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We show that the anomalous dimension γG of the scalar glueball operator contains information on the 
mechanism that leads to the onset of conformality at the lower edge of the conformal window in a non-
Abelian gauge theory. In particular, it distinguishes whether the merging of an UV and an IR fixed point – 
the simplest mechanism associated to a conformal phase transition and preconformal scaling – does or 
does not occur. At the same time, we shed light on new analogies between QCD and its supersymmetric 
version. In SQCD, we derive an exact relation between γG and the mass anomalous dimension γm , and 
we prove that the SQCD exact beta function is incompatible with merging as a consequence of the 
a-theorem; we also derive the general conditions that the latter imposes on the existence of fixed points, 
and prove the absence of an UV fixed point at nonzero coupling above the conformal window of SQCD. 
Perhaps not surprisingly, we then show that an exact relation between γG and γm , fully analogous to 
SQCD, holds for the massless Veneziano limit of large-N QCD. We argue, based on the latter relation, 
the a-theorem, perturbation theory and physical arguments, that the incompatibility with merging may 
extend to QCD.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

For a sufficiently large number N f of massless fermions, it is 
believed that a new phase of QCD arises [1,2]. It is called the 
conformal window, ranging from a value Nc

f , where the zero-
temperature theory deconfines and chiral symmetry is restored, 
to a value N A F

f , above which asymptotic freedom is lost. Theories 
with Nc

f < N f < N A F
f have a nontrivial, i.e., interacting infrared (IR) 

fixed point where they are conformal. A conformal window also 
arises in supersymmetric versions of non-Abelian gauge theories 
[3] and generalisations of QCD with fermions in higher dimen-
sional representations and/or other gauge groups. Theories with 
N f > Nc

f may thus lead to new possibilities for particle dynamics. 
Above the conformal window, N f > N A F

f , infrared freedom leads 
to the possibility of realising “asymptotically safe” theories, with a 
nontrivial ultraviolet (UV) fixed point, see e.g. [4].
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Just below the conformal window, N f � Nc
f , it has been pro-

posed the phenomenologically interesting possibility of a precon-
formal behaviour characterised by a walking, i.e., slow-running2

gauge coupling [5,6]. Since theories with a preconformal behaviour 
would not differ from QCD as far as their fixed point structure is 
concerned, they must be confining and asymptotically free.3 How-
ever, the preconformal behaviour is entangled to the nature of 
the mechanism that opens the conformal window at Nc

f , and it 
should be expected to modify the evolution from the UV to the IR 
of observables. It has been shown that a phase transition named 
conformal in [7–9] – the equivalent of a Berezinskii–Kosterlitz–
Thouless (BKT) phase transition in two-dimensional spin systems 
[10–12] – leads to the walking phenomenon for N f � Nc

f , and the 
associated preconformal behaviour of physical observables known 
as Miransky or BKT scaling [7–12]. Interestingly, it was then ob-
served [13] that the merging of a pair of UV and IR fixed points at 
Nc

f is a simple way of realising preconformal scaling. Alternatively, 
and among other possibilities, a first order phase transition at Nc

f
would not lead to precursor effects, see [14] in this context.

2 At least on a finite energy range [μI R , μU V ].
3 In other words, no phase transition is expected to occur between QCD and pre-

conformal theories with N f � Nc
f at zero temperature.
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It is thus relevant to identify observables that carry the imprint 
of the mechanism for the onset of conformality at Nc

f , and at the 
same time are stringently constrained by universal principles, such 
as exact symmetries and the ultraviolet to infrared renormalisation 
group (RG) flow governed by the a-theorem.

In this letter we show that the anomalous dimension γG of 
the scalar glueball operator at a fixed point is such an observ-
able; its ultraviolet to infrared flow determines whether an UV-IR 
fixed point merging occurs. We also show that for both SQCD, for 
which an exact beta function is known [15–17], and the mass-
less Veneziano limit of large-N QCD, whose exact beta function 
has been recently proposed [18–20], there is an exact relation be-
tween γG and the mass anomalous dimension γm , thus relating 
the two RG flows. These are in turn governed by the a-theorem, 
which allows us to prove the incompatibility of SQCD with merg-
ing to all orders in perturbation theory, and directly constrain the 
existence of an UV fixed point at nonzero coupling. The analogies 
with SQCD and the universality of the a-theorem suggest that the 
same incompatibility may extend to QCD. Indeed, though the exact 
beta function proposed in [19] for Veneziano large-N QCD has been 
obtained by means of homology methods [18–20] that are not as 
much consolidated in quantum field theory as their cohomologi-
cal counterparts involving supersymmetry, it passes a number of 
perturbative and nonperturbative consistency checks, as we will 
discuss in section 5.

The letter is organised as follows. In section 2 we review a 
known formula for γG based on the trace anomaly. In section 3 we 
analyse γG in two-loop perturbation theory and close to the upper 
edge N f � N A F

f , partly reviewing known results, and we comment 
on the limits of applicability of perturbation theory in this context. 
In section 4 we derive results in SQCD, and prove the incompat-
ibility with merging in 4.4. In section 5 we discuss the massless 
Veneziano limit of large-N QCD, and investigate to what extent it 
reproduces the results of SQCD. As a side note, in section 5.4 we 
discuss why the addition of effective four-fermion operators does 
not lead to alternative viable realisations of merging in QCD. We 
conclude in section 6.

2. The scalar glueball operator and its anomalous dimension

It is well known that the anomalous dimension of the scalar 
glueball operator Tr(G2) ≡ Ga

μν Gaμν is constrained by the trace 
anomaly, i.e., the nonzero contribution to the trace of the energy–
momentum tensor, see, e.g., [21] and more recently [22,23]. The 
trace anomaly of QCD that enters the matrix elements of renor-
malised gauge invariant operators is4

T μ
μ = β(g)

2g
Tr(G2) + fermion mass contribution , (1)

with the beta function β(g) = ∂ g(μ)/∂ logμ for given N colours 
and N f flavours; an analogous relation is valid in SQCD. We 
shall restrict ourselves here to the massless theory. The non-
renormalisation of T μ

μ implies that the renormalised operator 
O RGI ≡ (β(g)/g)Tr(G2) is also renormalisation-group (RG) invari-
ant, i.e., dO RGI/d logμ = 0. Using inside the latter equation a 
Callan–Symanzik equation for the renormalised operator Tr(G2)

d

d logμ

(
Z−1

G Tr(G2)
)

= 0 , γG(g) = −∂ log ZG

∂ logμ
, (2)

4 We are thus not interested in the most general expression, which also involves 
gauge-fixing and EoM operators, see [21,24,25].
with γG(g) the anomalous dimension of Tr(G2) for N and N f

fixed, one obtains

d

d logμ

(
β(g)

g
ZG

)
= 0 (3)

and

γG(g) = g
∂

∂ g

(
β(g)

g

)
= β ′(g) − β(g)

g
(4)

for a theory with given N and N f . This equation reproduces the 
known result in perturbative QCD [22,26,27], γG = −2β0 g2 + . . ., 
β0 from (7), and γG is negative, so that the operator Tr(G2) be-
comes increasingly relevant towards the infrared.

We shall be interested in the g and N f dependence of the 
anomalous dimensions, thus in general γG (g, N f ). At a fixed point 
of the renormalization group flow, the solution of β(g, N f ) = 0
thus defines the function g∗(N f ) of fixed-point couplings on the 
plane (g, N f ), and equation (4) provides γG at g∗(N f ):

γ ∗
G (N f ) ≡ γG(g, N f )|g=g∗(N f ) = β ′(g, N f )|g=g∗(N f ) , (5)

where the prime will always denote the derivative with respect 
to g . The fixed-point anomalous dimension γ ∗

G for a given N f is 
a physical property of the system, renormalisation scheme inde-
pendent; the scaling dimension of Tr(G2), dG = 4 +γ ∗

G , thus enters 
the exact conformal scaling of the corresponding correlators at the 
fixed point.

3. Perturbative results in QCD

It is instructive to first recall some features of perturbation the-
ory. The QCD beta function can be expressed as a series

β(g) = −g3
∞∑

l=0

βl g2l , (6)

where (l + 1) denotes the number of loops involved in the cal-
culation of βl . The coefficients β0,1 are universal [1,28–30], i.e., 
renormalisation scheme independent, given by

β0 = 1

3(4π)2
(11C A − 4T f N f )

β1 = 1

3(4π)4

[
34C2

A − 4(5C A + 3C f )T f N f

]
,

(7)

here written in terms of the quadratic Casimir invariants C f ≡
C2(R) and C A ≡ C2(G), for, respectively, the representation R to 
which the N f fermions belong and the adjoint representation. The 
quantity T f ≡ T (R) is the trace invariant for the representation R . 
Coefficients of higher order are renormalisation scheme dependent 
[31,32] and have been calculated up to five-loop order in the M S
scheme [33–36].

To two loops, a nontrivial IR fixed point with coupling g2∗ =
−β0/β1 is one root of the equation β(g) = 0 for some given N f , 
and from (5) γ ∗

G = −2β2
0 /β1.

We are interested in the way γ ∗
G varies along the curve of IR 

fixed points g∗(N f ) as N f decreases in the conformal window of 
QCD, i.e., for N f Dirac fermions in the fundamental representation; 
in this case, N A F

f = (11/2)N , C A = N , C f = (N2 − 1)/(2N), and 
T f = 1/2 in (7). In the Veneziano limit, N, N f → ∞, holding x =
N f /N and Ng2 constant, and ε = 11/2 −N f /N � 1, that is close to 
the upper edge, one obtains Ng2∗/(4π)2 � (4ε/75)(1 + O (ε)) [2], 
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and γ ∗
G � (16ε2/225)(1 + O (ε)) positive.5 Its derivative with re-

spect to N f = xN with fixed N and x continuous in the Veneziano 
limit

dγ ∗
G

dN f
= − 32ε

225N
(1 + O (ε)) (8)

is negative and of order ε/N , thus implying that γ ∗
G , as Ng2∗ , is a 

strictly monotonic function of N f along the IR fixed point curve, at 
least in the neighbourhood of the upper edge, and it increases as 
N f decreases. In other words, the universal two-loop contribution 
in perturbation theory is consistent with an increasingly irrelevant 
operator Tr(G2) as approaching the lower edge.

We finally observe that, beyond the Veneziano limit and mov-
ing away from the upper edge, the two-loop expression γ ∗

G =
−2β2

0 /β1 remains indeed positive and monotonically increasing 
as N f decreases on the entire interval Nc

f � N f � N A F
f , and the 

IR zero disappears at Nc
f due to the change of sign of β1; for 

N = 3 and N f fundamental fermions, this occurs at N f ∼ 8.05. The 
change of sign of β1 would imply that the fixed point disappears 
at infinite coupling g2∗ = −β0/β1 → ∞, and the same singularity 
occurs for γ ∗

G . This behaviour, however, is likely to be an artefact 
of the truncated perturbative expansion, as we further discuss in 
section 5. Also, since the perturbative series (6) is at best asymp-
totic, we should take the two-loop, or higher order, results at most 
as qualitative indications.

4. Results in SQCD

We consider SU (N) supersymmetric QCD (SQCD) with N f fun-
damental flavours Q i in the N representation and Q̃ ĩ in the N̄

representation (i, ̃i = 1, . . . N f ), where many results can be derived 
exactly. Our goal in this section is to determine exact constraints 
on the UV to IR flow of γG(g, N f ) and the mass anomalous di-
mension γm(g, N f ). Later on, in section 5, we will find that some 
properties of γG can be proved to be equally true in the mass-
less Veneziano limit of large-N QCD. For our purpose, we make 
use of Seiberg’s solution for the phases of SQCD [3], the NSVZ ex-
act beta function [15–17], and the a-theorem on the irreversibility 
of renormalisation group (RG) flows in four-dimensional field theo-
ries [39], a generalisation to higher dimensions of Zamolodchikov’s 
c-theorem [40] in two dimensions.

4.1. Known results in SQCD

The NSVZ exact beta function for given N and N f reads [15–17]

β(g) = − g3

16π2

3N − N f + N f γm(g)

1 − Ng2/(8π2)
, (9)

with

γm(g) = − g2

8π2

N2 − 1

N
+ O (g4) (10)

the mass anomalous dimension computed in perturbation theory. 
A powerful property of SQCD is that its exact beta function and the 
global anomaly free R symmetry at a fixed point determine exactly 
the mass anomalous dimension γ ∗

m(N f ) along the curve of IR fixed 
points, g∗(N f ), in the conformal window of SQCD, which extends 
on the interval 3N/2 < N f < 3N [3].

5 For a study of higher orders in perturbation theory see [37,38].
In more detail, the exact R symmetry at a fixed point allows 
us to determine the anomalous dimension of spinless chiral pri-
mary operators from their R-charge. For the gauge invariant com-
posite meson operator M = Q̃ Q , with scale dimension D Q̃ Q and 
R-charge R Q̃ Q , one has [3]

D Q̃ Q = 3

2
R Q̃ Q = 3R = 3

N f − N

N f
, (11)

with R the R-charge of Q ( Q̃ ), and the last equality dictated by the 
R-charge assignments of Q ( Q̃ ) under U (1)R . Using D Q̃ Q = 2 +γ ∗

m , 
one obtains γ ∗

m exactly

γ ∗
m(N f ) = 1 − 3N

N f
, (12)

which is indeed a zero of the beta function (9), provided the pole 
is not hit, i.e., Ng2∗/(8π2) < 1.6 Equation (12) is then taken to de-
termine γm along the curve of IR fixed points in the conformal 
window with varying N f ; indeed it vanishes at the upper edge, 
N f = 3N , where the theory is IR free, and it is negative below it.

The lower edge is signaled by a physical condition, i.e., a re-
normalisation-scheme independent condition. This is the satura-
tion of the unitarity bound in Seiberg’s solution for the phases of 
SQCD, and such a condition is independent of the beta function. 
Specifically, the saturation of the unitarity bound D Q̃ Q = 1 implies 
γ ∗

m = −1, which in turn implies that the numerator of the beta 
function has a zero for N f = 3N/2. This identifies the lower edge 
of the conformal window for SQCD.

Equation (12) is implicitly a function of the coupling g∗(N f )

along the IR fixed point curve. One can determine g∗(N f ) pertur-
batively, by taking N, N f → ∞ and holding Ng2 and x = N f /N
constant, with ε = 3 − N f /N � 1, i.e., close to the upper edge of 
the conformal window. This gives [3]

Ng2∗ = 8

3
π2ε + O (ε2) . (13)

4.2. New results in SQCD

Equation (5) implies that the derivative of (9) with respect 
to the coupling, evaluated at a nontrivial fixed point, gives the 
anomalous dimension of the scalar glueball operator at the fixed 
point as a function of N f

γ ∗
G (N f ) = − g3∗

16π2

N f γ
′ ∗

m (N f )

1 − Ng2∗/(8π2)
, (14)

where analogously to (5) γ ′ ∗
m (N f ) ≡ γ ′

m(g, N f )|g=g∗(N f ) and the 
prime denotes the derivative with respect to g . Equation (14) es-
tablishes a useful relation between the anomalous dimension γG

and the derivative of γm . This is a key result that we are going 
to use in the rest of this section. In particular, our task is to de-
rive constraints on the flow of γm , its derivatives, and γG , using 
equation (14), R symmetry and the a-theorem.

It is convenient to immediately summarise the main new re-
sults of section 4 for SQCD. They are all valid in the conformal 
window and its edges, 3N/2 � N f � 3N , and can be summarised 
as follows:

6 Note, however, that the cusp singularity in (9) for Ng2/(8π2) = 1 is a 
renormalisation-scheme dependent condition; it cannot occur if a physical zero of 
the numerator of (9) occurs. The role of the cusp singularity in SUSY Yang–Mills 
(N f = 0), where (9) has no zero for g > 0, is discussed in [41].
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1) γm(g, N f ) is a strictly monotonic function of g for N f fixed, 
for any valid RG flow from an UV fixed point to an IR fixed 
point, and it may be stationary at the fixed points. This re-
sult is implied by the a-theorem and proved in section 4.3, 
equation (20). The strict monotonicity of γm away from the 
fixed point will be sufficient to prove the incompatibility of 
the SQCD exact beta function (9) with merging in section 4.4.

2) A result stronger than the incompatibility with merging is also 
proved in section 4.4: In SQCD, the a-theorem implies through 
equation (20) that the beta function, if continuous and thus 
free from cusp singularities, does not admit more than one 
fixed point at nonzero coupling. Hence, in the conformal win-
dow and its lower edge, 3N/2 � N f < 3N , the existence of the 
IR fixed point at nonzero coupling excludes an UV fixed point 
at nonzero coupling. If instead one of the two fixed points oc-
curs at zero coupling, the a-theorem can be satisfied, but not 
always. We find under which conditions the a-theorem is sat-
isfied.

Results 1) and 2) are nevertheless not able to determine if γ ∗
G (N f )

is strictly positive along the nontrivial IR fixed point curve g∗(N f )

of SQCD, or it vanishes. Results 3) to 5) below provide arguments 
in favour of a strictly positive γ ∗

G (N f ) for 3N/2 � N f < 3N .

3) We know exactly γ ∗
m(N f ) along the IR fixed point curve. If 

N f is assumed to be continuous, then dγ ∗
m/dN f > 0, and 

thus γ ∗
m(N f ) is strictly monotonic in N f and decreases as 

N f decreases along g∗(N f ). Also, d2γ ∗
m/dN2

f < 0 implies that 
dγ ∗

m/dN f itself strictly increases as N f decreases. This result 
comes straightforwardly from the exact solution for γ ∗

m(N f ) in 
SQCD and the a-theorem.

4) In the Veneziano limit, to leading order in perturbation theory 
and close to the upper edge, the IR fixed point coupling Ng2∗
is strictly monotonic in x = N f /N , and, with abuse of notation, 
in N f = xN with fixed N and x continuous in the Veneziano 
limit. This result is fully analogous to the perturbative QCD 
result in section 3.

5) In the Veneziano limit, to leading order in perturbation theory 
and close to the upper edge, the solution for the IR fixed point 
of SQCD is consistent with γ ′ ∗

m (N f ) < 0, and, through (14), 
a strictly positive γ ∗

G (N f ). We add that a result fully analogous 
to that of QCD two-loop perturbation theory in (8), is obtained 
in SQCD if the two-loop SQCD beta function is used.

Result 3) is straightforwardly implied by taking the derivatives 
of (12), specifically, dγ ∗

m/dN f = 3N/N2
f and d2γ ∗

m/dN2
f = −6N/N3

f .
The derivative of (13) with respect to N f = xN for N fixed, 

∂(Ng2∗)/∂N f = −8π2/3N(1 + O (ε)) is negative to leading order, 
so is ∂ g∗/∂N f , thus providing result 4); it agrees with the ob-
servation that the theory is increasingly strongly coupled as N f
decreases.

Result 5) follows from (14) and the properties of γm . In fact, 
the derivative with respect to N f

dγ ∗
m

dN f
= ∂γm(g, N f )

∂N f

∣∣∣∣
g=g∗(N f )

+ γ ′ ∗
m (N f )

(
∂ g∗
∂N f

)
(15)

is known exactly, dγ ∗
m/dN f = 3N/N2

f .
The rhs of (15) can be determined in the Veneziano limit with 

ε � 1, and taking derivatives with respect to N f = xN for N fixed. 
Equation (10) gives ∂γm/∂N f = 0 to leading order and, using (13), 
the expansion

γ ′ ∗
m (N f )

(
∂ g∗
∂N

)
= 1

3N

(
1 − 1

N2

)
(1 + O (ε)) (16)
f

reproduces the expansion dγ ∗
m/dN f = 3N/N2

f = 1/(3N)(1 + O (ε))

to the leading 1/N order. This result is consistent with γ ′ ∗
m (N f ) <

0 and, through (14), γ ∗
G (N f ) strictly positive.

4.3. Implications of the a-theorem

The a-theorem for four-dimensional RG flows establishes the 
existence of a monotonically decreasing function that interpo-
lates between the Euler anomalies of an UV and an IR CFT, i.e., 
aU V − aI R > 0. This function also provides an effective measure of 
the number of massless degrees of freedom, consistently with the 
intuition that this number decreases as we integrate out high mo-
menta. Cardy’s conjectured a-function [42], given by the integral 
of the trace of the energy–momentum tensor on the sphere S4, 
has passed all tests in the context of theories that are free in the 
UV and whose IR dynamics can be computed. The recent proof of 
the a-theorem [39,42] requires the rather general prerequisite of a 
unitary S matrix.

We use here the interpolating a-function for SQCD in the con-
formal window obtained in [43], whose IR value can be computed 
from the U (1)R F F , U (1)R and U (1)3

R anomalies, and provides 
aU V −aI R in terms of the anomaly free R-charge of the field Q ( Q̃ ). 
The latter is a function of γm via (11) and D Q̃ Q = 2 + γm . This 
means that the a-theorem directly constrains the UV to IR flow of 
γm(g, N f ) in SQCD, and, via (14), it constrains that of γG (g, N f ).

Without knowledge of the a-theorem, equation (12) already im-
plies that, along the IR fixed point curve, D Q̃ Q , R and γ ∗

m decrease 
from their value at the upper edge (D Q̃ Q = 2, R = 2/3, γ ∗

m = 0) to 
their value at the lower edge (D Q̃ Q = 1, R = 1/3, γ ∗

m = −1), where 
the unitarity bound is saturated.

The a-theorem allows us to further establish the monotonic 
variation of γm(g, N f ) along any valid RG trajectory from the ul-
traviolet to the infrared. In particular, it allows us to derive results 
1) and 2) of section 4.2.

Two types of UV to IR flows are of interest in this analysis, both 
were discussed in [43] and they are illustrated in Fig. 1:

I. For N f fixed, the theory flows from the asymptotically free 
fixed point (UV) to the nontrivial IR fixed point, the horizontal 
line in Fig. 1; we refer to this flow as UVA F . The interpolating 
a-function a(g(μ)), with renormalisation-scale dependent coupling 
g(μ), varies from its value aU V to aI R . We shall use the universal-
ity of the a-function to also derive constraints on the RG flow from 
a hypothetical strongly coupled UV fixed point to the weakly cou-
pled IR fixed point; we refer to this flow as UVSC .

II. One can devise a flow in the space of theories along the IR 
fixed point curve from a theory with N f massless flavours to one 
with N f −n massless flavours, and N f −n � Nc

f , so that both theo-
ries are in the same phase. This can be achieved by adding a mass 
deformation for n flavours. The interpolating a-function varies from 
aU V = a(N f ) to aI R = a(N f − n).

In case I, from the IR Euler anomaly coefficient [43]7

aI R = 3

32

(
2(N2 − 1) + 2N f N(1 − R)

(
1 − 3(1 − R)2

))
, (17)

with R = (2 + γ ∗
m)/3, and aI R → aU V for R → 2/3, one obtains for 

the flow UVA F [43]

aU V − aI R = N N f

48
γ ∗2

m

(
3 − γ ∗

m

)
= N N f

48

(
1 − 3N

N f

)2 (
2 + 3N

N f

)
, (18)

7 This result is valid to all orders in perturbation theory.
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Fig. 1. Flow I (horizontal line) from the UV (g = 0) to the nontrivial IR fixed point 
for a theory with N f massless flavours in the conformal window. Flow II along the 
IR fixed point curve from a theory with N f massless flavours (UV) to one with 
N ′

f < N f (IR).

where (12) is used in the second line. It vanishes at the upper 
edge, N f = 3N , and it satisfies aU V − aI R > 0, aI R > 0, for 3N/2 �
N f < 3N .8

To establish result 1) of section 4.2 we use the interpolating 
function a(g(μ)) for N f fixed, given by aI R in (17) for γ ∗

m →
γm(g(μ)). According to the a-theorem, a(g(μ)) is a strictly mono-
tonic function of the scale μ and decreases from the UV to the 
IR, and it is stationary at a fixed point. Thus, away from the fixed 
point β(g) 
= 0 and along the flows of type I with fixed N f

da

d logμ
= ∂a

∂ g
β(g) > 0 (19)

implies that ∂a/∂ g has the same sign as β(g) with

∂a

∂ g
= − N N f

16
γm (2 − γm)

∂γm

∂ g

= 0 . (20)

For γm < 0 and γm > 2 (0 < γm < 2), it follows from (20) that 
∂γm/∂ g 
= 0 and of the same sign (opposite sign) of ∂a/∂ g . There-
fore, for N f fixed γm must be a strictly monotonic function of 
g away from fixed points. Importantly, this result applies to both 
flows, UVA F (β(g) < 0) and UVSC (β(g) > 0), given the universal-
ity of the interpolating a-function and (20). This is result 1), and it 
will imply the incompatibility of SQCD with merging and result 2) 
in section 4.4.

At the nontrivial fixed point, UV or IR, the flow of the 
a-function is stationary, da/d logμ = 0, because β(g) = 0, and (20)
does not constrain ∂γm/∂ g – unless one is able to prove that 
∂a/∂ g 
= 0 for any g 
= 0.

In case II, using (17) and (12) along the IR fixed point curve, 
one has

a(N f ) − a(N f − n) = 9N4

16

(
1

(N f − n)2
− 1

N2
f

)
> 0 , (21)

with a(N f ) = (3N2/16)(1 − 3N2/N2
f ). In other words, the flow of 

γ ∗
m(N f ) implied by (12), dγ ∗

m/dN f > 0, guarantees that da/dN f =
9N4/8N3

f is also positive, and results 3) and 4) can be re-
interpreted as consequences of the a-theorem.

Consistency of the a-theorem with result 5), through (20), is 
obvious at this point, because (20) does not constrain ∂a/∂ g along 
the IR curve.

8 Corrections to aI R from a possible accidental symmetry due to the violation of 
the unitarity bound at N f = 3N/2 vanish [43].
Fig. 2. The beta function β(α, N f ) with f (α) = 1 in (22) for decreasing N f , top to 
bottom: for N f > Nc

f there is a pair of fixed points at α− (IR) and α+ (UV). They 
merge at αc for N f = Nc

f and disappear for N f < Nc
f .

4.4. Proof of the absence of merging in SQCD

In this section we explore a specific mechanism that may lead 
to the occurence of the lower edge of a conformal window, guided 
by the idea that such a mechanism is itself a powerful probe of 
the underlying theory. We consider the possibility that a nontriv-
ial, i.e., interacting UV fixed point exists in the conformal window 
and merges with the IR fixed point at the lower edge. The possi-
bility of an additional, more strongly coupled UV fixed point in 
the QCD conformal window was put forward in [2]. The merg-
ing of the UV-IR pair of fixed points at the lower edge [13,44] is 
phenomenologically interesting, since it naturally leads to BKT/Mi-
ransky scaling [7–12] and a “walking” gauge coupling just below 
the conformal window.

Firstly, we establish a general result valid for SQCD and QCD: 
A strictly monotonic γ ∗

G (N f ) and nonvanishing at the lower edge 
of the conformal window is incompatible with merging. Secondly, 
as an instructive exercise, we analyse merging in the context of 
SQCD and prove the incompatibility of the SQCD exact beta func-
tion with merging, by use of the a-theorem and result 1) of sec-
tion 4.2.

Close to Nc
f , the ansatz for the beta function that realises merg-

ing has the form [13] sketched in Fig. 2:

β(α,ε) = f (α)
[
ε − (α − αc)

2
]

, (22)

where ε = (N f − Nc
f )/N , α is (a power of) a coupling, and f (α)

is a strictly monotonic function of α,9 nonzero on the interval 
[α−, α+], with α± = αc ± √

ε the zeroes of β(α, ε); α± are dis-
tinct and real for ε > 0, α+ = α− = αc for ε = 0, and complex for 
ε < 0, thus leading to the disappearance of the conformal window. 
We note that the only effect of a strictly increasing (decreasing) 
f (α) in (22) is to shift the maximum of the beta function, which 
occurs at αc for ε = 0, to α∗ > αc (α∗ < αc) and α− < α∗ < α+ for 
ε > 0.

At the lower edge, ε = 0, the beta function (22) develops a local 
maximum at αc , thus β ′(αc, ε = 0) vanishes. SQCD, like QCD, has 
one coupling, the gauge coupling, and the latter result, via (5) and 
α ∼ g2, implies that γ ∗

G vanishes for N f = Nc
f , though the theory 

is interacting. In other words, a nonvanishing γ ∗
G at the lower edge 

of SQCD, and QCD, is incompatible with merging.
Besides, since γ ∗

G also vanishes at the upper edge, where the 
theory is IR free, and below the upper edge γG(α±, ε > 0) =
β ′(α±, ε > 0) = ∓ f (α±)

√
ε is positive at α− (IR) and negative at 

9 f (α) = 1 in [13].
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α+ (UV), then γ ∗
G (N f ) is non monotonic along the IR fixed point 

curve if merging occurs.
We now specialise to SQCD. The incompatibility of the SQCD 

exact beta function (9) with merging is a direct consequence of 
the a-theorem, through result 1) in section 4.2, applied to the RG 
flow of the theory from a hypothetical strongly coupled UV fixed 
point to the weakly coupled IR fixed point. To prove it, we impose 
that (9) realises the merging form (22) in the surroundings of the 
lower edge, ε � 0 with ε � 1. We equate (22) with α = Ng2 to 
the SQCD beta function β(α) = 2Ngβ(g), with β(g) in (9).10

Merging is realised for f (α) = α2/(8π2(1 − α/(8π2))) strictly 
increasing on [α−, α+], where as always 1 − α/8π2 > 0, and

−3 + (3/2 + ε)(1 − γm(α, ε)) = ε − (α − αc)
2 , (23)

where we used Nc
f /N = 3/2 and N f /N = 3/2 + ε . The condition 

(23) determines the RG flow of γm on the interval [α−, α+], for 
some ε � 0, ε � 1:

γm(α, ε) = −1 + (2/3)(α − αc)
2

1 + 2ε/3
. (24)

Thus γm(αc, ε) = −1/(1 + 2ε/3) is a minimum of γm(α, ε) =
γm(αc, ε) + (2/3)(α − αc)

2/(1 + 2ε/3) on the interval [α−, α+], 
with α± = αc ± √

ε . At the zeroes, γm(α±, ε) = −(1 − 2ε/3)/(1 +
2ε/3). Crucially, for any ε > 0, αc does not correspond to a fixed 
point, nevertheless we have found that the RG flow of γm is sta-
tionary at αc , if merging is realised. Equation (20) then implies 
that the a-function itself is stationary at αc , away from a fixed 
point, thus violating the a-theorem. This establishes an important 
result, to all orders in perturbation theory: If the SQCD exact beta 
function satisfies the a-theorem, then it cannot realise merging.

Even without the aid of an exact solution for the underly-
ing theory, the non monotonicity of the scalar glueball anoma-
lous dimension γ ∗

G (N f ) with merging along the IR fixed point 
curve seems at odds with the simple fact that interactions be-
come stronger as N f becomes smaller along the IR fixed point 
curve, a feature implicit in the a-theorem. In fact, two-loop per-
turbation theory for QCD in section 3, as well as results 3), 4) 
and 5) for SQCD in section 4.2 are consistent with a nonvanishing 
γ ∗

G (N f ) everywhere below the upper edge, and monotonic along 
the IR curve; in SQCD, through (14), the latter properties hold for 
γ ∗

G (N f ) as well as the derivative of the mass anomalous dimension 
γ ′ ∗

m (N f ).
Finally, note that in the presence of merging the operator TrG2

would be irrelevant along the IR curve and relevant along the UV 
curve, marginal at the lower edge. Thus, plausibly, the UV fixed 
point curve would be a line of critical points in the conformal win-
dow, where a phase transition occurs in the continuum theory; this 
is a distinctive signature of merging.

4.5. Proof of result 2)

Result 2) of section 4.2, a result stronger than the incompatibil-
ity with merging, follows straightforwardly from a similar line of 
reasoning. Consider the RG flow from a hypothetical nontrivial UV 
fixed point, with coupling αU V 
= 0, to a nontrivial IR fixed point, 
with coupling αI R 
= 0, for N, N f fixed. If the beta function (9)
is continuous and only vanishes at the fixed points β(αI R,U V ) = 0, 
then two cases are possible:

10 This guarantees the correct N, N f counting for SQCD in the presence of merg-
ing.
a) If 0 < αI R < αU V , β(α) > 0 on (αI R,αU V )

b) If 0 < αU V < αI R, β(α) < 0 on (αU V ,αI R) . (25)

We consider the first case, the top curve in Fig. 2, and for conve-
nience we write (9) as follows:

β(α) = f (α)h(α)

f (α) = α2

8π2
(

1 − α
8π2

)
h(α) = −3N + N f − N f γm(α) . (26)

Since both fixed points are at nonzero coupling, f (α) does not 
vanish on the closed interval [αI R , αU V ] and it is continuous, with 
1 − α/(8π2) > 0. Hence, the beta function vanishes only if its nu-
merator vanishes, i.e., β(αI R,U V ) = 0 only if h(αI R,U V ) = 0, and the 
continuity of β(α) implies the continuity of h(α). Then β(α), con-
tinuous and vanishing only at the boundaries of [αI R , αU V ], has a 
maximum at some αI R < α < αU V , and h(α) also has a maximum 
at some αI R < α < αU V , and, by (26), γm(α) has an extremum 
at α, away from a fixed point. Equation (20) then implies a sta-
tionary a-function away from a fixed point, hence the violation of 
the a-theorem.

For the second case in (25), with 0 < αU V < αI R , the proof is 
fully analogous, with the obvious exchanges of maxima and min-
ima, IR and UV.

This proves that the a-theorem implies that the SQCD beta 
function does not admit more than one fixed point at nonzero 
coupling. Hence, in the conformal window, 3N/2 � N f < 3N , the 
existence of the IR fixed point at nonzero coupling excludes an UV 
fixed point at nonzero coupling.

If one of the two fixed points occurs instead at zero cou-
pling, the a-theorem can be satisfied, but not always. Consider 
the first case in (25), where now αI R = 0 and αU V > 0. This 
case could be realised above the conformal window, N f � 3N , 
once asymptotic freedom is lost. This time f (αI R) = 0 and f (α)

is strictly positive and strictly increases on (0, αU V ], i.e., f ′(α) =
α/(4π2)(1 − α/(16π2))/(1 − α/(8π2))2 > 0, so that β(α) has a 
maximum at some 0 < α < αU V while h(α), and thus γm(α), 
are allowed to vary strictly monotonically on (0, αU V ). Specifi-
cally, h(α) should vary from h(αI R) > 0 to h(αU V ) = 0 and the 
a-theorem requires that it varies (decreases) strictly monotoni-
cally, i.e., h′(α) = (β(α)/ f (α))′ < 0 on (0, αU V ), or equivalently 
β ′(α)/β(α) < f ′(α)/ f (α) on (0, αU V ) where f , f ′ > 0 and β > 0.

For h(α), and thus γm(α), strictly monotonic, and γm 
= 0, 2, 
equation (20) then implies a strictly monotonic a-function on 
(0, αU V ). However, the a-theorem through (19) further requires 
that ∂a/∂α has the same sign as β(α) away from a fixed point, 
hence ∂a/∂α > 0 for β(α) > 0. Equation (20) then implies the con-
straints: ∂γm/∂α > 0 for γm < 0 and γm > 2, and ∂γm/∂α < 0 for 
0 < γm < 2. Consider α in a neighbourhood of the origin αI R = 0, 
with γm(0) = 0. Then, ∂γm/∂α > 0 if γm(α) > 0 and ∂γm/∂α < 0
if γm(α) < 0. None of the latter solutions satisfies the a-theorem 
constraints above. This implies the absence of a nontrivial UV fixed 
point above the conformal window of SQCD, N f � 3N .11

The second case in (25), where now αU V = 0 and αI R > 0 is 
realised by the conformal window and can indeed be shown to 
be allowed by the a-theorem following a fully analogous proof. It 
is worth to note that none of these proofs make use of specific 
assignments of R-charges at fixed points, nor of their uniqueness.

11 This result was argued with different methods, using specific values of 
R-charges at the fixed points, in [45].
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5. Large-N QCD in the Veneziano limit

We now investigate to what extent the results obtained in 
SQCD remain valid in the massless Veneziano limit (N f , N → ∞, 
N f /N = const) of large-N QCD, for which an exact beta function 
has been proposed [19], as a generalisation of the large-N Yang–
Mills exact beta function derived on the basis of the loop equations 
for certain quasi-BPS Wilson loops [18]. This beta function remark-
ably manifests salient analogies with the exact NSVZ beta function 
in (9), with one crucial difference. From inspection of the beta 
function for given N , N f

12 [18,19]

β(g) = ∂ g

∂ logμ
= (27)

− g3

16π2

(4π)2β0 − N (∂ log Z/∂ logμ) + N f γm(g)

1 − N
(

g2/4π2
) ,

with β0 in (7), the anomalous dimension factor

∂ log Z

∂ logμ
= 2γ0

(
Ng2 + . . .

)

γ0 = 5

3(4π)2

(
1 − 2N f

5N

)
(28)

and the fermion mass anomalous dimension

γm(g) = − 9

3(4π)2

N2 − 1

N
g2 + . . . , (29)

both starting at order Ng2, and comparing with (9), one concludes 
that the absence of supersymmetry generates the new anomalous 
dimension contribution ∂ log Z/∂ logμ in the beta function of QCD; 
its structure is otherwise identical to (9). Equation (27) is exact in 
the large-N limit, i.e., to leading order in the 1/N expansion, and 
it is exact to all orders in the O (1) ratio N f /N in the Veneziano 
limit. Indeed, one can verify that its weak coupling expansion re-
produces the universal part of the perturbative beta function, i.e., 
the two-loop order, up to the last contribution to the two-loop co-
efficient β1 in (7), which is 1/N2 suppressed with respect to the 
leading contribution [18,19].

Another very interesting result [19] is the determination of the 
lower edge of the conformal window, within the local approxima-
tion of the glueball effective action valid in the confining phase. 
The lower edge occurs at N f /N = 5/2, the value for which γ0 in 
(28) changes sign. In fact, γ0 also enters the glueball kinetic term, 
and its change of sign signals a phase transition from confinement 
to a phase with 〈Tr(G2)〉 = 0, the conformal Coulomb phase.

Then, for N f /N = 5/2, barring the occurrence of a cusp sin-
gularity and noting that ∂ log Z/∂ logμ = 0,13 the beta function 
(27) vanishes for γm = −4/5, a renormalisation-scheme indepen-
dent result. As anticipated in section 3, this result suggests that the 
singularity of the QCD two-loop beta function at the lower edge, 
i.e., g∗ → ∞ for β1 = 0, is indeed an artefact of the truncated per-
turbative expansion.

We determine γ ∗
G (N f ) using (27):

γ ∗
G (N f ) = − g3∗

16π2

−N(∂ log Z/∂ logμ)′ ∗(N f ) + N f γ
′ ∗

m (N f )

1 − Ng2∗/(4π2)
,

(30)

12 Ref. [19] writes (27) in terms of the ’t Hooft coupling gc = √
N g .

13 The anomalous dimension term has an exact expression with overall coefficient 
γ0 in terms of the Wilsonian coupling [18,19].
where from (28) the derivatives with respect to g are

(∂ log Z/∂ logμ)′ = 2γ0 (2Ng + . . .)

γ ′
m = − 6

(4π)2

N2 − 1

N
g + . . . (31)

At the lower edge the derivative (∂ log Z/∂ logμ)′ ∗(Nc
f ) vanishes 

exactly since γ0 = 0. Therefore, at the lower edge (30) reduces to

γ ∗
G (Nc

f ) = − g3∗
16π2

N f γ
′ ∗

m (Nc
f )

1 − Ng2∗/(4π2)
, (32)

which is the main result of this section, a relation between γ ∗
G

and γ ′ ∗
m entirely analogous to SQCD. Like (27), (32) is exact in 

the large-N limit and to all orders in the O (1) ratio N f /N in 
the Veneziano limit. Barring the occurrence of a cusp singularity, 
it suggests that the singular behaviour of two-loop perturbation 
theory, γ ∗

G → ∞ for β1 = 0, is an artefact of the perturbative ex-
pansion.

In full analogy with SQCD, equation (32) implies that γ ∗
G (Nc

f )

is strictly positive, if γ ′ ∗
m (Nc

f ) < 0. The latter condition is at least 
verified in (31) to leading order in perturbation theory,14 and there 
are no physical constraints that force γ ′ ∗

m to vanish at the lower 
edge, analogously to SQCD.

A nonvanishing γ ∗
G at the lower edge would then exclude merg-

ing, according to section 4.4, and it would lead to the following 
description. A phase transition occurs at the lower edge, and γG

develops a finite discontinuity: γ ∗
G (N f ) is given by (32) and is pos-

itive for N f /N = 5/2, while in the absence of a fixed point γG is 
given by (4) and is negative for N f /N < 5/2, the confining phase, 
without vanishing – note that γ0 in (28) and (∂ log Z/∂ logμ)′ in 
(31) no longer vanish below the lower edge.

5.1. QCD and the a-theorem

What about the a-theorem and its constraints on QCD or any 
of its limits? The a-theorem, as proved in [39], would imply the 
existence of a proper UV to IR interpolating a-function for a vast 
class of four-dimensional field theories where a unitary S matrix 
exists, thus including SQCD, as well as QCD. On the other hand, 
one can construct an a-function and study aU V and aI R only in 
a limited set of examples. In SQCD, supersymmetry and the exact 
anomaly-free R symmetry at the fixed point are the key properties 
that allow the explicit construction of the interpolating a-function 
discussed in section 4.3. Most importantly, they allow us to show 
how the a-function evolution directly constrains the ultraviolet to 
infrared flow of the mass anomalous dimension and its derivatives.

In QCD, some results are also available. Cardy’s conjectured 
a-function, which coincides by construction with the Euler anomaly 
coefficient aU V (aI R ) at the UV (IR) CFTs, has been shown to satisfy 
aU V − aI R > 0 in the confined and chirally broken phase of QCD, 
when its infrared realisation is assumed to have N2

f − 1 mass-
less Goldstone bosons that are free in the long distance limit [42]. 
This result is not based on perturbation theory. Close to the up-
per edge of the QCD conformal window, in the large-N limit and 
with ε = 11/2 − N f /N � 1, two-loop perturbation theory veri-
fies the a-theorem, i.e., aU V − aI R > 0 and of order N2ε2 [46]. 
The a-theorem in the context of the massless Veneziano limit of 
large-N QCD deserves further investigation.

14 Note, however, that g∗ comes from the cancellation of a priori infinitely many 
terms in the expansion in g .
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5.2. QCD and merging

Though the validity of the Veneziano limit of large-N QCD ex-
act beta function (27) in the deconfined phase above the lower 
edge (N f > Nc

f ) has not yet been demonstrated, it is instruc-
tive to investigate its compatibility with the merging hypothe-
sis. One can repeat the exercise done for SQCD in section 4.4. 
For the beta function β(α) = 2Ngβ(g), with β(g) in (27) and 
f (α) = α2/(8π2(1 − α/(4π2))), the merging condition analogous 
to (23) reads:

−2 + 2

3
ε + ∂ log Z

∂ logμ
−

(
5

2
+ ε

)
γm = ε − (α − αc)

2 , (33)

where, from (28), ∂ log Z/∂ logμ = −(4/3(4π)2)ε(α + . . .) is of or-
der ε . Thus, for ε = 0, γm(α, ε = 0) = −4/5 + (2/5)(α −αc)

2 has a 
minimum at αc . This time, for ε > 0, we can at least conclude that 
the function(

1 + 2

5
ε

)
γm(α, ε)− 2

5

∂ log Z

∂ logμ
(α,ε) = −4

5
− 2

15
ε + 2

5
(α−αc)

2

(34)

has a minimum at αc , away from a fixed point. Thus, differently 
from SQCD, contributions from ∂ log Z/∂ logμ enter the merging 
condition to order ε as in (34). We may expect that, in full analogy 
with SQCD, it is now the function in the lhs of (34) that enters the 
interpolating a-function for the Veneziano limit of large-N QCD, so 
that a relation analogous to (20) would again lead to the incom-
patibility of the Veneziano limit of large-N QCD with merging; we 
defer this analysis to future work.

5.3. Vanishing γG and the free theory

Results 3) to 5) in section 4.2 for SQCD, and QCD two-loop per-
turbation theory suggest that γG does not vanish along the IR fixed 
point curve below the upper edge of the conformal window, in-
cluding its lower edge. However, even with the aid of an exact 
relation between γG and γ ′

m at the fixed point, (14) for SQCD and 
(32) for the Veneziano limit of large-N QCD, we could not exactly 
constrain their fixed-point value at the lower edge. Oppositely, we 
have shown that merging forces γ ∗

G (N f ) to vanish at the lower 
edge, and vary non monotonically with N f .

In this section we limit ourselves to note the following: Prov-
ing that, in d = 4, γG = 0 at a fixed point implies a free CFT would 
directly guarantee that γG cannot vanish at the fixed point of the 
lower edge of the conformal window, where the theory is interact-
ing, thus excluding merging in QCD.

A proof would amount to show that a theory in d = 4 with a 
scalar operator of scale dimension 	 = 4 (TrG2) is free. The con-
formal partial wave expansion has been fully worked out for scalar 
fields [47–49], but not many exact results are available in d = 4. 
It has been shown that theories involving a scalar of dimension 
	 = 2 are free [50,51], and that theories with an infinite number 
of conserved higher spin currents (s > 2) are free in d = 3 [52]. 
The latter proof has been partially extended to d = 4 [53]. One 
step forward would be to verify the agreement of the four point 
function of TrG2 in the γG = 0 limit with the four point function 
of the same scalar operator in a theory with free Abelian vector 
fields derived in, e.g., [49].

5.4. Merging with multiple couplings

It has been conjectured [13,44] that the description of strongly 
coupled QCD in the conformal window may involve, in addition to 
the gauge coupling, one or more effective couplings ci , associated 
to effective composite operators O i , e.g., a four-fermion operator 
whose coupling’s beta function develops a pair of nontrivial IR and 
UV zeroes that realise merging at the lower edge as in Fig. 2. In 
this scenario, the gauge coupling beta function has only a nontriv-
ial IR zero, but it could also develop an additional nontrivial UV 
zero.

We should immediately realise that this description is simply 
excluded in QCD, as it is in SQCD, and, a fortiori in the Veneziano 
limit of large-N QCD description of the physics at the lower edge 
in section 5, which is in terms of the gauge coupling only. In 
other words, even if we could find some additional composite op-
erator that provides a correct effective description of QCD or the 
Veneziano limit of large-N QCD in some energy range, its coupling 
is fully determined by the gauge coupling, so that the RG flow of 
the theory is uniquely dictated by the gauge coupling beta func-
tion, the one in (27) for the Veneziano limit of large-N QCD.

The remainder of this section is a side note that discusses, con-
sistently with the previous conclusion, how the IR fixed point of 
the QCD conformal window can no longer be recovered when a 
generic four-fermion operator is added. Such an addition generally 
leads to a gauge-NJL model, and, for our argument, it is sufficient 
to consider a scalar four-fermion operator only. Then, bosonisa-
tion via an auxiliary scalar field of the gauge-NJL model leads to 
a gauge-Yukawa theory as its low-energy realisation. The RG flow 
from the UV to the IR renders the auxiliary scalar field dynami-
cal and renormalises the scalar mass, the Yukawa coupling and the 
four-scalar interaction. We are familiar with the RG flow from an 
asymptotically free UV to the IR. Schematically, starting at 
 with 
an irrelevant interaction G(ψ̄ψ)2, with G ∼ 
−2, after integrating 
out one-fermion loops with momenta μ � p � 
 and rescaling to 
a canonically normalised scalar field, one has at the scale μ

m2
φ(μ) = M2

φ(μ)

Zφ(μ)
ay(μ) = 1

Zφ(μ)
λ(μ) = λ0(μ)

Z 2
φ(μ)

(35)

for the squared scalar mass, the squared Yukawa coupling and 
the four-scalar coupling, respectively, and Zφ is the scalar wave 
function renormalisation. λ0 and Zφ have logarithmic running 
log(
2/μ2), while M2

φ(μ) = M2
φ(
) − (
2 − μ2) has a quadratic 

running,15 with boundary conditions

M2
φ(
) = 1/G ∼ 
2 λ0(
) = 0 Zφ(
) = 0 . (36)

One cannot recover the original QCD IR fixed point in the confor-
mal window, because the scalar cannot decouple from the IR spec-
trum. Firstly, note that the RG flow from a hypothetical strongly 
coupled UV fixed point, for N f fixed, must lead to the same IR 
fixed point as the RG flow from the asymptotically free UV – these 
flows can be pictured in Fig. 1 as perturbations in a multiple-
coupling space on the right side or the left side of the IR fixed 
point curve, respectively. Secondly, the latter RG flow is often used 
to “mimic” the spontaneous breaking of chiral symmetry in QCD, 
at some scale μ < 
. This is the first one of two possible solu-
tions in (35): i) The squared scalar mass m2

φ becomes negative 
thus inducing spontaneous symmetry breaking, and the mass of 
the scalar fluctuations are proportional to the dynamically gener-
ated fermion mass, but it is not QCD, or ii) the scalar becomes free 
in the IR, or, provided its mass vanishes, a nontrivial IR fixed point 
can develop. The latter realises a massless gauge-Yukawa model 
with an IR fixed point, not QCD, and the same IR fixed point must 

15 A fine-tuning of M2
φ(
) − 
2 in (35) is required by construction in the gauge-

NJL model where a hard cutoff regularisation is used.
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be reached by the RG flow from the hypothetical strongly coupled 
UV fixed point where a four-fermion operator can eventually be 
marginal or relevant. The decoupling of the scalar field from the 
IR spectrum advocated in [13] is equivalent to taking 
 → ∞ and 
remove the four-fermion operator at all scales.

A perturbative analysis of the massless and chirally symmet-
ric gauge-Yukawa theory with N f fundamental fermions allows us 
to better understand how the QCD conformal window is modified, 
having clarified that is no longer QCD. QCD symmetries are pre-
served when all N f fermions have degenerate Yukawa coupling 
to the appropriate combination of scalar and pseudoscalar fields. 
This is model C in [13], where it is shown, consistently with the 
more general perturbative analysis in [54], that the theory in the 
Veneziano limit has no conformal window at the 2-1-1 (gauge-
Yukawa-scalar) loop order; Yukawa interactions push the IR fixed 
point towards stronger coupling until the conformal window dis-
appears. This also means that any nontrivial zero, both IR and UV, 
that could be generated at this or higher orders in perturbation 
theory for N f < N A F

f has anyway no resemblance of the IR fixed 
point of the QCD conformal window.

6. Final remarks

In this letter we have shown that the exact beta function of 
SQCD entails an exact relation between the anomalous dimension 
γG of the scalar glueball operator and the derivative of the mass 
anomalous dimension γm at the IR fixed point in the conformal 
window and that, remarkably, the recently proposed exact beta 
function for the massless Veneziano limit of large-N QCD entails 
a fully analogous relation at the lower edge of the conformal win-
dow. We can view this relation as one way in which the gauge 
sector and the matter sector are intertwined in QCD.

The a-theorem has then allowed us to prove the incompati-
bility of the SQCD exact beta function with the merging of fixed 
points to all orders in perturbation theory, through constraints on 
the RG flow of the theory away from fixed points. The analogies 
with the massless Veneziano limit of large-N QCD then allowed us 
to suggest the way in which the same incompatibility may extend 
to QCD as a consequence of the a-theorem. By the same means 
we have also determined the general conditions under which the 
SQCD exact beta function satisfies the a-theorem, and, as a result, 
we have excluded the existence of more than one fixed point at 
nonzero coupling as well as a nontrivial UV fixed point in the IR 
free theory above the conformal window.

We have shown that γG carries information about the nature 
of the lower edge of the conformal window, N f = Nc

f : A nonvan-
ishing γG at the lower edge of the QCD conformal window would 
exclude the merging of fixed points. At the same time, we have 
shown that SQCD in the Veneziano limit and QCD two-loop per-
turbation theory are indeed consistent with a strictly positive and 
monotonically increasing γG at the IR fixed point as N f decreases 
below the upper edge of the conformal window.

It is worth noting that the prediction of the lower edge at 
N f /N = 5/2 in the Veneziano limit of large-N QCD [18,19] is in 
nice agreement with the recently determined bound on the lower 
edge 6 < Nc

f < 8 for the SU (3) theory [55] based on a lattice QCD 
study.

We have also observed that a multiple-coupling merging, aris-
ing from the hypothesis that strongly coupled QCD may require 
additional composite operators in its description, is, by construc-
tion, incompatible with QCD, as it is with SQCD, and, a fortiori 
with the Veneziano limit of large-N QCD description of the lower 
edge of the conformal window.
In light of this analysis, the combined nonperturbative determi-
nation of γG and γm along the IR fixed point curve in the confor-
mal window, with lattice and/or conformal bootstrap techniques, 
would certainly be a useful test for QCD, able to unambiguously 
determine the mechanism in place for the onset of conformality.
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