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ABSTRACT
We present new dynamical models of dwarf spheroidal galaxies (dSphs) in which both the
stellar component and the dark halo are described by analytic distribution functions that
depend on the action integrals. In their most general form, these distribution functions can
represent axisymmetric and possibly rotating stellar systems. Here, as a first application, we
model the Fornax dSph, limiting ourselves, for simplicity, to the non-rotating, spherical case.
The models are compared with state-of-the-art spectroscopic and photometric observations
of Fornax, exploiting the knowledge of the line-of-sight velocity distribution of the models
and accounting for the foreground contamination from the Milky Way. The model that best
fits the structural and kinematic properties of Fornax has a cored dark halo, with core size
rc � 1.03 kpc. The dark-to-luminous mass ratio is (Mdm/M�)|Re � 9.6 within the effective
radius Re � 0.62 kpc and (Mdm/M�)|3 kpc � 144 within 3 kpc. The stellar velocity distribution
is isotropic almost over the full radial range covered by the spectroscopic data and slightly
radially anisotropic in the outskirts of the stellar distribution. The dark matter annihilation J-
factor and decay D-factor are, respectively, log10(J [GeV2 cm−5]) � 18.34 and log10(D [GeV
cm−2]) � 18.55, for integration angle θ = 0.◦5. This cored halo model of Fornax is preferred,
with high statistical significance, to both models with a Navarro, Frenk, and White dark halo
and simple mass-follows-light models.

Key words: galaxies: dwarf – galaxies: individual: Fornax – galaxies: kinematics and dynam-
ics – galaxies: structure – dark matter.

1 IN T RO D U C T I O N

The dwarf spheroidal galaxies (dSphs) are gas-poor faint stellar
systems with roughly elliptical shape. Due to their very low sur-
face brightness, dSphs are observed only in the local Universe, but
similar galaxies are expected to be ubiquitous in the cosmos. The
nearest and best-known dSphs belong to the Local Group, being
satellites of the Milky Way (hereafter MW) and M31. dSphs are in-
teresting astrophysical targets for several reasons. In the standard �

cold dark matter (�CDM) cosmological model, dwarf galaxies are
the building blocks of more massive galaxies, so the knowledge of
their properties is a fundamental step in understanding galaxy for-
mation. Moreover, there is now much evidence (essentially based
on measures of the stellar line-of-sight velocities; Aaronson 1983;
Battaglia, Helmi & Breddels 2013) that these galaxies are hosted

� E-mail: raffaele.pascale2@unibo.it

in massive and extended dark haloes, which usually dominate the
stellar components even in the central parts. dSphs almost com-
pletely lack emission in bands other than the optical, so they are
natural locations at which to look for high-energy signals from an-
nihilating or decaying dark matter particles (e.g. Evans, Sanders &
Geringer-Sameth 2016). These facts make dSphs ideal laboratories
in which to study dark matter, to understand the processes that drive
galaxy formation, and to test cosmology on the smallest scales,
where there is potential tension between the observational data and
the predictions of the �CDM model (Bullock & Boylan-Kolchin
2017).

The core/cusp problem is a clear example of this controversy:
on the one hand, cosmological dark matter only N-body simula-
tions predict cuspy dark halo density profiles; on the other hand, the
rotation curves of low surface brightness disc and gas-rich dwarf
galaxies favour shallower or cored dark matter density distributions
(de Blok 2010 and references therein). Also for dSphs, for which
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the determination of the dark matter density distribution is more dif-
ficult, there are indications that cored dark matter density profiles
may be favoured with respect to cuspy profiles (Kleyna et al. 2003;
Goerdt et al. 2006, Battaglia et al. 2008; Walker & Peñarrubia 2011;
Salucci et al. 2012; Amorisco, Agnello & Evans 2013; Zhu et al.
2016), though this finding is still debated (Richardson & Fairbairn
2014; Strigari, Frenk & White 2017). It must be stressed, however,
that cored dark haloes in dSphs do not necessarily imply a fail-
ure of �CDM: dark matter only cosmological simulations may not
reliably predict the present-day dark matter distribution in dSphs
because, by definition, they neglect the effects of baryons on the
dark haloes. Even in a galaxy that is everywhere dark matter domi-
nated today, baryons must have been locally dominant in the past to
permit star formation. Therefore, the effect of baryon physics on the
dark halo is expected to be important also in dSphs. For instance,
Nipoti & Binney (2015) showed how, due to the fragmentation of
a disc in cuspy dark halo, dynamical friction may cause the halo
to flatten the original cusp into a core even before the formation of
the first stars (see also El-Zant, Shlosman & Hoffman 2001; Mo &
Mao 2004; Goerdt et al. 2010; Cole, Dehnen & Wilkinson 2011;
Arca-Sedda & Capuzzo-Dolcetta 2017). Moreover, the results of
hydrodynamical simulations suggest that, following star formation,
supernova feedback can also help to flatten the central dark matter
distribution, by expelling the gas (Navarro, Eke & Frenk 1996a;
Read & Gilmore 2005) and thus inducing rapid fluctuations in the
gravitational potential (Mashchenko, Couchman & Wadsley 2006,
Pontzen & Governato 2012, Tollet et al. 2016).

The determination of the dark matter distribution in observed
dSphs relies on the combination of high-quality observational data
and sophisticated dynamical modelling (see Battaglia et al. 2013
for a review). With the advent of the latest generation of spectro-
graphs and thanks to wide-field surveys, today we have relatively
large samples of individual stars in dSphs with measured line-of-
sight velocities, allowing, in principle, for a detailed study of the
dynamics of these nearby dwarf galaxies. To exploit this kind of
information optimally, much effort has gone into developing reli-
able, physical, and self-consistent techniques for modelling galaxies
(Strigari et al. 2008; Walker, Mateo & Olszewski 2009; Amorisco
& Evans 2011, Jardel & Gebhardt 2012; Breddels & Helmi 2013).
However, the process of understanding the properties of the dark
haloes of dSphs is far from complete.

If the effects of the tidal field of the host galaxy (for instance
the MW) are negligible, a dSph can be modelled as a collisionless
equilibrium stellar system, which is completely described in terms
of time-independent distribution functions (hereafter DFs). In this
work, we present a novel mass modelling method for dSphs based on
DFs depending on the action integrals J. The actions are integrals of
motion that can be complemented by canonically conjugate (angle)
variables to form a set of phase-space canonical coordinates. The
action Ji is

Ji = 1

2π

∮
γi

p · dq, (1)

where p and q are any canonical phase-space coordinates and γ i is
a closed path over which the corresponding angle conjugate to Ji

makes a full oscillation. Actions are ideal labels for stellar orbits,
and an action-based DF specifies how the galaxy’s orbits are popu-
lated. Binney (2014) proved that spherical galaxy models based on
f(J) DFs depending on actions can easily be extended to systems
with rotation and flattening. Moreover, actions are adiabatic invari-
ants (i.e. they are unchanged under slow changes in the potential).
This property makes the f (J) models particularly suitable to model

multicomponent galaxies, in which some components may have
grown adiabatically. For instance, during the accumulation of the
baryonic component in a dark halo, the total gravitational potential
changes, and so does the halo’s density distribution. However, if the
halo responds adiabatically, the distribution of its particles in action
space remains unchanged.

Regardless of whether a galaxy is really assembled by adiabatic
addition of components, one can readily assign each component a
likely action-based DF that completely specifies the component’s
mass and angular momentum, and then quickly solve for the gravita-
tional potential that all components jointly generate (Piffl, Penoyre
& Binney 2015). Once that is done, it is easy to compute any observ-
able whatsoever. Thanks to all of these features, dynamical models
relying on action-based DFs have proved successful in modelling
the MW (Binney & Piffl 2015; Piffl et al. 2015; Sanders & Evans
2015; Cole & Binney 2017).

The application of the f(J) models to dSphs is also very promis-
ing, because it exploits the possibility of computing physical models
with known DFs, given large kinematic samples of line-of-sight ve-
locity measures (see Williams & Evans 2015; Jeffreson et al. 2017).
In particular, given that for our models we can compute the line-
of-sight velocity distribution, we can use it to build up a Maximum
Likelihood Estimator (MLE) based on measures of velocities of
individual stars, thus eliminating any kind of information loss due
to binning the kinematic data (Watkins et al. 2013).

As a first application, in this paper we apply f(J) models to
the Fornax dSph, which was the first to be discovered (Shapley
1938). Fornax is located at high Galactic latitude at a distance
of 138 ± 8 kpc (Mateo 1998; Battaglia et al. 2006), and has the
largest body of kinematic data. There are quantitative indications
(Battaglia, Sollima & Nipoti 2015) that the effect of the tidal field
of the MW on the present-day dynamics of Fornax is negligible,
so we are justified in modelling this galaxy as a stationary isolated
stellar system.

This paper is organized as follows: in Section 2, we introduce the
DF that we propose for dSphs and summarize the main characteris-
tics of the models it generates. In Sections 3, models are compared to
observations of dSphs. In Section 4, we present the results obtained
applying our technique to the Fornax dSphs. Section 5 concludes.

2 TWO - C O M P O N E N T f( J) MODELS FOR
DWA R F SP H E RO I DA L G A L A X I E S

We model a dSph as a two-component system with stars and dark
matter.

2.1 Stellar component

The stellar component is described by the DF

f�(J) = M0,�

J 3
0,�

exp

[
−

(
k(J)

J0,�

)α]
, (2)

with

k(J) = Jr + ηφ |Jφ | + ηzJz, (3)

where J = (Jr, Jφ , Jz) comprises Jr, the radial action, Jφ , the az-
imuthal action, and Jz the vertical action, M0, � is a characteristic
mass, J0, � is a characteristic action, and α, ηφ , and ηz are dimen-
sionless, non-negative, parameters. The DF in equation (2) proves
to be expedient in representing dSphs since it generates an almost
exponential cut-off in the density distribution, similar to what is
observed for typical dSphs (Irwin & Hatzidimitriou 1995).
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2.2 Dark matter component

We consider a family of DFs for the dark halo such that, in the
absence of baryons, the dark matter density distribution is very sim-
ilar to an exponentially truncated Navarro, Frenk & White (1996b,
hereafter NFW) profile, with the optional presence of a central core.
Specifically, the dark matter component is described by the DF

fdm(J) = f (J)g(J)T (J), (4)

where

f (J) = M0,dm

J 3
0,dm

[1 + J0,dm/h(J)]5/3

[1 + h(J)/J0,dm]2.9
, (5)

g(J) =
[(

Jc,dm

h(J)

)2

− μ
Jc,dm

h(J)
+ 1

]−5/6

(6)

and

T (J) = exp

[
−

(
h(J)

Jt,dm

)2]
. (7)

Here, M0,dm is a characteristic mass scale and J0,dm is a characteristic
action scale, while h(J) is the homogeneous function of the actions

h(J) = Jr + δh,φ |Jφ | + δh,zJz, (8)

where δh, φ and δh, z are dimensionless, non-negative, parameters
regulating the velocity distribution of the halo. Posti et al. (2015)
introduced the DF (5) to describe NFW-like f(J) models.1 To avoid
the divergence of the dark matter mass for large actions we multiply
the DF by the exponential term (7), in which Jt, dm is a characteristic
action that determines the spatial truncation of the density distri-
bution. Following Cole & Binney (2017), in equation (4) the DF
of Posti et al. (2015) is multiplied by the function g(J) in order to
produce a core in the innermost regions of the dark matter density
distribution. The size of the core is regulated by the characteristic
action Jc, dm. The dimensionless parameter μ is used to make the
integral of the DF (4) independent of Jc, dm: the value of μ is such
that models with different Jc, dm, but with the same values of the
other parameters of the DF (4), have the same total dark matter
mass.

2.3 General properties of the models

The total mass of each component is fully determined by the prop-
erties of its DF and is independent of the presence and properties of
the other component (Binney 2014). The total stellar mass is

Mtot,� = (2π )3
∫

f�(J)d3J, (9)

while the total dark matter mass is

Mtot,dm = (2π )3
∫

fdm(J)d3J. (10)

The stellar and dark matter density distributions are, respectively,

ρ�(x) =
∫

f�(J)d3v (11)

1In Posti et al. (2015), two different homogeneous functions are used in
the numerator and in the denominator of the DF in order to have more
freedom in the anisotropy profile of the model. Here we do not explore the
anisotropy of the halo, so we can adopt a single homogeneous function h as
in equation (5).

and

ρdm(x) =
∫

fdm(J)d3v. (12)

Evaluation of the integrals (11) and (12) involves the evaluation of
the action J as functions of the ordinary phase-space coordinates
(x, v) in the total gravitational potential �tot = �� + �dm, where ��

is the stellar gravitational potential, given by ∇2�� = 4πGρ�, and
�dm is the dark matter gravitational potential, given by ∇2�dm =
4πGρdm. Thus, the problem is non-linear and the density–potential
pairs (ρ�, ��) and (ρdm, �dm) are computed iteratively (see Binney
2014; Posti et al. 2015; Sanders & Binney 2016). Both DFs (2) and
(4) are even in Jφ , so they define non-rotating models. Putting any
component in rotation is straightforward following, for instance, the
procedure described in Binney (2014). For non-rotating models, the
velocity dispersion tensor of the stellar component is

σ 2
i,j ≡

∫
vivjf�(J)d3v

ρ�(x)
, (13)

where vi and vj are the i-th and j-th components of the velocity,
respectively.

The characteristic length and velocity scales of the stellar com-
ponent are, respectively,

r0,� ≡ J 2
0,�

GM0,�

(14)

and

v0,� ≡ GM0,�

J0,�

. (15)

The characteristic length and velocity scales of the dark halo are,
respectively,

r0,dm ≡ J 2
0,dm

GM0,dm
=

(
J0,dm

J0,�

)2
M0,�

M0,dm
r0,� = J̃ 2

0,dm

M̃0,dm
r0,� (16)

and

v0,dm ≡ GM0,dm

J0,dm
= M0,dm

M0,�

J0,�

J0,dm
v0,� = M̃0,dm

J̃0,dm
v0,�, (17)

where M̃0,dm ≡ M0,dm/M0,� and J̃0,dm ≡ J0,dm/J0,�.

2.4 Spherical models

The simplest models belonging to the family described in Sec-
tions 2.1 and 2.2 are those in which both the dark matter and the
stellar components are spherically symmetric (ηφ =ηz in equation 2,
and δh, φ = δh, z, in equation 8). In general, neither component is
spherical if δh, φ �= δh, z or ηφ �= ηz. Here, we focus on the spherical
case and define

η ≡ ηφ = ηz (18)

and

δ ≡ δφ,h = δz,h. (19)

We require the dark matter velocity distribution to be almost
isotropic setting δ = 1 (Posti et al. 2015). With these assumptions,
each of our models depends on the eight parameters

ξ ≡ (α, η, M̃0,dm, J̃0,dm, J̃c,dm, J̃t,dm, M0,�, J0,�), (20)

where J̃c,dm ≡ Jc,dm/J0,dm and J̃t,dm ≡ Jt,dm/J0,dm. Models that
share the dimensionless parameters α, η, M̃0,dm, J̃0,dm, J̃c,dm and

MNRAS 480, 927–946 (2018)
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J̃t,dm are homologous. The physical units are determined by the
dimensional parameters M0, � and J0, �.

The stellar density distribution is characterized by an extended
core and a truncation of adjustable steepness in the outskirts (see
Section 4). For the stellar component, we define the half-mass radius
rh as the radius of the sphere that contains half of the total stellar
mass. The most general spherical f(J) model of Section 2.2 generates
a dark matter density profile characterized by three regimes: a core
where the logarithmic slope of the density profile γ ≡ dln ρdm/dr
∼ 0, an intermediate region where γ ∼ −1 and the outer region
where γ ∼ −3. For each model, we define the core radius rc ≡ r−1/2

(radius at which γ = −1/2), the scale radius rs ≡ r−2 (radius at
which γ = −2, as for the scale radius of the classical NFW model),
and the truncation radius rt ≡ r−3 (radius at which γ = −3).

The eight parameters ξ (equation 20) are quantities appearing
in the DFs (equations 2 and 4) or combinations thereof (see Sec-
tion 2.3). Once a model is computed, it can be also characterized
by the eight parameters

ξ ′ = (α, η, M̃tot,dm, r̃s, r̃c, r̃t, M0,�, J0,�), (21)

where we have replaced M̃0,dm, J̃0,dm, J̃c,dm, and J̃t,dm with M̃tot,dm ≡
Mtot,dm/Mtot,�, r̃s ≡ rs/rh, r̃c ≡ rc/rh, r̃t ≡ rt/rh, which have a more
straightforward physical interpretation. In the following, we briefly
comment on the six dimensionless parameters α, η, M̃tot,dm, r̃s, r̃c,
and r̃t.

(i) α: this mainly regulates the shape of the density profile of the
stellar component. We find empirically that for higher values of α

the core is flatter and the outer profile is steeper. This is expected
because for higher values of α the DF (2) is more rapidly truncated
for large actions.

(ii) η: this mainly regulates the velocity anisotropy of the stellar
component. We find empirically that higher values of η generate
more radially biased models. This is expected because orbits with
large |Jφ | or Jz are penalized for large values of η (see equations 2
and 3; we recall that for spherical models ηφ = ηz = η).

(iii) M̃tot,dm: this is the ratio between the total dark matter mass
Mtot, dm and the total mass of the stellar component Mtot, �. Both
Mtot, dm and Mtot, � are well defined because the integrals in equa-
tions (9) and (10) converge. Since the DFs (2) and (4) depend on
homogeneous functions of the actions, for spherical models the to-
tal masses are given by the one-dimensional integrals (Posti et al.
2015)

Mtot,dm

M0,dm
= (2π )3

δ2

∫ ∞

0
h2fdm(h)dh (22)

for the dark halo, and

Mtot,�

M0,�

= (2π )3

η2

∫ ∞

0
h2f�(h)dh (23)

for the stellar component (for details, see Appendix A). Given that
M̃tot,dm = Mtot,dm/Mtot,�, equations (22) and (23) can be combined
to give

M̃tot,dm = M̃0,dm
η2

δ2

∫ ∞
0 h2fdm(h)dh∫ ∞
0 h2f�(h)dh

. (24)

The dark matter to stellar mass ratio can be fixed by adjusting M̃0,dm

and μ, the normalization parameter appearing in the definition of
fdm (see equations 4 and 6).

(iv) r̃s: this is the ratio between the scale radius of the halo rs and
the half-mass radius of the stellar component rh. For sufficiently
large r̃s, the dark matter density profile is essentially a power law in

the region populated by stars. This property makes the characteristic
scale radius rs and the normalization of the dark matter component
degenerate: provided r̃s � 1, dark matter density profiles with dif-
ferent values of rs affect the stellar component in the same way, if
properly scaled. Differently from M̃tot,dm, r̃s cannot be fixed a priori
since it depends on the total gravitational potential �tot. However,
a model with a predefined value of r̃s can be obtained iteratively.

(v) r̃c: this is the ratio between the core radius of the dark matter
component rc and the half-mass radius of the stellar component rh.
r̃c cannot be fixed a priori because it depends on �tot. However, for
the two-component models here considered, we find empirically
that r̃c can anyway be fixed with reasonable precision by fixing
J̃c,dm.

(vi) r̃t: this is the ratio between the truncation radius of the halo
rt and the half-mass radius of the stellar component rh. r̃t depends
on �tot, so it cannot be fixed a priori. In general, models with the
same value of truncation action J̃t,dm do not have the same value of
r̃t.

3 STATI STI CAL ANALYSI S

3.1 Comparison with data

When applying the spherical models presented in Section 2.4 to
an observed dSph galaxy, the best model (i.e. the best set of eight
parameters ξ ) is determined through a comparison with a set of
observables. The dSph may be elliptical on the sky while our model
will be spherical, so we assign each star a circularized radius

R ≡
√

x2(1 − ε) + y2

(1 − ε)
, (25)

where ε ≡ 1 − b/a, with b and a the lengths of the semiminor and
semimajor axes, is the ellipticity of the galaxy’s image on the sky
and (x, y) are the star’s Cartesian coordinates in the reference frame
aligned with the image’s principal axes.

We assume the data comprises a photometric sample, used to
compute the projected stellar number density nobs

� , and a kinematic
sample with measurements of the line-of-sight velocities vlos of
individual stars. We refer to the observed number density as a set
of Nn observed values {Ri, n

obs
�,i }, with i = 1, ..., Nn, and to the

line-of-sight velocities as Nv measures {Rk, vlos, k}, with k = 1, ...,
Nv . For each model, we compute the stellar surface number density
distribution

n�(x⊥) = Ntot,�

Mtot,�

∫
ρ�(x)dx||, (26)

where Ntot, � is the total number of stars of the photometric sample,
and the model line-of-sight velocity distribution (hereafter LOSVD)

L�(x⊥, v||) =
∫

f�[J(x, v)]dx||dv⊥
ρ�(x⊥)

. (27)

Here, x|| ≡ x · ŝ and x⊥ = x − x||ŝ are, respectively, the parallel and
orthogonal components of the position vector with respect to the
line-of-sight (unit) vector ŝ, and v|| is the velocity component along
ŝ. For spherical models, n� and L� depend on x⊥ only through the
scalar projected distance from the centre on the plane of sky R ≡
||x⊥||.

We compare models to data with a maximum-likelihood method.
The log-likelihood of a model is defined as

lnL = lnLn + lnLv, (28)

MNRAS 480, 927–946 (2018)
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with

lnLn = −1

2

Nn∑
i=1

(
nobs

�,i − n�(Ri)

δni

)2

, (29)

where δni are the uncertainties of the stellar number density mea-
surements, and

lnLv =
Nv∑
k=1

ln(pv,k). (30)

In the above equation

pv,k ≡
∫ +∞

−∞
Ltot(Rk, v||)Gk(v|| − vlos,k)dv|| (31)

is the convolution of the total LOSVD Ltot and a Gaussian dis-
tribution Gk with null mean and standard deviation equal to the
uncertainty on the line-of-sight velocity of the k-th star. The total
LOSVD

Ltot ≡ (1 − ωk)L� + ωkLf,k (32)

accounts for the fact that the kinematic sample of stars may be
contaminated by field stars:

Lf,k ≡ Lf (vlos,k) (33)

is the LOSVD Lf of field stars evaluated at vlos, k and

ωk ≡ nf

nobs
� (Rk) + nf

(34)

weights the relative contribution between dSph and contaminants.
nf is the mean projected number density of field stars, which is taken
to be constant throughout the extent of the galaxy, while nobs

� (Rk) is
the observed projected number density profile evaluated at Rk.

3.2 Models and families of models

In the terminology used in this work, we distinguish the terms
model and family of models. We refer to a class of spherical systems
with the same values of the six dimensionless parameters (α, η,
M̃0,dm, J̃0,dm, J̃c,dm, J̃t,dm) as a model. Each model maps a two-
dimensional subspace (J0, �, M0, �) of homogeneous systems. When
a model is compared with observations, we find the values of J0, �

and M0, � that maximize L (equation 28) and, with a slight abuse of
the terminology, we define its likelihood as this maximum value of
L.

We will refer to a set of models sharing some properties (i.e.
values of some parameters) as a family of models. For instance,
we will define the family of one-component (or mass-follows-light,
MFL) models as the set of all models with M0,dm = 0. Each family
of models has j free parameters, which we indicate with the j-
dimensional vector ξ j . For instance, for spherical MFL models j
= 4 and ξ 4 = (α, η, J0, �, M0, �). The best model of a family is the
model with the maximum likelihood among all those belonging to
that family.

For each family, we explore the parameter space using as stochas-
tic search method a Markov-Chain Monte Carlo (MCMC) algorithm
based on a Metropolis–Hastings sampler (Metropolis et al. 1953;
Hastings 1970) to sample from the posterior distribution using un-
informative priors on the parameters. In each case, we find that the
MCMC allows us to finely sample the relevant region of the pa-
rameter space, including the best model and all the models within
1σ . For a given family, the mσ confidence levels (m = 1, 2, 3...)
on any quantity (and thus the uncertainty bands in the plots) are

Table 1. Values of the delta log-likelihood � lnLj,m (equation 35) corre-
sponding to mσ confidence levels. j is the number of free parameters of a
family of models.

� lnLj,m j = 1 j = 2 j = 3 j = 4 j = 5 j = 6

m = 1 0.50 1.15 1.77 2.36 2.95 3.52
m = 2 2.00 4.01 4.85 4.85 5.65 6.40
m = 3 3.00 5.90 7.10 8.15 9.10 10.05

constructed by selecting in the parameter space ξ j all models with
likelihood such that

lnLmax − lnL(ξ j ) < � lnLj,m, (35)

where lnLmax is the log-likelihood of the best model of the family
and � lnLj,m is a threshold value of � lnL depending on j and m.
Reference values of � lnLj,m, relevant to the cases considered in
this work, are given in Table1.

To estimate the relative goodness of different families of models,
with possibly different numbers of free parameters, we use the
Akaike Information Criterion (AIC; Akaike 1998). Given Lmax, the
maximum likelihood of a family with j free parameters, we define
the quantity

AIC = 2j − 2 lnLmax (36)

as a measure of the goodness of the best model of the family,
which takes into account the number of free parameters. Among all
families, the best model is the one with the minimum value of AIC
(AICbest) and

P ≡ exp[(AICbest − AIC)/2] = exp(jbest − j )
Lmax

Lmax,best
(37)

is the probability that the best model of another family represents
the data as well as the best model of all models (here, jbest and
Lmax,best are, respectively, the number of free parameters and the
likelihood of the best of all models).

4 A PPLI CATI ON TO FORNA X

4.1 Data set

Our photometric sample is taken from Battaglia et al. (2006), who,
using deep ESO/WIFI observations, studied the spatial distribution
of the stars of Fornax and derived its main structural parameters.
Adopting a distance d = 138 kpc (Battaglia et al. 2006), the pro-
jected stellar number density profile extends out to 3.33 kpc and it
is composed of Nn = 27 concentric elliptical shells of semimajor
axis length Ri, ell of equal thickness, so Ri+1,ell − Ri,ell = 0.12 kpc
for all i. The shells have ellipticity ε = 0.3 (Battaglia et al. 2006).
We use the observed projected stellar number density profile as a
function of the circularized radius Ri ≡ Ri,ell

√
1 − ε with i = 1, ...,

Nn. The circularized projected half-light radius is Re = 0.62 kpc.
Our reference kinematic sample of Fornax’s stars is taken from

Battaglia et al. (2006) and Walker et al. (2009). This joined sample
has already been used by Breddels & Helmi (2013), who corrected
the line-of-sight velocities for the systemic velocity of Fornax vsys

and for the gradient due to the extent of Fornax on the sky (for
details see Table 2 and Breddels & Helmi 2013). We apply the
same corrections here. The samples have been cross-matched with
an astrometric precision of 1 arcsec and, for each duplicate (i.e.
stars with two measured velocities), being δv1 and δv2 the different
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932 R. Pascale et al.

Table 2. Values of the main observational parameters of Fornax used in
this work: right ascension (RA), declination (Dec.), Position Angle (PA),
ellipticity (ε), distance from the sun (d), projected half-light radius (Re),
number of bins of the projected stellar number density profile (Nn), mean
projected number density of the field stars (nf), systemic heliocentric velocity
(vsys), and number of members of the kinematic sample (Nv). References:
(1) Battaglia et al. (2006), (2) Breddels & Helmi (2013), (3) this work.

Parameter Value Reference

RA 2h 39m 52s 1
Dec. −34◦ 30

′
49′′ 1

PA 46.◦8 ± 1.◦6 1
ε 0.30 ± 0.01 1
d (kpc) 138 1
Re (kpc) 0.62 1
Nn 27 1
nf (stars arcmin−2) 0.263 1
vsys ( km s−1) 55.1 2
Nv 2990 3

velocity errors of the cross-matched stars, we compute the average
error

δv =
√

δv2
1 + δv2

2

2
. (38)

If the difference between the two velocities is larger than 3δv, we
exclude the star from both samples since we consider the difference
to be caused by an unresolved binary. Otherwise, we use the mean
of the two velocities. From the 945 stars of the Battaglia et al. (2006)
sample and the 2633 of the Walker et al. (2009) sample, we find
488 cross-matched stars, 100 of which (≈20 per cent) we classify
binaries and thus exclude. In this way, the final kinematic sample
consists of 2990 stars, each of which characterized by its line-of-
sight velocity vlos, k and its circularized radius Rk (equation 25).

Of course, our kinematic sample is still contaminated by unde-
tected binaries. For instance, we expect to have in our sample about
600 undetected binaries (≈20 per cent of the non cross-matched
stars) with properties similar to those excluded from the cross-
matched sample. Therefore, we must quantify the effect of binary
contamination on the LOSVD of our spectroscopic sample of For-
nax. The contamination from undetected binaries is problematic
when the characteristic velocity of short-period binaries is compa-
rable with the line-of-sight velocity dispersion. Minor et al. (2010)
found that for dwarfs with mean line-of-sight velocity dispersion in
the range 4 � σ los/km s−1� 10 the velocity dispersion profile may
be inflated by no more than 15 per cent by undetected binaries, so
binaries should have a negligible effect on Fornax, which has σ los

� 12 km s−1.
In principle, though negligibly affecting σ los, the binaries could

have an impact on the observed LOSVD. We tried to quantify this
effect as follows: we built two kinematic samples, one containing
all the cross-matched stars (488 stars; sample A) and one containing
only stars not classified as binaries according to the above criterion
(388 stars; sample B). For these two samples, we computed the
LOSVD in two radial bins (R < 0.72 kpc and R > 0.72 kpc), such
that each bin contains 244 stars in the case of sample A. According
to the Kolmogorov–Smirnov test, in both radial bins the probability
that the LOSVDs of samples A and B differ is less than 4 per cent.
This result indicates that the LOSVDs used in our analysis should
not be biased by the presence of undetected binaries.

The fields of view in the direction of Fornax suffer from signifi-
cant Galactic contamination: the mean velocity of MW stars in these

fields is approximately the same as the systemic velocity of Fornax,
which complicates the selection of a reliable sample of members.
From Fig. 1(b), showing the position-velocity diagram of our kine-
matic sample, and from Fig. 1(a), showing the velocity distribution
of the MW calculated from the Besançon model (Robin et al. 2004)
with a selection in magnitude comparable to the one of our kine-
matic sample (18 � V � 20.5, with V apparent V-band magnitude),
we see that the LOSVDs of Fornax and MW stars overlap (see also
Fig. 1c).

As explained in Section 3.1, we take into account contamination
by the MW by adding to our models a component describing the
LOSVD of MW stars in the direction of Fornax. The MW veloc-
ity distribution extracted from the Besançon model is fitted with
a two-Gaussian distribution (Fig. 1a) which reflects the separate
contributions of disc and halo stars. We assume a mean MW sur-
face density nf = 0.263 stars arcmin−2, obtained from the Besançon
model, applying the same selection in the V-band apparent magni-
tude as in the kinematic sample (18 � V � 20.5). A summary of the
main observational parameters of Fornax used in this work is given
in Table 2.

4.2 Results

Here, we present the results we obtained applying the f (J) mod-
els of Section 2 to the Fornax dSph. In particular, we focus on
two-component spherical models, in which the stars and the dark
matter have different DFs. In Section 4.2.3, we will consider also
simpler one-component spherical models, in which mass follows
light. The physical properties of the models are computed by in-
tegrating equations (11), (12), (13), (26), and (27), using a code
based on AGAMA (Action-based Galaxy Models Architecture, https:
//github.com/GalacticDynamics-Oxford/Agama; Vasiliev 2018), a
software package that implements the action-angle formalism of
f(J) DFs. To test the performances of our method, in Appendix
B we applied f(J) models to a mock galaxy with structural and
kinematic properties similar to a typical dSph.

In the two-component models of Fornax, we adopt four families
of dark haloes: a family with a cuspy NFW-like halo and three
halo families with central cores. Outside the core region, these fall
off similarly to an NFW profile. For clarity, in the following we
will refer to the cuspy NFW family as FnxNFW, and to the cored
families as FnxCoren, with n = 1, 2, 3, where higher n indicate
larger cores in the dark halo. The NFW halo is obtained setting
J̃c,dm = 0 in equation (6), while increasing values of J̃c,dm produce
cores of increasing sizes. The families FnxCore1, FnxCore2, and
FnxCore3 have, respectively, r̃c � 0.43, 1.08, 1.28, corresponding
to physical core radii rc � 0.34, 0.87, 1.03 kpc (see Section 2.4). We
recall that the circularized projected half-light radius of Fornax is Re

= 0.62 kpc (Section 4, Table 2). Based on observational estimates
of the total stellar mass of Fornax (de Boer et al. 2012), we consider
only two-component models such that 107 ≤ Mtot, �/M� ≤ 108.
We recall that the model Mtot, � depends only on α, η, and M0, �.
Therefore, the above limits on Mtot, � are in practice limits on M0, �,
for given α and η. We fixed the ratio between the scale radius of the
dark halo and the half-mass radius of the stellar component to r̃s = 4,
consistent with the values expected on the basis of the stellar-to-halo
mass relation and the halo mass–concentration relation, for galaxies
with stellar masses 107 ≤ Mtot, �/M� ≤ 108 (see Section 4.2.4). We
find that spherical models of Fornax have intrinsic stellar half-
mass radius rh � 0.81 kpc. It follows that our models have rs =
r̃srh � 3.3 kpc. Under these assumptions, each family has five free
parameters (α, η, M̃tot,dm, J0, �, M0, �). Tables 3 lists the values of
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Action-based dynamical models of dwarf spheroidal galaxies: application to Fornax 933

Figure 1. Panel (a): The MW’s LOSVD in the direction of Fornax calculated from the Besançon model (histogram) and the best-fitting two-Gaussian
distribution (black line). The LOSVD of the Besançon model has been shifted by vsys , the systemic velocity of Fornax. Panel (b): position-velocity diagram
of the whole kinematic sample used in this work (Fornax + MW; data taken from Battaglia et al. 2006 and Walker et al. 2009; see the text). Panel (c): Fornax
+ MW observed LOSVD superimposed to the best-fitting two-Gaussian distribution of panel (a). The observed total LOSVD (Fornax + MW) of panel (c) is
normalized to the total number of stars (Fornax + MW) expected from the Battaglia et al. (2006) photometric sample, while the MW model of panels (a) and
(c) is normalized to the total number of the field stars expected in the very same region according to the Besançon model. Note the different scales of the x-axis
of panels (a) and (c).

Table 3. Input parameters of the best Fornax models of each family. α and η: parameters of the stellar DF (2). M̃0,dm ≡ M0,dm/M0,�. J̃0,dm ≡ J0,dm/J0,�.
J̃c,dm ≡ Jc,dm/J0,dm. J̃t,dm ≡ Jt,dm/J0,dm. J0, � and M0, �: respectively, action and mass scales (equation 2). M0,dm, J0,dm, Jc, dm, and Jt, dm are the parameters
of the dark matter DF (equations 4–7). The best model is the FnxCore3.

Family α η M̃0,dm J̃0,dm J̃c,dm J̃t,dm

J0, � (km s−1

kpc) M0, � (M�)

FnxMFL 1.52+0.03
−0.04 0.49+0.02

−0.03 0 – – – 6.87+0.28
−0.44 7.70+0.76

−1.09 × 107

FnxNFW 1.39+0.02
−0.03 0.38+0.02

−0.02 2.26+0.44
−0.41 ×
102

76.49+4.21
−3.85 – 6 5.00+0.35

−0.28 1.70+0.37
−0.27 × 107

FnxCore1 0.84+0.02
−0.02 0.49+0.03

−0.03 1.56+0.28
−0.39 ×
104

196.58+15.43
−21.02 0.02 6 2.19+0.27

−0.16 5.52+1.81
−0.87 × 105

FnxCore2 0.65+0.02
−0.02 0.56+0.04

−0.03 6.23+2.11
−2.14 ×
104

290.18+39.68
−40.34 0.20 6 0.98+0.16

−0.12 1.46+0.73
−0.38 × 105

FnxCore3
(Best Model)

0.62+0.02
−0.01 0.56+0.04

−0.02 5.87+0.93
−2.22 ×
104

177.08+15.80
−29.59 0.67 6 0.84+0.17

−0.07 1.06+0.68
−0.10 × 105

the five parameters for the best model of each family, together with
J̃0,dm (fixed by the condition r̃s = 4), J̃c,dm (fixed for each family),
and J̃t,dm = 6 for all families. The choice of J̃t,dm = 6 ensures, for
all the families, that the truncation radius of the dark halo r̃t is much
larger than the scale radius r̃s. Table 4 gives some output parameters
of the best Fornax model of each family.

4.2.1 Properties of the best model

According to our MLE (Section 3), the best model belongs to the
FnxCore3 family, with the most extended core in the dark matter
density profile (rc � 1.03 kpc). In general, we find that a model in
any cored families is strongly preferred to an NFW halo: the AICs

(see Table 4) indicate that the introduction of even a small core in
the dark matter profile vastly improves the fit to the Fornax data.

Fig. 2(b) plots the projected stellar number density profile of the
best model compared to the observed profile. The residuals between
data and model are shown in Fig. 2(a). Fig. 2(c) shows the line-of-
sight velocity dispersion profile of the best model compared to
the observed radially binned profile. We followed Pryor & Meylan
(1993) to compute the observed line-of-sight velocity dispersion
profile, grouping the kinematic sample in 12 different radial bins,
each containing 250 stars, except for the last bin which has 140 stars.
In the calculation of the observed line-of-sight velocity profile, we
accounted for contamination by field stars as in equation (32), using
the same MW Besançon model as in Section 4.1. The projected
stellar number density profile is extremely well reproduced by our
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Table 4. Output parameters of the best Fornax models of each family. r̃c: ratio between the core radius of the dark matter and the half-mass radius of the stellar
component. M̃tot,dm ≡ Mtot,dm/Mtot,�. Mtot, �: stellar total mass. (Mdm/M�)|3kpc: dark matter to stellar mass ratio within 3 kpc. β|1 kpc: anisotropy parameter
(equation 39) measured at 1 kpc. lnLmax: log-likelihood (equation 28). AIC: value of the Akaike Information Criterion (equation 36). �AIC: difference
between the AIC of the best model of a family and the best of all models (FnxCore3). P: probability that a model represents the data as well as the best in any
family (FnxCore3). All models have r̃s = 4 and rh � 0.81 kpc.

Family r̃c M̃tot,dm Mtot, � (M�) (Mdm/M�)|3kpc β|1 kpc lnLmax AIC �AIC P

FnxMFL – – 2.06+0.13
−0.12 ×
108

– −0.32+0.13
−0.16 −12605.88 25219.76 185.74 4.65 × 10−41

FnxNFW – 63+14
−6 9.23+0.77

−2.85 ×
107

2.6+2.3
−0.8 −0.73+0.23

−0.29 −12582.16 25174.32 140.3 3.4 × 10−31

FnxCore1 0.425+0.001
−0.012 1301+7

−164 1.00+0.73
−0.00 ×
107

73+1
−33 −0.17+0.15

−0.14 −12530.26 25070.52 36.5 1.2 × 10−8

FnxCore2 1.075+0.001
−0.053 1344+38

−280 1.03+1.37
−0.03 ×
107

125+5
−76 0.07+0.12

−0.13 −12512.66 25035.32 1.3 0.52

FnxCore3
(Best Model)

1.272+0.001
−0.035 946+1

−213 1.00+1.34
−0.00 ×
107

144+2
−87 0.08+0.14

−0.12 −12512.01 25034.02 0 1

Figure 2. Panel (a): residuals � = (nobs
� − n�)/n� between the best model

(FnxCore3) and the observed projected stellar number density profiles
(dashed curve). Panel (b): projected number density profile of the best model
(dashed line) compared with the observed profile (points with error bars).
Panel (c): line-of-sight velocity dispersion profile of the best model com-
pared with the observed profile (points with error bars). Bands show the 1σ

uncertainty (see Section3.2). Note that the x-axis is logarithmic in panel (b)
and linear in panel (c).

best model. A measure of the goodness of the fit to the projected
surface density is given by the term lnLn of equation (28): for the
best model lnLn � −30. For comparison, for the best-fitting Sersic
(1968) profile of Fornax (Battaglia et al. 2006), lnLn � −62.79.
Even accounting for the different numbers of free parameters as in
equation (36), our model gives a better description of the projected
number density than the Sérsic fit. This feature shows that our stellar
DF is extremely flexible and well suited to describe the structural
properties of dSphs. Our best model has a line-of-sight velocity
dispersion profile slightly increasing with radius, which provides a
good description of the observed profile. However, we recall that in
the determination of the best model we do not consider the binned
line-of-sight velocity dispersion profile, but compare individual star
data with model LOSVDs, so to fully exploit the available data.

Fig. 3 plots the stellar and dark matter density distributions, the
stellar and dark matter mass profiles, and the stellar anisotropy
parameter profile of the best FnxCore3 model. The anisotropy pa-
rameter is

β = 1 − σ 2
t

2σ 2
r

, (39)

where σ r and σ t are, respectively, the radial and tangential com-
ponents of the velocity dispersion (σ 2

t = σ 2
θ + σ 2

φ , where σ θ and
σφ are angular components of the velocity dispersion in spherical
coordinates; equation 13). Models are isotropic when β = 0, tan-
gentially biased when β < 0 and radially biased when 0 < β ≤ 1.
The best model predicts Fornax to have slightly radially anisotropic
velocity distribution: for instance, at r = 1 kpc the anisotropy pa-
rameter is β|1 kpc = 0.08+0.14

−0.12 (see Fig. 3c). In our best model, the
dark matter dominates the stellar component at all radii. The dark
matter to stellar mass ratio is (Mdm/M�)|Re = 9.6+0.6

−5.7 within Re and
(Mdm/M�)|3kpc = 144+2

−87 within 3 kpc. The best model has a total
stellar mass Mtot,� = 107 M�, which is the lower limit imposed to
the stellar mass on the basis of observational estimates (see Sec-
tion 4.2).

Fig. 4 compares the observed LOSVD with the LOSVD of the
best model. For this figure, the observed LOSVD was computed in
the same radial bins as the line-of-sight velocity dispersion profile
of Fig. 2(c), while the model LOSVD is evaluated at the average
radius of each bin: for clarity, we show only 6 of the 12 radial bins,
covering the whole radial extent of the kinematic sample. The best
model has a sharply peaked LOSVD, indicative of radially biased
velocity distribution, consistent with the observed LOSVD. The
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Action-based dynamical models of dwarf spheroidal galaxies: application to Fornax 935

Figure 3. Panel (a): stellar (dash–dotted line) and dark matter (dashed line)
density profiles of the best model (FnxCore3) of Fornax. Panel (b): stellar
(dash–dotted line) and dark matter (dashed line) mass profiles of the best
model of Fornax. Panel (c): stellar anisotropy parameter profile (dashed line)
of the best model of Fornax. In panels (a) and (b), the vertical lines mark
the range of the halo core radius rs. The bands indicate the 1σ uncertainty
(see Section 3.2).

contamination from MW field stars grows with distance from the
galaxy’s centre and is clearly visible in the outermost bin. The shape
of the LOSVD can be quantified by the kurtosis

y(R) ≡
∫ +∞

−∞ L�(R, v||)(v|| − v̄)4dv||[∫ ∞
−∞ L�(R, v||)(v|| − v̄)2dv||

]2 , (40)

which is the fourth centred moment of the LOSVD. The bottom
panel of Fig. 4 plots the kurtosis of the LOSVD of the best model
as a function of the distance from the centre. The best model has
a kurtosis which is constantly greater than y = 3 (the kurtosis of a
Gaussian distribution), which is a signature of peaked LOSVD and
radial bias.

As it is well known, dSphs are good candidates for indirect detec-
tion of dark matter particles. The γ -ray flux due to dark matter anni-
hilation and decay depend on the dark matter distribution through,
respectively, the so-called J- and D-factors. For sufficiently dis-
tant, spherically symmetric targets, it can be shown that the J-factor

reduces to the integral

J (θ ) = 2π

d2

∫ +∞

−∞
dz

∫ θd

0
ρ2

dmRdR, (41)

while the D-factor to

D(θ ) = 2π

d2

∫ +∞

−∞
dz

∫ θd

0
ρdmRdR, (42)

where θ = R/d is the angular distance from the centre of the galaxy,
z is the line of sight and d is the distance of the galaxy (Table 2).
Fig. 5 plots the J-factor (panel a) and D-factor (panel b) as functions
of the angular distance θ computed for our best model of Fornax.
We measure at an angular distance θ = 0.◦5 (corresponding approx-
imately to the angular resolution of the Fermi-LAT telescope in the
GeV range)

log10(J [GeV2cm−5]) = 18.34+0.06
−0.09 (43)

and

log10(D [GeV cm−2]) = 18.55+0.03
−0.05, (44)

consistent with Evans et al. (2016).

4.2.2 Performances of other families of two-component models

Here, we compare the best model of Section 4.2.1 with other families
of two-component models of Fornax. The projected number density
profiles of the best models of the FnxNFW, FnxCore1, FnxCore2
families and the observed Fornax surface density profile, and the
residuals between models and data are plotted in Figs 6(b) and
6(a). Fig. 6(c) shows the comparison with the line-of-sight velocity
dispersion profiles. The projected number density profile is also well
described by the other families, which have −40 � lnLn � −25,
substantially better than the best-fitting Sérsic model. Among our
models, those with cored halo reproduce well the flat behaviour of
the line-of-sight velocity dispersion profile, while the best FnxNFW
predicts a slightly decreasing profile, which poorly represents the
available data.

Fig. 7 shows the observed LOSVD compared to the model
LOSVDs. The observed LOSVD is computed in the same radial
bins as in Fig. 4. The LOSVD of FnxNFW is systematically more
flat-topped than that observed or the LOSVDs of cored models,
and, in the outermost bin, it has a double-peaked shape, indicative
of tangential bias. In contrast, the more extended the core of a dark-
matter density distribution, the more sharp-peaked the LOSVD is,
and the more satisfying a description of the observed LOSVD it pro-
vides (Fig. 7). A quantitative measure of the shapes of a LOSVD
is the kurtosis, which is plotted as a function of radius in Fig. 8.
The best model of the FnxNFW family has a kurtosis which is ev-
erywhere much less than y = 3, while the cored families with the
most extended cores have y > 3. In other words, a model with NFW
halo cannot reproduce at same time the flat line-of-sight velocity
dispersion profile and the peaked LOSVD observed in Fornax.

Figs 9(a) and 9(b) plot the stellar and dark matter density and
mass profiles, respectively. The best models of all families with
cored haloes have a total stellar mass of 107 M�, while the best
NFW model has a total stellar mass of 9.23+0.77

−2.85 × 107 M�. Stars
never dominate over the dark matter in the case of cored haloes,
where (Mdm/M�)|Re = 13.4+0.1

−5.8 and 9.7+0.4
−5.7, respectively, for the

FnxCore1 and FnxCore2 cases, whereas they do in the cuspy halo
one, where (Mdm/M�)|Re = 1.12+0.86

−0.32. We also find a slight trend of
the core size to be larger when the dynamical-to-stellar mass ratios
are smaller.
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936 R. Pascale et al.

Figure 4. Observed Fornax + MW LOSVD (histograms) compared with the LOSVD of the best model (FnxCore3). In each panel, R indicates the average
radius of the radial bin where the LOSVD of the best model is computed. The radial bins are those used to construct the observed line-of-sight velocity
dispersion profile of Fornax (Fig. 2). The green solid curve marks the MW’s contribution. The bottom panel shows the kurtosis profile of the best model’s
LOSVD. The bands mark the 1σ uncertainty (see Section 3.2).

Fig. 9(c) plots the profile of the stellar anisotropy parameter for
the best model in each family. It shows that the anisotropy varies
with the size of the core: the more extended the core, the more radi-
ally biased the galaxy. Indeed, the NFW halo requires a highly tan-
gentially biased system (β|1 kpc = −0.73+0.23

−0.29), the FnxCore1 model
requires isotropic to slightly tangential bias, while the best model,
with the most extended core, has a preference for radial orbits (Figs
4, 7, and 8, Table 4).

By comparing the AICs (Table 4), we note that, while the best
FnxCore2 model is comparable to the best of all models (Fnx-
Core3), with probability P = 0.52 (equation 37), the FnxCore3
model is significantly preferable to both a model with an NFW dark
halo and a model with a small core in the dark matter density dis-
tribution. For the FnxNFW, �AIC=140.3, while for the FnxCore1
�AIC=36.5, values that translate in extremely small probabilities
P (P � 3.4 × 10−31 and P � 10−8, respectively). We pointed out
that different families are almost equivalent in describing the pro-
jected number density profile, so we can safely state that most of the
differences that allow us to discriminate between cored and cuspy
models are attributable to our kinematic analysis, which minimizes
any loss of information (e.g. self-consistent LOSVD, no binning).

The best Fornax model belongs to the family with the largest core
among those considered so far, so it is worth asking if the data allow
us to put an upper limit on the dark matter core radius r̃c. To do
that, we run two additional experiments, considering families with
core radii, respectively, r̃c � 2.4 (rc � 1.94 kpc) and r̃c � 4.8 (rc �
3.89 kpc). We find that these families have, respectively, lnLmax =
−12513.4 and lnLmax = −12514.8, and probabilities (equation 37)
P = 0.25 and P = 0.06, relative to the best of all models (rc �
1.03 kpc). The results of these experiment suggest that the core of
Fornax dark halo is smaller than the truncation radius (≈ 2 kpc; see
Section 4.2.4) of the stellar distribution.

4.2.3 Performance of one-component models

Given that in the best two-component model (FnxCore3) the central
slopes of the stellar and dark matter distributions are similar (Fig.
3), it is worth exploring also a simpler one-component family of f(J)
models. In particular, here we consider the case in which the only
component has the DF given by equation (2). This family of models
can be interpreted as describing a system without dark matter, but
also as mass-follows-light (MFL) models, in which dark matter and
stars have the same distribution. We will refer to this family of
models as FnxMFL. Since in this case M0,dm = 0, this family has
four free parameters (α, η, J0, �, M0, �; equation 2). In Table 3, we
report the parameters corresponding to the best FnxMFL model. The
right column of Fig. 6 plots the projected number density profile
and the line-of-sight velocity profile of the best FnxMFL model.
The projected number density profile is well reproduced also by
the MFL models, for which lnLn � −40, still much better than
a Sérsic fit, while the line-of-sight velocity dispersion profile is
clearly far from giving a good description of the observed profile.
Fornax MFL models are rejected with high significance: we find
�AIC=185.74, the largest �AIC among our models, consequently,
with a probability P � 10−41.

In Fig. 7, the LOSVD of the FnxMFL model is compared with
the LOSVD of the two-component models. MFL models tend to
underestimate the observed LOSVD in the innermost regions (top
three panels) and to overestimate it in the outermost regions (bottom
three panels).

The rightmost column of Fig. 9 plots in panels (a), (b), and
(c), respectively, the density, mass, and anisotropy parameter pro-
file predicted by the best FnxMFL model, which has total mass
Mtot,� = 2.06+0.13

−0.12 × 108 M�. Under the assumption that the dark
halo follows the density distribution of the stellar component,
this value is an indication of the dynamical (stellar plus dark-
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Figure 5. Panel (a): dark matter annihilation J-factor (equation 41) of the
best model of Fornax (FnxCore3, dashed line) as function of the angular
distance from the centre. Panel (b): same as panel (a), but for the dark
matter decay D-factor (equation 42). Bands mark the 1σ uncertainty (see
Section 3.2).

matter) mass. The FnxMFL model is tangentially anisotropic with
β|1 kpc = −0.32+0.13

−0.16. The main parameters of this model are sum-
marized in Tables 3 and 4.

4.2.4 Insensitivity to the halo scale radius

All the two-component models considered above have the scale
radius of the dark halo fixed to r̃s = 4. In this section, we relax
this assumption and let r̃s vary. Of course we are interested only
in exploring cosmologically motivated values of r̃s, which can be
evaluated as follows. According to current estimates of the low-mass
end of the stellar-to-halo mass relation (Read et al. 2017), galaxies
with stellar mass Mtot, � = 107–108 M� (such as Fornax) have virial
mass 4.5 × 109 � M200 � 3 × 1010 M� and virial radius2 35 �
r200/kpc � 61. According to the halo mass–concentration relation
(Muñoz-Cuartas et al. 2011), in the present-day Universe haloes
in this mass range have 14 � r200/rs � 16, so 2 � rs/kpc� 5, or
2.5 � r̃s � 6.2, for rh � 0.81 kpc, which is the stellar half-mass
radius of Fornax.

2The dark haloes of satellite galaxies such as Fornax are expected to be
tidally truncated at radii much smaller than r200. In this context, the value
of r200 expected in the absence of truncation is used only as a reference to
estimate rs.

Even the lower bound of this cosmologically motivated interval of
values of the scale radius (rs � 2 kpc) is beyond the truncation of the
stellar component of Fornax (97 per cent of the stellar mass is con-
tained within 2 kpc; see Figs 3b and 9b), so we do expect our results
to be insensitive to the exact value of rs within the above range.
However, given the very poor performance of the NFW models
in reproducing the observed kinematics of Fornax (Section 4.2.2),
we explored also a more general family of NFW models, named
FnxNFW-rs, in which r̃s is a free parameter, in the range 2.5–6.2. As
predicted, these models turned out to be poorly sensitive to rs, with
a slight preference for higher values. The best model of this new
NFW family has r̃s = 6.04+0.16

−3.52, so all the explored values of r̃s are
within 1σ . This model has lnL = −12581.14 and AIC=25 174.28
(see Table 5), which, compared to the best model (FnxCore3), gives
�AIC∼140.26, approximately the same �AIC as the best model
of the family FnxNFW (Section 4.2.2). We conclude that the results
obtained fixing r̃s are robust against uncertainties on this parameter.

4.3 Comparison with previous work

Here, we compare the results of our dynamical modelling of For-
nax with previous works. Fig. 10 plots the dynamical (stars plus
dark matter) mass profile of the best of our models (FnxCore3)
compared to those of the best models of other families. Within the
radius rm � 1.7 Re � 1.05 kpc, the dynamical mass is robustly con-
strained against changes in the specific shape of the dark halo and
the anisotropy. In our best model, the total mass enclosed within
rm is Mdyn(rm) = 1.38+0.10

−0.10 × 108 M�, consistent with the mass es-
timate of Amorisco & Evans (2011) of Mdyn(1.7 Re) � 1.3 × 108

M�. Amorisco & Evans (2011) performed a dynamical study of 28
dSphs, using different haloes and modelling the stellar component
with an ergodic King DF (Michie 1963, King 1966). Remarkably,
they find that, for all the dSphs in their sample, the best mass con-
straint is given at rm � 1.7 Re.

Strigari et al. (2008) performed a Jeans analysis on a sample of
18 dSphs. They used analytic density distributions for the dark mat-
ter in order to describe both cuspy and cored models, and studied
the cases of anisotropic stellar velocity distributions, with radi-
ally varying anisotropy. They use a maximum likelihood criterion
based on individual star velocities, assuming Gaussian LOSVDs.
For all the dSphs, the authors find that Mdyn(300 pc), the total mass
within 300 pc is well constrained, and they estimate for Fornax
Mdyn(300 pc) = 1.14+0.09

−0.12 × 107 M�, For our best model we find a
smaller value, Mdyn(300 pc) = 0.44+0.07

−0.03 × 107 M�.
Walker et al. (2009) performed a Jeans analysis on a wide sample

of dSphs finding that a robust mass constraint is given at Re, where,
for the Fornax dSph, they measure Mdyn(Re) = 4.3+0.6

−0.7 × 107 M�,
marginally consistent with Mdyn(Re) = 3.37+0.33

−0.22 × 107 M�, which
we get for our best model.

The existence of a particular radius where the total mass is
tightly constrained over a wide range of dark halo density pro-
files and anisotropy has been noted by many authors (Peñarrubia,
McConnachie & Navarro 2008; Strigari et al. 2008; Walker et al.
2009; Wolf et al. 2010). However, there is not always agreement on
the value of this particular radius, so it is worth asking why these
differences arise. Dynamical modelling faces the problem that since
one has to deal with only a 3D projection of the six-dimensional
phase space (two coordinates in the plane of the sky and the line-
of-sight velocities), the DF is not fully constrained by observations.
Jeans analysis provides a work-around: the Jeans equations predict
relations between some observables without delivering the DF and
they do not require significant computational effort. However, Jeans
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Figure 6. Columns, from left to right, refer to the best models of the FnxNFW, FnxCore1, FnxCore2, and FnxMFL families, respectively. Top row of panels
(a): residuals between the model and the observed projected stellar density profile (points with error bars). Residuals are defined as � ≡ (nobs

� − n�)/n�. Middle
row of panels (b): projected number density profile of the model (dashed lines), compared with the observed profile (points with error bars). Bottom row of
panels (c): line-of-sight velocity dispersion profile of the model (dashed lines), compared with the observed profile (points with error bars). In panels (b) and
(c), the bands indicate the 1σ uncertainties (see Section 3.2). In panels (c), the red curve shows the line-of-sight velocity dispersion of the best model of any
family (FnxCore3). rc is the size of the core radius, rh is the stellar half-mass radius, and P is the probability of the model compared to FnxCore3 (equation 37).

analysis is not conclusive, because it is not guaranteed that the re-
sulting model is physical in the sense that it has an everywhere
non-negative DF (e.g. Ciotti & Morganti 2010; Amorisco & Evans
2011). Moreover, it involves differentiation of the data and does
not deliver the LOSVD but only its first two moments. By contrast,
the non-negativity of all our DFs is guaranteed, our procedure does
not entail differentiation of the data, and we can exploit all the
information that is contained in the LOSVD. It is reassuring that
our estimate of Mdyn(1.7Re) is consistent with Amorisco & Evans
(2011), which is, to our knowledge, the only other work in which
Fornax is modelled starting from DFs.

Recently, Diakogiannis et al. (2017) presented a new, spheri-
cal, non-parametric Jeans mass modelling method, based on the
approximation of the radial and tangential components of the ve-
locity dispersion tensor via B-splines and applied it to the For-
nax dSph. Even considering different cases of dark matter den-
sity distributions, they find that the best Fornax model is a simple
MFL model. In our case, the MFL scenario is rejected with high
significance (see Table 4). The authors measure a total mass of
Mdyn = 1.613+0.050

−0.075 × 108 M�, which is slightly smaller than the
total mass of our MFL models, 2.06+0.13

−0.12 × 108 (see Section 4.2.3).
The best model of Diakogiannis et al. (2017) is characterized by
tangential anisotropy, with mean anisotropy 〈β〉 = −0.95+0.78

−0.72, in
agreement with the values we obtain from our FnxMFL models,

which predict Fornax to be tangentially biased, with a reference
anisotropy β|1 kpc = −0.32+0.13

−0.16. There are several differences be-
tween our analysis and that of Diakogiannis et al. (2017) that to-
gether explain the different conclusions about MFL models of For-
nax. We believe that our model-data comparison is more accurate
in some respects, which makes our conclusions more robust. For
instance, we use a more extended observed stellar surface density
profile and we account self-consistently for the MW contamination.

Breddels & Helmi (2013) applied spherical Schwarzschild (1979)
modelling to four of the classical dSphs, including Fornax, assum-
ing NFW, cored and Einasto (1965) dark matter density profiles.
They use both the second and the fourth moment of the LOSVD
in comparisons with data. They conclude that models with cored
and cuspy halo yield comparable fits to the data, and they find that
models conspire to constrain the total mass within 1 kpc to a value
Mdyn(1 kpc) � 108 M� that is in good agreement with our value,
Mdyn(1 kpc) = 1.20+0.09

−0.08 × 108 (Fig. 10). Breddels & Helmi (2013)
find that the data for Fornax are consistent with an almost constant,
isotropic or slightly tangential-biased anisotropy parameter profile
β = −0.2 ± 0.2, marginally consistent with our almost isotropic
values.

As far as the central dark matter distribution is concerned, our
results confirm and strengthen previous indications that Fornax
has a cored dark halo. For instance, Goerdt et al. (2006) argue
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Figure 7. Comparison of the observed Fornax + MW LOSVD (histograms) and the LOSVDs of the best models in the families FnxNFW, FnxCore1, FnxCore2,
FnxCore3, and FnxMFL (respectively, dashed, dotted, dot–dashed, red solid, and black solid curves). The overall best model is FnxCore3. In each panel, R
indicates the average radius of the radial bin for which data are shown, which is also the radius at which the model LOSVD was computed. The radial bins are
the same as in Figs 4 and 6(c). The green curve marks the MW’s contribution.

Figure 8. Kurtosis profile of the LOSVD for the best models of the fami-
lies FnxNFW, FnxCore1, FnxCore2, FnxMFL (dashed, dotted, dot–dashed,
solid, respectively). The red curve without a band shows the kurtosis profile
of the best of all models (FnxCore3). The bands show the 1σ uncertainties
(see Section 3.2).

that the existence of five globular clusters in Fornax is inconsis-
tent with the hypothesis of a cuspy halo since, due to dynami-
cal friction, the globular clusters would have sunk into the cen-
tre of Fornax in a relatively short time (see also Sánchez-Salcedo
et al. 2006; Arca-Sedda & Capuzzo-Dolcetta 2016). Amorisco
et al. (2013), exploiting the information on the spatial and veloc-

ity distributions of Fornax subpopulations of stars, showed that a
cored dark halo represents the data better and were able to con-
strain the size of the core, finding rc = 1+0.8

−0.4 kpc, which agrees
with the size of the core of our best model. Jardel & Gebhardt
(2012) applied Schwarzschild axisymmetric mass models to For-
nax, testing NFW and cored models with and without a central
black hole. They used the LOSVD computed in radial bins to con-
strain the models, finding that the best model has a cored dark
halo. They also computed the anisotropy profile according to their
best model selection and argue that Fornax has a slightly radially
biased orbit distribution, in agreement with our estimate. Walker
& Peñarrubia (2011), considering two different stellar subpopula-
tions of Fornax, provided anisotropy-independent estimates of the
enclosed mass within 560 and 900 pc, M(560 pc) = 3.2 × 107 M�
and M(900 pc) = 11.1 × 107 M�, which are in perfect agreement
with our results (Fig. 10).

4.4 Membership

As a further application of our DF-based method, we computed the
probability that each star of the kinematic sample of Fornax is a
member of the dSph. Contaminants are objects that, due to pro-
jection effects, seem to belong to an astrophysical target, but that
are intrinsically located in foreground or background. Separating
member stars from foreground contaminants is not an easy task, es-
pecially when they have similar magnitudes, colours, metallicities,
or when foreground stars move at similar velocities with respect
to the target’s systemic velocity: this is, in particular, the case for
Fornax. This makes usual approaches, such as the nσ -clip of the
line-of-sight velocity of stars, ineffective. The nσ -clip strongly de-
pends on the choice of the threshold n and, in cases such as that of
Fornax, it does not ensure the reliable exclusion of contaminants.
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940 R. Pascale et al.

Figure 9. Columns, from left to right, refer to the best model of the FnxNFW, FnxCore1, FnxCore2, and FnxMFL families, respectively. Top row of panels
(a): stellar (dash–dotted line) and dark matter (dashed line) density profiles. Middle row of panels (b): stellar (dash–dotted line) and dark matter (dashed line)
mass profiles. Bottom row of panels (c): anisotropy parameter profile (dashed line). The vertical black lines in the four top and middle panels mark the dark
halo’s core radius rc. In all panels, the bands around the best fits indicate 1σ uncertainty (see Section 3.2). The blue curve marks the dark matter density (panels
a), dark matter mass (panels b), and stellar anisotropy profiles (panels c) of the best of all models (FnxCore3). rh is the stellar half-mass radius and P is the
probability of the model compared to the best of all models (FnxCore3).

Table 5. Parameters of the best Fornax model of the FnxNFW-rs family with free scale radius (Section 4.2.4). α and η: parameters of the stellar DF (2).
M̃0,dm ≡ M0,dm/M0,�. J̃0,dm ≡ J0,dm/J0,�. J0, � and M0, �: respectively, action and mass scales (equation 2). M̃tot,dm ≡ Mtot,dm/Mtot,�. As in the family
FnxNFW (Table 3) J̃c,dm ≡ Jc,dm/J0,dm = 0 and J̃t,dm ≡ Jt,dm/J0,dm = 6. M0,dm, J0,dm, Jc, dm and Jt, dm are the parameters of the dark matter DF (equations
4–7). r̃s ≡ rs/rh. M̃tot,dm ≡ Mtot,dm/Mtot,�. rs and rh are, respectively, the halo scale radius and the half-mass radius of the stellar component; Mtot, dm, and
Mtot, � are, respectively, the total dark matter and stellar masses (equations 10 and 9). lnLmax: log-likelihood (equation 28). AIC: value of the Akaike Information
Criterion (equation 36). �AIC: difference between the AIC of the FnxNFW-rs and the best of all models (FnxCore3, see Table 4). P: probability that the
FnxNFW-rs best model represents the data as well as the best of all models (FnxCore3).

Family α η M̃0,dm J̃0,dm J0, � (km s−1 kpc) M0, � (M�)

FnxNFW-rs 1.36+0.03
−0.04 0.37+0.03

−0.02 439+87
−182 100.95+7.10

−11.25 4.75+0.46
−0.30 1.30+0.66

−0.17 × 107

r̃s M̃tot,dm lnLmax AIC �AIC P

FnxNFW-rs 6.04+0.16
−3.52 110.9+19.5

−34.9 -12581.14081 25174.28 140.25 3.5 × 10−31
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Figure 10. Total mass profiles (stars and dark matter) of the FnxNFW,
FnxCore1, FnxCore2, FnxCore3, and FnxMFL families. The bands mark
the 1σ uncertainty (see Section 3.2). The vertical red-dashed line indicates
rm, radius where the total mass is model-independent.

Thus, we use an alternative approach to define a posteriori mem-
bership probabilities that relies on the LOSVD of our best model
and of the Besançon model of the foreground.

We define pmember the probability that a star belongs to a certain
target (in our case Fornax) and pcont ≡ 1 − pmember the probability
that the stars belongs to the contaminants population. In general

pmember ≡ pmember(θ ), (45)

where θ describes some measured properties of the stars. Let us
focus on the simple case in which θ = (R, vlos) and define the
membership probability of the k-th star as

pmember,k = (1 − ωk)
∫ +∞

−∞ L�(Rk, v||)Gk(v|| − vlos,k)dv||∫ +∞
−∞ Ltot(Rk, v||)Gk(v|| − vlos,k)dv||

, (46)

where L�,Ltot, Gk are as in Section 3 and are functions of θ . Here,
L� is the LOSVD of the best model, while the term ωk is a function
of R, controlling the relative contribution between contaminants
and Fornax (equation 34). We account for the errors on single ve-
locities through the convolution with Gk, a Gaussian function with
mean equal to the k-th velocity and standard deviation equal to
δvlos, k. Fig. 11 shows the position-velocity diagram of the Fornax
kinematic sample, where different colours mark stars with different
probability of membership. We identify 2805 stars with pmember ≥
0.9, that can be safely interpreted as Fornax members, while 94
stars have probability pmember < 0.1, corresponding mostly to high-
velocity and/or distant stars. Fig. 11 shows the region delimited by
selecting stars using an iterative nσ -clip, with n = 2.5, 3. In the case
of Fornax, an nσ -clip leads inevitably to the MW’s contribution
being underestimated, especially in the outermost regions, which
are likely to be dominated by foreground stars, and to classifica-
tion as contaminants of stars of that lie in the innermost regions
but belong to the high-velocity tail of the LOSVD. Any attempt to
alleviate this problem by increasing the threshold n, would have the
effect of amplifying the underestimate of the contaminants at larger
distances.

Our approach does not guarantee a perfect distinction between
members and contaminants, especially close to vlos � 0, but by
using a self-consistent model for the target LOSVD we maximize
our chances of selecting likely members.

5 C O N C L U S I O N S

We have presented new dynamical models of a dSph based on DFs
depending on the action integrals. In particular, we combined lit-
erature DFs (Posti et al. 2015; Cole & Binney 2017) with a new
analytic DF to describe the stellar distribution of a dSph in both
its structural and kinematic properties. In their most general form,
our models make it possible to represent axisymmetric and possibly
rotating multicomponent galaxies, including the dark halo and dif-
ferent stellar populations, each of which is described by a DF. The
adiabatic invariance of the actions allows us to distinguish between
adiabatic contraction of the dark halo during baryon accretion and
evolution of the dark halo arising from upscattering of dark matter
particles, whether by a bar, sudden ejection of mass by supernovae,
or infalling satellites and gas clouds. The use of the DFs allows
us to compute the stellar LOSVD of the models, which is a key
instrument in the application to observed dSphs. In the model-data
comparison, we use the velocities of individual stars and we account
for contamination by field stars.

We applied our technique to the Fornax dSph, limiting our-
selves for simplicity to spherically symmetric models. We ex-
plored both two-component models (with both cuspy and cored
dark haloes) and simpler one-component MFL models. The model
that best reproduces Fornax observables is a model with a dark
halo that has quite a large core: rc � 1.03 kpc � 1.7Re. We find
that Fornax is everywhere dark matter dominated, with dark-to-
luminous-mass (Mdm/M�)|Re = 9.6+0.6

−5.7 within the effective radius
and (Mdm/M�)|3 kpc = 144+2

−87 within 3 kpc. The self-consistent stel-
lar velocity distribution of the best model is slightly radially biased:
the anisotropy profile is relatively flat, with β = 0 in the centre
and β = 0.08+0.14

−0.12 at 1 kpc. Our best model is preferred with high
statistical significance to models with an NFW halo and to MFL
models, which are several orders of magnitude less likely. The
strength of this conclusion derives not only from the fact that, start-
ing from the DFs, we implicitly exclude unphysical models, but
also because by performing a star-by-star comparison with the self-
consistent LOSVDs of the models, we fully exploit the available
kinematic data. For instance, our analysis demonstrates that models
with cuspy NFW haloes cannot reproduce at the same time the flat
line-of-sight velocity dispersion profile and the peaked LOSVDs
of Fornax. Our results confirm and strengthen previous indications
that Fornax is embedded in a dominant cored dark halo.

A knowledge of the present-day dark matter distributions of
dSphs is important because it has implications for both models
of galaxy formation and the nature of dark matter. In the context
of the standard �CDM cosmological model, the fact that Fornax
today has a cored dark halo can be interpreted as a signature of
the gravitational interaction of gas and dark matter during galaxy
formation, which modified an originally cusped halo. In alternative
dark matter theories (e.g. the so-called fuzzy dark matter model;
Hui et al. 2017), the core is an original feature of the cosmological
dark halo, independent of the interaction with baryons. Experiments
trying to detect dark matter indirectly via annihilation or decay in
dSphs rely on the knowledge on the J-factor and the D-factor of
these systems, which require accurate measures of the dark matter
distribution in the central regions of these galaxies. For our best
model of Fornax, we find log10(J/[GeV2 cm−5]) = 18.34+0.06

−0.09 and
log10(D/[GeV cm−2]) = 18.55+0.03

−0.05, for aperture radius θ = 0.◦5.
In this paper, we have shown that f(J) DFs are powerful tools

for the dynamical modelling of dSphs. As a first application, we
have modelled the Fornax dSph as a two-component (star and dark
matter) spherically symmetric system. In the near future, we plan
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Figure 11. Position-velocity diagram of the Fornax kinematic sample. Different colours mark different membership probabilities pmember; the horizontal
dashed and solid lines mark the regions obtained by using an iterative 2.5σ -clip and 3σ -clip, respectively.

to perform similar analyses on other dSphs and to fully exploit the
power of the presented method by exploring axisymmetric models
either with multiple stellar populations or using an extended stellar
DF, depending on metallicity as well as on the action integrals (Das
& Binney 2016).
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APPEN D IX A : f(J) TOTAL MASS

Here, we derive an expression of the total mass of a system de-
scribed by a DF f(J), that depends on the action integrals through a
homogeneous function h(J) = Jr + ω(|Jφ | + Jz). The total mass M
of the system is given by

M

(2π )3
=

∫
d3Jf (J) =

∫ ∞

−∞
dJφ

∫ ∞

0
dJz

∫ ∞

0
f (J)dJr . (A1)

When h(J) is even in Jφ we can write equation (A1) as

M

(2π )3
= 2

∫ ∞

0
dJφ

∫ ∞

0
dJz

∫ ∞

0
f (J)dJr . (A2)

Changing coordinates from (Jr, Jφ , Jz) to (Jr, L, Jz), where L is the
total angular momentum modulus, and integrating out Jz (0 < Jz <

L), equation (A2) becomes

M

(2π )3
= 2

∫ ∞

0
dJr

∫ ∞

0
Lf (Jr , L)dL. (A3)

Finally, changing coordinates from (Jr, L) to (L, h) and integrating
out L (0 < L < h/ω), equation (A3) becomes3

M

(2π )3
= 1

ω2

∫ ∞

0
h2f (h)dh. (A4)

3This equation was derived in Posti et al. (2015). Note, however, that there
is a typo in equation 36 of Posti et al. (2015).

APPENDI X B: A PPLI CATI ON TO MOCK DATA

We applied the f(J) models to a mock galaxy, with structure and
kinematics similar to a typical dSph such as Fornax, in order to test
the accuracy of the method presented in Section 3. The mock is an N-
body representation of a spherically symmetric galaxy, embedded
in an NFW-like dark halo. The density distribution of the stellar
component is

ρ�(r) = ρS

(
r

RS

)p

exp

[
−

(
r

RS

)ν]
, (B1)

where ρS and RS are, respectively, a reference density and a char-
acteristic scale radius, while p = 1 − 0.6097ν + 0.05463ν2. Equa-
tion (B1) is an approximation to the deprojection of the Sersic
(1968) profile with index m = 1/ν (Lima Neto, Gerbal & Márquez
1999), which usually gives a good representation of a dSph stellar
surface density. The mock dark matter density profile is

ρdm = ρ0

r/rs,dm(1 + r/rs,dm)2
e

−
(

r/rt,dm

)2

, (B2)

where ρ0 is a reference density, rs, dm is the scale radius, and rt, dm

is the truncation radius. Eddington’s integral was used to compute
the ergodic DF of the stellar component.

The mock consists of 51 200 stars. Each star was assigned position
and velocity by using the DF. For the stellar component, we used m
= 0.71 and RS = 0.58 kpc (reference values of the Sérsic best fit of
the Fornax projected number density profile; Battaglia et al. 2006),
while for the dark matter component rs, dm = 4, rt, dm = 20, and ρ0

is such that the total dark matter mass Mtot,dm = 3 × 109 M�. The
total mass of the mock is Mtot, � = 5 × 107 M�. The parameters of
the mock are summarized in Table B1.

Using the terminology of Section 3, we constructed the mock
photometric and kinematic sample (respectively, the projected sur-
face density profile and the set of radial velocities with associated
errors). For the mock, we take a Cartesian system of coordinates
such that (x, y) is the plane of the sky and z is the line of sight.
To these stars, we added 4700 stars with (x, y) position randomly
generated from a uniform two-dimensional distribution and line-
of-sight velocities from a normal LOSVD with mean 15 km s−1

and standard deviation 40 km s−1. The samples are computed as
follows:

(i) Photometric samples. We divided the plane of the sky into four
quadrants. The projected number density profile has been computed
in each quadrant, using Nn = 50 equally spaced bins, centred at Ri,
with i = 1, ..., Nn. For each bin, the projected number density profile
is defined as n�

i ≡ μi , with associated errors δn�
i ≡ σi , where μi is

the mean and σ i is the standard deviation of the four measurements.
From the outermost 23 bins, where the only contribution is that of
contaminants, we evaluated the background mean surface number
density profile. Then, we take the first 27 bins and correct them for
the contamination.

(ii) Kinematic sample. From the whole mock we randomly se-
lected Nv = 3000 stars, similar in size to the Fornax kinematic
sample (Section 4) with true velocities along the z-axis vz, i, with k
= 1, ..., Nv . The distribution of line-of-sight velocity errors of the
Fornax sample is skewed, with a significant tail at large errors. To
simulate the same effect, we randomly extracted the errors on the
mock velocities from a skewed beta distribution B(a, b), with a =
1.5 and b = 15. The errors δvlos, k have been scaled requiring that
σmock/δvmock = 6.5, where σ mock is the standard deviation of the
radial velocity measurements and δvmock is the scaled mean of the
velocity errors. Our final kinematic sample of mock velocities vlos, k
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Table B1. Main parameters adopted to generate the mock. m and RS: index and scale radius of the deprojected Sérsic profile (equation B1); ρ0, rs, dm, and
rt, dm: respectively, the reference density, scale radius, and truncation radius of the mock dark matter component (equation B2); Ntot: total number of stars; Re:
effective radius; Mtot, �: total mass; Nn: number of bins of the projected stellar number density profile; Nv : number of stars of the kinematic sample; nf: mean
projected density of mock field stars.

Parameter m RS (kpc)
ρ0

(M�/kpc−2) rs, dm (kpc) rt, dm (kpc) Ntot, � Re (kpc)
Mtot, �

(M�) Nn Nv

nf (stars
kpc−2)

value 0.71 0.58 4.539 × 106 4 20 51200 0.62 5 × 107 27 3000 66.8

Figure B1. Panel (a): position-velocity diagram of the mock kinematic
sample. Panel (b): mock error distribution (black histograms) superimposed
to the error distribution of the Fornax kinematic sample (blue histograms).

has been computed by selecting randomly new velocities from a
normal distribution with mean equal to vz, i and dispersion equal to
the error on the k -th-th velocity δvlos, k.

Fig. B1(a) shows the position-velocity diagram of the mock,
while Fig. B1(b) plots the error distribution of the mock kinematic
sample superimposed to the Fornax distribution of line-of-sight
velocity errors.

We determined the model that best fits the mock applying the
procedure described in Section 3. We analysed three different cases:
a family with NFW-like halo and two families with cored halo,
with cores of different sizes. We will refer to the NFW family of
models as mockNFW, and to the two cored families as mockCore1

and mockCore2. The parameters of the best models are given in
Table B2. As for Fornax, we considered only models with total
stellar mass in the range Mtot,� = 107–108 M� and halo scale radius
in the range 2.5 � r̃s � 6.2 (see Section 4.2.4).

We were able to recover sufficiently well the total mass distri-
bution of the mock galaxy: the cuspy halo is preferred with high
significance over the two cored families here considered (see Ta-
ble B2). The projected stellar number density profiles and the line-
of-sight velocity dispersion profiles of the best models of the three
families are compared with the corresponding profiles of the mock
in Fig. B2. The line-of-sight velocity dispersion has been computed
in 10 radial bins (each bin has 300 stars; see Section 4.2.1). The best
mockNFW model reproduces better than the best cored models both
the projected number density profile and the line-of-sight velocity
profile.

Fig. B3 plots the density, mass, and anisotropy profiles of the best
models of the three families mockNFW, mockCore1, and mock-
Core2. The mock dark matter mass distribution is well represented
by the mockNFW best model. The differences between model and
mock dark matter density profiles in the innermost regions are due to
the fact that the DF (4) reproduces the asymptotic behaviour of the
analytic NFW profile, but not exactly its transition between the ρdm

∼ r−1 and ρdm ∼ r−3 regimes. We are not able to constrain the scale
radius of the dark halo r̃s (see Section 4.2.4). We find that the best
model has r̃s = 5.98+0.22

−3.45, so all the explored values are within 1σ .
The anisotropy is well recovered within the 1σ uncertainty: we find
that the best mockNFW family is consistent with the isotropic mock
velocity distribution (β = 0) over the entire radial range (Fig. B3);
the model anisotropy at 1 kpc is β|1kpc = −0.15+0.16

−0.26.
Though the result of the application of our method to the mock

is positive and reassuring, of course this test is not meant to be
a proof that our method would be able to recover the properties
of any mock. For instance, we limited ourselves to the case of a
system with isotropic velocity distribution and we considered only
one realization of the photometric and kinematic samples. However,
to the extent that the explored mock is an acceptable realization of
a dSph like Fornax, the result of our test suggests that if Fornax had
a cuspy dark halo our method should be able to detect it.
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Table B2. Parameters of the best mock models of each family. α and η: parameters of the stellar DF (2). M̃0,dm ≡ M0,dm/M0,�. J̃0,dm ≡ J0,dm/J0,�. J0, � and
M0, �: respectively, action and mass scales (equation 2). J̃c,dm ≡ Jc,dm/J0,dm. All models have J̃t,dm ≡ Jt,dm/J0,dm = 6. M0,dm, J0,dm, Jc, dm and Jt, dm are the
parameters of the dark matter DF (equations 4–7). r̃c ≡ rs/rh. M̃tot,dm ≡ Mtot,dm/Mtot,�. rs and rh are, respectively, the halo scale radius and the half-mass
radius of the stellar component; Mtot, dm and Mtot, � are, respectively, the total dark matter and stellar masses (equations 10 and 9). lnLmax: log-likelihood
(equation 28). AIC: value of the Akaike Information Criterion (equation 36). �AIC: difference between the AIC of the best model of a family and the AIC of
the best of all models (mockNFW). P: probability that a model represents the data as well as the best of all models (mockNFW).

Family α η M̃0,dm J̃0,dm J0, � (km s−1 kpc) M0, � (M�) J̃c,dm

mockNFW 1.48+0.06
−0.05 0.54+0.02

−0.03 2.02+0.82
−0.87 × 103 84.20+9.06

−30.30 7.15+0.53
−0.55 5.38+1.58

−1.72 × 106 0
mockCore1 1.17+0.08

−0.04 0.72+0.05
−0.04 1.45+0.91

−0.94 × 103 70.84+7.80
−9.26 6.13+0.79

−0.50 6.10+9.07
−2.17 × 106 0.02

mockCore2 1.11+0.06
−0.05 0.76+0.05

−0.03 227+725
−106 42.70+17.90

−8.78 5.76+0.57
−0.50 2.83+0.87

−0.78 × 107 0.2

r̃c M̃tot,dm lnLmax AIC �AIC P

mockNFW 0 1300+391
−558 −12249.44 24510.88 0 1

mockCore1 0.414+0.013
−0.026 964+459

−613 −12271.70 24553.4 42.53 5.85 × 10−10

mockCore2 0.893+0.144
−0.086 146+58

−31 −12268.56 24547.12 36.24 1.35 × 10−8

Figure B2. Columns, from left to right, refer to the best models of the mockNFW, mockCore1, and mockCore2 families, respectively. Top row of panels (a):
residuals � ≡ (nobs

� − n�)/n� between the model and the mock observed projected stellar density profile (points with error bars). Middle row of panels (b):
projected number density profile of the model (dashed lines), compared with the mock observed profile (points with error bars). Bottom row of panels (c):
line-of-sight velocity dispersion profile of the model (dashed lines), compared with the mock observed profile (points with error bars). In panels (b) and (c),
the bands indicate the 1σ uncertainties (see Section 3.2).
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Figure B3. Columns, from left to right, refer to the best model of the mockNFW, mockCore1, and mockCore2 families, respectively. Top row of panels (a):
stellar (dash–dotted line) and dark matter (dashed line) density profiles. Middle row of panels (b): stellar (dash–dotted line) and dark matter (dashed line) mass
profiles. Bottom row of panels (c): anisotropy parameter profile (dashed line). The vertical black lines mark the halo core radius rc for the cored families. In all
panels the bands around the best fits indicate 1σ uncertainty (see Section 3.2). The green curve in panels (a) and (b) show, respectively, the density and mass
distributions of the mock dark matter component (equation B2 and Table B2).
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