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On-line learning dynamics of ReLU neural

networks using statistical physics techniques

Michiel Straat1 and Michael Biehl1 ∗

1- Bernoulli Institute for Mathematics, Computer Science

and Artificial Intelligence, University of Groningen

Nijenborgh 9, 9747AG Groningen, The Netherlands

Abstract. We introduce exact macroscopic on-line learning dynamics

of two-layer neural networks with ReLU units in the form of a system of

differential equations, using techniques borrowed from statistical physics.

For the first experiments, numerical solutions reveal similar behavior com-

pared to sigmoidal activation researched in earlier work. In these experi-

ments the theoretical results show good correspondence with simulations.

In overrealizable and unrealizable learning scenarios, the learning behavior

of ReLU networks shows distinctive characteristics compared to sigmoidal

networks.

1 Introduction

Statistical physics techniques have been used successfully in the theoretical anal-
ysis of various machine learning models, including neural networks [1–3] and
prototype-based models [3, 4]. In the context of neural networks, several learn-
ing scenarios have been studied, e.g., on-line gradient descent learning [1, 5–7],
learning in non-stationary environments [3] and batch learning [8]. Macroscopic
quantities, the so-called order parameters of the system, aggregate and summa-
rize the usually large number of individual parameters of the machine learning
model. In model situations, Central Limit Theorems (CLT) in combination
with the consideration of the thermodynamic limit facilitate an exact descrip-
tion of the macroscopic dynamics in the form of a system of ordinary differential
equations (ODE). It provides a useful tool to study the behavior of learning the-
oretically, in order to gain a deeper understanding of the learning process, which
could potentially be used to improve algorithms used in practical scenarios. In
the context of deep learning, Rectified Linear Unit (ReLU) activation has become
popular mainly due to improved empirical performance compared to sigmoidal
activation, e.g., see [9]. Here we formulate and study exact macroscopic gradi-
ent descent learning dynamics for the Soft Committee Machine (SCM), with the
aim of increasing theoretical understanding of the behavior of ReLU activation
in neural networks.

∗We acknowledge financial support through the Northern Netherlands Region of Smart
Factories (RoSF) consortium, see http://www.rosf.nl.
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2 Macroscopic ReLU learning dynamics of the SCM

We consider regression where for an input ξ ∈ R
N a teacher SCM with M hidden

units computes the target output τ(ξ) ∈ R and a student SCM with K hidden
units computes the hypothesis σ(ξ) ∈ R :

τ(ξ) =

M
∑

n=1

g(yn) yn = Bn · ξ, σ(ξ) =

K
∑

i=1

g(xi) xi = Ji · ξ . (1)

Above, Bn ∈ R
N and yn ∈ R denote teacher weight vectors and pre-activations,

respectively. In case of the student, those are denoted by Ji ∈ R
N and xi ∈ R.

We consider for the activation function g(x): ReLU(x) = xθ(x), where θ(x) is
the unit step function. The student weights J are adaptable and we assume that
the teacher weights B stay constant, i.e., the target rule remains fixed. In the
on-line learning scenario at step µ, a new independent example ξµ is presented
from a stream. The direct error for ξµ and the generalization error are defined
as:

ǫ(J , ξµ) =
1

2
(σµ − τµ)2, ǫg(J) = 〈ǫ(J , ξ)〉ξ , (2)

where 〈·〉ξ denotes averaging over the input distribution. One estimates the input
distribution in practice, but here we consider i.i.d. Gaussian random components
ξi ∼ N (0, 1).

For each presentation ξµ, the adaptation of the student weight vector Ji

is guided by gradient descent on ǫ(Jµ, ξµ) with respect to Ji, resulting in the
update rule:

J
µ+1

i = J
µ
i +

η

N
δµi ξ

µ, δµi = (τµ − σµ)g′(xµ
i ) (3)

where η is the so-called learning rate which is scaled with the input dimension
N . Note that from Equation (3), g(x) should be differentiable. ReLU′(0) is
undefined, but in practice one chooses a value for this rare case.

The choice of i.i.d. components ξi makes the CLT apply for large input
dimension N . Hence, for large N , the pre-activations xi and yn become zero-
mean Gaussian variables with properties:

〈xixj〉 = Ji · Jj = Qij , 〈xiyn〉 = Ji ·Bn = Rin, 〈ynym〉 = Bn ·Bm = Tnm .
(4)

The variables Rin, Qik and Tnm are macroscopic variables of the system, so-
called order parameters. Here we fix the rule properties to Tnm = δnm. Com-
bining the above equations with gradient update Equation (3) yields stochastic
update equations for the order parameters directly. In the thermodynamic limit
N → ∞, the normalized time variable α = µ/N can be considered continuous
and the order parameters self-average as proved in [10]. Hence, averaging leads
to a system of ODEs, e.g., shown in [2], describing exact macroscopic dynamics



in the thermodynamic limit. For g(x) = ReLU(x), the system is:

dRin

dα
= η





M
∑

m=1

〈θ(xi)ynymθ(ym)〉 −
K
∑

j=1

〈θ(xi)ynxjθ(xj)〉



 ,

dQik

dα
= η





M
∑

m=1

〈θ(xi)xkymθ(ym)〉 −
K
∑

j=1

〈θ(xi)xkxjθ(xj)〉





+ η〈xkδi〉+ η2〈δiδk〉 ,

(5)

where the term η〈xkδi〉 in the second equation is the same as the first term
for i and k interchanged. The averages of the form 〈θ(u)vwθ(w)〉 are taken
with respect to the 3D joint Gaussian distribution P (x,Σ), for variable vector
x = (u, v, w)T and covariance matrix Σ = 〈xxT 〉, which is populated with
relevant variances and covariances from Equations (4). Integration yields the
closed form expression:

〈θ(u)vwθ(w)〉ξ =
σ12

√

σ11σ33 − σ2
13

2πσ11

+
σ23 sin

−1

(

σ13√
σ11σ33

)

2π
+

σ23

4
, (6)

where σij denotes the corresponding element of matrix Σ. For general K and
M , the term η2〈δiδk〉 consists of averages of the form 〈wzθ(u)θ(v)θ(w)θ(z)〉ξ .
For now, we only include the η2 term for K = M = 1. For general K and M ,
we study the dynamics for η → 0, neglecting the η2 term. Combining Equation
(6) and (5) gives the closed form macroscopics of the ReLU SCM.

3 Experiments

In this section, we show and discuss for different settings the macroscopic on-
line ReLU dynamics as obtained from the theoretical ODEs from Equation (5).
Theoretical results are compared with simulations for sufficiently large N .

We first consider perceptron learning: M = K = 1. Initial conditions
(R0, Q0) = (0, 0.25) correspond to a random initialization of the student weights
J . For a learning rate η = 0.1, a numerical solution to the ODE system is shown
in Figure 1.

One observes an increase in both R and Q, indicating increasing similarity
of the student to the rule and increasing weight magnitude. The state (R,Q) =
(1, 1) is the perfect solution that corresponds to equality of student and teacher,
i.e., J = B. In fact, (R,Q) = (1, 1) is a fixed point of the system for all
meaningful η. Defining (r, q) = (R − 1, Q − 1), a linearization of the dynamics
is (r′, q′)T = A(η)(r, q)T , where A(η) is the Jacobian in the fixed point. The
eigenvalues of A(η) are given by λ = {−η/2, 1/2η2 − η} with corresponding
eigenvectors u1 = (1/2, 1)T and u2 = (0, 1)T . As λ2 ≥ 0 for η ≥ 2, it follows
that for η < 2 the fixed point is asymptotically stable and we define this critical
learning rate as ηc = 2. Figure 1 (right) shows the evolution of ǫg for several η.
Convergence is slow for η << ηc but also for η ≈ ηc.
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Fig. 1: Left : Evolution of order parameters. R and Q with η = 0.1, R(0) = 0 and
Q(0) = 0.25. Right : Evolution of ǫg for different η. Note the scale of α. Lines
and symbols show theoretical and simulation results, respectively. N = 1000 is
used in the simulations.
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Fig. 2: Left : Evolution of order parameters for the case K = M = 2 and η = 0.1.
Right : Evolution of the generalization error. Symbols show simulation results
for N = 104.

Figure 2 shows dynamics for the ReLU network with K = M = 2. Initial
conditions are Rin = 10−3δin and Q11 = 0.2, Q12 = 0, Q22 = 0.3. The learning
process is characterized by a suboptimal plateau in which Rin ≈ 0.52 for all
i, n, i.e., there is no specialization of students towards specific teachers. The
symmetric plateaus are a property of learning in soft committee machines[1, 2]
and they arise due to a repulsive fixed point of the system. An expression for the
length of the plateau can be found in [11]. From the linearization of the ReLU
dynamics, there is one positive eigenvalue that guides the escape: λ5 = 0.24 with
corresponding eigenvector u5=(0.5,-0.5,-0.5,0.5,0,0,0)T: It causes the observed
specialization of each student towards one teacher. The onset of specialization
is associated with a decrease in generalization error, see Figure 2 (right).

Q11(∞) Q12(∞) Q13(∞) Q22(∞) Q23(∞) Q33(∞)
ReLU 1.00 0.00 0.00 0.24 0.25 0.27
Erf 1.00 0.00 0.00 0.00 0.00 1.00

In Figure 3 and the table above, results for K = 3 and M = 2 are given
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Fig. 3: Evolution of student-teacher overlap parameters for the case K = 3 and
M = 2. Left : ReLU activation. Right : Erf activation. A pair of the same type
of curves shows the correlation of one student unit to each of the two teacher
units. The legends point to the upper curve of the pair.

for ReLU activation (left) and sigmoidal Erf activation (right). For the latter,
closed form equations can be found in [1, 2]. Non-zero initial conditions are
R11 = 10−3, Q11 = 0.2, Q22 = 0.3, Q33 = 0.25. In both cases, J1 specializes
to B1. In the ReLU case, J2 and J3 achieve a similar overlap with B2. From
Q22 ≈ Q33 ≈ Q23 ≈ 0.25 and R22 ≈ R32 ≈ 0.5, it follows that J2 = J3 ‖ B2 i.e.,
J2 ≈ aB2 and J3 ≈ bB2 for a = b = 0.5 and therefore J2 + J3 = B2. Hence,
two units of the ReLU student learn both the same teacher unit apart from a
scaling and there are in fact infinitely many solutions possible for different a and
b, a + b = 1. The observed behavior is a consequence of the piece-wise linear
property of the ReLU. Such combinations are not possible for the non-linear
Erf: In this case, R22 decreases to zero due to Q22(α → ∞) = 0, equivalent to
J2 = 0, effectively removing the unit. In both cases, ǫg(α → ∞) = 0 is achieved,
since the rule is learned perfectly.
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Fig. 4: Overlaps for the ReLU network with K = 2 and M = 3. Left : Evolution
of student-teacher overlaps. Right : Evolution of student-student overlaps.

In Figure 4, results of the ReLU network for K = 2 and M = 3 are shown.
Initial conditions are R11 = 10−3, Rin = 0 for i, j 6= 1, Qii = 0.2 and Qi6=j = 0.



J1 mainly specializes to B1. As R22 = R23 = 0.94, it is mainly the case that
J2 ≈ aB2 + bB3 for a ≈ b. Since the student does not realize the rule, ǫg(α →
∞) > 0.

4 Discussion

We have formulated macroscopic learning dynamics of two-layer neural networks
for ReLU activation. Simulation results for the perceptron and the network with
two hidden units show good correspondence. For the perceptron, the optimal
solution corresponds to a fixed point of the equations which becomes unstable at
a critical learning rate. Sub-optimal plateaus appear in the networks that cor-
respond to fixed points, of which the repulsion causes eventually specialization.
For the overrealizable case, ReLU units are combined to deal with the extra
complexity. The η2 term that we omitted here should be included in future
research to get exact equations for general η. This would also make possible the
study of learning rate adaptation schemes within the framework.
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