kim and Moon,

2010):

Obfuscation/Evasion. Mainly because obfuscation techniques change the abstract

behavioural model used to define the behaviour of a given software. Further, if malware

writers have the knowledge of the basic mutation process and detection algorithms used

for originating these abstract models, they could amend new designs to evade detection.

Dynamic Analysis. To analyse the behaviour of metamorphic malware, a Sandbox is

required to make sure that it would not affect any interconnected environment including

the network. The implementation is simpler with static analysis where you can disconnect

network connection, while the Internet could be required for dynamic analysis.

Precise Signature. System and Programming languages use control flow and data flow

techniques to analyse the behaviour of metamorphic malware. However, these techniques

are difficult to apply on metamorphic malware due to its nature of code mutation which

will cause time and result in many false positives and false negatives.

Human Interaction. Human input can be fundamental to establish a detection model to

work more accurately.

Application Difficulty. When metamorphic malware mutates itself, it becomes very

difficult to extract a precise signature that is used in detecting a wide range of malware

variants.

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 11

REFERENCES

Agrawal, H., Bahler, L., Micallef, J., Snyder, S. and Virodov, A. (2012) ‘Detection of

global, metamorphic malware variants using control and data flow analysis’,

MILCOM 2012 - 2012 IEEE Military Communications Conference. doi:

10.1109/milcom.2012.6415581.

Alabbas, W., al-Khateeb, H. M., Mansour, A. (2016), ‘Arabic Text Classification Methods:

Systematic Literature Review of Primary Studies’, 2nd Invited Session on Arabic

Natural Language Processing (ANLP): Models, Systems, Data and Applications.

October 24-26, 2016 within 2016 4th IEEE International Colloquium on Information

Science and Technology (CiSt), Tangier, 2016, pp. 361-367.

doi:10.1109/CIST.2016.7805072.

Alam, S., Horspool, R.N. and Traore, I. (2013) ‘MAIL: Malware Analysis Intermediate

Language - A Step towards Automating and Optimizing Malware Detection’, 6th

International Conference on Security of Information and Networks, pp. 233–240,

doi:10.1145/2523514.2527006. doi: 10.1016/j.cose.2014.10.011.

Alam, S., Horspool, N.R. and Traore, I. (2014a) ‘MARD: A Framework for Metamorphic

Malware Analysis and Real-Time Detection’, 2014 IEEE 28th International

Conference on Advanced Information Networking and Applications, doi:

10.1109/aina.2014.59.

Alam, S., Sogukpinar, I., Traore, I. and Horspool, R.N. (2014b) ‘Sliding window and

control flow weight for metamorphic malware detection’, Journal of Computer

Virology and Hacking Techniques, 11(2), pp. 75–88. doi: 10.1007/s11416-014-0222-

y.

Alam, S., Traore, I. and Sogukpinar, I. (2014c) ‘Annotated control flow graph for

metamorphic Malware detection’, The Computer Journal, 58(10), pp. 2608–2621. doi:

10.1093/comjnl/bxu148.

al-Khateeb, H. M., Epiphaniou, G., Alhaboby Z. A., Barnes J., Short E. (2017),

‘Cyberstalking: Investigating Formal Intervention and the Role of Corporate Social

Responsibility’, Telematics and Informatics, Vol. 34, No. 4, pp.339-349. ISSN 0736-

5853. doi:10.1016/j.tele.2016.08.016

Bai, L., Pang, J., Zhang, Y., Fu, W. and Zhu, J. (2009) ‘Detecting Malicious Behavior

Using Critical API-Calling Graph Matching’, 2009 First International Conference on

Information Science and Engineering, . doi: 10.1109/icise.2009.494.

Carrillo, H. and Lipman, D. (1988) ‘The Multiple Sequence Alignment Problem in

Biology’, SIAM Journal on Applied Mathematics, 48(5), pp. 1073–1082. doi:

10.1137/0148063.

Christodorescu, M. and Jha, S. (2004) ‘Testing malware detectors’, ACM SIGSOFT

Software Engineering Notes, 29(4), p. 34. doi: 10.1145/1013886.1007518.

Dai, S.Y., and Kuo, S.Y. (2007) ‘MAPMon: A Host-Based Malware Detection Tool’, 17

December 2007. Melbourne, Qld. IEEE. pp. 349–356.

Egele, M., Scholte, T., Kirda, E. and Kruegel, C. (2012) ‘A survey on automated dynamic

malware-analysis techniques and tools’, ACM Computing Surveys, 44(2), pp. 1–42.

doi: 10.1145/2089125.2089126.

Elhadi, A.A.E., Maarof, M.A., and Barry, B.I.A. (2013) ‘Improving the Detection of

Malware Behaviour Using Simplified Data Dependent API Call Graph’, International

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 12

Journal of Security and Its Applications, 7(5), pp. 29–42. doi:

10.14257/ijsia.2013.7.5.03.

Elhadi, A.A.E., Maarof, M.A., Barry, B.I.A. and Hamza, H. (2014) ‘Enhancing the

detection of metamorphic malware using call graphs’, Computers & Security, Vol.

46, October 2014, pp.62–78, DOI: 10.1016/j.cose.2014.07.004.

Eskandari, M. and Hashemi, S. (2011) ‘Metamorphic malware detection using control flow

graph mining’, International Journal of Computer Science Network Security, Vol. 11,

No. 12, pp.1-6.

Fukushima, Y., Sakai, A., Hori, Y. and Sakurai, K. (2010) ‘Smartphone malware detection

model based on artificial immune system’, Kyoto, 5 October 2010. Institute of

Electrical & Electronics Engineers (IEEE). pp. 86–92.

Karim, M.E., Walenstein, A., Lakhotia, A. and Parida, L. (2005) ‘Malware phylogeny

generation using permutations of code’, Journal in Computer Virology, 1(1-2), pp.

13–23. doi: 10.1007/s11416-005-0002-9.

Kim, K. and Moon, B.-R. (2010) ‘Malware detection based on dependency graph using

hybrid genetic algorithm’, Proceedings of the 12th annual conference on Genetic and

evolutionary computation - GECCO ’10, doi: 10.1145/1830483.1830703.

Kitchenham, B. and Charters, S. (2007) Guidelines for performing Systematic Literature

Reviews in Software Engineering.

Khodamoradi, P., Fazlali, M., Mardukhi, F. and Nosrati, M. (2015). Heuristic Metamorphic

Malware Detection Based on Statistic s of Assembly Instructions using Classification

Algorithm. IEEE 2015.

Kuriakose, J. and Vinod, P. (2015) ‘Metamorphic malware detection: modelling with fewer

relevant features and robust feature selection techniques’, International Journal of

Computer Science, IEEE, Vol. 42, No. 2, pp. 139-151.

Kwon, J. and Lee, H. (2012) ‘BinGraph: Discovering mutant malware using hierarchical

semantic signatures’, 2012 7th International Conference on Malicious and Unwanted

Software, doi: 10.1109/malware.2012.6461015.

Lee, J., Jeong, K. and Lee, H. (2010) ‘Detecting metamorphic malwares using code

graphs’, Proceedings of the 2010 ACM Symposium on Applied Computing - SAC

’10, . doi: 10.1145/1774088.1774505.

Li, Z., Sanghi, M., Chen, Y., Kao, M.Y, and Chavez, B. (2006) ‘Hamsa: fast signature

generation for zero-day polymorphic worms with provable attack resilience’, 2006

IEEE Symposium on Security and Privacy (S&P’06), doi: 10.1109/sp.2006.18.

Lyda, R. and Hamrock, J. (2007) ‘Using entropy analysis to find Encrypted and packed

Malware’, IEEE Security and Privacy Magazine, 5(2), pp. 40–45. doi:

10.1109/msp.2007.48.

Mahawer, D.K. and Nagaraju, A. (2013) ‘Metamorphic malware detection using base

malware identification approach’, Security and Communication Networks, 7(11), pp.

1719–1733. doi: 10.1002/sec.869.

Martins, G.B., de Freitas, R. and Souto, E. (2014) ‘Virtual structures and heterogeneous

nodes in dependency graphs for detecting metamorphic malware’, 2014 IEEE 33rd

International Performance Computing and Communications Conference (IPCCC),

doi: 10.1109/pccc.2014.7017069.

Mehra, V., Jain, V. and Uppal, D. (2015). DaCoMM: Detection and Classification of

Metamorphic Malware. pp.668 – 673 IEEE 2015, doi:10.1109/CSNT.2015.62

Mirzazadeh, R., Hossein Moattar, M. and Vafaei Jahan, M. (2015). Metamorphic Malware

Detection Using Linear Discriminant Analysis and Graph Similarity, IEEE 2015 fifth

International Conference on Computer and Knowledge Engineering, pp.61 – 66,

doi:10.1109/ICCKE.2015.7365862.

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 13

Moser, A., Kruegel, C. and Kirda, E. (2007) ‘Limits of static analysis for Malware

detection’, Twenty-Third Annual Computer Security Applications Conference

(ACSAC 2007), doi: 10.1109/acsac.2007.21.

Navarro, G. (2001) ‘A guided tour to approximate string matching’, ACM Computing

Surveys, 33(1), pp. 31–88. doi: 10.1145/375360.375365.

O’kane, P., Sezer, S. and McLaughlin, K. (2016). ‘Detecting obfuscated malware using

reduced Opcode set and optimised runtime trace. Springer’, pp.2 - 10.

doi:10.1186/s13388-016-0027-2

Park, Y., Reeves, D.S. and Stamp, M. (2013) ‘Deriving common malware behavior through

graph clustering’, Computers & Security, Vol. 39, November 2013, pp.419–430,

DOI: 10.1016/j.cose.2013.09.006.

Paul, S. and Mishra, B.K. (2014) ‘Survey of Polymorphic Worm Signatures’, International

Journal of u and e Service, Science and Technology, 7(3), pp. 129–150. doi:

10.14257/ijunesst.2014.7.3.12.

Preda, M.D. (2012) ‘The grand challenge in metamorphic analysis’, Information Systems,

Technology and Management: 6th International Conference, ICISTM 2012,

Grenoble, France, March 28-30, 2012. Proceedings, pp.439–444, DOI: 10.1007/978-

3-642-29166-1_42.

Rad, B.B., Masrom, M. and Ibrahim, S. (2012) ‘Camouflage in Malware: from Encryption

to Metamorphism’, International Journal of Computer Science and Network Security,

12(8), pp. 74–83.

Raphel, J. and Vinod, P. (2015) ‘Pruned feature space for metamorphic malware detection

 using Markov Blanket. In Contemporary Computing (IC3), 2015 Eighth

 Conference on (pp. 377-382). IEEE.

Rezaei, F., Hamedi-Hamzehkolaie, M., Rezaei, S. and Payandeh, A. (2014a) ‘Metamorphic

viruses detection by hidden Markov models’, 7’th International Symposium on

Telecommunications (IST'2014), doi: 10.1109/istel.2014.7000817.

Rezaei, F., Nezhad, M.K., Rezaei, S. and Payandeh, A. (2014b) ‘Detecting encrypted

metamorphic viruses by hidden Markov Models’, 2014 11th International Conference

on Fuzzy Systems and Knowledge Discovery (FSKD), . doi:

10.1109/fskd.2014.6980971.

Runwal, N., Low, R. M., & Stamp, M. (2012). Opcode graph similarity and metamorphic

detection. Journal in Computer Virology, Vol. 8, No. 1-2, pp. 37-52.

Saleh, M.E., Mohamed, A.B. and Nabi, A.A. (2011) ‘Eigenviruses for metamorphic virus

recognition’, IET Information Security, 5(4), p. 191. doi: 10.1049/iet-ifs.2010.0136.

Salehi, Z., Sami, A., Ghiasi, M., (2017) ‘MAAR: Robust features to detect malicious

activity based on API calls, their arguments and return values. International journal of

Engineering Applications of Artificial Intelligence’, 59(1), pp.95-98.

Santos, I., Brezo, F., Ugarte-Pedrero, X. and Bringas, P.G. (2013) ‘Opcode sequences as

representation of executables for data-mining-based unknown malware detection’,

Information,Sciences, Vol. 231, 10 May 2013, pp.64–82, DOI:

10.1016/j.ins.2011.08.020.

Santos, I., Sanz, B., Laorden, C., Brezo, F. and Bringas, P.G. (2011) ‘Opcode-sequence-

based semi-supervised unknown malware detection’, Computational Intelligence in

Security for Information Systems: 4th International Conference, CISIS 2011, Held at

IWANN 2011, Torremolinos-Malaga, Spain, June 8-10, 2011. Proceedings, pp.50–

57, DOI: 10.1007/978-3-642-21323-6_7.

Shanmugam, G., Low, R.M. and Stamp, M. (2013) ‘Simple substitution distance and

metamorphic detection’, Journal of Computer Virology and Hacking Techniques,

9(3), pp. 159–170. doi: 10.1007/s11416-013-0184-5.

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 14

Sharma, A. and K. Sahay, S. (2014) ‘Evolution and detection of Polymorphic and

metamorphic Malwares: A survey’, International Journal of Computer Applications,

90(2), pp. 7–11. doi: 10.5120/15544-4098.

Shijo, P.V. and Salim, A. (2015) ‘Integrated static and dynamic analysis for Malware

detection’, Procedia Computer Science, 46, pp. 804–811. doi:

10.1016/j.procs.2015.02.149.

Van Nhuong, N., Nhi, V.T.Y., Cam, N.T., Phu, M.X. and Tan, C.D. (2014a) ‘Semantic set

analysis for malware detection’, Computer Information Systems and Industrial

Management: 13th IFIP TC8 International Conference, CISIM 2014, Ho Chi Minh

City, Vietnam, November 5-7, 2014. Proceedings, pp.688–700. DOI: 10.1007/978-3-

662-45237-0_62

Van Nhuong, N., Nhi, V.T.Y., Cam, N.T., Phu, M.X. and Dang Tan, C. (2014b) ‘SSSM-

semantic set and string matching based malware detection’, the 2014 Seventh IEEE

Symposium on Computational Intelligence for Security and Defense Applications

(CISDA), . doi: 10.1109/cisda.2014.7035642.

Vinod, P., Laxmi, V., Gaur, M.S. and Chauhan, G. (2012) ‘MOMENTUM: MetamOrphic

malware exploration techniques using MSA signatures’, 2012 International

Conference on Innovations in Information Technology (IIT), doi:

10.1109/innovations.2012.6207739.

Wu, L., Ping, R., Ke, L. and Hai-xin, D. (2011) ‘Behavior-based Malware Analysis and

Detection’, Nanjing, Jiangsu, 24 September 2011. IEEE. pp. 39–42.

Wu, L., Xu, M., Xu, J., Zheng, N. and Zhang, H. (2013) ‘A novel malware variants

detection method based On function-call graph’, IEEE Conference Anthology, doi:

10.1109/anthology.2013.6784887.

Yoshioka, K. and Matsumoto, T. (2009) ‘Sandbox Analysis with controlled internet

connection for observing temporal changes of malware behavior’, The Fourth Joint

Workshop on Information Secruity.

Zolotukhin, M. and Hamalainen, T. (2014) ‘Detection of Zero-day Malware Based on the

Analysis of Opcode Sequences’, Consumer Communications and Networking

Conference (CCNC), 2014 IEEE 11th, 7, pp. 386 – 391. doi:

10.1109/CCNC.2014.6866599.

 M. Irshad, H. al-Khateeb, A. Mansour, A. Ashawa, and M. Hamisu, “Effective methods to detect metamorphic
malware: A systematic review”, International Journal of Electronic Security and Digital Forensics, vol. 10, no. 2,
pp. 138–154, 2018, ISSN: 1751-9128. DOI: 10.1504/IJESDF.2018.090948. [Online]. Available:
https://doi.org/10.1504/IJESDF.2018.090948.

APPENDIX 1 - Evaluation of selected reviewed papers

This section presents a comparative analysis of studied papers. The purpose of this comparative analysis is to provide a clear view to the reader

on strengths and weaknesses of selected reviewed papers. The comparative analysis is shown below in the Table 1.

Table 1. A comparative analysis of studied papers

S# Papers Techniques Approach Strengths Limitations Validation

Dataset size

(# of files)

DR% FPR%

1 (Mahawer and Nagaraju, 2013) Opcode

The detection method is

based on Most Frequently
Occurred (MFO) histograms

of Opcodes in disassembled

files.

Effective against dead code

insertion, registry renaming,
code reordering.

Cannot detect malware

with obfuscation
capabilities, this will

cause a high rate of FNs.

Validated by

experimental result
showing significant

figures in FPR and DR.
2121 99.5% 0.01%

2 (Alam et al., 2014a) Opcode

Detecting metamorphic

malware by computing

weight of MAIL pattern and

Control Flow Weight then
matching them using index

based signature array

Platform independent and

support automated analysis

with the help of intermediate

language.

1- Better detection

results are limited to

small size dataset

2- Large datasets
increase the complexity

and is time consuming.

3- Compiler optimisation
could affect frequency of

Opcode

4- Vulnerable to
obfuscation

The results are validated

by experiments but 10

fold cross validation

technique has been used
which makes the results

more bias compared to 5

fold cross validation.

1251 99.1% 0.93%

3 (Rezaei et al., 2014a) Opcode

Detecting metamorphic

malware by comparing

probability set percentage

between sample and virus

family using Markov
properties.

Proposed method is based on

Hidden Markov Model and

showed higher efficiency

against others antiviruses

compared.

Unable to detect

unknown metamorphic

malware.

Validated by

experimental results

showing improvement in

FPR.
3120 94% 0%

https://doi.org/10.1504/IJESDF.2018.090948

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 16

S# Papers Techniques Approach Strengths Limitations Validation

Dataset size

(# of files)

DR% FPR%

4 (Vinod et al., 2012) Opcode

Detecting metamorphic

malware using
bioinformatics sequence

alignment based on Multiple

Sequence alignment to align
Opcode sequence

Strong logical motivation

derived from DNA sequences
of inheriting functional,

structure similarity from one

generation to other same as
applied in metamorphic

malware

1-Large numbers of

mismatch mnemonic
pairs cause less

Detection Rate.

2-Increased FPR in
single signatures,

degraded in DR in group

and probabilistic
signatures.

Validated by

experimental results.
Shows technique that

needs improvement.

724 71% 7%

5 (Rezaei et al., 2014b) Opcode

Detecting encrypted

metamorphic malware by

comparing probability set
percentage between sample

and virus family using

Markov properties.

Proposed method is based on

Hidden Markov model for

encrypted malware and
showed higher efficiency

against other antiviruses

compared.

1- Unable to detect

unknown metamorphic

malware.
2- Require extensive

calculation

3- Vulnerable to

obfuscation

Validated by

experimental results

indicating good
efficiency as compare to

other antiviruses

involved in the

experiment.

192 70% N/A

6 (Alam et al., 2014c) CFG

Protecting end user from

metamorphic malware in
real-time

MAIL intermediate language

have capability to provide
patterns for matching to

enhance the metamorphic

malware detection. It also
capable of platform and

analysis independent.

Time consuming while

examining large dataset.

Validated by

experimental results
showing

significant/effective DR

but FPR is very high.

510 98.9% 4.5%

7 (Eskandari and Hashmi, 2011) Hybrid

A combination of control
flow graph and API Call

Graph is used to detect

metamorphic malware.

Using semantic aspects,
method is capable of

detecting obfuscated files.

Slow computational
process.

Ineffective with non-

assembly malware.

Validated by
experiments in

comparison to different

classifier.

4445 97.5% 1.97%

8 (Agrawal et al., 2012) CFG

To overcome graph

comparison problem,

normalised metric edit
distance technique is

employed.

High level semantic signature

enable detection of unknown

new variants of the same
family.

Ineffective with non-

assembly malware.

Validated by

experimental statistics,

showing
significant/effective

results in FPR but needs

more work on Detection.

18 86% 0%

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 17

S# Papers Techniques Approach Strengths Limitations Validation

Dataset size

(# of files)

DR% FPR%

9 (Martins et al., 2014)
Dependency

Graph

Identifying related nodes on

the basis of its relationship
and characteristics in

dependency graph extracted

for an executable file.

It is capable of eliminating

the impact of obfuscation
techniques on malicious

code.

Identifying relationship

between nodes and
relevant events requires

a statistical inference

technique.

Validated by

experimental results
showing an

improvement in

identification of
metamorphic malware

compared to the

approach used as
reference model in (Kim

and Moon, 2010).

63 70% N/A

10 (Elhadi et al., 2014) API Call

Enhancing API Call Graph

construction by integrating
API call and system

resources with the help of

four type of dependencies

between nodes.

Sequence profiling & data

dependencies to generate
accurate call graph. It takes

both signature and behaviour

input sample.

Dynamic analysis might

not explore important
API call’s execution.

Approach has weakness

against polymorphic

code modification.

Time consuming in term

of matching process and
graph construction.

Validated by

experimental results
showing improvement in

FPR and DR.

514 98% 0%

11 (Kwon and Lee, 2012) API Call

Transformation of API Call

Graphs to sub graphs on the
basis of behaviour semantic

and related functionalities.

Proposed method has ability

to detect many malware
variants with the help of few

signatures that also reduces

signature storage space and
analysis time.

Algorithm used for

graph extraction cannot
build accurate graph

from instruction derived

from malware sample.
Ineffective with non-

assembly malware.

Validated by

experimental showing
significant figures in

DR with no FPs. 1863 98% 0%

12 (Wu et al., 2013) API Call

API Call Graphs are

generated and similarity is

computed using cosine

similarity method.

Proposed method is more

robust against obfuscation

techniques and effective for

malware variants detection.

Ineffective with non-

assembly malware.

Cosine similarity fails

when comparing small
graphs.

Validated by

experiments performed

on prototype system. More than

200 pair
98% N/A

 Effective Methods to Detect Metamorphic Malware: A Systematic Review 18

S# Papers Techniques Approach Strengths Limitations Validation

Dataset size

(# of files)

DR% FPR%

13 (Lee et al., 2010) API Call

Mechanism based on

semantic characteristics
using code graph system

before file execution.

Proposed method reduces the

number of malware signature
by detecting all of the

malware variants with single

signature of original malware
and have ability to defeat

evasion techniques.

Weakness in detecting

malwares having
insertion of useless

system calls.

Validated by

experiments show low
DR at 91% and no

availability of FPR.
300 91% N/A

14 (Van Nhuong et al., 2014a) Hybrid

Combination of two different
methods to build a detection

system which inherits the

advantages of both methods
in detecting malware

including obfuscated.

Tracer tool automatically
extract semantic sets that

overcomes malware

obfuscation. Detection is
near to perfection.

Processing time needs to
be optimised. It does not

support real-time

detection.

The results are validated
by experiments with two

different sizes of

datasets.
DS1=107

DS2=79
100% N/A

15 (Van Nhuong et al., 2014b) Hybrid

Combination of three

different methods to build a

powerful detection system to
detect all type of malware

DR is achieved up to 100%. It does not support real-

time detection.

Processing time needs to
be optimised.

The results are validated

by experiments with two

different sizes of
datasets.

DS1=107

DS2=79
100% N/A

16 (Saleh et al., 2011) Eigenfaces

Based on face recognition

technique with some
modification assuming that

every face has a linear

combination of basic set with
some changes.

Method is capable of

learning new virus patterns
for future malware

recognition.

1- Time consuming in

term of pattern matching
process.

2- Distance measuring

technique used is simple
and limited to high

number of dataset for

better results.

Validated by

experimental results
showing 100% in DR

but FPR is high.
1250 100% 4%

