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Abstract – The succeeding code for metamorphic Malware is routinely rewritten to 

remain stealthy and undetected within infected environments. This characteristic is 

maintained by means of encryption and decryption methods, obfuscation through 

garbage code insertion, code transformation and registry modification which makes 

detection very challenging. The main objective of this study is to contribute an 

evidence-based narrative demonstrating the effectiveness of recent proposals. Sixteen 

primary studies were included in this analysis based on a pre-defined protocol. The 

majority of the reviewed detection methods used Opcode, Control Flow Graph (CFG) 

and API Call Graph. Key challenges facing the detection of metamorphic malware 

include code obfuscation, lack of dynamic capabilities to analyse code and application 

difficulty. Methods were further analysed on the basis of their approach, limitation, 

empirical evidence and key parameters such as dataset, Detection Rate (DR) and 

False Positive Rate (FPR). 
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I. INTRODUCTION 

 
The habit of downloading unknown files over the Internet seem to be the key reason for 

infecting computer systems with Malware. Malicious software has the potential to infect 

system files, write extreme data on adjacent memory, leading to buffer overflow, and 

change codes of other executable files. History of Malware evolution shows that many 

malicious software were written for fun or testing software behaviour. However, state-of-

the-art malware is also developed for financial gain (Alam et al., 2014c), political 

influence, enabling anti-social behaviour such as cyberstalking (al-Khateeb et al., 2016), 

or to sabotaging the defence systems of a country. Consequently, malware coding became 

extremely sophisticated. Figure 1 demonstrates a simplistic view of malware evolution 

since the 1970s (Rad et al., 2012). 

 

 
Figure 1. Malware evolution 

Since the first malware written in the last century, a rivalry has started between defenders 

(e.g. researchers) and malware developers who continue to adopt new evasion techniques 

(Sharma and Sahay, 2014). 

 

A first-generation malware is relatively easy to identify using traditional antivirus 

software. Detection in this case requires a library of static byte-signatures, hash-signatures 

and any code or strings depending on the technique used. Signatures of malicious files are 

stored in database files (.mdb, .idb, etc.) to facilitate the detection process. Infected files 
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are usually quarantined and could also be moved to a Sandbox for further analysis. 

Signature-based scanning is considered fast compared to non-signature-based detection. In 

contrast, malware writers nowadays use obfuscation techniques to evade detection (Karim 

et al., 2005). These techniques can be classified into pattern-based, content-based and 

protocol based methods. Their functionality includes the insertion of garbage code, 

changing the execution order of instruction, automatically regenerated code (through a 

metamorphic engine) and variable renaming (Christodorescu and Jha, 2004). This mutation 

capability of code is called ‘metamorphism’ in which the program changes the structural 

properties of the executable without any change in behaviour. Metamorphic malware is 

therefore a software program with the capability to change its code and signature on its 

propagation. It has its own encrypted virus-body coated with a decryption routine, both of 

which are changed in the propagation phase. Therefore, current antivirus programs have 

difficulties detecting this type of malware (Lyda and Hamrock, 2007). 

  

Nonetheless, various methods, frameworks and detection systems have been 

proposed to encounter obfuscation techniques with the majority utilising Opcode 

Sequence, Control Flow Graph, N-gram and API Calls (as shown in Table 1). While every 

approach has its own benefits and limitation, a hybrid method combining two or more of 

these could overcome some of the challenges and increase performance. These methods 

perform static analysis prior to any file execution. Then, the process extracts Opcode and 

Bytecode sequences, and generate graphs by disassembling the file (Egele et al., 2012). 

Static analysis is considered robust yet suffers when the source code of the file is not 

available. Further, it does not have the ability to identify new malware (Wu et al., 2011). 

On the other hand, dynamic analysis does not rely on the code. Instead, it monitors the 

behaviour of the file during its execution in a Sandbox, which is a securely restricted 

environment to facilitate the analysis of unknown or untrusted files (Egele et al., 2012). 

Behaviour is more unique and consistent compared to the static features of a malicious file, 

it could therefore help to thwart the different variants of Malware and declare their 

obfuscation techniques irrelevant (Dai and Kuo, 2007). However, behavioural analysis is 

relatively more resource consuming, lengthy and could result in many false-positives 

(Fukushima et al., 2010). Hence, an integrated system balancing the trade-off between 

instant detection and long-term detection procedures could lead to effective and efficient 

solutions for metamorphic malware (Shijo and Salim, 2015). 

 

 The remaining parts of this paper are organised as follows: Section II shares the 

methodology and protocol used for this systematic literature review. Section III contains 

detailed critical analysis of the detection techniques surveyed. Finally, conclusions and 

further discussions are stated in Section IV. 
 

II. METHODOLOGY 
 

A systematic review is conducted with reference to the comprehensive guidelines 

published by Kitchenham and Charters, (2007). We aim to implement unbiased protocol 

to include recent studies on metamorphic malware detection. The following sections 

elaborates further details on the research questions, data selection and extraction strategy. 

A. Research questions (RQs) 

 

RQs. What type of detection techniques and methods have recently been presented and 

tested for metamorphic malware detection? Which of these techniques is more effective in 
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detecting metamorphic malware? And what are the key challenges facing the detection 

process? 

 

We address these RQs with a critical analysis of the included studies. 

 

B. Inclusion and exclusion criteria 

 

Papers matching the following conditions will be included in this study: 

✓ A recent study published within the last 5 years 

✓ Papers must present a novel malware detection technique 

✓ Papers must present empirical evidence e.g. statistics for evaluation purposes 

 

Papers matching the following conditions will then excluded: 

 Non-peer reviewed papers such as descriptive reports and technical reports 

 Abstracts, editorials, and books. 

 Papers not written in English.  

 Papers focusing on malware classification methods. 

 

C. Data Source and Search Strategy 

 

Robust and popular databases covering the discipline of computer science and technology 

had been selected to be the data sources, these were: IEEE Xplore, ACM DL, Springer, 

Science Direct, and Scopus. Included studies have been published between January 2010 

and June 2015. Logical operators ‘AND’ and ‘OR’, and Search keywords related to the 

proposed research question and topic were used; ‘Metamorphic’, ‘Malware’, ‘Virus’, 

‘Detection’, ‘Method’, ‘System’ and ‘Technique’. Targeted fields were the Title, Abstract, 

and Keywords. Advance search options were applied to enforce inclusion and restriction 

criteria such as publication time and article type. We have also examined the bibliographies 

of selected studies. 

 

D. Primary Study Selection Process 

 

The selection process was performed on the databases and reviewed by the authors 

accordingly. First, the retrieved number of filtered articles pulled from the databases was 

113. These articles were then taken to the next process. Second, Title and abstract base 

Selection: the examination was scoped at these two parts for each article. When there was 

doubt, the article was included for the next phase. A total of 37 articles remained. And 

finally, Full Text Selection: Remaining articles were thoroughly read. A total of 21 articles 

were discarded, leaving 16 key articles most of which seem to have come from IEEE.  

 

E. Data extraction 

 

Data to be extracted from included studies will be: Article type (Journal, Conference, etc.); 

citation details; technique used; experimental results (e.g. Detection Rate (DR), False 

Positive Rate (FPR), and dataset size); strengths and limitations; and any technical 

challenges reported. 

 

F. Evaluation measures 
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The effectiveness of the proposed malware detection methods can be measured by means 

of DR and FPR. Hence, it is also important to highlight the following: 

• True Positive (TP). The number of correctly identified malicious files as malware. 

• False Positive (FP). The number of incorrectly identified benign files as malware. 

• True Negative (TN): The number of correctly identified benign files as benign. 

• False Negative (FN): The number of incorrect identified malware files as benign. 

• And DR = TP/ (TP+FN), while FPR = FP/ (TN+FP) (Alam et al., 2014c). 

F. Quality assessment threshold 

 

A list of quality assessment questions facilitated the evaluation of primary studies in this 

systematic review. Studies must satisfy all the following threshold criteria with a ‘yes’: 

1- Are the study objectives stated clearly? 

2- Does the evaluation fulfil the purpose of the primary study? 

3- Is the conclusion supported by empirical evidence? 

4- Are the methods specified for data analysis and collection thoroughly described?  

5- Were the DR or FPR reported? 

 

III. Analysis of detection techniques 
 

Included studies recovered various detection techniques, the sample have been analysed in 

Table 1, while main themes conceptualised in Figure 2 and discussed in the remaining 

subsections. 

 

 
Figure 2 Metamorphic Malware Detection Approaches. References included in our review are 

discussed for each of these categories in the following subsections A to E. 

A. Operational Code (Opcode) 

 
An executable program is a construction of a series of machine language instructions. 

These instructions are composed of a pair; mostly a list of operands and operational code. 

Opcode is the portion of the code that specifies the operations while Operands (the data to 

be processed) could provide extra information about the executable files (Zolotukhin and 
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Hamalainen, 2014). The source code of a given software, including Opcode, is more 

consistent and therefore suitable to produce signatures for malicious software-classes 

compared to compiled code. However, processing overhead (Carrillo and Lipman, 1988; 

Santos et al., 2013) and compiler optimisation (Alam et al., 2014a) are examples of 

challenges to be addressed when Opcode detection is utilised. Further, Opcode distribution 

has weakness against obfuscation techniques (Mahawer and Nagaraju, 2013; Alam et al., 

2014a), and it cannot be used to detect unknown malware (Rezaei et al., 2014a). 

 

Vinod et al. (2012) used Opcode sequences to calculate the similarity among 

malware executable files. Three different types of signatures were reported. Multiple 

Sequence Alignment was used to create single and group signatures whereas probabilistic 

signatures were constructed using Pair-wise alignment. Rezaei et al. (2014a) used the same 

Opcode sequence technique to compare two pieces of code extracted from executable files 

with the help of the Mishra Method and a Hidden Markov Model. According to the 

proposed model, Opcode extracted from a file was compared by calculating the probability 

of an existing virus, and Edit Distance was used to calculate the distance (or dissimilarity) 

between two strings created by the executable’s Opcodes with the help of probability 

factors and coordinate axis of a Detection Sphere. Rezaei et al. (2014b) amended the same 

approach to utilise Detection Circle instead of the previously used Detection Sphere.  

 

Alam et al. (2014a) proposed a unique approach for metamorphic malware 

detection called SWOD-CFWeight (Sliding Windows of Differences and Control Flow 

Weight). They used an intermediate language MAIL (Malware Analysis Intermediate 

Language) (Alam et al., 2013) to transform assembly code which makes the detection 

process platform-independent. SWOD represented the differences among Opcode 

distribution, changes in size whereas CFWeight, monitored the controlled information flow 

of a program, this has helped real-time detection to some extent. 

 

Mahawer and Nagaraju (2013) used Opcode with histogram intersection kernel 

and Support Vector Machine. Histogram intersection had been used to build an effective 

detection system for metamorphic malware. In this method, the detection method was 

based on Most Frequently Occurred (MFO) Opcodes in disassembled files, and code 

normalisation improved the detection rate. Opcode distance between malware and benign 

files was calculated with the help of the Euclidean Distance Equation. 

 

B. Control Flow Graph (CFG)  

 

CFG is a directed graph representation which has been in use for malware analysis and 

detection for many years. It is a representation of control flow of a program during its 

execution using graph notation such as nodes, straight line, edges. In CFG, statements such 

as assignments, copy statements, and branches are represented by nodes whereas control 

flow between every statement (i.e. what comes after next) is represented by an edge. CFG’s 

performance is not affected by code modification (Paul and Mishra, 2014). However, 

subgraph isomorphism consumes a high amount of time for processing and has an NP-

Complete and NP-Hard problem (Bai et al., 2009; Kim and Moon, 2010; Alam et al., 

2014a). An ideal model of CFG runs under offline mode (Paul and Mishra, 2014). 

 

Recent CFG proposals include (Agrawal et al., 2012), where the authors presented 

the use of Malware Abstraction Analysis (MAA) to compare high-level abstractions, these 

are flow graphs of targeted binaries that do not take low level syntax such as function call 
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and return, and conditional statements into consideration. Extracted graphs are referred to 

as ‘Rooted Tree’, and to compare these trees, the Edit Distance technique is used along 

with Approximating, Eliminating Search Algorithm (AESA). AESA helps to determine the 

nearest neighbour of the signature tree. Another proposal by Alam et al. (2014c) focused 

on real-time detection that is also platform independent. This was achieved by 

disassembling and translating the binary program into an intermediate language called 

Malware Analysis Intermediate Language (MAIL). Overall, CFG-based solutions can be 

very complex and expensive therefore may not be useful in filtering malware traffic in a 

high traffic link (Li et al., 2006). 

 
C. API Call  

 
Graphs are built by transforming the executable file into a call graph with the help of nodes 

and edges that respectively represent system calls and system call sequences. This 

technique utilises the relationship between the API Calls (Elhadi et al., 2013). Lee et al., 

(2010) developed a method based on semantic analysis in which call sequences were first 

converted to API Call Graphs. And to avoid the NP-complete problem, API Call Graphs 

were then reduced to code graphs. They were stored and used later to measure the similarity 

against code graph extracted from input program files. The method achieved a DR of 98% 

and was tested against three code obfuscation techniques, namely: code insertion, code 

reordering, and code replacement. Moreover, meaningless system call insertion is another 

obfuscation technique that could still increase the number of FPR, in response, Elhadi et 

al., (2014) developed Lee’s method further by introducing sequence profile and a scheme 

for data dependency to generate more accurate call graphs. The idea is based on the 

observation that more than half of the discovered malware samples are derived from known 

samples. However, if polymorphic techniques are used to pack the malware, then extracted 

API call lists and its parameters would be incorrect. 

 

Kwon and Lee (2012) method applied graph mining technique to construct 

semantic signatures. As graph matching leads to NP-complete, they used the matrix data 

structure technique for semantic graph matching by computing XOR operations only in 

contrary to (Lee et al., 2010). While in (Wu et al., 2013) call graphs were generated from 

a programme’s function using assembly code adopting a breadth-first approach. Vertices 

were matched with the help of a function matching process and graph colouring techniques. 

Cosine similarity was used which could be problematic when similar functions or substitute 

instructions are used. A key phase of this method was to disassemble executable files, 

which is quite challenging, and the reliability of function matching based on graph 

colouring are reduced when instructions from one class are identified as equivalent to 

another e.g. the ‘ECX’ and ‘MOV’ instructions (Wu et al., 2013).  

 

 

D. A Hybrid Approach 

 

Malware with obfuscation techniques can deceive detection systems, it usually changes its 

code with pre-defined impact on its key behaviour. Therefore, signature-based detection 

becomes irrelevant while, as discussed earlier, behavioural analysis introduces time cost 

and a requirement for extra processing. Further, DR could arguably be enhanced when two 

methods are combined. To inherit advantages from multiple methods into an integrated 

solution, hybrid techniques were introduced. For instance, Eskandari and Hashemi (2011) 
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combined API Call Graph and CFG. The proposed system consisted of three phases. First, 

the executable is disassembled with a pre-processing algorithm to remove unnecessary 

statements and to generate CFGs. Then, API Call Graphs can be generated with the help 

of a labelling algorithm. Finally, features are generated based on the API Call Graphs.  

 

A semantic set method was proposed by Van Nhuong et al. (2014a), it combines 

data mining techniques namely N-gram with a modified Naïve Bayes classifying algorithm 

to reduce processing time and increase accuracy. Semantic sets were used as an input for 

the Naïve Bayes classifier. The authors have also developed an automatic tracer tool to 

resist malware obfuscation. Another experiment presented in (Van Nhuong et al., 2014b) 

combined three methods including Semantic Set, N-gram byte using the Naïve Bayes 

Classifier and finally an API function-based signature detection method. The latter being 

used to perform static detection with the help of a string matching algorithm to reduce the 

detection time (Navarro, 2001). Combining three different methods helped achieving high 

accuracy (DR) while the key challenge identified concerns optimisation for real-time 

detection to reduce time. 

 
E. Other Techniques 

 

Martins et al. (2014) identified nodes on the basis of their relationship and characteristics 

in a Dependency Graph extracted from an executable file. This would then help to create a 

model resilient to code mutation. Further, the authors presented a method to extract graphs 

from binary. The DR achieved was 70%. Another exemplar to this category is a method 

proposed by Saleh et al. (2011), they have modified a face recognition technique to detect 

malware. The technique assumes that every face had a linear combination of basic sets, 

some of these could change over time to some extent, but not all of them. As such, the 

method has the required capability of measuring the similarity and difference between 

samples. The authors used a static analysis tool called Principal Composite Analysis and 

the system database was trained to identify malware. A distance classifier was then 

computed for the new input file to be checked against the database. If the distance was 

below the threshold then the input file was considered as malware. The system used a 

technique called Euclidean Distance to measure the distance of four classes which is good 

for a small training set but might not deliver the same results with a high number of 

malware classes (Shanmugam et al., 2013). 

 

IV. CONCLUSIONS AND FURTHER DISCUSSION 
 

The analysis of infection and obfuscation techniques utilised by metamorphic malware is 

fundamental to develop an effective and efficient detection method. Static Analysis extract 

information such as device metadata, network connection states and changes to registry 

files related to suspected software. Whilst Dynamic Analysis, known as Behavioural 

Analysis, observes the interactions of the malicious file within a Sandbox. A combination 

of the above two techniques has potential to deliver better outcomes in terms of detection 

rate and false positives. Two key elements have been extracted, reviewed and examined in 

this systematic review, namely detection methods and their accompanying statistics 

(empirical evidence) to evaluate their efficiency. The first technique observed was Opcode 

based, Operands of Opcode provide additional information about the suspicious file 

(Zolotukhin and Hamalainen, 2014) which might help in detecting other malware variants. 

However, this will require large number of labelled executables for each variant, and it is 
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difficult to acquire such data (Santos et al., 2011). Other challenges include the cost of 

extra processing time (Santos et al., 2011; Alam et al., 2014b).  

 

Obfuscation is efficient to easily evade detection when Opcode is utilised (Preda, 

2012; Mahawer and Nagaraju, 2013) this is mainly due to the change affecting Opcode 

distribution which thereafter results in the creation of a vague abstract model for 

metamorphic malware detection (Alam et al., 2014c). Likewise, CFG and API Call Graph 

based techniques are not effective against encryption/encoding obfuscation techniques (Li 

et al., 2006; Elhadi et al., 2014). CFG uses static analysis and requires human interaction 

during the process causing imprecise outcome. Hence, a more dynamic approach is 

recommended (Moser et al., 2007). Contrary to Opcode, CFG is unable to generate 

signatures for a file with small foot prints (Paul and Mishra, 2014) which may yield a high 

FPR. When API Call Graph is used, extracted API call lists and its parameters would be 

incorrect when the Malware uses encryption. Furthermore, another challenge is related to 

the extraction process itself using graph construction algorithms (Elhadi et al., 2014) 

because operating system resources are not included as graph nodes in call graph. API Call 

Graph depends upon graph construction and may not complete in terms of the number of 

nodes (Park et al., 2013). Adopting a graph based approach is expensive, complex (Li et 

al., 2006), and has a problem of NP Complete (Bai et al., 2009; Alam et al, 2014c). 

Nonetheless, a recent study by Salehi et al. (2017) whose method generated features for 

both return and argument values of recorded API call lists, obtained DR of 99.9% with less 

than 1% FPR using 1211/3175 malware and benign samples respectively. 

 

Semantic set is a recently introduced technique to identify metamorphic malware 

(Van Nhuong et al., 2014a). However, it cannot detect obfuscated malware and requires a 

lot of human interaction for hex conversion and information manipulation. Therefore, 

while detection rate is very promising, practical implementation is technically challenging 

due to the amount of manual input required.  

 

Another recent study by Mehra et al. (2015) combined API Call Graph, CFG and 

Histogram. The proposed system consisted of three phases. Firstly, the executable is 

disassembled with a pre-processing algorithm to remove unnecessary statements and to 

generate CFGs. Next, API Call Graphs are generated with the help of a labelling algorithm. 

Then, features are generated based on the API Call Graphs. Histograms are created using 

features same as that of API Call and then used to classify files as either malicious or 

benign. Khodamoradi et al. (2015) used a decision tree to compute statistics about Opcode 

and build thresholds. They used a tool called Opcode Statistic Extractor (OSE) to analyse 

disassembled code and calculate Opcode frequency. This was then fed into a classifier to 

determine whether the code is malicious. Work on classification or categorization methods 

is out of scope for this survey, but it is inevitable to include a brief demonstrate on how it 

can be utilised to counteract malware since it is incorporated within many Hybrid detection 

approaches as shown below. In principle, the classification process consists of pre-

processing and dimensionality reduction techniques, feature selection, feature 

representation (term weighting), and then selected algorithms (classifiers) are trained on 

the data set. To increase accuracy, a hybrid approach can also be deployed by integrating 

multiple algorithms and stemming techniques into this process (Alabbas et al., 2016). 

O’Kane et al., (2016) proposed using reduced Opcode set for detecting obfuscated 

malware. In their research, Support Vector Machine was used to classify files. The Opcode 

data set is created by extracting Opcode density histogram during program execution.  
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Mirzazadeh et al. (2015) demonstrated how to detect metamorphic malware 

particularly NGVCK and MWOR using a Linear Discriminant Analysis method. The 

research framework was based on Opcode Graph Similarity (OGS) of Runwall et al. (2015) 

which trimmed lifeless ciphers from the graph. Basic Linear Discriminant Analysis (LDA) 

features such as modifications among class and unpredictability within class were selected 

as detection criteria. The LDA method used the following phases: pre-processing, training, 

set threshold and prediction (Raphel & Vinod, 2015). The result of the method obtained 

detection accuracy rate of 99.7% for MWOR and 100% for NGVCK malwares 

respectively.  Analogous to the LDA based technique is the research of Kuriakose and 

Vinod (2015) which detected NGVCK and MWORM metamorphic malware with 100% 

accuracy when 125 features ranking Opcode techniques were deployed to calculate 

similarity in their file execution. The technique arrived at a Markov Blanket detection 

correctness of 100% for both NGVCK and MWORM with 1.0 precision. It can be inferred 

that the LDA technique suppresses feebleness of OGS when results were contributed from 

all edges and nodes, whereas LDA pruned the junk edges from the graphs thus establishing 

a distinguished detection threshold between benign programs and metamorphic malware. 

 

Nevertheless, another new proposal by Saleh et al. (2011) utilised a modified 

version of a face recognition technique to detect malware. This technique uses static 

analysis which always requires human interaction to train and update data. Any approach 

that requires direct human interaction is time consuming and should be automated (Moser 

et al., 2007). This technique is based on pattern matching and therefore liable to issues such 

as the 2D pattern matching problem in image making. 

 

The included studies emphasised on several key challenges particularly facing the 

detection process for metamorphic malware, some of which have been briefly discussed in 

the literature in studies such as (Yoshioka and Matsumoto, 2009) and (Kim and Moon, 

2010): 

 

Obfuscation/Evasion. Mainly because obfuscation techniques change the abstract 

behavioural model used to define the behaviour of a given software. Further, if malware 

writers have the knowledge of the basic mutation process and detection algorithms used 

for originating these abstract models, they could amend new designs to evade detection. 

 

Dynamic Analysis. To analyse the behaviour of metamorphic malware, a Sandbox is 

required to make sure that it would not affect any interconnected environment including 

the network. The implementation is simpler with static analysis where you can disconnect 

network connection, while the Internet could be required for dynamic analysis.  

 

Precise Signature. System and Programming languages use control flow and data flow 

techniques to analyse the behaviour of metamorphic malware. However, these techniques 

are difficult to apply on metamorphic malware due to its nature of code mutation which 

will cause time and result in many false positives and false negatives. 

 

Human Interaction. Human input can be fundamental to establish a detection model to 

work more accurately. 

 

Application Difficulty. When metamorphic malware mutates itself, it becomes very 

difficult to extract a precise signature that is used in detecting a wide range of malware 

variants. 
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APPENDIX 1 - Evaluation of selected reviewed papers 
 

This section presents a comparative analysis of studied papers. The purpose of this comparative analysis is to provide a clear view to the reader 

on strengths and weaknesses of selected reviewed papers. The comparative analysis is shown below in the Table 1. 

  

 

Table 1. A comparative analysis of studied papers 

S# Papers Techniques Approach Strengths Limitations Validation 

Dataset size 

(# of files) 

DR% FPR% 

1 (Mahawer and Nagaraju, 2013) Opcode 

The detection method is 

based on Most Frequently 
Occurred (MFO) histograms 

of Opcodes in disassembled 

files. 

Effective against dead code 

insertion, registry renaming, 
code reordering. 

Cannot detect malware 

with obfuscation 
capabilities, this will 

cause a high rate of FNs.  

Validated by 

experimental result 
showing significant 

figures in FPR and DR. 
2121 99.5% 0.01% 

2 (Alam et al., 2014a) Opcode 

Detecting metamorphic 

malware by computing 

weight of MAIL pattern and 

Control Flow Weight then 
matching them using index 

based signature array 

Platform independent and 

support automated analysis 

with the help of intermediate 

language. 

1- Better detection 

results are limited to 

small size dataset 

2- Large datasets 
increase the complexity 

and is time consuming. 

3- Compiler optimisation 
could affect frequency of 

Opcode 

4- Vulnerable to 
obfuscation 

The results are validated 

by experiments but 10 

fold cross validation 

technique has been used 
which makes the results 

more bias compared to 5 

fold cross validation. 

1251 99.1% 0.93% 

3 (Rezaei et al., 2014a) Opcode 

Detecting metamorphic 

malware by comparing 

probability set percentage 

between sample and virus 

family using Markov 
properties. 

Proposed method is based on 

Hidden Markov Model and 

showed higher efficiency 

against others antiviruses 

compared. 

Unable to detect 

unknown metamorphic 

malware. 

Validated by 

experimental results 

showing improvement in 

FPR. 
3120 94% 0% 

https://doi.org/10.1504/IJESDF.2018.090948
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S# Papers Techniques Approach Strengths Limitations Validation 

Dataset size 

(# of files) 

DR% FPR% 

4 (Vinod et al., 2012) Opcode 

Detecting metamorphic 

malware using 
bioinformatics sequence 

alignment based on Multiple 

Sequence alignment to align 
Opcode sequence 

Strong logical motivation 

derived from DNA sequences 
of inheriting functional, 

structure similarity from one 

generation to other same as 
applied in metamorphic 

malware 

1-Large numbers of 

mismatch mnemonic 
pairs cause less 

Detection Rate.  

2-Increased FPR in 
single signatures, 

degraded in DR in group 

and probabilistic 
signatures.   

Validated by 

experimental results. 
Shows technique that 

needs improvement. 

724 71% 7% 

5 (Rezaei et al., 2014b) Opcode 

Detecting encrypted 

metamorphic malware by 

comparing probability set 
percentage between sample 

and virus family using 

Markov properties. 

Proposed method is based on 

Hidden Markov model for 

encrypted malware and 
showed higher efficiency 

against other antiviruses 

compared. 

1- Unable to detect 

unknown metamorphic 

malware. 
2- Require extensive 

calculation 

3- Vulnerable to 

obfuscation 

Validated by 

experimental results 

indicating good 
efficiency as compare to 

other antiviruses 

involved in the 

experiment. 

192 70% N/A 

6 (Alam et al., 2014c) CFG 

Protecting end user from 

metamorphic malware  in 
real-time 

MAIL intermediate language 

have capability to provide 
patterns for matching to 

enhance the metamorphic 

malware detection. It also 
capable of platform and 

analysis independent. 

Time consuming while 

examining large dataset. 

Validated by 

experimental results 
showing 

significant/effective DR 

but FPR is very high. 

510 98.9% 4.5% 

7 (Eskandari and Hashmi, 2011) Hybrid 

A combination of control 
flow graph and API Call 

Graph is used to detect 

metamorphic malware.  

Using semantic aspects, 
method is capable of 

detecting obfuscated files. 

Slow computational 
process. 

Ineffective with non-

assembly malware. 

Validated by 
experiments in 

comparison to different 

classifier. 

4445 97.5% 1.97% 

8 (Agrawal et al., 2012) CFG 

To overcome graph 

comparison problem, 

normalised metric edit 
distance technique is 

employed. 

High level semantic signature 

enable detection of unknown 

new variants of the same 
family.  

Ineffective with non-

assembly malware. 

Validated by 

experimental statistics, 

showing 
significant/effective 

results in FPR but needs 

more work on Detection. 

18 86% 0% 
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S# Papers Techniques Approach Strengths Limitations Validation 

Dataset size 

(# of files) 

DR% FPR% 

9 (Martins et al., 2014) 
Dependency 

Graph 

Identifying related nodes on 

the basis of its relationship 
and characteristics in 

dependency graph extracted 

for an executable file. 

It is capable of eliminating 

the impact of obfuscation 
techniques on malicious 

code.  

Identifying relationship 

between nodes and 
relevant events requires 

a statistical inference 

technique. 

Validated by 

experimental results 
showing an 

improvement in 

identification of 
metamorphic malware 

compared to the 

approach used as 
reference model in (Kim 

and Moon, 2010). 

63 70% N/A 

10 (Elhadi et al., 2014) API Call 

Enhancing API Call Graph 

construction by integrating 
API call and system 

resources with the help of 

four type of dependencies 

between nodes. 

Sequence profiling & data 

dependencies to generate 
accurate call graph. It takes 

both signature and behaviour 

input sample. 

Dynamic analysis might 

not explore important 
API call’s execution. 

Approach has weakness 

against polymorphic 

code modification.  

Time consuming in term 

of matching process and 
graph construction. 

Validated by 

experimental results 
showing improvement in 

FPR and DR. 

514 98% 0% 

11 (Kwon and Lee, 2012) API Call 

Transformation of API Call 

Graphs to sub graphs on the 
basis of behaviour semantic 

and related functionalities. 

Proposed method has ability 

to detect many malware 
variants with the help of few 

signatures that also reduces 

signature storage space and 
analysis time.   

Algorithm used for 

graph extraction cannot 
build accurate graph 

from instruction derived 

from malware sample. 
Ineffective with non-

assembly malware.  

Validated by 

experimental showing 
significant figures in  

DR with no FPs. 1863 98% 0% 

12 (Wu et al., 2013) API Call 

API Call Graphs are 

generated and similarity is 

computed using cosine 

similarity method. 

Proposed method is more 

robust against obfuscation 

techniques and effective for 

malware variants detection.   

Ineffective with non-

assembly malware. 

Cosine similarity fails 

when comparing small 
graphs. 

Validated by 

experiments performed 

on prototype system. More than 

200 pair 
98% N/A 
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S# Papers Techniques Approach Strengths Limitations Validation 

Dataset size 

(# of files) 

DR% FPR% 

13 (Lee et al., 2010) API Call 

Mechanism based on 

semantic characteristics 
using code graph system 

before file execution.   

Proposed method reduces the 

number of malware signature 
by detecting all of the 

malware variants with single 

signature of original malware 
and have ability to defeat 

evasion techniques.  

Weakness in detecting 

malwares having 
insertion of useless 

system calls. 

Validated by 

experiments show low 
DR at 91% and no 

availability of FPR. 
300 91% N/A 

14 (Van Nhuong et al., 2014a) Hybrid 

Combination of two different 
methods to build a detection 

system which inherits the 

advantages of both methods 
in detecting malware 

including obfuscated. 

Tracer tool automatically 
extract semantic sets that 

overcomes malware 

obfuscation. Detection is 
near to perfection.  

Processing time needs to 
be optimised. It does not 

support real-time 

detection. 

The results are validated 
by experiments with two 

different sizes of 

datasets. 
DS1=107 

DS2=79 
100% N/A 

15 (Van Nhuong et al., 2014b) Hybrid 

Combination of three 

different methods to build a 

powerful detection system to 
detect all type of malware  

DR is achieved up to 100%. It does not support real-

time detection. 

Processing time needs to 
be optimised. 

The results are validated 

by experiments with two 

different sizes of 
datasets. 

DS1=107 

DS2=79 
100% N/A 

16 (Saleh et al., 2011) Eigenfaces 

Based on face recognition 

technique with some 
modification assuming that 

every face has a linear 

combination of basic set with 
some changes. 

Method is capable of 

learning new virus patterns 
for future malware 

recognition.  

1- Time consuming in 

term of pattern matching 
process. 

2- Distance measuring 

technique used is simple 
and limited to high 

number of dataset for 

better results. 

Validated by 

experimental results 
showing 100% in DR 

but FPR is high. 
1250 100% 4% 

 

 


