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Optimized Thermal-Aware Job Scheduling and
Control of Data Centers

Tobias Van Damme, Claudio De Persis and Pietro Tesi

Abstract—Analyzing data centers with thermal-aware opti-
mization techniques is a viable approach to reduce energy
consumption of data centers. By taking into account thermal
consequences of job placements among the servers of a data
center, it is possible to reduce the amount of cooling necessary to
keep the servers below a given safe temperature threshold. We
set up an optimization problem to analyze and characterize the
optimal setpoints for the workload distribution and the supply
temperature of the cooling equipment. Furthermore under mild
assumptions we design and analyze controllers that regulate the
system to the optimal state without knowledge of the current
total workload to be handled by the data center. The response of
our controller is validated by simulations and convergence to the
optimal setpoints is achieved under varying workload conditions.

Index Terms—Cyber-physical systems, Lyapunov methods,
Optimization and control of Large-scale networked systems,
Optimization and control of data centers, Control of constrained
systems, Networked control systems

I. INTRODUCTION

Worldwide energy consumption of data centers reached 350
billion kWh of energy in 2013, 1.73% of the global electricity
consumption [2], [3]. With the world being digitized more
and more each year, this number is likely to increase as well.
Therefore in the last decade computer scientists and control
engineers have made efforts to reduce the energy consumption
of data centers by devising methods to increase the operational
efficiency of these computer halls [4].

Although much progress has been made, there are still
several challenges in ensuring efficient operation of the cooling
equipment. Due to bad design or unawareness for the thermal
properties of the data center, local thermal hotspots can arise.
This causes the cooling equipment to overreact to ensure
that the temperature of the equipment stays below the safe
thermal threshold. These peaks cause the cooling equipment
to consume more energy then would be necessary if these
hotspots were avoided. Therefore having a good understanding
of the thermodynamics involved is vital to increasing the
cooling efficiency of the data center.

To tackle these challenges researchers and engineers have
studied both software and hardware solutions to this problem.
Examples of hardware solutions are isolating cold or hot areas
in the data center, or building data centers in cold regions on
the planet where cold outside air can be utilized. Software
solutions on the other hand focus on strategies which use
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the knowledge of the thermal properties of the data center
to make more intelligent choices how to schedule incoming
jobs. Although the two types of solutions are equally important
to study, software solutions allow data center operators to
implement improvements very fast for very little costs, i.e.
implementing new software is less costly than rebuilding a
full data center. Furthermore these types of solutions can
provide major performance increases using heuristic methods
for smart thermal job schedulers showing up to 30% less
energy consumption with respect to non thermal-aware job
schedulers [5], [6]. Therefore in this paper we will investigate
these thermal-aware software solutions.

Other approaches include considering a heterogeneous data
center [7] and using these asymmetric properties to analyze
trade-offs between performance- and energy-aware algorithms,
or distinguishing between different type of jobs when schedul-
ing the load [8]. Server consolidation is a natural extension
where on top of thermal scheduling, racks are switched on and
off to save power. These algorithms usually contain two steps,
first to calculate the necessary number of racks and secondly
the correct workload scheduling [5], [9], [10], [11], [12].

On the other hand, studies have also been done in a more
control theoretical direction. The paper [13] has proposed a
control algorithm that tries to maintain the temperature of the
equipment around a target value. In [14] it is proposed to
implement a two-step algorithm that first minimizes the energy
consumption by estimating the required amount of servers to
handle the expected workload. In the second step the algorithm
maximizes the response time given a number of servers at
its disposal. In an attempt to address scalability a distributed
approach has been studied in [15]. In this work, units, which
range from servers to complete data centers, communicate
directly and try to achieve a uniform temperature profile.
Another distributed control approach in a hybrid systems
setting is proposed in [16]. The hybrid controller tries to evenly
divide the total load among the agents in the network in a
distributed fashion.

While all these works have strong points on their own, to
the authors’ best knowledge a thorough formal analysis and
characterization of an energy minimal solution combined with
a control strategy which handles both cooling and job schedul-
ing simultaneously has not been done before. The objective of
this work is to provide an extendable framework that allows
for a characterization of an energy-minimal operating point
and then supply methods for operating the data center such
that this operating point is achieved for all load conditions.

The contribution of this work is two-fold. First from existing
thermodynamical principles we set up a thermodynamical
model from which we derive an optimization problem that
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combines energy minimization with the thermodynamics. In
addition to only including temperature constraints [11] we ex-
tend the model to also incorporate workload constraints, which
allows us to better characterize energy minimal solutions. This
design allows for natural extendability to more complicated
scheduling policies like switching servers on and off.

Second we develop a novel control strategy for handling the
control of the cooling equipment and the workload scheduling
simultaneously. Both these control goals have been studied
before [13], [17]. However in [13] the two control goals
were handled separately; in [17] a combined algorithm was
suggested but due to complexity could lead to non-optimal
solution. In contrast our model shows an easy method for
handling coordinated cooling and job scheduling control that
regulates the system towards the energy optimal solution. Our
method is inspired by results from [18] where regulation to
optimal steady solutions in the presence of disturbances was
considered.

The remainder of this paper is organized as follows. In
Section II the basic thermodynamics are formulated. Then an
optimization problem is formulated in Section III and under
mild assumptions the equivalence to a reduced form is proven.
Following up the optimal solution is analytically analyzed and
characterized for different load conditions in Section IV. Using
this analytical solution a controller is proposed in Section V
that can handle unknown load conditions. Finally in Section VI
a case study is considered to show the performance of the
controllers.

Notation: We denote by R and R≥0 the set of real num-
bers and non-negative real numbers respectively. Vectors and
matrices are denoted by x ∈ Rn and A ∈ Rn×m respectively,
the transpose is denoted by xT and the inverse of a matrix is
denoted by A−1. If the entries of x are functions of time then
the element-wise time derivative is denoted by ẋ(t) := d

dtx.
By xi we denote the i-th element of x and by aij we denote the
ij-th element of A. If a variable already has another subscript
then we switch to superscripts to denote individual elements,
i.e. T iout and Cij3 . We write the diagonal matrix constructed
from the elements of vector x as diag{x1, x2, · · · , xn}.
The identity matrix of dimension n is denoted by In, the vector
of all ones by 1 ∈ Rn and the vector of all zeros by 0 ∈ Rn.
Furthermore the vector comparison x 4 y is defined as the
element-wise comparison xi ≤ yi for all elements in x and
y.

II. SYSTEM MODEL

Real life data centers are organized in aisles with many
racks each containing a multitude of servers. The cooling of
data centers is usually done by air conditioning, therefore the
racks are set up in a hot- and cold-aisle configuration. Cold
air supplied by the computer room air conditioning (CRAC)
units is blown into the cold aisles. The air goes through
the racks where it absorbs the heat produced by the servers.
The air exits the servers in the hot aisle and is recirculated
back to the CRAC units where it is cooled down to the
desired supply temperature. A scheduler divides incoming
tasks among the racks according to some decision policy. The

energy consumption of a rack depends on the amount of tasks
it is given. By thermodynamical principles almost all of this
energy consumption is dissipated as heat in the rack. Ideally
all of the exhaust air of the racks is returned to the CRAC,
however due to the complex nature of air flows within the data
center some of the hot air is recirculated back into the cold
aisles. This causes the temperature of the air at the inlet of
the racks to rise, creating inefficiencies in the cooling of the
data center.

It is possible for data centers to have multiple CRAC units.
In these cases we assume that the CRAC units work as one.
Allowing different setpoints will result in mixing of air flows
of different temperatures. Air flows of different temperatures
however are highly non-linear flows which depend on the
temperature of the flow itself. Therefore allowing different
CRAC setpoints makes air flows difficult to model and thus
adds increased complexity to the already complex situation.
This added complexity goes beyond the scope of the paper
and as such we do not pursue this possibility.

A. Workload

Requests arriving at the data center are collected by a
scheduler which then decides according to some policy how
to divide this work among the available racks. We assume
that each job has an accompanying tag which denotes the
time and the number of computing units (CPU) it requires
for execution. Let J denote the integer number of jobs that
the scheduler has to schedule in the data center at time t. Then
J (t) = {1, · · · , J} denotes the set of jobs to be scheduled at
time t. Furthermore let λj be the number of CPU’s that job j
requires at time t. Then the total number of CPU’s, D∗, the
scheduler has to divide over the racks at time t is given by

D∗(t) =

J (t)∑
j=1

λj . (1)

We denote by Di(t) the number of CPU’s the schedulers
assigns to rack i at time t. These variables are collected in
the vector

D(t) :=
(
D1(t) D2(t) · · · Dn(t)

)T
.

B. Power consumption of racks

Different ways to model power consumption exist, with the
main difference being the scope and focus of the models.
There are models which try to go as close to the CPU level
as possible by modeling the power consumption as a function
of the CPU clock frequency. On the other hand, there are
other models that aim at modeling the system on a higher
level and capture the power consumption of the CPU as a
function of the workload imposed on the server. The models
trade between complexity and detail, where the CPU frequency
model captures more details, but results in a non-linear model,
and the workload model results in a linear model which
operates on a higher level, i.e. the server level. Because in this
paper we work at the rack level, a higher operating level in a
data center environment, the linear model fits much better to
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Fig. 1. Heat model of an individual rack. Qi
in is the heat entering the rack,

Qi
out is the heat exiting the rack and Pi is the power consumption of the rack.

our situation. This model has been studied many times before
and the accuracy loss is almost negligible, as it has been found
that these models are about 95% accurate [11], [19], [20], [21],
[22], [23], [24], [25]. Therefore this is our model of choice.

Let Pi(t) denote the power consumption of rack i at time
t. We model Pi(t) to consist of a load-independent part, e.g.
the equipment consumes a constant amount of power, and a
load-dependent part, e.g. the number of CPU’s that are actively
processing jobs

Pi(t) = vi + wiDi(t), (2)

where vi [Watts] is the power consumption for the unit being
powered on, wi [Watts CPU−1] is the power consumption per
CPU in use. The variables are collected in the vectors

P (t) :=
(
P1(t) P2(t) · · · Pn(t)

)T
,

V :=
(
v1 v2 · · · vn

)T
,

and
W := diag{w1, w2, · · · , wn},

so that
P (t) = V +WD(t). (3)

C. Thermodynamical model

Following similar arguments as in [13] and [23], a thermo-
dynamical model for each individual rack is constructed. For
our model we focus on the output temperature of the racks as
we study the thermodynamical coupling between the workload
that is processed by the servers and the energy efficiency of
the cooling equipment. As we will show below there is a direct
coupling between the output temperature of the racks and both
these elements. In Fig. 1 a graphical representation of the heat
flows involved is given. The change of temperature of a rack
is given by the difference in heat entering and exiting the rack,

micp
d

dt
T iout(t) = Qiin(t)−Qiout(t) + Pi(t). (4)

Here T iout [◦C] is the temperature of the exhaust air at rack i,
cp [J ◦C−1 kg−1] is the specific heat capacity of air, mi [kg] is
the mass of the air inside the rack, Qiin [Watts] and Qiout [Watts]
are the heat entering and exiting the rack respectively. The heat
that enters a rack consists of two parts due to the complex air
flows in the data center, i.e. the recirculated air originating
from the other racks and the cooled air supplied by the CRAC

Qiin(t) =

n∑
j=1

γjiQ
j
out(t) +Qisup(t). (5)

Here Qisup [Watts] is the heat supplied by the CRAC to rack i,
and γji is the percentage of the flow which recirculates from
rack j to rack i. The relation between heat and temperature is
given by

Q(t) = ρcpfT (t), (6)

where ρ [kg m−3] is the density of the air and f [m3 s−1] is
the flow rate of the given flow. Combining (5) and (6) with
(4) yields

d

dt
T iout(t) =

ρ

mi

 n∑
j=1

γjifjT
j
out(t)− fiT iout(t)


+

ρ

mi

fi − n∑
j=1

γjifj

Tsup(t) +
1

micp
Pi(t), (7)

where Tsup [◦C] is the temperature of the air supplied by the
CRAC and fi is the velocity of the air flow through rack i.
Rewriting the above relation in matrix form, i.e. combining
the temperature changes of all racks in one equation, results
in

d

dt
Tout(t) = A(Tout(t)− 1Tsup(t)) +M−1P (t). (8)

Here

Tout(t) :=
(
T 1

out(t) T 2
out(t) · · · Tnout(t)

)T
,

and

A := ρcpM
−1(ΓT − In)F,

F := diag{f1, f2, · · · , fn},
M := diag{cpm1, cpm2, · · · , cpmn},
Γ := [γij ]n×n.

D. Power consumption of CRAC

The power consumption of the CRAC is dependent on the
temperature of the air which is returned to CRAC and the
supply temperature it has to provide. The air flow which is
returned from rack i to the CRAC is given by

f ret
sup,i =

1−
n∑
j=1

γij

 fi, (9)

and therefore the heat returned from all the racks to the CRAC
is

Qret(t) = ρcp

n∑
i=1

1−
n∑
j=1

γij

 fiT
i
out(t). (10)

The heat the CRAC sends back to the data center is given by
Qsup(t) = ρcpfsupTsup(t). With this the heat the CRAC has to
remove from the air, Qrem(t), is given by

Qrem(t) = Qret(t)−Qsup(t)

= ρcp

n∑
i=1

1−
n∑
j=1

γij

 fi(T
i
out(t)− Tsup(t))


= −1TMA(Tout(t)− 1Tsup(t)). (11)



IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY 4

To determine the amount of work the CRAC has to do to
remove a certain amount of heat, Moore et al. [5] introduced
the Coefficient of Performance, COP(Tsup(t)), to indicate the
efficiency of the CRAC as a function of the target supply
temperature. They found that CRAC units work more effi-
ciently when the target supply temperature is higher. The COP
represents the ratio of heat removed to the amount of work
necessary to remove that heat. For a water-chilled CRAC unit
in the HP Utility Data Center they found that the COP is a
quadratic, increasing function. In a general sense the COP
can be any monotonically increasing function. The power
consumption of the CRAC units can then be given by

PAC(Tout(t), Tsup(t)) =
Qrem(t)

COP(Tsup(t))
. (12)

Assumption 1. The function COP(Tsup) of the CRAC unit
considered in this paper, is monotonically increasing in the
range of operation for Tsup. �

Example 1. Let us consider a small example to illustrate
the influence of a small difference in supply temperature on
the power consumption of the CRAC. Consider the quadratic
COP(Tsup(t)) found by [5], and two cases where the returned
air has to be cooled down by 5 ◦C, in the first case from 25 ◦C
to 20 ◦C and in the second case from 30◦C to 25◦C. Assume
that the energy contained in 5 ◦C temperature difference of
air is 100 Watts. In the first case COP(20) = 3.19 and in the
second case COP(25) = 4.73. By (12), the energy consumed
by the CRAC to cool down the returned air to the required
temperature is

PAC,1 =
100

3.19
= 31.34 W, PAC,2 =

100

4.73
= 21.14 W.

Here it seen that if the temperature of the returned air increases
by 5 ◦C the power consumption of the CRAC unit decreases
by 30%. �

Having completed the model finally allows us to formulate
the control problem we would like to solve.

III. PROBLEM FORMULATION

The objective of this paper is two-fold, first we want to find
optimal setpoints for the temperature distribution, the supply
temperature and workload distribution that minimize the power
consumption of the data center. Secondly we want to design
controllers which ensure convergence of the variables to the
obtained setpoints. Hence the control problem is defined as
follows:

Problem 1. For system (8) design controllers for the workload
distribution D(t) and supply temperature Tsup(t) such that,
given an unmeasured total load D∗(t), any solution of the
closed-loop system is bounded and satisfies

lim
t→∞

(Tout(t)− T̄out) = 0, (13)

lim
t→∞

(Tsup(t)− T̄sup) = 0, (14)

lim
t→∞

(D(t)− D̄) = 0, (15)

where T̄out, T̄sup and D̄ are the optimal setpoint values for the
temperature distribution, supply temperature and the power
consumption, i.e. workload distribution, respectively, which
are defined in Subsection III-A. �

From this point on we will implicitly assume the depen-
dence of the variables on time and only denote it when
confusion might arise otherwise.

A. General optimization problem

We formulate an optimization problem to minimize the
power consumption while taking into account the physical
constraints of the equipment, i.e the servers only have finite
computational capacity and the temperature of the servers
cannot exceed a certain threshold. The power consumption of
the data center can be written as a combination of 2 parts, the
power consumption of the cooling equipment and the power
consumption of the racks. Combining (3) and (12) we can
write the total power consumption as

C(Tout, Tsup, D) =
Qrem

COP(Tsup)
+ 1TP (D). (16)

A reasonable way [11], [14] to formulate the optimization
problem is

min
Tout,Tsup,D

Qrem

COP(Tsup)
+ 1TP (D) (17a)

s.t. D∗ = 1TD (17b)
0 4 D 4 Dmax (17c)

0 = A(Tout − 1Tsup) +M−1P (D) (17d)
Tout 4 Tsafe. (17e)

Equation (17b) ensures that all the available work is di-
vided among the racks, (17c) encompasses the computational
capacity of the rack, i.e. rack i has Di

max CPU’s available at
most. The system dynamics should be at steady state once the
optimal point has been reached, see (17d), and finally (17e)
enforces that the temperature of the racks is below the given
safe threshold, Tsafe ∈ Rn.

B. Equivalent optimization problem for homogeneous data
centers

Due to the non-linear nature of how the COP affects the
power consumption it is not trivial to analyze the general
optimization problem. Although (17) is a difficult problem
to solve analytically, it is possible to reduce the optimiza-
tion problem to a simpler equivalent problem for a specific
important case. In many of the larger real-life data centers
most of the equipment is identical, i.e. the power consumption
characteristics of the computational equipment is identical,
that is vi = v and wi = w for all i in (2). It is desirable
for data centers to employ identical equipment because this
allows for decreased maintenance complexity and allows for
bulk purchases of the equipment which reduce operational
costs. In this case the data center is said to be composed
of homogeneous racks or, more simply, the data center is
homogeneous.
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In case of a homogeneous data center the power consump-
tion is given by P (D) = v1+wD and the total computational
power consumption is given by

1TP (D) = nv + w1TD = nv + wD∗. (18)

For this case, the computational power consumption no longer
depends on the way the jobs are distributed but only depends
on the total workload. This property simplifies the cost func-
tion defined in (16) considerably.

Theorem 1. Let the data center consist of homogeneous racks,
i.e. vi = v, and wi = w for all i in (2) and assume constraint
(17d) is satisfied. Then problem (17) is equivalent to

max
Tout

CT1 Tout (19a)

s.t. 0 4 C3Tout + C4(D∗) 4 Dmax (19b)
Tout 4 Tsafe, (19c)

for suitable C1, C3 and C4. �

Before we prove this theorem we need to introduce some
notation and extra preparatory results. In these preparatory
results (Lemma 1-3 below), the homogeneity condition is not
required, and statements are given in terms of the power
consumption vector P defined as in (3).

Lemma 1. Equation (17d) implies that the following relation
holds

1TP (D) = −1TMA(Tout − 1Tsup) = Qrem,

with Qrem defined in (11), which reduces the cost function to

C(Tout, Tsup, D) =

(
1 +

1

COP(Tsup)

)
1TP (D). (20)

Proof. By multiplying (17d) by 1TM and solving for
1TP (D) we obtain above result.

Lemma 2. If (17b) and (17d) are satisfied, then

Tsup = CT1 Tout + C2(D∗), (21)

CT1
∆
=:

1TW−1MA

1TW−1MA1
,

C2(D∗)
∆
=:

D∗ + 1TW−1V

1TW−1MA1
.

Proof. After multiplying (17d) by 1TW−1M , combining with
(17b) and some basic matrix manipulations the result is
obtained.

Lemma 3. If (17b) and (17d) are satisfied, then

D = C3Tout + C4(D∗), (22)

C3
∆
=: −W−1MA(In − 1CT1 ),

C4(D∗)
∆
=: W−1MA1C2(D∗)−W−1V.

Proof. Substituting the result of Lemma 2 in (17d), pre-
multiplying (17d) by W−1M , and solving for D yields the
result.

Remark 1. The dimensions of the constants from above
Lemmas are C1 ∈ Rn, C2 ∈ R, C3 ∈ Rn×n and C4 ∈ Rn.

The following identities for the constants C1, C3 and C4 are
observed

CT1 1 = 1, 1TC3 = 0T , C31 = 0, 1TC4 = D∗. (23)

An important consequence worth to note is that the constant
1TD, with D defined as in (22), satisfies the identity 1TD =
D∗. �

Lemma 2 and Lemma 3 show that at the steady state the
supply temperature, Tsup, and workload distribution vector,
D, are uniquely defined by the total workload, D∗, and the
temperature distribution, Tout. With these properties in mind
we are ready to prove Theorem 1.

Proof of Theorem 1. Assume that Problem (17) has a solu-
tion. By Lemma 1, the cost function reduces to (20). By the ho-
mogeneity assumption, (18) holds, which shows that the cost
function (20) is independent of the distribution D and depends
only on Tsup. Hence, in view of Assumption 1 (monotonicity
of the function COP(Tsup)) a solution to Problem (17) is the
one that maximizes Tsup. By (21) in Lemma 2, this solution
must maximize the cost function in (19a). The constraints in
(17) and Lemma 3 imply the constraints in (19), showing that
a solution to (17) must be also a solution to (19).

Conversely, if a solution to (19) exists, define D as in
(22), and notice that (17b) is satisfied, as it is promptly
verified using the identities (23). Then by the homogeneity
assumption, (17d), Lemma 1, and Lemma 2, maximizing the
cost function in (19a) implies minimizing the cost function in
(17a). Moreover, the definition of D and the constraint (19b)
implies (17c). Constraint (17e) trivially holds because of (19c).
This ends the proof.

IV. CHARACTERIZATION OF THE OPTIMAL SOLUTION

In the previous section we have showed the possibility to
reduce the optimization problem to a simpler form. In this
section we show that using KKT optimality conditions it is
possible to further characterize the optimal point.

A. KKT optimality conditions

Because the optimization problem (19) is convex and all
inequality constraints are linear functions we have that Slater’s
condition holds. Therefore it follows that T̄out is an optimal
solution to (19) if and only if there exists µ̄, µ̄+, µ̄− ∈ Rn≥0

such that the following set of relations is satisfied [26]:

−C1 + µ̄+ CT3 (µ̄+ − µ̄−) = 0, (24a)
0 4 C3T̄out + C4(D∗) 4 Dmax, (24b)

T̄out 4 Tsafe, (24c)

µ̄T+(C3T̄out + C4(D∗)−Dmax) = 0, (24d)

µ̄T−(−C3T̄out − C4(D∗)) = 0, (24e)

µ̄T (T̄out − Tsafe) = 0, (24f)
µ̄, µ̄+, µ̄− < 0. (24g)
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The Lagrangian corresponding to the optimal problem is
given by:

L(µ, µ+, µ−, Tout) =− CT1 Tout + µT (Tout − Tsafe)

+ µT−(−C3Tout − C4(D∗)) (25)

+ µT+(C3Tout + C4(D∗)−Dmax).

B. Characterization of optimal temperature profile

By studying the KKT optimality conditions we can charac-
terize the optimal solution in different cases.

• Inactive workload constraints: Every rack is processing
some work but not all the processors of each rack are
utilized:

0 < (C3T̄out + C4(D∗))i < Di
max ∀i ∈ {1, · · · , n}.

• Partially active workload constraints: In k racks all
processors are processing jobs. The other n−k racks are
processing some work but still have processors available:

(C3T̄out + C4(D∗))i = Di
max ∀i ∈ {1, · · · , k},

0 < (C3T̄out + C4(D∗))i < Di
max ∀i ∈ {k + 1, · · · , n}.

The optimal temperature profile corresponding to these two
cases is summarized in the following two theorems.

Theorem 2. Assume the case that none of the workload
constraints are active, i.e.

0 < (C3T̄out + C4(D∗))i < Di
max ∀i ∈ {1, · · · , n}.

The solution to (24) and the optimal solution for the optimiza-
tion problem (19) is then given by

µ̄+ = µ̄− = 0, µ̄ = C1 � 0, T̄out = Tsafe. (26)

Proof. Because all the inequality constraints regarding the
workload are inactive we have that both C3T̄out + C4(D∗) −
Dmax ≺ 0, and −C3T̄out − C4(D∗) ≺ 0. Then from
(24d) and (24e) we have that µ̄+ = µ̄− = 0. From (24a) it
follows that µ̄ = C1 � 0 such that from (24f) we conclude
that T̄out = Tsafe.

Theorem 3. In the case that a part of the workload constraints
are active, i.e.

(C3T̄out + C4(D∗))i = Di
max ∀i ∈ {1, · · · , k},

0 < (C3T̄out + C4(D∗))i < Di
max ∀i ∈ {k + 1, · · · , n},

the solution of (24) is as follows:

(i) For the racks at the constraint boundary, i ∈ {1, · · · , k}:

µ̄i− = 0,
Ci1 +

∑k
j=1,j 6=i µ̄

j
+

∣∣∣Cji3

∣∣∣
Cii3

≥ µ̄i+ ≥ 0, (27)

µ̄i = Ci1 +

k∑
j=1,j 6=i

µ̄j+

∣∣∣Cji3

∣∣∣− µ̄i+Cii3 ≥ 0, (28)

T̄ iout =
Di

max − Ci4(D∗)

Cii3
+

n∑
j=k+1

∣∣∣Cij3 ∣∣∣
Cii3

T jsafe

+

k∑
j=1,j 6=i

∣∣∣Cij3 ∣∣∣
Cii3

T̄ jout

≤ T isafe. (29)

(ii) For the racks that are not at the constraint boundary,
i ∈ {k + 1, · · · , n}:

µ̄i− = µ̄i+ = 0, (30)

µ̄i = Ci1 +

k∑
j=1

µ̄j+

∣∣∣Cji3

∣∣∣ > 0, (31)

T̄ iout = T isafe. (32)

�

Before we can prove Theorem 3 we need to know more
about the structure of C3.

Property 1. Consider C3 as defined in Lemma 3. The off-
diagonal terms of this matrix are strictly negative and the
diagonal terms are strictly positive.

Proof. The proof can be found in Appendix A.

Proof of Theorem 3. Because part of the workload constraints
are at the constraint boundary, the analysis following from the
Lagrange multipliers is more involved. First we can say that

µ̄i− = 0 ∀i,
µ̄i+ = 0 ∀i ∈ {k + 1, · · · , n},
µ̄i+ ≥ 0 ∀i ∈ {1, · · · , k}.

Then from (24a)

µ̄i = Ci1 −
k∑
j=1

µ̄j+C
ji
3 . (33)

From Property 1 we have that the off-diagonal elements of C3

are strictly negative. For racks i ∈ {k+1, · · · , n} we have that
the Cji3 elements in (33) will always be off-diagonal elements.
Therefore rewriting (33) gives

µ̄i = Ci1 +

k∑
j=1

µ̄j+

∣∣∣Cji3

∣∣∣ > 0 ∀i ∈ {k + 1, · · · , n}, (34)

then from (24f) it holds that

T̄ iout = T isafe ∀i ∈ {k + 1, · · · , n}. (35)
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For racks i ∈ {1, · · · , k} (33) is given by

µ̄i = Ci1 +

k∑
j=1,j 6=i

µ̄j+

∣∣∣Cji3

∣∣∣− µ̄i+Cii3 ≥ 0. (36)

For (36) to hold, it should hold that

Ci1 +
∑k
j=1,j 6=i µ̄

j
+

∣∣∣Cji3

∣∣∣
Cii3

≥ µ̄i+ ∀i ∈ {1, · · · , k}. (37)

As the left hand side of (37) is strictly positive for all
i ∈ {1, · · · , k}, it is possible to find feasible µ̄i+ ≥ 0 such that
µ̄i ≥ 0 for all i. It can be shown that T̄ iout for all i ∈ {1, · · · k}
is given as

T̄ iout =
Di

max − Ci4(D∗)

Cii3
+

n∑
j=k+1

∣∣∣Cij3 ∣∣∣
Cii3

T jsafe

+

k∑
j=1,j 6=i

∣∣∣Cij3 ∣∣∣
Cii3

T̄ jout

≤ T isafe. (38)

Remark 2. One cannot freely choose the k racks for which
Di = Di

max. Whether or not a rack is processing its maximum
capacity depends on the data center parameters, i.e. small
amount of recirculated air at the input of the rack and low
power consumption of the computational equipment. For these
racks it holds that

T̄ iout ≤ T isafe ∀i ∈ {1, · · · , k}.

V. TEMPERATURE BASED JOB SCHEDULING CONTROL

As established in Section IV it is possible to calculate the
optimal solution under the assumption that the total workload
at time t, D∗ is known. However it might not always be
possible to obtain this quantity. For example when jobs arrive
in the data center in some cases it might be hard to assess
how much resources these jobs need. Consider the case where
a virtual machine is requested by a user. Usually a certain
amount of resources are allocated to this virtual machine,
however the user need not use all the available resources all the
time. In those situation it is hard to obtain the real workload. In
this section we design a controller that is still able to achieve
the control goals defined in (13)-(15) under the assumption
that 0 ≺ D ≺ Dmax. From Theorem 2 we see that in this
case the optimal solution is always T̄out = Tsafe, independent
of the way the jobs are distributed. Since most data centers
are designed to have overcapacity usually the computational
bounds of the racks will not be reached and this assumption
is valid in those setups.

A. Controller design

We will now design the control inputs for the workload
distribution, D, and the supply temperature of the CRAC unit,
Tsup while the total workload D∗ is unknown. Furthermore
the controllers only have access to the measurement of the

output temperature of the air at the outlet of each rack, Tout.
In other words we design temperature feedback algorithms
to dynamically adjust D and Tsup such that control objectives
(13)-(15) are achieved. The proposed controllers for the supply
temperature and the workload distribution are given by

Ṫsup = 1TATZ(Tout − Tsafe), (39)

Ḋ = (
11T

n
− In)BTZ(Tout − Tsafe), (40)

where A is Hurwitz, see Appendix B for the proof of this
property. Since A is Hurwitz we can find a positive definite
matrix Z such that

ATZ + ZA = −2In, (41)

and B is
B = M−1W,

where W is defined Subsection II-B, and A and M are defined
in Subsection II-C. The controllers (39) and (40) depend only
on the output temperature and the system parameters and
will continue to vary until the output temperature reaches the
safe temperature, which is in line with the control objectives.
Intuitively the workload controller will shift jobs between
racks based on the temperature deviation until the data center
has reached the optimal state. In the results below we discuss
the convergence behavior of the controllers in a time frame
where the total workload, D∗, is assumed to be constant.

Theorem 4. Let the data center consist of homogeneous racks,
i.e. vi = v, and wi = w for all i in (2), and assume D∗ is
constant and 1TD(0) = D∗. Then the solution of system (8)
with controllers (39) and (40) is bounded and converges to the
optimal solution of the optimal problem defined in (17) and
therefore satisfies control objectives (13)-(15).

Proof. For ease of notation we introduce incremental variables
to denote deviations from optimal values

T̃out = Tout − T̄out,

T̃sup = Tsup − T̄sup,

D̃ = D − D̄,

where T̄out = Tsafe, T̄sup as in (21) and D̄ defined as the right-
hand side of (22). With these definitions system (8) can be
rewritten as

˙̃Tout = AT̃out −A1T̃sup +BD̃, (42)

where A and B are as before

A = ρcpM
−1(ΓT − In)F,

B = M−1W.

Define the incremental storage functions as

Ξ1(T̃sup) =
1

2

∥∥∥T̃sup

∥∥∥2

, (43)

Ξ2(D̃) =
1

2

∥∥∥D̃∥∥∥2

. (44)
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The storage functions satisfy

Ξ̇1(T̃sup, T̃out) = T̃TsupṪsup

= T̃Tsup1TATZT̃out, (45)

and

Ξ̇2(D̃, T̃out) = D̃T Ḋ

= D̃T (
11T

n
− In)BTZT̃out (46)

= D̃T 11T

n
BTZT̃out − D̃TBTZT̃out. (47)

Note that 1TD(t) = D∗ is satisfied for all t ≥ 0. In fact,
first we notice that 1T Ḋ = 0 at all times t ≥ 0. Hence if
1TD(0) = D∗ then 1TD(t) = D∗ for all t ≥ 0. With this we
see that D̃T1 = (D − D̄)T1 = D∗ −D∗ = 0 such that (47)
is reduced to

Ξ̇2(D̃, T̃out) = −D̃TBTZT̃out. (48)

Now consider the following Lyapunov function V (T̃out) =
1
2 T̃

T
outZT̃out, where Z is defined in (41). Then V (T̃out) satisfies

V̇ (T̃out) = −
∥∥∥T̃out

∥∥∥2

− T̃Tsup1TATZT̃out + D̃TBTZT̃out. (49)

Hence, the total Lyapunov function Ξ1 + Ξ2 + V satisfies

V̇ (T̃out)+Ξ̇1(T̃sup, T̃out)+Ξ̇2(D̃, T̃out) = −
∥∥∥T̃out

∥∥∥2

≤ 0. (50)

Since Ξ1 +Ξ2 +V is radially unbounded, (50) implies bound-
edness of the solutions. Using LaSalle’s invariance principle
this result implies that every solution to the closed loop system
initialized as 1TD(0) = D∗ converges to the largest invariant
set where T̃out = 0. Next we show that D̃ and T̃sup are zero
on this invariant set. Because T̃out is zero, (42) reduces to

0 = −A1T̃sup +BD̃. (51)

Pre-multiplying this by 1TB−1 we get

−1T D̃ = 0 = −1TB−1A1T̃sup, (52)

and since
− 1TB−1A1 > 0, (53)

we obtain that T̃sup = 0. To understand why (53) holds
true, observe that A1 has all entries strictly negative, as it
is immediately deduced from (63) and (64) in Appendix B.
Now the inequality easily follows.

With T̃sup = 0 and with B non-singular it follows from
(51) that D̃ = 0. Hence, the largest invariant set to which the
solutions converge is the singleton (T̃out, T̃sup, D̃) = (0, 0,0).
Therefore we conclude that system (42) with controllers (39)
and (40) satisfies control objectives (13)-(15), and the state and
the inputs of the system converge to the optimal solution.

The proposed controller for the workload rebalances the
workload currently present in the data center. The initial
scheduling is assumed to be taken care of by an external
entity over which we have no control. This approach is most
applicable in cases where the initial scheduling is done in a
non-controllable way, e.g. when the scheduling is hard-coded
and incoming jobs are scheduled by means of chassis numbers.
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Fig. 2. Synthetic workload trace supplied to data center. The workload
varies ±10% about two nominal values, representing nighttime and daytime
operation levels. The total workload changes every 7.5 minutes during which
the workload is assumed to be constant.

In these situations the only option available is to move jobs
around to drive the data center to the the optimal state.

The above result shows guaranteed asymptotic tracking of
constant reference signals. However in practice, the controller
can handle variations in setpoints, provided that the setpoints
change sufficiently slow. In the next section we will study the
behavior of our controller under varying setpoints in a real
data center context.

VI. CASE STUDY

To evaluate the performance of the proposed controller, we
use Matlab to simulate the closed loop system with a synthetic
workload trace. For both the data center parameters and the
workload trace we use the data presented in [13]. The data
center parameters were obtained from measurements by Vasic
et al. at the IBM Zurich Research Laboratory. This data is to
our best knowledge the most extensive characterization of the
heat recirculation parameters of a data center.

A. Data center parameters

The simulated data center consists of 30 homogeneous
server racks, i.e. the power consumption characteristics, the
safe temperature threshold and physical parameters are iden-
tical for all 30 racks. The rack model is a Dell PowerEdge
1855, with 10 dual-processor blade servers, i.e. a total of 20
CPU units per rack. The power consumption of the racks
is modeled by Pi(t) = 1728 + 145.5Di(t) [12]. The
safe threshold temperature is set at 30◦C. We supply a
synthetic workload trace to the data center, see Fig. 2. The
workload trace is constructed by varying the total workload
by ±10% about two nominal values, 40% and 60% of the
total data center capacity, representing nighttime and daytime
operation levels respectively. The total workload is a piecewise
constant function which changes value every 7.5 minutes. Each
time the total workload changes new work is added by or
released to an external entity over which we assume to have
no control. After this update has taken place we observe the
change in temperature from the desired temperature profile.
When (Tout− T̄out) starts deviating from 0 the controllers will
act to respond to the changing conditions.
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Fig. 3. Plot of the response of (Tout − T̄out) during the simulation for 4
selected racks. The full simulation is shown in the inset and the main plot
is a magnification of the response after a change in total workload around
t = 10 hours. Each time the total workload changes, the temperature of the
racks start to deviate from the optimal value and the controllers drive the data
center to the new optimal solution, (Tout − T̄out) = 0 again. The oscillatory
response of the output temperature coincides with the response of the supply
temperature controller. Over the whole simulation the temperature is kept in
a bandwidth of ±0.5 ◦C around the target temperature distribution.
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Fig. 4. Plot of the response of (Tsup − T̄sup) during the simulation for 4
selected racks. The full simulation is shown in the inset and the main plot
is a magnification of the response after a change in total workload around
t = 10 hours. The controller successfully drives the system to the new
optimal value under varying total workload. The initial overshoot depends
on the change of the total workload, i.e. the difference between the optimal
supply temperatures in the two intervals. The oscillatory response results in
an oscillatory fluctuation in the output temperature profile.

In Fig. 3, Fig. 4 and Fig. 5 the responses of (Tout − T̄out),
(Tsup − T̄sup) and (D − D̄) respectively for 4 selected racks
are shown. To investigate the performance of the controllers
we calculated the optimal values for the variables offline
and used those to plot the incremental variables. The initial
overshoots the Figures depend on the change in total workload
between intervals. The larger the change, the larger this initial
overshoot will be. We observe different behavior for the two
controllers. The controller for the supply temperature results
in very oscillatory behavior for the supply temperature which
in turn results in a fluctuating output temperature profile. The
controller for the workload division however shows a much
smoother response and more gradually steers the workload dis-
tribution to the optimal distribution. Every time the workload
changes the controllers drive the system back to the optimal
value in approximately 0.01 hour = 36 seconds.

In Fig. 6 the response of (Tout− T̄out) is shown for a larger
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Fig. 5. Plot of the response of (D− D̄) during the simulation for 4 selected
racks. The full simulation is shown in the inset and the main plot is a
magnification of the response after a change in total workload around t = 10
hours. As above the controller drives the system to the optimal value each
time the total workload changes. When the total workload changes, an external
entity adds or subtracts work from the racks in a non-optimal way which
causes an initial overshoot. The controller redistributes the work again to the
new optimal workload distribution.
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Fig. 6. Plot of the response of (Tout−T̄out) during the simulation for 4 selected
racks. The full simulation is shown in the inset and the main plot shows
the temperature response over a larger time interval which covers multiple
changes in total workload. The fast response of the controllers is clearly
visible here and we see that, after a very short transient, the controllers steer
the temperature of the servers back to the optimal value.

time interval. In this time interval the total workload changes
multiple times and it is seen how, after a very short transient,
the controllers steer the temperature of the servers back to the
optimal value. This shows that our controllers can cope with
variations in total workload.

Although this is a very quick response it is not likely
that this convergence time will be attained in practice. In the
simulation the cooled air of the CRAC instantly reaches the
racks, whereas in a real data center it will take some time for
the air to travel from the CRAC to the racks. On the contrary
the workload division happens on a much shorter timescale,
therefore we expect that in practice the output temperature will
first increase, as new work is assigned to the rack, and after
a certain delay the cooling will start to kick in to drive the
temperature profile back to the setpoint.

The supplied workload simulated a day and night cycle
to study the response of the controller under large varying
loads. From the results we see no difficulty for the controller
to handle these different conditions. We conclude that the
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controller is able to keep the temperature of the racks around
the target setpoint under all load conditions.

VII. CONCLUSIONS AND FUTURE WORK

Many papers on thermal-aware job scheduling have studied
the topic from a practical perspective, however a theoretical
analysis has less often been done. In this work we describe
data centers and corresponding thermodynamics in a control
theoretical fashion combining optimization theory with con-
troller design.

We have studied the minimization of energy consumption
in a data center where recirculation of airflow is present,
i.e. inefficiencies in cooling of the racks, through thermal-
aware job scheduling and cooling control. We have set up an
optimization problem and characterized the optimal workload
distribution and cooling temperature to achieve minimum
energy consumption while ensuring job processing and thermal
threshold satisfaction. In addition we have presented con-
trollers that track a reference signal and are able to drive the
control and state variables to the optimal values. Furthermore
simulations show that the controllers can work with varying
workload conditions as the convergence time of the controllers
is significantly faster than the frequency of the workload
variation.

We have shown that it is possible to uniquely determine the
optimal cooling supply temperature and workload distribution
as a function of the total workload and desired temperature
distribution of the racks in the data center. Furthermore we
have shown that the optimal temperature distribution can be
analytically calculated and that this distribution is independent
of the workload distribution if none of the racks reaches its
computational capacity.

With the assumption that none of the racks is at its com-
putational capacity we have designed controllers that control
the supply temperature and workload distribution to drive the
data center to the optimal state.

There are several directions in which we want to extend our
research. First we want to extend the framework to include
situations where the optimal temperature distribution changes
due to racks reaching their computational capacity. This will
allow us to include server consolidation where the number of
active racks is decreased to further reduce energy consumption.
In these situations it is inevitable that the computational
capacity of some of the racks is reached and that varying
optimal temperature distributions will have to be addressed.

Our control approach requires knowledge of the thermal
characteristics of the data center. Studying the robustness
and stability of our approach under small variations of the
heat recirculation matrix is therefore of importance. Lastly
it would be interesting to study the possibility of allowing
multiple CRAC units with different set points, or including
other variables in the optimization problem, such as Service
Level Agreements and response times of the jobs.

APPENDIX A
PROOF OF PROPERTY 1

From Lemma 3 we have that

C3 = −W−1MA(In − 1CT1 ),

where

CT1 =
1TW−1MA

1TW−1MA1
.

Defining a temporary variable α = W−1MA we can write
C3 as

C3 = −α+
1

1Tα1
α11Tα.

The ij-th component of C3 is then given by

Cij3 = −αij +

∑n
l=1 αil

∑n
k=1 αkj∑n

l=1

∑n
k=1 αlk

. (54)

From the definition of α we find that the ij-th component
of α is given by

αij = cpρ
1

wi
(γji − δji)fj , (55)

where δji is the Kronecker delta, which is 1 if i = j and 0
otherwise. To simplify the mathematics a little from now on,
we assume that the data center consists of homogeneous racks,
see (18). Combining (55) with (54) we have

Cij3 =− cpρ
1

w

(
(γji − δji)fj

+
(fi −

∑n
l=1 γlifl) (fj −

∑n
k=1 γjkfj)∑n

l=1 (fl −
∑n
k=1 γklfk)

)
. (56)

Although the big fraction in (56) looks a bit daunting it is
actually easy to conceptually understand it. The airflow at the
inlet of the rack consists of two parts, air coming from the
CRAC unit and air recirculating from other racks to the rack
in question. At the outlet of the rack the airflow is composed of
the air going back to the CRAC unit and the air recirculating
from the rack in question to all the other racks. Looking closer
at the numerator of (56) we see that the first half is the air
flowing from the CRAC unit to rack i, and the second half is
the air flowing from rack j to the CRAC unit. The denominator
is the sum of the airflow each rack receives from the CRAC
unit which is equal to the supplied airflow, fsup. In this way
we can simplify (56) to

Cij3 = −cpρ
1

w

(
(γji− δji)fj +

f(CRAC to i)f(j to CRAC)

fsup

)
. (57)

Now in the case that i 6= j, (57) is reduced to

Cij3 = −cpρ
1

w︸ ︷︷ ︸
<0

(
γjifj︸ ︷︷ ︸
>0

+
f(CRAC to i)f(j to CRAC)

fsup︸ ︷︷ ︸
>0

)
< 0. (58)

Here we see that the off-diagonal terms of C3 are strictly
negative.

As for the diagonal terms, i = j, we have

Cii3 = cpρ
1

w

(
(1− γii)fi −

f(CRAC to i)f(i to CRAC)

fsup

)
. (59)

Since

(1− γii)fi = fi −
n∑
l=1

γlifl︸ ︷︷ ︸
f(CRAC to i)

+

n∑
l=1,l 6=i

γlifl, (60)
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we have that

Cii3 = cpρ
1

w︸ ︷︷ ︸
>0

( n∑
l=1,l 6=i

γlifl︸ ︷︷ ︸
>0

+ f(CRAC to i)︸ ︷︷ ︸
>0

(
1− f(i to CRAC)

fsup︸ ︷︷ ︸
>0

))
> 0. (61)

In (61) we see that the diagonal terms of C3 are strictly
positive. This concludes the proof. �

APPENDIX B
PROOF OF HURWITZ PROPERTY OF MATRIX A

Matrix A as defined in Subsection II-C is given by

A = ρcpM
−1(ΓT − In)F. (62)

Writing the matrix out in full gives

A = ρ


γ11−1
m1

f1
γ21
m1
f2 · · · γn1

m1
fn

...
. . .

...
...

. . .
...

γ1n
mn

f1
γ2n
mn

f2 · · · γnn−1
mn

fn

 . (63)

If we can show that matrix A is strictly diagonal dominant
and that the diagonal elements are negative then by the
Gerschgorin circle theorem we have shown that matrix A is
Hurwitz.

First we will prove strict diagonal dominance of matrix A.
As stated in Appendix A, the airflow in a rack consists of two
parts, the recirculated air from the other racks and the supplied
air by the CRAC, namely

fi = γiifi +

n∑
j=1,j 6=i

γjifj + f isup.

Hence,

(γii − 1)fi = −
n∑

j=1,j 6=i

γjifj − f isup

< −
n∑

j=1,j 6=i

γjifj ,

(64)

from which

|(γii − 1)fi| >

∣∣∣∣∣∣−
n∑

j=1,j 6=i

γjifj

∣∣∣∣∣∣ =

n∑
j=1,j 6=i

γjifj , (65)

because all γij are strictly between 0 and 1. Comparing (65)
with (63) and ignoring the mass, as the same mass appears in
every row i, we see that matrix A is strictly diagonal dominant.

Furthermore as γii is strictly between 0 and 1, we have
that all the diagonal elements of A are strictly negative. By
Gerschgorin circle theorem, all the eigenvalues of matrix A
are strictly negative and therefore the matrix is Hurwitz. �
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