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ABSTRACT: Similar to carbon, germanium exists in various
structures such as three-dimensional crystalline germanium and
germanene, a two-dimensional germanium atomic layer. Regard-
ing the electronic properties, they are either semiconductors or
Dirac semimetals. Here, we report a highly conductive metallic
state in thermally annealed germanane (hydrogen-terminated
germanene, GeH), which shows a resistivity of ∼10−7 Ω·m that is
orders of magnitude lower than any other allotrope of
germanium. By comparing the resistivity, Raman spectra, and
thickness change measured by AFM, we suggest the highly
conductive metallic state is associated with the dehydrogenation during heating, which likely transforms germanane thin flakes
to multilayer germanene. In addition, weak antilocalization is observed, serving as solid evidence for strong spin−orbit
interaction (SOI) in germanane/germanene. Our study opens a possible new route to investigate the electrical transport
properties of germanane/germanene, and the large SOI might provide the essential ingredients to access their topological states
predicted theoretically.

KEYWORDS: Germanane, multilayer germanene, dehydrogenation, metallic state, weak antilocalization,
strong spin−orbit interaction

Atomically thin two-dimensional (2D) materials such as
graphene,1,2 phosphorene,3 transition metal dichalcoge-

nides,4−11 etc., are regarded as promising candidates to replace
conventional silicon in the next generation nanoelec-
tronics.12−16 Among them, 2D monolayers composed of
group IV elements such as silicene17−23 and germanene24−28

are of particular interest because they are fully compatible with
the well-established protocols for device fabrication and
integration in the present silicon- and germanium-based
semiconductor technologies. Similar to graphene, monolayer
silicon and germanium, i.e., silicene and germanene, are both
Dirac semimetals, whose band structure exhibits crossings at
the K/K′ points of the Brillouin zone with zero energy gap.
This hallmark Dirac band structure is the origin of massless
carriers, making graphene the most studied material in recent
years. However, the gapless electronic structure is not favorable
for making a transistor, therefore limiting the application of
these Dirac materials in real devices. Compared with very
stable graphene, silicene and germanene are not stable in air,
which is another drawback for device applications.

Recently, hydrogen termination on graphene has been
proved to be an effective way to open a band gap.29,30

Similarly, germanane (i.e., hydrogen-terminated germanene,
GeH) was synthesized by adding covalently bonded hydro-
gen on both sides of germanene.31 Since the pz orbitals
of Ge bond covalently to the H atoms, the contribution of the
pz orbitals to electron transport is significantly suppressed and
a direct band gap opens at the Γ points of the Brillouin
zone.32−38 As a result, a conduction band derived from the s-
orbitals and a valence band derived from the px and py orbitals
near the Γ point determine the transport properties. A high
electron mobility is expected owing to the low effective mass.31

The large band gap, high mobility, and low dimensionality
make germanane very attractive for short-channel field effect
transistors (FETs). Furthermore, the σ bond (composed of px
and py orbitals) that dominates the electron transport has a
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stronger spin−orbit interaction (SOI) than the original π bond
(composed of pz orbitals); therefore, a nontrivial spin−orbit
gap of ∼0.2 eV opens in the valence band.31,39 Combined with
the large direct band gap, the traditional spin-selective optical
process is also expected to be present in germanane, making it
an attractive candidate for optoelectronic applications.
Despite the interesting properties discussed previously, very

limited work has been reported regarding its electrical
transport properties.40−42 In this study, we fabricated field
effect transistors based on germanane thin flakes and focused
on the transport properties at low temperatures and under
magnetic fields. The as-grown germanane shows very low
conductivity, which agrees with the large band gap.31,33,34 After
the germanane was annealed in an inert gas atmosphere, we
observe a drastic increase of the conductivity with a clear
transition from insulator to metal. A p-type field effect
transistor is realized on the annealed germanane. Combining
the Raman spectra, AFM, and electrical transport, we suggest
that the metallic behavior is likely attributed to a dehydrogen-
ation process, which maintains the layered structure.23 In
addition, a clear weak antilocalization (WAL) feature is

observed at low temperatures, indicating strong spin−orbit
interaction in annealed germanane. These explorations open
new opportunities for quantum and spin transport studies of
germanane for both basic research and device applications.
Bulk germanane crystals were synthesized following the

recently developed topotactic deintercalation method, as
detailed in ref 42. In this method, CaGe2 was first prepared
by the reaction of high purity germanium (Ge) and calcium
(Ca) in a vacuum at 950−1050 °C. Germanane was then
synthesized following an exchange process between the
obtained CaGe2 and HCl, where Ca atoms in CaGe2 are
substituted by H atoms. This chemical process can be
described by the equation CaGe2 + 2HCl → 2GeH + CaCl2.
As shown in Figure 1a, a monolayer GeH has a honeycomb

lattice, where each Ge is covalently bonded with another three
Ge atoms in the ab-plane and one H atom in the c-direction for
sp3 hybridization. The single-crystal X-ray diffraction (XRD)
shows that the unit cell is slightly distorted from the expected
hexagonal lattice, becoming monoclinic with lattice parameters
a = 6.924 Å, b = 3.998 Å, c = 10.939 Å, and β = 102.181°.42

The ab-plane covalent bonds between Ge atoms are buckled;

Figure 1. Germanane characteristics and device. (a) Schematic illustration of the crystal structure of germanane. Germanium atoms form a buckled
honeycomb lattice in the ab-plane, and each germanium atom is bonded with one hydrogen atom in the c-direction. (b) Simplified electronic band
structure of monolayer germanane. Reproduced from theoretical calculations of ref 35. (c) Optical image of a typical device on SiO2 (300 nm)/Si
(n++) substrate. Scale bar: 3 μm.

Figure 2. Insulator-to-metal transition via thermal annealing. (a) Temperature dependence of the germanane channel resistance after annealing at
different temperatures, in log scale. The top two dashed circles represent results from two devices annealed at 170 and 190 °C, respectively.
Different curves in each circle are measured with different back-gate voltages VBG (V). The curves marked by the bottom circle are measured from
three different devices after annealing at 210 °C. (b) Temperature dependence of the resistivity, corresponding to the lowest curve in (a), in linear
scale. (c) Transfer curve of the device indicated by the top dashed circle in panel (a) measured at T = 300 K, showing a p-type transistor operation.
The red dashed line indicates the linear fitting in the switch-on region, corresponding to a mobility of 21 cm2 V−1 s−1. (d) I−V characteristics of the
device indicated by the middle dashed circle in panel (a) for different back gate voltages, measured at T = 300 K.
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i.e., the two triangular sublattices are displaced relative to each
other in the c-direction. The stacking of buckled ab-planes
forms a layered structure with an interlayer distance of 5.5 Å.
Depending on the stacking sequence, the GeH has different
polytypes of 1T, 2H, and 6R.43 The additional hydrogen
bonding in the c-direction significantly influences the
electronic structure. Figure 1b shows a simplified band
structure of GeH,31,35 where a direct band gap of ∼1.6 eV
presents at the Γ point of the Brillouin zone. Chemically, while
germanene is highly reactive with oxygen and therefore is
normally only stable in ultrahigh vacuum or inert gas
atmosphere, GeH becomes stable at ambient conditions,
which is important for the following study of electrical
transport. Similar to other layered materials, germanane thin
flakes were prepared by mechanical exfoliation of bulk crystals
on highly doped Si substrate coated with 300 nm SiO2. Optical
microscope and AFM were used to select uniform and thin
flakes. We chose typical GeH flakes with thicknesses of 20−50
nm for device fabrication and subsequent electrical measure-
ments. The electrodes, composed of Ti/Au (5/65 nm), were
patterned in a Hall bar geometry via the electron-beam
lithography. Figure 1c shows a typical optical image of a GeH
device. The low temperature measurements were performed
using either a Janis liquid nitrogen system or cryostat with a
base temperature of 2 K and a 12 T magnet. Resistance was
measured with a constant ac current excitation using standard
lock-in amplifiers (Stanford Research SR830), and the gate
voltages were set by a dc source meter (Keithley 2450).
The as-prepared device is very insulating, with room

temperature sheet resistance Rs well above 10 MΩ (input
impedance of the lock-in amplifier). The highly resistive state

is consistent with its semiconducting nature and finite band
gap (Figure 1b). After the initial characterization, the device
was annealed in a tube furnace with a continuous follow of Ar
gas (100 sccm) at ambient pressure. The annealing temper-
ature was linearly ramped up to the target within 1−2 h and
kept for 12 h before naturally cooling down. Figure 2a
summarizes the temperature dependence of resistance after
annealing. The resistance reduces to below 1 MΩ right
after annealing at 170 °C. The temperature dependence of the
resistance (RT) reveals an insulating behavior, where the
resistance increases with decreasing temperature. Remarkably,
the sample exhibits a clear field effect after annealing. As can be
seen in Figure 2c, the transfer curve shows a p-type transistor
operation where the conductivity σ increases by ∼5 times at a
back gate voltage of VBG = −100 V. The FET mobility can be

calculated from the geometric capacitance:
C VFET
1 d

dg BG
μ = σ ,

where σ is the conductivity and Cg = 11 nF/cm2 is the gate
capacitance per unit area for 300 nm SiO2. By the linear fitting
of the gate dependence of conductivity, the extracted FET
mobility reaches 21 cm2 V−1 s−1 at room temperature.
When the annealing temperature is raised to 190 °C, a

significant increase in the conductivity is observed, as can be
seen from the three curves labeled by the middle dashed circle
in Figure 2a. Figure 2d shows the corresponding I−V
characteristics of the same device measured at different back
gate voltages. A consistent p-type transistor behavior is
observed, as the conductivity increases at negative VBG. In
addition, all I−V characteristics show perfectly linear depend-
ence, suggesting ohmic contacts between electrodes and
germanane flakes. Although the overall conductivity increases

Figure 3. From germanane to germanene. (a) Raman spectra of annealed germanane. Inset: blow up of the region for the Ge−Ge vibrational mode
of as-prepared germanane (dark brown), annealed germanane (red), and hydrogenated amorphous germanium (dashed gray).44 (b) Schematic
illustration of the possible crystal structure after annealing, multilayer germanene. (c) Simplified electronic band structure of bilayer germanene,
with valence and conduction band crossing around K point. Reproduced from theoretical calculations of ref 28. (d)−(f) AFM images of germanane
before annealing, after annealing at 250 °C, and the reduction of height in percentage, respectively. The spot in the top middle part with height
reduction of ∼100% is the tape residue, which is completely removed after the annealing.
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significantly compared to the sample annealed at 170 °C, the
RT dependence still shows insulating behavior.
Only after the annealing temperature is further raised to 210

°C does the resistance decrease drastically. In contrast to the
previous insulating states, a typical metallic behavior is
observed, where Rs decreases with the decrease of temperature
(Figure 2b). This enhanced metallicity is also accompanied by
the loss of tunability by the electric field, i.e. the solid state
back gate cannot tune the source-drain current IDS or the
channel resistance. Employing the stronger ionic gating
technique,5,7,10 the IDS can be slightly tuned but the effect is
also very weak (see Figure S4). The annealed germanane
behaves like a piece of metal.
Germanane itself is unlikely to be turned into a metallic state

because of the large band gap. The highly conductive state
induced by thermal treatment immediately brings to mind the
metallic state predicted for germanene, which has never been
measured by electrical transport. To get a better understanding
of this behavior, we measured the Raman spectra before and
after thermal annealing. As shown in Figure 3a, the main peak
at ∼300 cm−1 can be assigned to the E2 mode of Ge−Ge
vibration in the ab-plane.31 This feature is very close to the
Ge−Ge stretching mode of 3D crystalline germanium at 297
cm−1, suggesting that attaching light H atoms has little
influence on the vibration of Ge−Ge. After heating, the peak
line width reduces from a fwhm (full width at half-maximum)
of 18 to 10 cm−1. As a reference, the gray dashed line in the
inset of Figure 3a shows the Ge−Ge vibrational mode of
hydrogenated amorphous germanium.44−47 In sharp contrast,
the Ge−Ge mode centered around 270 cm−1 is very broad
with a fwhm of ∼50 cm−1. This comparison rules out the
formation of conventional amorphous germanium after
annealing. On the contrary, the even narrower peak suggests
higher crystallinity compared with the pristine GeH single
crystal. The identical vibrational mode also indicates that the
nature of bonding in the ab-plane is preserved. Consequently,
we expect no change in the layered structure after annealing.
From the transport measurement, we are able to calculate

the resistivity of germanane after annealing. The most
conductive sample shows a resistance of ∼3 Ω at room
temperature, with channel dimensions of 1.6 μm (length) ×
2.5 μm (width) × 30 nm (thickness). The calculated resistivity
is 1.6 × 10−7 Ω·m. Table 1 lists the room temperature
resistivity for different materials related to our analysis.
For bulk crystalline and amorphous germanium, the

resistivity at room temperature is on the order of 0.1−1 Ω·
m, and the temperature dependences are dominated by the
semiconducting gap and variable range hopping, where
resistivity increases rapidly with the decrease of temper-

ature.49,53−55 From the observed metallic behavior, we can
safely rule out the possibility that the annealed germanane
turned into conventional crystalline or amorphous germanium.
A quasi-metallic behavior can be obtained in heavily doped
germanium,50,56 in which the resistivity of ∼2 × 10−6 Ω·m is
still 1 order of magnitude higher than our annealed germanane.
Therefore, reaching the present state of low resistivity would
require even higher doping, which should leave spectral
signatures that are easily detectable with standard elemental
analysis on degenerate-doped semiconductors. However, the
combined XPS and EDX analysis (see Figure S1 of the
Supporting Information) shows no trace of impurity doping.
Considering the sharper Raman peak after annealing, and high
quality initial single crystal of GeH, the possible production of
heavily doped crystalline germanium can also be excluded. In
Table 1, we can see that the resistivity of annealed germanane
is even lower than graphite, and only higher than monolayer
graphene. Therefore, the observed significant increase in
conductivity is very likely associated with the dehydrogenation
of GeH.31 The heat treatment can break the Ge−H bond, and
hydrogen atoms are released from the lattice, possibly leaving
behind a multilayer germanene structure, as schematically
shown in Figure 3b.
As aforementioned, the two triangular sublattices of

germanene are slightly displaced with respect to each other
in the c-direction. The buckling parameter Δ, i.e., the
separation between the two sublattices in the c-direction, is
determined by the competition between the electronic and
elastic energies. For free-standing monolayer germanene, the Δ
calculated by density functional theory (DFT) is ∼0.65 Å.57

With this buckling, gemanene is a 2D Dirac semimetal whose
band structure exhibits a crossing at the K/K′ points with a
zero density of states. Although energetically unfavorable, the
Fermi levels of weakly buckled (Δ < 0.5 Å) and highly buckled
monolayer germanene (Δ > 0.7−0.8 Å) cross bands below the
K/K′ points with finite density of states. In annealed multilayer
germanene, it is possible that the buckling of germanene
deviates from the ideal free-standing value due to the interlayer
interaction as well as the interaction with the underlying
substrate, hence inducing metallic state with higher density of
states. Consistently, calculations show that a free-standing
bilayer germanene has a nonzero density of states at the Fermi
level (Figure 3c).28 This simple trend has been observed when
graphene is stacked to form graphite. Similarly, a high density
of states at the Fermi level is expected for multilayer
germanene; hence, high electrical conductivity is expected.
It should be mentioned that dehydrogenation is also

observed in a previous study31 and the temperature lies
between 200 and 250 °C, which is higher than our observation
of 170−210 °C. In our experiments, we observed a strong
thickness dependence of the annealing temperature necessary
to induce the insulator−metal transition; i.e., following the
identical procedure, thicker flakes require a higher temperature
to reach the metallic state. Therefore, it is consistent that the
previous dehydrogenation of bulk crystals required higher
temperature. In the present study, the heating temperatures
shown in Figure 2a refer to flakes that are around 30−50 nm
thick.
This dehydrogenation scenario is further supported by our

AFM study, as shown in Figures 3d−f. In multilayer
germanane, the layers are bonded by the weak van der Waals
forces, with an interlayer distance of 5.5 Å. The interlayer
interaction is of comparable strength to the intralayer

Table 1. Room Temperature Resistivity for Crystalline
Germanium,48 Amorphous Germanium,49 Heavily Doped
Germanium,50 Graphite,51 Annealed Germanane, and
Graphene52

material resistively (Ω·m)

germanium (crystalline) 0.1
germanium (amorphous) 1
germanium (heavily doped) 2 × 10−6

graphite 6 × 10−6

annealed GeH 1.6 × 10−7

graphene 1 × 10−8
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interactions, which is rather strong.28 Consequently, the
interlayer distance of germanene is much smaller than that of
germanane. This has been confirmed previously by STM
studies that show large flat terraces with steps of about 3.2 Å in
few-layer germanene flakes grown on a gold template26 and on
an MoS2 subtrate.

27 Comparing the AFM height profile before
(Figure 3d) and after (Figure 3e) annealing at 250 °C, we
observed a significant decrease in thickness. Here, we chose
thicker flakes and higher annealing temperature (250 °C
instead of 210 °C used in Figure 2a) for complete removal of
hydrogen. Figure 3f shows a 2D map of the reduction of
thickness in percentage. In spite of very different initial
thicknesses in different locations, a uniform reduction of ∼40%
in thickness was observed over the entire flake. Considering
the change of interlayer distance, 5.5−3.2 Å/5.5 Å ≈ 42%, the
observed uniform reduction of ∼40% is highly consistent with
the difference of interlayer distance between germanane and
germanene. Therefore, this direct measurement strongly
supports the dehydrogenation process; i.e., the removal of
hydrogen atoms likely transforms the multilayer system from
germanane to germanene, which is consistent with the drastic
enhancement of conductivity and the insulator-to-metal
transition.
In addition to the metallic state of multilayer germanene

discussed above, theory also predicts a strong SOI for both
germanene and germanane,32,58,59 which not only sets a good
reference to further justify the aforementioned scenario but
also makes multilayer germanene an attractive candidate for
applications in spin-selective electronics. We measured the
magnetoresistance (MR) with magnetic fields applied
perpendicular to the ab-plane of germanane. As shown in
Figure 4a, clear WAL is observed, manifesting as a character-
istic sharp MR dip at B = 0 T. According to the 2D localization
theory,60−62 by assuming that the elastic and spin−orbit
scattering times are much shorter than the inelastic scattering
time, the magnetoconductivity (MC) can be described by the
following equation:

B
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where ℏ is the reduced Planck constant, e the charge of
electron, ψ(x) the digamma function, and lΦ the phase
coherence length. α is a fitting parameter equal to +1, 0, and
−1/2 for the orthogonal, unitary, and symplectic cases,
respectively.60,63 The Δσ2D measured at T = 2.5 K is plotted
in Figure 4b, where the solid curve represents the fitting with
the above equation. We can see that the fitting matches very
well with the experimental observation using parameters α =
−0.53 and lΦ = 79 nm. The clear WAL features provide strong
evidence for strong SOI in annealed germanane.
It should be noted that the thermal property study of

germanane in the previous report (Bianco et al. ACS Nano
2013, 7, 4414) also shows consistent observations with our
study. In the diffuse reflectance absorption (DRA) spectros-
copy, a significant red shift of the onset of optical absorption
was observed after annealing, and the onset eventually
decreased below that of bulk germanium. This result directly
reveals the shrinking of semiconducting gap after annealing,
which causes the enhancement of the electrical conductivity.
Furthermore, in X-ray diffraction pattern, the 2θ value of the
[002] reflection increased after annealing, directly implying a
decrease of the interlayer distance along the c-axis.
To summarize, we measured the transport properties of

annealed multilayer germanane, which has a layered structure
similar to hydrogen-terminated graphene. Pristine germanane is
insulating due to the finite gap in the band structure. We find
that the conductivity can be gradually enhanced by thermal
annealing in an Ar atmosphere, and a p-type field effect
transistor is realized. After high temperature annealing,
germanane becomes highly conductive and the temperature
dependence of the resistance shows a metallic behavior. With a
resistivity of 1.6 × 10−7 Ω·m at room temperature, a sharp
Ge−Ge vibrational mode at 300 cm−1 in the Raman spectra,
and a uniform thickness decrease of ∼40%, we suggest the
product after annealing is most likely multilayer germanene,
which has a structure similar to graphite. Clear weak
antilocalization is observed at low temperatures with a phase
coherence length of ∼80 nm, providing strong evidence for
strong SOI in annealed germanane. Realizing metallic transport
with strong SOI paves the way for developing field effect
transistors and spin- and optoelectronic devices based on
annealed germanane.

Figure 4. Evidence for strong spin−orbit interaction. (a) Normalized magnetoresistance of an annealed germanane device at different
temperatures, showing clear weak antilocalization (WAL) characteristics at low field region. (b) Measured magnetoconductance (dots), which is
defined as ΔG = G(B) − G(0) at T = 2.5 K. The red solid line is the best fitting to ΔG using the WAL equation (1), with α = −0.53 and phase
coherence length lΦ = 79 nm.
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