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ABSTRACT
The isotropic harmonic oscillator in dimension 3 separates in several different coordinate systems. Separating in a particular coordinate system
defines a system of three Poisson commuting integrals and, correspondingly, three commuting operators, one of which is the Hamiltonian. We
show that the Lagrangian fibration defined by the Hamiltonian, the z component of the angular momentum, and a quartic integral obtained
from separation in prolate spheroidal coordinates has a non-degenerate focus-focus point, and hence, non-trivial Hamiltonian monodromy
for sufficiently large energies. The joint spectrum defined by the corresponding commuting quantum operators has non-trivial quantum
monodromy implying that one cannot globally assign quantum numbers to the joint spectrum.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5053887

I. INTRODUCTION
The isotropic harmonic oscillator is at the same time the simplest and one of the most important systems in physics. The system

is very special in both the classical and the quantum setting. All solutions of the classical equations of motion are periodic and even
have the same period. The quantum system is special in that it has an equidistant energy spectrum. The best explanation of these special
properties in both the classical and the quantum setting is the high SU(3) symmetry of the system (see Ref. 1) which makes the system
super-integrable.

A classical integrable Hamiltonian system (IHS) in N degrees of freedom has exactly N independent and mutually Poisson commuting
integrals with one of them being the Hamilton function. The joint level sets of the integrals define a Lagrangian fibration of phase space by
N-dimensional tori. The local geometry of the fibration is given by the Liouville-Arnold Theorem2 which also ensures the local existence of
classical actions. Passing to the quantum setting, a quantum integrable system (QIS) is a set of N commuting operators H = (Ĥ1, . . . , ĤN)
with, say, Ĥ1 being the Hamilton operator of the system. Because the operators commute, their spectra can be measured simultaneously,
Ĥiψ = λiψ, i = 1, . . ., N. Together, they define the joint spectrum which associates a point in N−dimensional space with coordinates λi to each
joint eigenfunction ψ. It follows from the Bohr-Sommerfeld quantization of classical actions that the joint spectrum locally has the structure
of a lattice ZN .

A classical super-integrable system in N degrees of freedom is one that has more than N independent integrals. The classical geometry of
super-integrable systems is well understood.3 Fixing the values of the integrals defines tori of lower dimension than in the Liouville-Arnold
Theorem, and Nekhoroshev showed that one can construct lower dimensional action-angle coordinates in a kind of generalization of the
Liouville-Arnold Theorem.4 More global aspects have been studied in Refs. 5 and 6. Given a super-integrable system with more than N
integrals, one can choose N of them, including the Hamiltonian, to define an IHS or, equivalently, a Lagrangian fibration of phase space. Such
choices of N integrals can define non-equivalent Lagrangian fibrations. Reflecting the classical setting, if a Hamiltonian Ĥ is super-integrable,
then there are distinct QISs determined by a specific choice of N commuting operators that share the given Hamiltonian Ĥ, but form non-
equivalent QISs with in general different joint spectra. The eigenvalues of Ĥ and their degeneracy are the same in each realisation, but the
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joint spectrum within a degenerate eigenspace and the corresponding basis of eigenfunctions are different. From the classical geometric point
of view, considering tori with half the dimension of phase space in a super-integrable system appears somewhat arbitrary. However, from
the quantum point of view, it is prudent to study all possible sets of commuting observables because these tell us what can be measured
simultaneously as the uncertainty principle is trivial in this case.

In this paper, we are focusing on the case where the different IHSs or corresponding QISs are obtained from separation in differ-
ent coordinate systems. Separation in different coordinate systems gives different IHSs with the same Hamilton function H or QISs with
the same Hamilton operator Ĥ. A Hamiltonian that is multi-separable is also super-integrable since there are more than N integrals.
Schwarzschild7 was the first to point out that if the Hamilton-Jacobi equation of H can be separated in more than one coordinate sys-
tem, the quantum energy eigenvalues of Ĥ are degenerate. Such a Hamiltonian operator Ĥ is called multi-separable and is hence included in
non-equivalent QIS’s H and G. The simplest multi-separable systems are the free particle, the Kepler problem, and the harmonic oscillator.
A multi-separable system with N degrees of freedom is super-integrable because if both H and G contain Ĥ, then we have found more than
N − 1 operators that commute with Ĥ. An important group of 3-dimensional super-integrable and multi-separable systems is classified in
Ref. 8.

The isotropic three-dimensional harmonic oscillator is maximally super-integrable which means that, together with the Hamiltonian, it
has five independent integrals. The joint level sets are one-dimensional tori, i.e., periodic orbits, whose projection to configuration space are
ellipses centered at the center of the force. Super-integrability manifests itself in the degeneracy of the quantum energy spectrum: the total
number of states of a three-dimensional harmonic oscillator with angular frequency ω and energy E = h̵ω(n + 3/2) is (n + 1)(n + 2)/2 with the
“principal” quantum number n = 0, 1, 2, . . . (see Ref. 9).

It is also well known that the isotropic 3-dimensional harmonic oscillator is multi-separable. On one hand, it separates in Cartesian
coordinates into a sum of one-degree-of-freedom harmonic oscillators so that the wave function for the multi-dimensional case is simply a
product of wave functions for the one-dimensional case, which are given in terms of Hermite polynomials. On the other hand, it separates
in spherical coordinates, which leads to wave functions that are products of spherical harmonics and associated Laguerre polynomials. In the
first case, we have a quantum number ni = 0, 1, 2, . . . for each 1D oscillator, and the eigenvalues of Ĥ are E = h̵ω(n + 3/2) = h̵ω(n1 + n2 + n3
+ 3/2). In the second case (see, e.g., Ref. 10), we have E = h̵ω(2k + l + 3/2) for the non-negative integer k where l is the total angular momentum
eigenvalue with l = n, n − 2, n − 4, . . . down to 0 or 1, depending on whether n is even or odd, respectively. In addition, there is the usual
“magnetic” quantum number m = −l, . . ., l. In both cases, the quantum states form a lattice in which lattice points can be uniquely labelled by
quantum numbers. The details of the two lattices are, however, different. In particular, the actions are not even locally related by unimodular
transformation like in the case of integrable systems.

In this work, we consider the separation of the isotropic harmonic oscillator in prolate spheroidal coordinates. Prolate spheroidal coor-
dinates are a family of coordinate systems where the family parameter a is half the distance between the focus points of a family of confocal
ellipses and hyperbolas, which in order to get corresponding coordinate surfaces are rotated about the axis containing the focus points. In the
limit a→ 0, spherical coordinates are obtained, and in the limit a→∞, parabolic coordinates are obtained. The separation leads to three inte-
grals: the harmonic oscillator Hamiltonian H, the z-component Lz of angular momentum, and a quartic integral G arising from the separation
procedure.

Our main result is that the Lagrangian fibration defined by the integrals obtained from separating the harmonic oscillator in prolate
spheroidal coordinates has non-trivial Hamiltonian monodromy11 when the energy E > 1

2ω
2a2. Classically, this implies that the Lagrangian

fibration cannot be globally described through action-angle variables, while in the quantum context the joint spectrum of Ĥ, L̂z , Ĝ cannot
be assigned three global quantum numbers. Our approach is similar to a recent analysis of the Kepler problem, which through separation
in prolate spheroidal coordinates leads to a quantum integrable system that does not possess three global quantum numbers.12 The latter
result had in a sense been anticipated in Ref. 13 where it was shown that the two-center problem, which is separable in prolate spheroidal
coordinates, has monodromy.

Monodromy and generalizations of monodromy14,15 have been extensively studied in recent years and have been found for many dif-
ferent systems; see, e.g., Ref. 16 and the references therein. Quantum monodromy manifests itself as a lattice defect in the joint spectrum that
prevents the global assignment of quantum numbers.17–20 Quantum monodromy explains, e.g., problems in assigning rovibrational spectra
of molecules21–23 or electronic spectra of atoms in external fields.24,25 Moreover, it provides a mechanism for excited-state quantum phase
transitions.26,27 The generalization of monodromy to scattering systems has been shown to lead to defects in the lattice of transparent states
in planar central scattering28 (see also Refs. 29 and 30 for a more general perspective on monodromy in classical potential scattering). Mon-
odromy can also play a role in spatiotemporal nonlinear wave systems,31 and dynamical manifestations of monodromy have recently been
studied in Ref. 32.

Monodromy is not an intrinsic property of the fibration of the phase space of the isotropic 3-D harmonic oscillator by 1-tori (periodic
orbits). It is a property of a specific Lagrangian fibration, a specific arrangement of these 1-tori into 3-tori, induced by the choice of integrals H,
Lz , and G arising from separation in prolate spheroidal coordinates. Even though this is only one out of many possible Lagrangian fibrations
that can be defined by arranging the 1-tori in different ways, it is also of a more general interest. Consider Hamiltonian systems where the
function F is invariant under the oscillator and axial symmetries induced by the flows of H and Lz , respectively. It is then natural to ask
which functions F lead to Lagrangian fibrations (defined by H, Lz , and F) with monodromy. Our results imply that F = G has this property.
Moreover, the corresponding singular Lagrangian fibration for fixed positive H = E > 0 provides a concrete realization of an almost toric
system appearing in the classification by Ref. 33. The fibration’s base space is a disk D, the total space is CP2, and there are n = 1 focus-focus
points (nodes) and k = 2 elliptic-elliptic points (vertices); see also Ref. 34.
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However, choosing F = G is not the only such example and indeed its significance becomes apparent when it is viewed as a mem-
ber of a particular family of axially symmetric integrable perturbations of the isotropic 3-D harmonic oscillator. Specifically, consider
Hamilton functions that, as before, are invariant under the oscillator and axial symmetries but also Poisson commute with G. A Tay-
lor expansion and truncation to quartic terms of such F gives a Hamilton function F(4) which must be a linear combination of quadratic
terms H, Lz and quartic terms HLz , G. After singular reduction of the symmetries the only non-trivial remaining term is G. There-
fore, the Lagrangian fibration defined by (H, Lz , F(4)) and the one defined by (H, Lz , G) are equivalent. Moreover, if higher-order terms
in the Taylor expansion of F are sufficiently small compared to F(4), monodromy will also be a property of the Lagrangian fibration
defined by (H, Lz , F). This shows, in particular, that there exists a family of axially symmetric, integrable, perturbations of H whose
Lagrangian fibration possesses monodromy and whose study boils down to the study of the Lagrangian fibration defined by (H, Lz , G)
which is the main aim of this work. We note that perturbations of isotropic harmonic oscillators have many applications. Examples
where similar techniques as in this paper are used include assigning rovibrational spectra of molecules using polyads,35 ion traps,36

and galactic dynamics.37 It is to be expected that the results of our paper has applications along the same line which deserves further
investigation.

This paper is organized as follows: In Sec. II, we introduce the classical three-dimensional isotropic harmonic oscillator and discuss its
symmetries and its separation in prolate spheroidal coordinates. In Sec. III, we compute the bifurcation diagram for the energy momentum
map associated with separation in prolate spheroidal coordinates and prove the presence of monodromy. The effect of monodromy on the
quantum spectrum is studied in Sec. IV. We conclude with some comments in Sec. V.

II. CLASSICAL SEPARATION IN PROLATE SPHEROIDAL COORDINATES
The three-dimensional isotropic harmonic oscillator has the Hamiltonian

H = 1
2
∣p∣2 +

ω2

2
∣r∣2, (1)

where r = (x,y,z)T and p = (px, py, pz)T are the canonical variables on the phase space T∗R3 ≅ R6. By choosing suitable units, we can assume
that the frequency ω has the value 1. But in order to identify terms arising from the potential, we will keep ω in the equations below. Not only
are the three separated Hamiltonians

A = ( 1
2(p2

x + ω2x2), 1
2(p2

y + ω2y2), 1
2(p2

z + ω2z2))T ,

constants of motion, but so are the components of the angular momentum L = r × p. Not all these integrals are independent. But any five of
them are so that H is maximally super-integrable.

Define

B = ({Lx, Ay},{Ly, Az},{Lz , Ax})T ,

where {⋅, ⋅} is the Poisson bracket. The algebra of 9 quadratic integrals A, B, L closes and defines a Lie-Poisson bracket, shown in Table I, that
is isomorphic to the Lie algebra su(3) (see also Ref. 1). Fixing the relations between the integrals A, B, L defines an embedding of the reduced
symplectic manifold CP2 into R9. Here, CP2 is the orbit space of the S1 action induced on C3 ≃ T∗R3 by the Hamiltonian flow of H.38,39 The
Hamiltonian H = Ax + Ay + Az is a Casimir. The algebra has two more Casimirs, the quadratic C2 = 2A2 + ω2L2 + B2 and the cubic

C3 = 6 Re(wxwywz) + ∑
k=x,y,z

2∣wk∣2(H − 3Ak) −
8

27
(H − 3Ak)3,

TABLE I. Poisson structure on CP2.

{↓,→} Ax Ay Az Lx Ly Lz Bx By Bz

Ax 0 0 0 0 By −Bz 0 −ω2Ly ω2Lz
Ay 0 0 0 −Bx 0 Bz ω2Lx 0 −ω2Lz
Az 0 0 0 Bx − By 0 − ω2Lx ω2Ly 0
Lx 0 Bx −Bx 0 Lz −Ly 2Az − 2Ay −Bz By
Ly −By 0 By −Lz 0 Lx Bz 2Ax − 2Az −Bx
Lz Bz −Bz 0 Ly −Lx 0 −By Bx 2Ay − 2Ax
Bx 0 −ω2Lx ω2Lx 2Ay − 2Az −Bz By 0 −ω2Lz ω2Ly
By ω2Ly 0 −ω2Ly Bz 2Az − 2Ax −Bx ω2Lz 0 −ω2Lx
Bz −ω2Lz ω2Lz 0 −By Bx 2Ax − 2Ay −ω2Ly ω2Lx 0

J. Math. Phys. 60, 032103 (2019); doi: 10.1063/1.5053887 60, 032103-3

Published under license by AIP Publishing

https://scitation.org/journal/jmp


Journal of
Mathematical Physics ARTICLE scitation.org/journal/jmp

where wk = Bk + iωLk, k = x, y, z.
The huge symmetry of the isotropic harmonic oscillator is also reflected by its separability in different coordinate systems. In fact, the

three-dimensional oscillator separates in several different coordinate systems. The most well known are the systems of Cartesian coordinates
and spherical coordinates (see, e.g., Ref. 1). In this paper, we will be studying the separation in prolate spheroidal coordinates. The separability
in these coordinates is, e.g., mentioned in Ref. 40. The coordinates are defined with respect to two focus points which we assume to be located
on the z axis at a = (0, 0, a) and −a = (0, 0, −a) where a > 0. The prolate spheroidal coordinates are then defined as

(ξ, η,φ) = ( 1
2a

(r+ + r−),
1

2a
(r+ − r−), arg(x + iy)),

where r± = |r ± a|. They have ranges ξ ≥ 1, −1 ≤ η ≤ 1, and 0 ≤ ' ≤ 2π. The surfaces of constant ξ > 1 and −1 < η < 1 are confocal prolate
ellipsoids and two-sheeted hyperboloids which are rotationally symmetric about the z axis and have focus points at±a. For ξ→ 1, the ellipsoids
collapse to the line segment connecting the focus points, and for η→ ±1, the hyperboloids collapse to the half-lines consisting of the part of
the z axis above and below the focus points, respectively.

The Hamiltonian in prolate spheroidal coordinates becomes

H = 1
2

1
a2(ξ2 − η2)(p2

ξ(ξ2 − 1) + p2
η(1 − η2)) +

1
2

p2
φ

a2(ξ2 − 1)(1 − η2) +
1
2

a2ω2(ξ2 + η2 − 1).

The angle ' is cyclic. So p' which is the z component of the angular momentum is a constant of motion. Multiplying the energy equation
H = E by 2a2(ξ2 − η2) and reordering terms gives the separation constant

G ∶= −p2
ξ(ξ2 − 1) − l2

z

ξ2 − 1
− a4ω2ξ2(ξ2 − 1) + 2a2(ξ2 − 1)E

= p2
η(1 − η2) +

l2
z

1 − η2 + a4ω2η2(1 − η2) − 2a2(1 − η2)E,
(2)

where we use lz to denote the value of p'. Rewriting the separation constant in Cartesian coordinates gives

G = L2
x + L2

y + L2
z − 2a2(Ax + Ay). (3)

The functions G = (H, Lz , G) are independent and their mutual Poisson brackets vanish. They thus define a Liouville integrable system which
as we will see has a singular foliation by Lagrangian tori with monodromy which we then also study quantum mechanically.

III. BIFURCATION DIAGRAM AND REDUCTION
Solving (2) for the momenta pη and pξ, we get

p2
ξ =

P(ξ)
(ξ2 − 1)2 and p2

η =
P(η)

(η2 − 1)2 , (4)

where

P(s) = −l2
z + 2a2(1 − s2)[(E − 1

2
a2ω2s2)(1 − s2) +

g
2a2 ] (5)

with g denoting the value of the separation constant G. The roots of the polynomial P(s) are turning points in the corresponding separated
degree of freedom, i.e., roots in [−1, 1] correspond to turning points in the (η, pη) phase plane and roots in [1,∞) correspond to turning points
in the (ξ, pξ) phase plane. Critical motion occurs for values of the constants of motion where turning points collide, i.e., for double-roots of
P(s). The bifurcation diagram, i.e., the set of critical values of the energy momentum map G = (H, Lz , G) : T∗R3 → R3, (r, p) ↦ (E, lz , g),
can thus be found from the vanishing of the discriminant of the polynomial P(s). However, care has to be taken due to the singularities of the
prolate spheroidal coordinates at the focus points. In Sec. III C, below we will therefore derive the bifurcation diagram more rigorously using
the method of singular reduction.41 For lz = 0, the motion (in configuration space) takes place in invariant planes of constant angles about
the z axis. We will consider this case first and study the case of general lz afterwards.

A. The two-dimensional harmonic oscillator (lz = 0)
From the one-parameter family of two-dimensional harmonic oscillators with lz = 0, we will consider the one in the (x, z) plane. This is

an integrable system with the energy momentum map (H, G) where H and G are the constants of motion defined in (1) and (3) restricted to
y = py = 0. For lz = 0, the roots of P(s) are
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s1± = ±1,

s2± = ±
1

2ωa

√
2a2ω2 + 4 h − 2

√
(a2ω2 − 2E)2 − 4 gω2,

s3± = ±
1

2ωa

√
2a2ω2 + 4 h + 2

√
(a2ω2 − 2E)2 − 4 gω2.

For values (E, g) for which s2± and s3± are real, we have |s2±| ≤ |s3±|. If s3± are not real, then s2± are also not real. But conversely, s3± can be
real even if s2± are not real. The discriminant of P(s) is

discrim(P(s), s) = 64 a12ω2(2 a2E + g)g4((a2ω2 − 2E)2 − 4 gω2)2
.

Double roots occur for

L1 ∶= {g = −2 a2E}, L2 ∶= {g = 0}, L3 ∶= {g = (a2ω2 − 2 E)2

4ω2 }.

The curves Li, i = 1, 2, 3, divide the upper ( g, E) half plane into five region with different dispositions of roots as shown in Fig. 1. From the
separated momenta in (4), we see that the values of the constants of motion facilitate physical motion (i.e., real momenta) if the resulting P(s)
is positive somewhere in [−1, 1] and at the same time positive somewhere in [1, ∞). From Fig. 1, we see that this is the case only for regions
III and IV. For a fixed energy E ≥ 0, the minimal value of g is determined by the collision of the roots s2± at 0, whereas for a fixed energy
E > 1

2ω
2a2, the maximal value of g is determined by the collision of the pairs of roots s2± and s3±, and the maximal value of g for a fixed energy

0 < E < 1
2ω

2a2 is determined by the collision of the pairs of roots s3± and s1± = ±1. At the boundary between regions III and IV, the pairs of
roots s2± and s1± = ±1 collide.

For a value (E, g) in region IV, the preimage under the energy momentum map (H, G) is a two-torus consisting of a one-parameter
family of periodic orbits whose projection to configuration space are ellipses which are enveloped by a caustic formed by the ellipse given by

FIG. 1. Bifurcation diagram of the planar harmonic oscillator with energy momentum map (H, G) (top left). The remaining panels show the graphs of the polynomial P(s) for
representative values of (E, g) in the regions I to V marked in the (g, h) plane. In region I, all roots are real and satisfy |s2±| < |s3±| < |s1±|. In region II, s2± and s3± are
complex. In region III, all roots are real and satisfy |s1±| < |s2±| < |s3±|. In region IV, all roots are real and satisfy |s2±| < |s1±| < |s3±|. In region V, s2± are complex and s3±

are real with |s1±| < |s3±|.
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the coordinate line ξ = s3+ and the two branches of the confocal hyperbola corresponding to the coordinate line η = s2+ [see Fig. 2(a)]. For
a value (E, g) in region III, the preimage under the energy momentum map (H, G) is a two-torus consisting of a one-parameter family of
periodic orbits whose projection to configuration space are ellipses which are enveloped by a caustic formed by two confocal ellipses given
by the coordinate lines ξ = s2+ and ξ = s3+, respectively [see Fig. 2(c)]. The boundary L2 = {g = 0} between regions III and IV is formed by
critical values of the energy momentum map (H, G), and the preimage consists of a one-parameter family of periodic orbits whose projection
to the configuration space are ellipses which each contain the focus points ±a [see Fig. 2(b)]. The family, in particular, contains the periodic
orbit oscillating along the z axis with turning points z± = ±

√
2E/ω, where |z±| > a. The caustic is again formed by the ellipse ξ = s3+. For

(E, g) ∈ L2 and E < 1
2ω

2a2, the preimage consists only of the periodic orbit oscillating along the z axis between z± = ±
√

2E/ω where z± now
has a modulus less than a. For (E, g) ∈ L3, i.e., the maximal value of g for fixed energy E > 1

2ω
2a2, the preimage consists of two periodic orbits

whose configuration space projections are the ellipse ξ = s2+ = s3+. For (E, g) ∈ L1, i.e., the minimal value of g for fixed energy E, the preimage
consists of the periodic orbit that is oscillating along the x axis with turning points x± = ±

√
2E/ω. The tangential intersection of L2 and L3 at

(g, E) = (0, 1
2ω

2a2) corresponds to a pitchfork bifurcation where two ellipse shaped periodic orbits grow out of the periodic orbit along the
z axis.

B. The three-dimensional harmonic oscillator (general lz)
Increasing the modulus of lz from zero, we see from the definition of P(s) in Eq. (5) that the graphs of the polynomial in Fig. 1 move

downward. Even though we cannot easily give expressions for the roots of P(s) for lz ≠ 0 we see that increasing |lz| from zero for fixed E and g,
the ranges of admissible η and ξ shrink. Moreover, as P(±1) = −l2

z , the roots stay away from ±1 (the coordinate singularities of the prolate
ellipsoidal coordinates) for lz ≠ 0. For general lz , the discriminant of P(s) is

discrim(P(s), s) = 64 a12ω2(2 a2E + g − l2
z)(4 a8l2

z ω
6 − 24 a6El2

z ω
4 − a4g2ω4 − 18 a4gl2

z ω
4+

27 a4lz4ω4 + 48 a4E2l2
z ω

2 + 4 a2g2Eω2 + 36 a2gEl2
z ω

2 − 32 a2E3l2
z + 4 g3ω2 − 4 g2E2)2

.

The first (nonconstant) factor vanishes for

g = lz2 − 2 a2E. (6)

From P(0) = g − l2
z + 2 a2E, we see that this is the condition for the local maximum of P(s) at s = 0 to have the value zero or equivalently the

collision of roots at 0. In order to see when the second nonconstant factor vanishes it is useful to write P(s) as (s− d)2(a4s4 + a3s3a2s2 + a1s + a0),
where d is the position of the double root. Comparing coefficients then gives

g(d) = −a2(d2 − 1)(a2ω2(3d2 − 1) − 4 E), (7)

l2
z(d) = a2(d2 − 1)2(a2ω2(2d2 − 1) − 2 E). (8)

For fixed E and lz , the minimal value of g is, similarly to the planar case (lz = 0), determined by the occurrence of a double root of P(s) at 0, i.e.,
by Eq. (6). The maximal value of g for fixed E and lz is similarly to the planar case determined by the collision of the two biggest roots of P(s)
and given by g(d) in Eq. (7) for the corresponding d > 1. We present the bifurcation diagram as slices of constant energy for representative
values of E. We have to distinguish between the two cases 0 < E < 1

2ω
2a2 and E > 1

2ω
2a2 as shown in Fig. 3. The upper branches of the

bifurcation diagrams in Fig. 3 result from d > 1 in Eqs. (7) and (8). A kink at lz = 0 occurs when E < 1
2ω

2a2. This is because the second factor in

FIG. 2. Orbits and caustics for h = 5, lz = 0 and g = −1 (region IV) in (a), g = 0 (boundary III/IV) in (b) and g = 1 (region III) in (c), and h = 5, lz = 1 and g = 0 in (d), where
ρ =
√

x2 + y2. In all panels, a = 1.
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FIG. 3. Slices of constant energy through the spatial bifurcation diagram with a = 1, ω = 1 and energies E = 1/4 (a) and E = 4 (b).

(8) can be zero at a d ≥ 1 only if E > 1
2ω

2a2 in which case there is no kink. For E < 1
2ω

2a2, there is an isolated point at (lz , g) = (0, 0). This results
from d = ±1 in Eqs. (7) and (8). The point is isolated because the second factor in (8) is negative for E > 1

2ω
2a2 and d = ±1. The preimage of

a regular value of (H, Lz , G) in the region enclosed by the outer lines bifurcation diagrams in Fig. 3 corresponds to a three-torus formed by
a two-parameter family of periodic orbits given by ellipses in configuration space which are enveloped by two-sheeted hyperboloids and two
ellipsoids given by coordinate surfaces of the prolate spheroidal coordinates η and ξ, respectively [see Fig. 2(d)]. The preimage of a critical
value (E, lz , g) in the upper branches in Fig. 3 is a two-dimensional torus consisting of periodic orbits that move on ellipsoids of constant ξ. The
preimage of a critical value (E, lz , g) in the lower branches consists of a two-dimensional torus formed by periodic orbits whose projections to
configuration space are contained in the (x, y) plane. At the corners where |lz| reaches its maximal value E/ω, the motion is along the circle of
radius (∣lz ∣/ω)1/2 in the (x, y) plane with the sense of rotation being determined by the sign of lz .

For the planar case, we saw that the critical energy E = 1
2ω

2a2 corresponds to a pitchfork bifurcation. In the spatial case, this becomes
a Hamiltonian Hopf bifurcation which manifests itself as the vanishing of the kink and detachment of the isolated point in the bifurcation
diagram when E crosses the value 1

2ω
2a2. Note that the critical energy is the potential energy at the focus points of the prolate spheroidal

coordinates.

C. Reduction
The isolated point of the bifurcation diagram for energies E > 1

2ω
2a2 leads to monodromy of the Lagrangian fibration defined by (Lz , G).

To see this more rigorously, we proceed as follows: For a classical maximally super-integrable Hamiltonian with compact energy surface, the
flow of the Hamiltonian is periodic. Therefore, it is natural to consider symplectic reduction by the S1 symmetry induced by the Hamiltonian
flow. This leads to a reduced system on a compact symplectic manifold. On the reduced space which turns out to be CP2, we then have a
two-degree-of-freedom Liouville integrable system (Lz , G). We will prove that for E > 1

2ω
2a2, this system has monodromy by showing the

existence of a singular fibre with value (lz , g) = (0, 0) (the isolated point discussed in Subsection III B) given by a 2-torus that is pinched at a
focus-focus singular point. To this end, it is useful to also reduce the S1 action corresponding to the flow of Lz . As this S1 action has isotropy,
standard symplectic reduction is not applicable and we resort to singular reduction using the method of invariants instead. The result will be
a one-degree-freedom system on a singular phase space; see Ref. 42 (and also Ref. 43) for a detailed discussion of the singular reduction of
these symmetries. For a general introduction to singular reduction, we refer to Refs. 41 and 44, and for the singular reduction of the Keplerian
and axial symmetries, which shares similarities to the present case, to Refs. 45–47.

In order to reduce by the flows of H and Lz it is useful to rewrite G as

G = L2
z − 2R2 − 2

ω
(a2ω2 −H)R +

1
ω

X, (9)

where

R ∶= 1
ω
(Ax + Ay), (10)

X ∶= ω(L2
x + L2

y) − 2AzR. (11)

The significance of this decomposition is that defining Y by
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{R, X} = −2Y ,

we find that the Poisson brackets between R, X, and Y are closed. Specifically, we have

{R, Y} = 2X and {X, Y} = 8(H − ωR)(ωL2
z + HR − 2ωR2)

and (R, X, Y) form a closed Poisson algebra with the Casimir function

C = 4ω2(H − ωR)2(R2 − L2
z) − ω2(X2 + Y2) = 0. (12)

Hence, this achieves reduction to a single degree of freedom with phase space given by the zero level set of the Casimir function C.
A systematic way to achieve this reduction uses invariant polynomials. This approach is moreover useful because it gives a classical

analogue to creation and annihilation operators used in the quantization below. The flows generated by (H, Lz) define a T2 action on the
original phase space T∗R3. Since both H and Lz are quadratic and they satisfy {H, Lz} = 0, there is a linear symplectic transformation that
diagonalises both H and Lz . It is given by

x = 1√
2ω

(p1 + p2), y = 1√
2ω

(q1 − q2), z = 1√
ω

q3, px = −
√ω

2
(q1 + q2), py =

√ω
2
(p1 − p2), pz =

√
ωp3.

In the new complex coordinates zk = pk + iqk, k = 1, 2, 3, we find

H = ω
2
(z1z̄1 + z2z̄2 + z3z̄3), Lz =

1
2
(z1z̄1 − z2z̄2).

Additional invariant polynomials are

R = 1
2
(z1z̄1 + z2z̄2), X − iY = ωz1z2z̄2

3 .

These invariants are related by the syzygy C = 0 in Eq. (12) and satisfy |Lz| ≤ R ≤ H/ω.
The surface C = 0 in the three-dimensional space (X, Y, R) can be viewed as the reduced phase space. It is rotationally symmetric

about the R axis. Due to a singularity at R = E/ω and another singularity at R = 0 when lz = 0, the reduced space is homeomorphic but not
diffeomorphic to a two-dimensional sphere [see Fig. 4(a) and 4(b)]. The singularities of the reduced space result from nontrivial isotropy of
the S1 action of the flow of Lz . The singularity at R = 0 when lz = 0 corresponds to a fixed point of the S1 action, while the singularities at
R = E/ω correspond to points with Z2 isotropy. R = 0 implies that the full energy is contained in the z degree of freedom and motion consists
of oscillations along the z axis. The corresponding phase space points are fixed points of the S1 action of the flow of Lz . The value of Lz is
zero for this motion. For R = E/ω, the energy is contained completely in the x and y degrees of freedom [see (10)], i.e., the motion takes
place in the (x, y) plane. This includes also the motion along the circle of radius (∣lz ∣/ω)1/2 where the vector fields generated by Lz and G are
parallel.

The dynamics on the reduced phase space is generated by G. As the system has only one degree of freedom, the solutions are given
by the level sets of G restricted to C = 0. As G is independent of Y the surfaces of constant G are cylindrical in the space (X, Y, R). Given
the rotational symmetry of the reduced phase space the intersections of G = g and C = 0 can be studied in the slice Y = 0 (see Fig. 4). Two
intersection points in the slice result in a topological circle. Under variation of the value of the level g, the two intersection points collide at
a tangency or the singular point where R = E/ω corresponding to the maximal and minimal values of g for which there is an intersection,
respectively. Both cases correspond to elliptic equilibrium points for the flow of G on the reduced space. For lz = 0, one of the intersection
points can be at the singular point where R = 0. From Eq. (9), we see that the corresponding value of g is 0. In this case, the topological circle
is not smooth. Away from the singular point R = 0, the points on this curve correspond to circular orbits of the action of Lz giving together
with the fixed point of the action Lz at R = 0 a pinched 2-torus where the pinch is a focus-focus singular point in the space reduced by the flow
of H. Reconstructing the reduction by the flow of H results in the product of a pinched 2-torus and a circle in the original full phase space
T∗R3.

The minimal value of G attained at the singular point R = E/ω can be obtained from Eq. (9) and gives again (6). The maximal value of
G can be computed from the condition that ∇G and ∇C are dependent on C = 0, where ∇ is with respect to the coordinates on the reduced
space (R, X, Y). Similarly to the computation of the maximal value of g for fixed E and lz in Subsection III B this leads to a cubic equation.
The critical energy at which the focus-focus singular point comes into existence corresponds to the collision of the tangency that gives the
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FIG. 4. Reduced space C = 0 for E = 1/4 and lz = 0.1 (a), E = 1/4 and lz = 0 (b), and E = 4 and lz = 0 (c). The lower panels show the corresponding slices Y = 0 (dashed) and
contours G = g with increments ∆g = 0.05 in (d) and (e) and ∆g = 2 in (f). In all panels, a = ω = 1.

maximal value of g with the singular point R = 0. As mentioned in Subsection III B, this corresponds to a Hamiltonian Hopf bifurcation. The
critical energy can be computed from comparing the slope of the upper branch of the slice Y = 0 of C = 0 at R = 0 which is 2E with the slope
of G = 0 at R = 0 which is 2a2ω2 − 2E. Equating the two gives the value E = 1

2ω
2a2 that we already found in Subsection III B.

D. Symplectic volume of the reduced phase space
It follows from the Duistermaat-Heckman Theorem48 that the symplectic volume (area) of the reduced phase space defined by C = 0

has a piecewise linear dependence on the global action Lz . Indeed, introducing cylinder coordinates to parametrize the reduced phase space
C = 0 as X = f (R) sin θ and Y = f (R) cos θ, we see from {θ, R} = 2 that the symplectic form on C = 0 is 1

2 dθ ∧ dR. Integrating the symplectic
form over the reduced space C = 0 gives the symplectic volume

VolE,lz =
π
ω
(E − ω∣lz ∣),

for fixed E ≥ ω|lz|. It follows from Weyl’s law that VolE,lz/(2πh̵) = (E−ω∣lz ∣)/(2h̵ω) gives the mean number of quantum states for fixed E and
lz (see Ref. 49 for a recent review). Indeed inserting E = h̵ω(n + 3/2) and lz = h̵m, we get VolE,lz/(2πh̵) = (n + 3/2− ∣m∣)/2. Counting the exact
number of states for fixed n and m which is most easily done using the separation with respect to spherical coordinates (see Introduction),
we get (n + 2 − |m|)/2 if n − |m| is even and (n + 1 − |m|)/2 if n − |m| is odd. We see that Weyl’s law is interpolating between the even
and the odd case; see Fig. 5(a). Similar results relating the symplectic volume of the reduced phase space and the corresponding number of
quantum states in specific physical systems have been obtained for systems of coupled angular momenta50 and for the 1:1:2 resonant swing
spring.51

The area under the graph of VolE,lz as a function of lz for fixed E = h̵ω(n + 3/2) is πh̵2(n + 3/2)2. Dividing by the product of 2πh̵ and h̵
(which is the distance between two consecutive quantum angular momenta eigenvalues lz) gives (n + 3/2)2/2 which for n→∞ asymptotically
agrees with the exact number of states (n + 1)(n + 2)/2; see Fig. 5(b).
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FIG. 5. VolE,lz versus m = lz /h̵ for E = h̵ω(n + 3/2) and corresponding exact number of states (dots) for the even integer n = 10 (a) and the odd integer n = 11 (b). (c) The
area N(E) under graphs of the form in (a) and (b) divided by 2πh̵2 versus E and the corresponding exact number of states (dots) at energies of h̵ω(n + 3/2).

E. The limiting cases a → 0 and a → ∞
From Eq. (3), we see that for a→ 0, the separation constant G becomes the squared total angular momentum, L2 = L2

x +L2
y +L2

z . In the limit
a → 0, we thus obtain the Liouville integrable system given by (H, Lz , |L|2) which corresponds to separation in spherical coordinates. Note
that the a→∞ limit of prolate spheroidal coordinates corresponds to parabolic coordinates, where the harmonic oscillator is not separable.
However, the scaled separation constant

G̃ = − 1
a2 G = 2(Ax + Ay) −

1
a2 (L2

x + L2
y + L2

z) (13)

has the well defined limit 2(Ax + Ay) as a→∞. The limit a→∞ then leads to the Liouville integrable system (H, Lz , 2(Ax + Ay)). The standard
separation in Cartesian coordinates leads to the integrable system (H, Ax, Ay).

The reduction by the flow of H gives as the reduced space the compact symplectic manifold CP2; see Sec. II. Then the map (Ax, Ay)
associated with separation in Cartesian coordinates defines an effective toric action on CP2. The image of CP2 under (Ax, Ay) is therefore a

FIG. 6. The images of different maps of integrals CP2 → R2 where CP2 is the energy level set of the harmonic oscillator reduced by the flow of the Hamiltonian H. (a) The
map of integrals (Ax , Ay ) associated with separation in Cartesian coordinates, where we denote the values of the functions Ak by ak , k = x, y. The image is enclosed by the
triangle with corners (0, 0), (0, E) and (E, 0). (b) The map of integrals (Lz , 1

ω (Ax + Ay)) associated with the limit (a→∞) when separating in prolate spheroidal coordinates.
The image is enclosed by the triangle with corners (0, 0), (E/ω, E/ω) and (−E/ω, E/ω). (c) The map of integrals (Lz , |L|) associated with separation in spherical coordinates
and the limit (a→ 0) in prolate spheroidal coordinates. Here l denotes the value of the function |L|. The image is enclosed by the triangle with corners (0, 0), (E/ω, E/ω) and
(−E/ω, E/ω). The dots mark the joint spectrum of the corresponding quantum operators. The energy is chosen to be E = ωh̵(n + 3/2) with n = 11. The values of h̵ and ω are
chosen as 1.
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Delzant polygon which is a convex polygon with special properties;52 see Fig. 6(a). Note that similar moment polytopes can also be defined
for systems with monodromy.53

Similarly, the map (Lz , 1
ω(Ax + Ay)) : CP2 → R2 associated with separation in prolate spheroidal coordinates in the limit a →∞ also

defines a toric, non-effective, action and its image is the convex, non-Delzant, polygon shown in Fig. 6(b). We here have scaled the separation
constant in such a way that the S1 actions associated with the flows of Lz and 1

ω(Ax + Ay) have the same period.
The image of the map (Lz , ∣L∣) : CP2 → R2 associated with the limit a → 0 and separation in spherical coordinates also gives

the same polygon as in the previous case; see Fig. 6(c). However, whereas here Lz is a global S1 action this is not the case for |L|
whose Hamiltonian vector field is singular at points with L = 0. Because of this singularity (Lz , |L|) is not the moment map of a global
toric action. Whereas the image is a convex polygon the singularity manifests itself when considering the joint quantum spectrum of
the operators associated with the classical constants of motion. Whereas these form rectangular lattices in Figs. 6(a) and 6(b) with lat-
tice constants h̵, this is not the case in Fig. 6(c) where the distance between consecutive lattice layers is not constant in the vertical
direction.

IV. QUANTUM MONODROMY
In this section, we discuss the implications of the monodromy discussed in Sec. III on the joint spectrum defined by quantum operators

Ĥ, L̂z , Ĝ. The quantum mechanical version of the isotropic oscillator is described by the operator

Ĥ = − h̵2

2
∇2 +

ω2

2
(x2 + y2 + z2).

In prolate spherical coordinates, the Schrödinger equation becomes

− h̵2

2
{ 1

a2(ξ2 − η2)[
∂

∂ξ
((ξ2 − 1)∂Ψ

∂ξ
) +

∂

∂η
((1 − η2)∂Ψ

∂η
)] +

1
a2(ξ2 − 1)(1 − η2)

∂2Ψ
∂φ2 } +

ω2

2
a2(ξ2 + η2 − 1)Ψ = EΨ.

Separating the Schrödinger equation in prolate spheroidal coordinates works similarly to the classical case discussed in Sec. II. The separated
equations for η and ξ are

− h̵2 1
1 − s2

d
ds

[(1 − s2)dψ
ds

] = P(s)
(1 − s2)2ψ, (14)

where P(s) is again the polynomial that we defined for the classical case in Eq. (5), with lz = h̵m. This is the spheroidal wave equation with
an additional term proportional to ω2 coming from the potential. For |s| < 1, it describes the angular coordinate η, and for s > 1 the radial
coordinate ξ of spheroidal coordinates.

Analogously to the classical case the separation constant g corresponds to the eigenvalue of the operator

Ĝ = L̂2
x + L̂2

y + L̂2
z − 2a2(Âx + Ây) , (15)

where for k = x, y, z, the L̂k are the components of the standard angular momentum operator, and the Âk = − 1
2 h̵2∂2

k + 1
2ω

2k2 are the Hamilton
operators of one-dimensional harmonic oscillators.

A WKB ansatz shows that the joint spectrum of the quantum integrable system (Ĥ, L̂z , Ĝ) associated with the separation in prolate
spheroidal coordinates can be computed semi-classically from a Bohr-Sommerfeld quantization of the actions according to Iφ = 1

2π ∮ pφ
dφ = h̵m, Iη = 1

2π ∮ pη dη = h̵(nη + 1
2) and Iξ = 1

2π ∮ pξ dξ = h̵(nξ + 1
2) with m ∈ Z and non-negative quantum numbers nη and nξ. Using the

calculus of residues it is straightforward to show that E = Iη + Iξ + |I�|. Taking the derivative with respect to lz using I� = lz shows that the
actions Iη and Iξ are not globally smooth functions of the constants of motion (E, g, lz). This is an indication that the quantum numbers do
not lead to a globally smooth labeling of the joint spectrum. We will see this in more detail below.

A. Confluent Heun equation
It is well known that the spheroidal wave equation can be transformed into the confluent Heun equation.54 Adding the harmonic

potential adds additional terms that dominate at infinity, and so a different transformation needs to be used to transform (14) into the Heun
equation. We change the independent variable s in (14) to u by s2 = u and the dependent variable to y by y(u) = exp(a2ωu/(2h̵))(1 − u)−m/2ψ(s)
which leads to
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y″ + (−a2ω
h̵

− m + 1
1 − u

+
1

2u
)y′ + Qy = 0,

where

Q = g − h̵2m(m + 1)
4h̵2u(1 − u) +

a2

2h̵2 (
h̵(m + 1)

1 − u
+

E − 1
2 h̵ω

u
).

This is a particular case of the confluent Heun equation, with regular singular points at 0 and 1, and an irregular singular point of rank 1
at infinity. Each regular singular point has one root of the indicial equation equal to zero, so we may look for a solution of the form y(u)
=∑kakuk =∑kb2ks2k. This leads to the three-term recursion relation for the coefficients

bk−2Ak−2 + bkBk − bk+2h̵2(k + 1)(k + 2) = bk(g + 2a2E),

where k is an even integer and

Ak−2 = 2a2(E − h̵ω(m + k − 1
2)),

Bk = a2h̵ω(2k + 1) + h̵2(m + k)(m + k + 1).

If we require that y(u) is polynomial of degree d, we need to require that for k = 2d + 2 the coefficient Ak−2 vanishes, and hence the quantisation
condition

E = h̵ω(m + 2 d + 3
2),

with principal quantum number n = m + 2d is found. Fixing E to some half-integer the spectrum of the tridiagonal matrix M obtained from
the three-term recurrence relation determines the spectrum of g + 2a2E. In the limit a → 0, the spectrum becomes n(n + 1), . . ., m(m + 1).
Note that fixing the energy and allowing all possible degrees d makes m change in steps of 2. Since m in fact changes in steps of 1 there must
be additional solutions.

The regular singular point at u = 0 has another regular solution with leading power
√

u = s, so that we make the Ansatz y(u)
=

√
u∑0 akuk = ∑0 b2k+1s2k+1, which leads to an odd function in s. The same three-term recursion relation holds as above, except that

now the index k is odd. For a→ 0, the spectrum is n(n + 1), . . ., (m + 1)(m + 2), as before in steps of 2 in m.
We note that in the spherical limit a → 0, the Heun equation reduces to the associated Laguerre equation with polynomial solutions

Ll+1/2
(n−l)/2(s2) when g = l(l + 1).

B. Algebraic computation of the joint spectrum
Instead of starting from the spheroidal wave equation wave equation as illustrated in Subsection IV A, one can directly compute the

joint spectrum algebraically by using creation and annihilation operators. As we will see this gives explicit expressions for the entries of a
tri-diagonal matrix whose eigenvalues give the spectrum of Ĝ for fixed E and l.

Instead of the usual creation and annihilation operators of the harmonic oscillator we use operators that are written in the set of coordi-
nates (z1, z2, z3) introduced in Sec. III C. The transformation to the new coordinates diagonalises L̂z and at the same time keeps Ĥ diagonal
so that

Ĥ = h̵ω(a†
1a1 + a†

2a2 + a†
3a3 + 3

2), L̂z = h̵(a†
1a1 − a†

2a2)

and the operator R̂ corresponding to the classical R in Eq. (10) reads

R̂ = h̵(a†
1a1 + a†

2a2 + 1).

The operator X̂ corresponding to X in Eq. (11) is of higher degree, and thus care needs to be taken with the order of operators. The classical
X can be written as X = 1

2ω(z1z2z̄2
3 + z̄1z̄2z2

3). We also need to preserve the relation (for operators!) ωL̂2 = ωL̂2
z + 2(Ĥ −ωR̂)R̂ + X̂, cf. Eq. (11),

and this leads to

X̂ = 2h̵2ω(a†
1a†

2a2
3 + a1a2(a†

3)
2 − 1

2
).
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With these expressions matrix elements can be computed. Denote a state with three quantum numbers associated with the creation and
annihilation operators ai and a†

i , i = 1, 2, 3, by |k1, k2, k3⟩, such that

a†
1 ∣k1, k2, k3⟩ =

√
n1 + 1∣k1 + 1, k2, k3⟩,

a1∣k1, k2, k3⟩ =
√

n1∣k1 − 1, k2, k3⟩, for k1 ≥ 1,

a1∣0, k2, k3⟩ = 0

and similar relations for a2 and a3. This allows us to verify

Ĥ∣k1, k2, k3⟩ = h̵ω(k1 + k2 + k3 + 3
2)∣k1, k2, k3⟩,

L̂z ∣k1, k2, k3⟩ = h̵(k1 − k2)∣k1, k2, k3⟩.

In terms of the quantum numbers (k1, k2, k3), the principal and magnetic quantum numbers are n = k1 + k2 + k3 and m = k1 − k2, respectively.
The space of states with fixed n and fixed m is the span of the states of the form

∣k⟩ ∶= ∣k, k −m, n + m − 2k⟩, max(0, m) ≤ k ≤ 1
2
(n + m).

Now the non-zero matrix elements of

Ĝ = L̂2 − 2a2ωR̂ = L̂2
z − 2R̂2 − 2

ω
(a2ω2 − Ĥ)R̂ +

1
ω

X̂

are given by

⟨k∣Ĝ∣k⟩ = 2h̵a2ω(m − 1 − 2k) + h̵2[m2 − 1 − 2(m − 1 − 2k)2 − (m − 1 − 2k)(3 + 2n)]
= 2h̵a2ω(m − 1 − 2k) − h̵2[m2 + 2 mn − 2n −m + 8k2 + 2k − 8km − 4kn]

⟨k∣Ĝ∣k + 1⟩ = 2h̵2√(k + 1)(k + 1 −m)(n − 1 + m − 2k)(n + m − 2k).

The resulting joint spectrum of (L̂z , Ĝ) for a fixed n is shown in Fig. 7 for a choice of parameters such that the energy E is above the
threshold value 1

2ω
2a2 for the occurrence of monodromy. As to be expected from the Bohr-Sommerfeld quantization of actions the spectrum

locally has the structure of a regular grid. Globally, however, the lattice has a defect as can be seen from transporting a lattice cell along a loop
that encircles the isolated critical value of the energy momentum map at the origin; see Refs. 17, 45, and 55.

FIG. 7. Joint spectrum (lz , g) of (L̂z , Ĝ) (black dots) and classical critical values (red), for n = 20, ω = 1, h̵ = 1, and a = 3/2. There are (n + 1) (n + 2)/2 joint states. The joint
spectrum locally has a lattice structure which globally has a defect as can be seen from transporting a lattice cell around the isolated critical value at the origin.
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FIG. 8. Joint spectrum (lz , g) of (L̂z , Ĝ) (black dots) and classical critical values (red) for a = 1 (a) and a = 10 (b) and otherwise same parameters as in Fig. 7.

In Fig. 8, the joint spectrum of (L̂z , Ĝ) is shown for fixed n and a small and large value of a, respectively. As discussed in Sec. III E, in the
limits a→ 0 and a→∞ (and in the latter case changing to G̃ = − 1

a2 G) the images become the polygones shown in Fig. 6.

V. DISCUSSION
It is interesting to compare the two most important super-integrable systems, the Kepler problem and the harmonic oscillator, in

the light of our analysis. The Kepler problem has symmetry group SO(4) and reduction by the Hamiltonian flow leads to a system
on S2 × S2.38 The 3-dimensional harmonic oscillator has symmetry group SU(3) and reduction by the Hamiltonian flow leads to a system on
CP2.

Separation of both systems, the Kepler problem and the harmonic oscillator in 3 dimensions, in prolate spheroidal coordinates leads to
Liouville integrable systems that are of toric type for sufficiently large a. Here, the technical meaning of toric type is that they are integrable
systems with a global Tn action for n degrees of freedom, which implies that all singularities are of elliptic type. To a toric system is associated
the image of the momentum map of the Tn action, and this is a Delzant polytope, a convex polytope with special properties.52 The Delzant
polytope for the T2 action of the reduced Kepler system on S2 × S2 is a square (take the limit a →∞ in Fig. 4 in Ref. 12) while the Delzant
polytope for the T2 action of the reduced harmonic oscillator on CP2 is an isosceles right triangle, see Fig. 6(a). It is remarkable that the two
simplest such polytopes appear as reductions from the Kepler problem and from the harmonic oscillator. We note, however, that the harmonic
oscillator as opposed to the Kepler problem does not separate in parabolic coordinates. This is related to the fact that for the separation of the
Kepler problem in prolate spheroidal coordinates, the origin is in a focus point, while for the oscillator the origin is the midpoint between the
foci.

For decreasing family parameter a, both systems become semi-toric56,57 through a supercritical Hamiltonian Hopf bifurcation. It thus
appears that the reduction of super-integrable systems by the flow of H leads to natural and important examples of toric and semi-toric
systems on compact symplectic manifolds.

ACKNOWLEDGMENTS
We thank an anonymous referee for detailed comments that contributed to the presentation of this paper.

REFERENCES
1D. M. Fradkin, Am. J. Phys. 33, 207 (1965).
2V. I. Arnold, Mathematical Methods of Classical Mechanics, Graduate Texts in Mathematics (Springer, Berlin, Heidelberg, New York, 1978), Vol. 60.
3F. Fassò, Acta Appl. Math. 87, 93 (2005).
4N. N. Nehorošev, Trudy Moskov. Mat. Obšč. 26, 181 (1972).
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53S. Vũ Ngo. c, Adv. Math. 208, 909 (2007).
54DLMF, “NIST Digital Library of Mathematical Functions,” http://dlmf.nist.gov/, Release 1.0.19 of 2018-06-22 (2018), F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier,
B. I. Schneider, R. F. Boisvert, C. W. Clark, B. R. Miller, and B. V. Saunders.
55D. A. Sadovskií and B. I. Zhilinskií, Phys. Lett. A 256, 235 (1999).
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