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Abstract

Purpose

The widely known field ‘Radiomics’ aims to provide an extensive image based phenotyping

of e.g. tumors using a wide variety of feature values extracted from medical images. There-

fore, it is of utmost importance that feature values calculated by different institutes follow the

same feature definitions. For this purpose, the imaging biomarker standardization initiative

(IBSI) provides detailed mathematical feature descriptions, as well as (mathematical) test

phantoms and corresponding reference feature values. We present here an easy to use

radiomic feature calculator, RaCaT, which provides the calculation of a large number of

radiomic features for all kind of medical images which are in compliance with the standard.

Methods

The calculator is implemented in C++ and comes as a standalone executable. Therefore, it

can be easily integrated in any programming language, but can also be called from the com-

mand line. No programming skills are required to use the calculator. The software architec-

ture is highly modularized so that it is easily extendible. The user can also download the

source code, adapt it if needed and build the calculator from source. The calculated feature

values are compliant with the ones provided by the IBSI standard. Source code, example

files for the software configuration, and documentation can be found online on GitHub

(https://github.com/ellipfaehlerUMCG/RaCat).

Results

The comparison with the standard values shows that all calculated features as well as

image preprocessing steps, comply with the IBSI standard. The performance is also demon-

strated on clinical examples.
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Conclusions

The authors successfully implemented an easy to use Radiomics calculator that can be

called from any programming language or from the command line. Image preprocessing

and feature settings and calculations can be adjusted by the user.

Introduction

Features describing image texture contain valuable information about important image char-

acteristics and are applied in multiple disciplines. They can be used for object identification or

the definition of region of interests (ROI) in e.g. radar or satellite images [1,2]. In medical

images, textural information extracted from tumor regions has shown to provide valuable

information about prognosis, tumor staging, and treatment response [3–5].

For this purpose, a large amount of imaging biomarkers is extracted from the tumor region

and used for classification purposes. These feature values, also named radiomic features,

include besides second-order textural features, shape, first-order statistical, and intensity-his-

togram based features. Radiomic features are used to build machine learning models which

are e.g. used for prediction or classification [6,7]. However, until now, radiomic features are

not used for clinical decision making as there is a lack of standardization in the majority of the

steps in the radiomics pipeline.

One of these challenges is the lack of a standardized feature definition and calculation. Fea-

ture values reported by different institutions do not necessarily follow the same feature defini-

tion nor necessarily lead to identical results when used on the same images. This problem is

aimed to be solved by the image biomarker standardization initiative (IBSI) by providing

mathematical feature definitions and phantom data sets with corresponding feature values in

order to standardize feature definitions and calculations [8,9]. Several open-source software

packages, like LifeX, IBEX, CaPTK or CGITA, calculating radiomic features have been devel-

oped and published [10–14]. However, although this initiative is widely known, only few

radiomic feature calculators are also standardizing the image preprocessing part of the radio-

mic pipeline, which is essential for feature calculations. Furthermore, in the majority of the

software packages not all defined features are implemented.

In order to provide a feature calculator that comes with the correct feature implementation

of all features defined by the IBSI standard, we developed a Radiomics calculator tool, RaCaT,

that is easy to use and does not require any programming skills. We compare the feature values

obtained by RaCaT with the feature values reported by IBSI. Moreover, some known feature

values were extracted from phantom images and compared with the expected values.

Materials and methods

Description of the radiomics calculator

Radiomics Calculator, RaCaT, calculates and returns a wide range of radiomic features for all

kind of medical images. It is a standalone executable written in C++ that can be called from

the command line but also from any programming language. It loads and preprocesses an

input image and the corresponding mask, it calculates radiomic feature values and stores them

in a user-defined output file. Furthermore, it stores the used preprocessing and feature calcula-

tion information in a separate file so that the user can easily track which settings were used for

feature calculation. The workflow of RaCaT is illustrated in Fig 1.

Radiomics calculator

PLOS ONE | https://doi.org/10.1371/journal.pone.0212223 February 20, 2019 2 / 26

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0212223


Installation/Compiling the calculator

In order to use RaCaT, visual C++ x86 has to be installed. The calculator is available in two

ways: First, it can be downloaded as an executable that does not require any other library. The

executable is available for Windows 32 and 64 bit and all Linux systems. Second, the source

Fig 1. Workflow of RaCaT. All tasks marked with a � are optional and can be selected by the user.

https://doi.org/10.1371/journal.pone.0212223.g001
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code of RaCaT is available and can be downloaded, modified if required, and be built from

source. A precise description of the building process and which requirements have to be met

can be found on GitHub (https://github.com/ellipfaehlerUMCG/RaCat).

Implementation of the calculator

The implementation of RaCaT is highly modularized and therefore easily extendable. It con-

sists of two basic classes and several feature group classes. The basic classes are used for reading

and storing the information which is later passed to the feature group classes: One basic class

reads and stores the parameters given in configuration files, necessary for image preprocessing,

while the second class reads and preprocesses image and mask and stores the important image

characteristics. All image preprocessing steps are implemented using the library Insight

Toolkit (ITK) [13]. The following steps are implemented:

1. Image interpolation:

The user can choose if the image should be interpolated using 3D or a slice-by-slice 2D

interpolation. For both options, the image can be up or down sampled or it can be interpo-

lated to isotropic voxels with 2 mm voxel size. The required interpolation algorithm can be

set by the user (possibilities: trilinear, cubic spline or nearest neighbor interpolation).

2. Image discretization:

Before the calculation of textural features, the image is usually discretized. Two discretiza-

tion methods are implemented: a discretization with a fixed number of bins and a discreti-

zation with a fixed bin width. The number of bins as well as the bin width can be set by the

user. Furthermore, the option to discretize the feature group intensity volume histogram

separately is implemented.

3. Re-segmentation:

In order to only include intensity values of a certain range in the volume-of-interest (VOI),

the user can set a maximum and minimum intensity value that should be included in the

VOI. Furthermore, RaCaT also supports the option to exclude outlier intensities of the VOI.

Every feature group is realized with a separate class. If classes share feature calculations, the

classes inherit from each other, but every feature group is independent and can be calculated

separately. Every feature is calculated with a separate function. Therefore, additional feature

calculations can be added easily. RaCaT is published under the BSD 3-Clause “New” or

“Revised” License, what means that users do not have to submit their changes to the RaCaT

repository, but that they have to mention the copyright of RaCaT when redistributing the

code. Fig 2 displays as an example the implementation of the NGTDM feature class. The attri-

butes of the class are the NGTDM features. For each of these features, a separate function is

implemented assigning the feature value to the attribute. Furthermore, the class contains one

separate method for the calculation of the NGTD matrix, as well as functions to fill and store

the output files. All NGTDM feature groups inherit attributes and feature calculation functions

from this class. While every NGTDM feature group calculates a different NGTD matrix and

has separate functions to fill and write the output files. All other textural feature classes are

implemented in the same way. A more detailed documentation of the code is available on

GitHub.

Documentation

The documentation is split in two parts: One part is written for users who are only interested

in the use of the calculator. The second part explains more detailed the programming steps,

Radiomics calculator
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lists classes and functions, and explains the heritages of the feature classes. Additionally, the

code contains more comments which are not visible in the documentation.

Usage of the calculator

In order to run RaCaT, some essential files have to be provided to the software which are

described in more detail below. The locations of these files have to be given as parameter to the

Fig 2. Organization of the class NGTDM features. The class has as attributes some basic values needed for the

calculation of NGTDM features, as well as every NGTDM feature. The functions include the function to create the

NGTD matrix, functions that fill and create the output file, and for every feature a function that calculates the feature.

https://doi.org/10.1371/journal.pone.0212223.g002
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executable, accompanied by specific abbreviations. All required files including the abbrevia-

tions are listed in Table 1.

Fig 3 illustrates the steps which have to be performed before the feature calculation starts:

• First, a configuration file has to be modified: here the desired preprocessing steps can be

specified. If the same preprocessing steps are used for several images, the configuration file

can be reused and has to be changed only once in the beginning.

Table 1. Files required by RaCaT including their abbreviations that have to be given to the executable.

Abbreviation Parameter

- -ini C:/RadiomicsTool/config.ini Path to configuration file, where preprocessing steps and settings can be set

—img C:/RadiomicsTool/image.nii Path to image file. Image can be any filename If the image is in DICOM format, every image series should be

stored in a separate folder. The path of this folder has to be given as parameter.

—voi if voi is not RT

struct

C:/RadiomicsTool/voi.nii Path to VOI. VOI can be any file name. If VOI is in DICOM format, path to folder containing the dicom series

has to be given

—rts if voi is RT

struct

C:/RadiomicsTool/RS_image.

dcm

Path to VOI, if VOI is RT struct. RS_image can be any filename.

—out C:/RadiomicsTool/output Path to desired output. The output file is generated automatically and ‘.csv’ is automatically added to the

name. If the file already exists, date and time of the calculations are added to the original name and the feature

values are saved under this new name.

—pat C:/RadiomicsTool/patientInfo.

ini

Only for PET images: path to patient info file, containing necessary patient demographics and scan

information required for SUV scaling. The user should generate and populate this file.

—fod C:/RadiomicsTool/

featuredefinition.ini

Optional: path to featuredefinition.ini, where the user can specify which feature groups should be calculated

https://doi.org/10.1371/journal.pone.0212223.t001

Fig 3. Necessary steps for running the executable.

https://doi.org/10.1371/journal.pone.0212223.g003
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• Second, if the input image is a PET image, also a patient information file has to be provided.

This patient information file contains all important parameters regarding patient demo-

graphics and PET study information required to apply scaling of image intensities (activity

concentration in Bq/mL) to SUV.

• Third, the user can optionally select only certain features for calculation. He can do this by

adapting a feature output definition file.

Examples of frequently used configuration and feature output definition files as well as a

patient information file can be found on GitHub. Furthermore, example commands how to

call the executable with different image types can be found in the supplemental (S1 Fig).

Feature calculation

RaCaT contains ten feature groups: morphological features providing information about

tumor shape, a group of first-order statistical features, statistical intensity histogram features,

intensity volume features and local intensity features. Furthermore, the following textural fea-

ture groups are implemented: grey-level co-occurrence matrices (GLCM) [14], grey-level run-

length matrices (GLRLM) [15], grey-level size zone matrices (GLSZM) [16], grey-level distance

zone matrices (GLDZM) [17], neighborhood-grey-tone difference matrices (NGTDM) [2] and

neighborhood-grey-level dependence matrices (NGLDM) [18] (see Table 2). First-order, mor-

phological and local intensity features are calculated before discretization. All other feature

groups are calculated after image discretization. All textural features can be calculated slice by

slice (2D) and by including the whole volume (3D). For both dimensions, different ways to

merge texture matrices and features are implemented. This includes the following options:

• For each 2D directional matrix, features are calculated and then averaged over the 2D direc-

tions and slices

• 2D directional matrices are first merged per slice, then features are extracted from this

matrix

• The 2D directional matrices are merged per direction and then the average of each direction

matrix is calculated. From this matrix, features are extracted.

• Before feature calculation, all 2D directional matrices are merged.

• Features are extracted from each 3D directional matrix. These features are averaged over

directions.

Table 2. Implemented feature groups and corresponding abbreviations.

- Feature class Feature group Abbreviation

Morphological features

Statistical features

Intensity histogram features
Intensity histogram features IH

Intensity volume histogram features IVH

Textural features

Grey-level-co-occurrence matrix GLCM

Grey-level-run-length matrix GLRLM

Grey-level-size-zone matrix GLSZM

Grey-level-distance-zone matrix GLDZM

Neighborhood-grey-tone-difference matrix NGTDM

Neighborhood-grey-level-dependence matrix NGLDM

https://doi.org/10.1371/journal.pone.0212223.t002
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• Before feature calculation, all 3D directional matrices are merged.

Required input files

Image and VOI. An image and a corresponding image mask (or VOI) are required as

input for the calculator. Mask and image should be aligned and have the same dimensions.

The mask can either be provided as binary mask with any constant value marking the VOI

(usually 1) or the VOI can be marked by intensity values of a certain range. In this case, the

user can set the threshold value up to which percentage of the maximum value the voxels

should be included in the mask. This can be done by changing the parameter ThresholdFor-

VOI in the configuration file. Mask and image can be given in one of the following formats:

nrrd, nifti, DICOM, analyze, as well as raw data. The mask can also be given as a radiotherapy

(RT)-struct. If the mask is given as RT-struct, the command to call the executable is slightly

different from the call used for the other formats (see Table 1). If image or mask are in

DICOM format, it is important that every DICOM image series is stored in a separate folder.

The name of this folder has then given to the executable (compare also with the example com-

mands provided in the supplemental S1 Fig). In one run, RaCaT calculates the radiomic fea-

tures for one image and mask. It is not possible to calculate radiomic features for several

images at once. However, an example of a Python script, calling RaCaT for several images and

masks is available in GitHub material.

Configuration file. In a config.ini file, the user can select the preprocessing steps that are

performed before the feature calculation starts. An example for a config.ini file is displayed in

Fig 4. More examples of the config.ini file including the most common used preprocessing

steps, can be found in GitHub. If the user wants to calculate radiomic features for several bin

width or number of bins, a separate configuration file has to be created for every configuration.

As this can be time consuming, a python script how to create several configuration files with

different number of bins as well as a script calling the RaCaT executable several times with dif-

ferent configuration files is available.

Additional file for PET images. If the image is a PET image, the program converts the

intensity values from Bq/ml to SUV (Standardized Uptake Value) or SUL (Standardized

Uptake value normalized to lean body mass). Here fore, some patient characteristics (weight,

height, gender) as well as the net injected activity and injection time are required. Further-

more, the user has the possibility to set a scaling parameter. If this scaling parameter is set, all

other values are ignored and every image intensity value is simply multiplied with this scaling

parameter.

Feature output definition file. Furthermore, the user has the option to select only certain

feature groups he wants to include in the calculation. This can be done in a separate file called

featureOutputDefinition.ini. This is optional. The location of the feature output definition file

has to be given as parameter to the calculator. If no feature output definition file is given, all

available features are calculated. An example of a feature output definition file is displayed in

Fig 5.

Output files. The calculated feature values are stored with floating point precision in one

or more comma-separated-value (csv) files. The feature names which are listed in the output

files are the names proposed by the IBSI standard. To ease a further documentation, two addi-

tional output files are created: The first output is a copy of the used configuration file so that

the user can easily access which preprocessing steps were included in the feature calculation.

The second output file contains information about the input images and calculated feature

groups. The filenames of all output files are aligned so that the user can easily track which out-

put files are belonging to one calculation step.

Radiomics calculator

PLOS ONE | https://doi.org/10.1371/journal.pone.0212223 February 20, 2019 8 / 26

https://doi.org/10.1371/journal.pone.0212223


Testing

To ensure that the toolbox calculates values compliant with the standard, the calculated feature

values were compared with the IBSI standard. The initiative provides two phantoms that can be

used for comparison: one small, artificial mathematical phantom and a CT-image with a corre-

sponding RT-struct of the VOI. For the CT-image, several configurations with variations in dis-

cretization, resegmentation, and interpolation method are available for comparison. In order to

validate RaCaT, both phantoms have been used for comparison. The calculated feature values, as

well as the corresponding IBSI values are listed in supplemental S1 Table, S2 Table, and S3 Table.

For every feature value, IBSI provides tolerance levels depending on the used configuration. As

can be seen, almost all feature values are in the provided tolerance levels. Only for morphological

features, small deviations were found. Here, the volume differed from 0.2% - 1% from the volume

given by the IBSI standard, while the surface had a deviation from 2%-10%. Therefore, all mor-

phological features which are dependent of surface and volume also show slight deviations.

Therefore, morphological feature values were further compared with values obtained from

a phantom scan. For this purpose, a positron emission tomography combined with computed

tomography (PET/CT) scan of the NEMA image quality phantom was acquired on a Siemens

Biograph mCT64 (Siemens Healthcare, Knoxville, USA) (see Fig 6). The NEMA image quality

Fig 4. Example of configuration file. The user can set the required preprocessing steps, like e.g. re-segmentation by setting the

ReSegmentImage parameter from 0 to 1. Other parameters like the number of bind (NrBins) can also be set to any required value.

https://doi.org/10.1371/journal.pone.0212223.g004
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phantom consists of six spheres with diameters 37, 28, 21, 17, 13, and 10 mm which are placed

in a large background compartment. Spheres were filled with a fluorodeoxyglucose (FDG)

activity solution of 19.76 kBq/ml, while the background was filled with 1.94 kBq/ml, so that a

sphere-to-background ratio of around 10:1 was obtained. The image was reconstructed to a

voxel size of 3.1819 x 3.1819 x 2 mm using the vendor provided PSF+TOF reconstruction

method with three iterations and 21 subsets (PSFTOF 3i21s). The spheres were manually

delineated in the images by placing a sphere with the exact diameter on the right position in

the images. Consequently, the correct shape feature values are known and can be used for

comparison with the feature values calculated by RaCaT. The expected and calculated feature

values are listed in Table 3. The comparison showed that for the bigger spheres (diameter 37–

17 mm) the percentage deviation between calculated and expected shape feature values differs

from 1–10%, with 93.75% of the features showing a deviation less than 5% (see Table 3). For

the smaller spheres (13 mm and 10 mm), the deviation increased to 1–19%.

Application to clinical data

Moreover, radiomic features were extracted from two PET-images of cancer patients. Both

patients were scanned on a Siemens Biograph mCT64, and the images were iteratively

Fig 5. Example of feature output definition file. If a feature group should not be included in the calculations, the value for the corresponding

group has to be set to 0.

https://doi.org/10.1371/journal.pone.0212223.g005
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reconstructed using the PSF+TOF reconstruction method (PSF+TOF 3i21s) implemented in

the scanner and a post-reconstruction smoothing with a 6.5 mm full-width-at-half-maximum

Gaussian kernel. Images were reconstructed to a voxel size of 3.1819 mm x 3.1819 mm x 2

mm. Patient 1 was injected with 245 MBq 85 minutes before scan start, while patient 2 was

injected with 229 MBq 60 minutes before scan start. Maximum intensity projection images of

both patients are displayed in Fig 7. Tumors were manually delineated by an experienced radi-

ologist. All implemented features were calculated by RaCaT and are listed in Table 4. As can

be seen, feature values are changing as a function of the tumors.

Discussion

We developed a radiomics calculator that is easy to use and can be called from any program-

ming language. It includes the most frequently used preprocessing steps and complies with the

IBSI standards. It can handle several input image formats as well as different VOI types. The

created output files are organized in a way that eases further processing of the feature values.

In this way, the calculator can be included easily in any radiomics pipeline and the results can

be used for further analysis. Furthermore, all preprocessing steps are reported, so that a valid

documentation of the performed preprocessing steps can easily be extracted from the output

files.

Fig 6. PET Scan of the NEMA image quality phantom. The image quality phantom contains six spheres with different diameters. For

comparison, the spheres were segmented in the image and morphological features were calculated.

https://doi.org/10.1371/journal.pone.0212223.g006
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Table 3. Morphological features calculated by RaCaT, the expected value, and the percentage differences between these two values for the spheres of the NEMA

image quality phantom.

Tool Expected value Percentage difference (%)

Sphere1 Volume 25898.4 26521 2.35

Surface 4194.92 4300 2.44

maximum 3D diameter 36.7149 37 0.77

Sphericity 1.00912 1 0.91

Sphere2 Volume 11035.7 11494 3.99

Surface 2413.78 2463 2.00

maximum 3D diameter 0.993085 1 0.69

Sphericity 27.6493 28 1.25

Sphere3 Volume 5811.46 5575 4.24

Surface 1542.14 1521 1.39

maximum 3D diameter 1.01364 1 1.36

Sphericity 21.6559 22 1.56

Sphere4 Volume 2855.11 2572 11.01

Surface 952.166 907 4.98

maximum 3D diameter 1.02216 1 2.22

Sphericity 17.4926 18 2.82

Sphere5 Volume 951.702 1150 17.24

Surface 452.697 530 14.59

maximum 3D diameter 12.0414 12 0.34

Sphericity 1.03358 1 3.36

Sphere6 Volume 425 523 18.74

Surface 259 314 17.52

maximum 3D diameter 9 10 10.00

Sphericity 1.05 1 5.00

https://doi.org/10.1371/journal.pone.0212223.t003

Fig 7. Maximum intensity projection of Patient 1 (left) and patient 2 (right). The tumors used for feature calculation are marked in the images. Tumors were

manually segmented and used for computation of radiomic features.

https://doi.org/10.1371/journal.pone.0212223.g007
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Table 4. Radiomic features extracted from cancer patients.

Melanoma 2 Melanoma 3

Morphology Volume 132550 30353.2

Morphology approximate volume 132550 30353.2

Morphology Surface 18076.9 7522.4

Morphology Surface to volume ratio 0.136378 0.247829

Morphology Compactness1 0.0307693 0.026248

Morphology Compactness2 0.336386 0.244789

Morphology Spherical disproportion 1.43787 1.59858

Morphology sphericity 0.695472 0.625553

Morphology asphericity 0.437869 0.598578

Morphology center of mass shift 46.4677 57.5868

Morphology maximum 3D diameter 115.629 79.2605

Morphology major axis length 89.949 77.541

Morphology minor axis length 73.687 36.5853

Morphology least axis length 35.6244 21.6824

Morphology elongation 0.905101 0.686891

Morphology flatness 0.629326 0.528796

Morphology vol density AABB 0.223048 0.196102

Morphology area density AABB 0.424074 0.421014

Morphology vol density AEE 1.07213 0.942456

Morphology integrated intensity 2.15E+06 412930

Morphology Morans I 0.13243 0.086137

Morphology Gearys C 1.03999 0.943915

Local intensity local intensity peak 63966.5 30248

Local intensity global intensity peak 64101 32327.2

Statistics mean 16.2486 13.6041

Statistics variance 49.4711 11.0447

Statistics skewness 0.470834 0.420448

Statistics kurtosis -0.760356 -0.94058

Statistics median 15.1567 13.1035

Statistics minimum 6.12322 8.83092

Statistics 10th percentile 7.65485 9.54748

Statistics 90th percentile 25.898 18.4434

Statistics maximum 35.8524 21.5399

Statistics Interquartile range 11.4069 5.48123

Statistics range 29.7292 12.709

Statistics Mean absolut deviation 5.95899 2.8419

Statistics Robust mean absolute deviation 4.73687 2.33481

Statistics Median absolute deviation 5.90466 2.81521

Statistics Coefficient of variation 0.432873 0.24429

Statistics Quartile coefficient 0.359105 0.204447

Statistics Energy 2.05E+06 293981

Statistics Root mean 17.7056 14.0042

intensity volume volume at int fraction 10 0.758326 0.712475

intensity volume volume at int fraction 90 0.00824931 0.003336

intensity volume int at vol fraction 10 27.1232 19.8309

intensity volume int at vol fraction 90 8.12322 10.8309

intensity volume difference vol at int fraction 0.750076 0.709139

(Continued)
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Table 4. (Continued)

Melanoma 2 Melanoma 3

intensity volume difference int at volume fraction 19 9

Intensity histogram mean 40.9937 19.6191

Intensity histogram variance 791.594 176.755

Intensity histogram skewness 0.470703 0.421877

Intensity histogram kurtosis -0.761046 -0.94283

Intensity histogram median 37 18

Intensity histogram minimum 1 1

Intensity histogram 10th percentile 7 3

Intensity histogram 90th percentile 80 39

Intensity histogram maximum 119 51

Intensity histogram mode 2 1

Intensity histogram Interquartile range 45 22

Intensity histogram range 118 50

Intensity histogram Mean absolut deviation 23.8357 11.3695

Intensity histogram Robust mean absolute deviation 18.6017 9.22622

Intensity histogram Median absolut deviation 23.6195 11.2628

Intensity histogram Coefficient of variation 0.686331 0.677653

Intensity histogram Quartile coefficient 0.56962 0.578947

Intensity histogram Entropy 6.61231 5.49251

Intensity histogram Uniformity 0.0111764 0.024041

Intensity histogram Energy 1.62E+07 841933

Intensity histogram Maximum histogram gradient 14 8.5

Intensity histogram Maximum histogram gradient grey level 56 15

Intensity histogram Minimum histogram gradient -12 -19

Intensity histogram Minimum histogram gradient grey level 32 1

glcmFeatures2Davg joint maximum 0.0202253 0.061685

glcmFeatures2Davg joint average 40.4281 18.3173

glcmFeatures2Davg joint variance 551.638 104.981

glcmFeatures2Davg joint entropy 7.47154 5.15897

glcmFeatures2Davg difference average 13.6741 9.01583

glcmFeatures2Davg difference variance 112.914 39.6169

glcmFeatures2Davg difference entropy 4.61465 3.37

glcmFeatures2Davg sum average 80.8563 36.6345

glcmFeatures2Davg sum variance 1889.54 286.275

glcmFeatures2Davg sum entropy 5.9103 3.9222

glcmFeatures2Davg angular second moment 0.0114301 0.048791

glcmFeatures2Davg contrast 317.009 133.648

glcmFeatures2Davg dissimilarity 13.6741 9.01583

glcmFeatures2Davg inverse difference 0.156578 0.173049

glcmFeatures2Davg inverse difference normalised 0.903083 0.822705

glcmFeatures2Davg inverse difference moment 0.0856765 0.092541

glcmFeatures2Davg inverse difference moment normalised 0.979129 0.91682

glcmFeatures2Davg inverse variance 0.0922006 0.100673

glcmFeatures2Davg correlation 0.630216 0.239559

glcmFeatures2Davg autocorrelation 2215.83 442.887

glcmFeatures2Davg cluster tendency 1889.54 286.275

glcmFeatures2Davg cluster shade 14816.1 160.837

(Continued)
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Table 4. (Continued)

Melanoma 2 Melanoma 3

glcmFeatures2Davg cluster prominence 9.05E+06 244779

glcmFeatures2Davg first measure of information correlation -0.664322 -0.72547

glcmFeatures2Davg second measure of information correlation 0.998302 0.955912

glcmFeatures2DDmrg joint maximum 0.0011916 0.00301

glcmFeatures2DDmrg joint average 45.5856 22.8963

glcmFeatures2DDmrg joint variance 749.941 175.007

glcmFeatures2DDmrg joint entropy 12.0046 10.1074

glcmFeatures2DDmrg difference average 13.8464 10.4439

glcmFeatures2DDmrg difference variance 128.924 54.4645

glcmFeatures2DDmrg difference entropy 5.16868 4.67357

glcmFeatures2DDmrg sum average 91.1712 45.7926

glcmFeatures2DDmrg sum variance 2671.56 532.294

glcmFeatures2DDmrg sum entropy 7.5715 6.40143

glcmFeatures2DDmrg angular second moment 0.000292373 0.001045

glcmFeatures2DDmrg contrast 328.216 167.736

glcmFeatures2DDmrg dissimilarity 13.8464 10.4439

glcmFeatures2DDmrg inverse difference 0.154703 0.166918

glcmFeatures2DDmrg inverse difference normalised 0.902181 0.842111

glcmFeatures2DDmrg inverse difference moment 0.0829486 0.086833

glcmFeatures2DDmrg inverse difference moment normalised 0.978452 0.944593

glcmFeatures2DDmrg inverse variance 0.087643 0.091594

glcmFeatures2DDmrg correlation 0.781185 0.526972

glcmFeatures2DDmrg autocorrelation 2664.74 615.467

glcmFeatures2DDmrg cluster tendency 2671.55 532.294

glcmFeatures2DDmrg cluster shade 60986.8 2780.95

glcmFeatures2DDmrg cluster prominence 1.64E+07 588513

glcmFeatures2DDmrg first measure of information correlation -0.199431 -0.18583

glcmFeatures2DDmrg second measure of information correlation 0.962546 0.934605

glcmFeatures2Dmrg joint maximum 0.010219 0.028869

glcmFeatures2Dmrg joint average 40.3951 18.3675

glcmFeatures2Dmrg joint variance 552.561 105.171

glcmFeatures2Dmrg joint entropy 9.12932 6.81417

glcmFeatures2Dmrg difference average 13.5621 8.9456

glcmFeatures2Dmrg difference variance 119.146 42.6295

glcmFeatures2Dmrg difference entropy 4.97349 4.02724

glcmFeatures2Dmrg sum average 80.7901 36.7351

glcmFeatures2Dmrg sum variance 1897.84 290.538

glcmFeatures2Dmrg sum entropy 6.7243 5.02938

glcmFeatures2Dmrg angular second moment 0.00424268 0.018702

glcmFeatures2Dmrg contrast 312.403 130.146

glcmFeatures2Dmrg dissimilarity 13.5621 8.9456

glcmFeatures2Dmrg inverse difference 0.157532 0.17777

glcmFeatures2Dmrg inverse difference normalised 0.90378 0.836062

glcmFeatures2Dmrg inverse difference moment 0.0863837 0.095707

glcmFeatures2Dmrg inverse difference moment normalised 0.979421 0.930654

glcmFeatures2Dmrg inverse variance 0.0929435 0.105291

glcmFeatures2Dmrg correlation 0.636783 0.266349
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Table 4. (Continued)

Melanoma 2 Melanoma 3

glcmFeatures2Dmrg autocorrelation 2215.28 444.145

glcmFeatures2Dmrg cluster tendency 1897.84 290.538

glcmFeatures2Dmrg cluster shade 14138.1 112.888

glcmFeatures2Dmrg cluster prominence 9.13E+06 249776

glcmFeatures2Dmrg first measure of information correlation -0.361666 -0.31522

glcmFeatures2Dmrg second measure of information correlation 0.978974 0.92285

glcmFeatures2Dvmrg joint maximum 0.0010181 0.002227

glcmFeatures2Dvmrg joint average 45.551 22.8755

glcmFeatures2Dvmrg joint variance 750.815 174.593

glcmFeatures2Dvmrg joint entropy 12.4418 10.7059

glcmFeatures2Dvmrg difference average 13.7442 10.2998

glcmFeatures2Dvmrg difference variance 135.013 56.9565

glcmFeatures2Dvmrg difference entropy 5.22235 4.74088

glcmFeatures2Dvmrg sum average 91.1019 45.751

glcmFeatures2Dvmrg sum variance 2679.36 535.329

glcmFeatures2Dvmrg sum entropy 7.59971 6.45314

glcmFeatures2Dvmrg angular second moment 0.000219332 0.00069

glcmFeatures2Dvmrg contrast 323.917 163.041

glcmFeatures2Dvmrg dissimilarity 13.744 10.2998

glcmFeatures2Dvmrg inverse difference 0.155523 0.168325

glcmFeatures2Dvmrg inverse difference normalised 0.902821 0.843792

glcmFeatures2Dvmrg inverse difference moment 0.0835302 0.087826

glcmFeatures2Dvmrg inverse difference moment normalised 0.978729 0.945953

glcmFeatures2Dvmrg inverse variance 0.0882732 0.092581

glcmFeatures2Dvmrg correlation 0.784291 0.533079

glcmFeatures2Dvmrg autocorrelation 2663.74 616.36

glcmFeatures2Dvmrg cluster tendency 2679.35 535.329

glcmFeatures2Dvmrg cluster shade 60503.1 2787.42

glcmFeatures2Dvmrg cluster prominence 1.65E+07 592233

glcmFeatures2Dvmrg first measure of information correlation -0.134096 -0.07906

glcmFeatures2Dvmrg second measure of information correlation 0.912545 0.765345

glcmFeatures3Davg joint maximun 0.00127655 0.003497

glcmFeatures3Davg joint average 45.5488 22.8304

glcmFeatures3Davg joint variance 752.246 175.424

glcmFeatures3Davg joint entropy 11.9768 10.0788

glcmFeatures3Davg difference average 13.7407 10.2897

glcmFeatures3Davg difference variance 133.057 55.5321

glcmFeatures3Davg difference entropy 5.14368 4.65039

glcmFeatures3Davg sum average 91.0975 45.6608

glcmFeatures3Davg sum variance 2675.58 533.909

glcmFeatures3Davg sum entropy 7.57145 6.40178

glcmFeatures3Davg angular second moment 0.000302383 0.001075

glcmFeatures3Davg contrast 333.4 167.789

glcmFeatures3Davg dissimilarity 13.7407 10.2897

glcmFeatures3Davg inverse difference 0.159499 0.175979

glcmFeatures3Davg inverse difference normalised 0.903224 0.844849

glcmFeatures3Davg inverse difference moment 0.0870708 0.096589

(Continued)
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Table 4. (Continued)

Melanoma 2 Melanoma 3

glcmFeatures3Davg inverse difference moment normalised 0.978248 0.944981

glcmFeatures3Davg inverse variance 0.0900469 0.101335

glcmFeatures3Davg correlation 0.778516 0.528182

glcmFeatures3Davg autocorrelation 2661.41 613.059

glcmFeatures3Davg cluster tendency 2675.58 533.909

glcmFeatures3Davg cluster shade 60809.1 2814.04

glcmFeatures3Davg cluster prominence 1.65E+07 594057

glcmFeatures3Davg first measure of information correlation -0.203614 -0.1904

glcmFeatures3Davg second measure of information correlation 0.963043 0.936539

glcmFeatures3DWmrg joint maximun 0.00102245 0.001574

glcmFeatures3DWmrg joint average 45.5004 22.7831

glcmFeatures3DWmrg joint variance 753.414 175.218

glcmFeatures3DWmrg joint entropy 12.5416 10.8285

glcmFeatures3DWmrg difference average 13.5902 10.0637

glcmFeatures3DWmrg difference variance 142.512 59.9825

glcmFeatures3DWmrg difference entropy 5.22012 4.74307

glcmFeatures3DWmrg sum average 91.0008 45.5663

glcmFeatures3DWmrg sum variance 2686.45 539.612

glcmFeatures3DWmrg sum entropy 7.6062 6.46966

glcmFeatures3DWmrg angular second moment 0.000208636 0.000632

glcmFeatures3DWmrg contrast 327.204 161.26

glcmFeatures3DWmrg dissimilarity 13.5902 10.0637

glcmFeatures3DWmrg inverse difference 0.160884 0.179246

glcmFeatures3DWmrg inverse difference normalised 0.90416 0.847648

glcmFeatures3DWmrg inverse difference moment 0.0881152 0.099262

glcmFeatures3DWmrg inverse difference moment normalised 0.978639 0.94692

glcmFeatures3DWmrg inverse variance 0.0911324 0.103955

glcmFeatures3DWmrg correlation 0.782853 0.53983

glcmFeatures3DWmrg autocorrelation 2660.1 613.66

glcmFeatures3DWmrg cluster tendency 2686.45 539.612

glcmFeatures3DWmrg cluster shade 60150 2769.21

glcmFeatures3DWmrg cluster prominence 1.66E+07 601776

glcmFeatures3DWmrg first measure of information correlation -0.119212 -0.05671

glcmFeatures3DWmrg second measure of information correlation 0.892214 0.684467

GLRLMFeatures2Davg short run emphasis 0.982296 0.984213

GLRLMFeatures2Davg long runs emphasis 1.07575 1.06635

GLRLMFeatures2Davg Low grey level run emphasis 0.0324134 0.094494

GLRLMFeatures2Davg High grey level run emphasis 2054.96 419.531

GLRLMFeatures2Davg Short run low grey level emphasis 0.0317711 0.093822

GLRLMFeatures2Davg Short run high grey level emphasis 2004.49 410.815

GLRLMFeatures2Davg Long run low grey level emphasis 0.0351005 0.097206

GLRLMFeatures2Davg Long run high grey level emphasis 2272.94 456.173

GLRLMFeatures2Davg Grey level non uniformity 2.76352 1.91514

GLRLMFeatures2Davg Grey level non uniformity normalized 0.0311729 0.103436

GLRLMFeatures2Davg Run length non uniformity 138.548 36.1029

GLRLMFeatures2Davg Run length non uniformity normalized 0.955012 0.961134

GLRLMFeatures2Davg Run percentage 0.976466 0.979813
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Table 4. (Continued)

Melanoma 2 Melanoma 3

GLRLMFeatures2Davg Grey level variance 591.391 110.68

GLRLMFeatures2Davg Run length variance 0.0257278 0.021467

GLRLMFeatures2Davg Run entropy 5.65022 4.09108

GLRLMFeatures2DDmrg short run emphasis 0.982153 0.983986

GLRLMFeatures2DDmrg long runs emphasis 1.07741 1.06786

GLRLMFeatures2DDmrg Low grey level run emphasis 0.0255311 0.059194

GLRLMFeatures2DDmrg High grey level run emphasis 2446.26 557.77

GLRLMFeatures2DDmrg Short run low grey level emphasis 0.0250214 0.058634

GLRLMFeatures2DDmrg Short run high grey level emphasis 2383.49 545.847

GLRLMFeatures2DDmrg Long run low grey level emphasis 0.0277585 0.061457

GLRLMFeatures2DDmrg Long run high grey level emphasis 2717.29 607.536

GLRLMFeatures2DDmrg Grey level non uniformity 71.7374 35.4012

GLRLMFeatures2DDmrg Grey level non uniformity normalized 0.0112313 0.024136

GLRLMFeatures2DDmrg Run length non uniformity 6093.79 1406.16

GLRLMFeatures2DDmrg Run length non uniformity normalized 0.953998 0.958583

GLRLMFeatures2DDmrg Run percentage 0.975749 0.978486

GLRLMFeatures2DDmrg Grey level variance 785.802 175.835

GLRLMFeatures2DDmrg Run length variance 0.0269803 0.023212

GLRLMFeatures2DDmrg Run entropy 6.75124 5.6079

GLRLMFeatures2DWmrg short run emphasis 0.98251 0.984799

GLRLMFeatures2DWmrg long runs emphasis 1.07485 1.06385

GLRLMFeatures2DWmrg Low grey level run emphasis 0.0324121 0.094445

GLRLMFeatures2DWmrg High grey level run emphasis 2055.04 419.533

GLRLMFeatures2DWmrg Short run low grey level emphasis 0.0317799 0.093787

GLRLMFeatures2DWmrg Short run high grey level emphasis 2004.9 410.987

GLRLMFeatures2DWmrg Long run low grey level emphasis 0.0350563 0.097095

GLRLMFeatures2DWmrg Long run high grey level emphasis 2271.6 455.445

GLRLMFeatures2DWmrg Grey level non uniformity 10.9891 7.60756

GLRLMFeatures2DWmrg Grey level non uniformity normalized 0.0309069 0.102976

GLRLMFeatures2DWmrg Run length non uniformity 554.013 144.253

GLRLMFeatures2DWmrg Run length non uniformity normalized 0.954963 0.960947

GLRLMFeatures2DWmrg Run percentage 0.976466 0.979813

GLRLMFeatures2DWmrg Grey level variance 591.52 110.713

GLRLMFeatures2DWmrg Run length variance 0.0257427 0.021532

GLRLMFeatures2DWmrg Run entropy 5.71411 4.15618

GLRLMFeatures2Dvmrg short run emphasis 0.982176 0.98403

GLRLMFeatures2Dvmrg long runs emphasis 1.0773 1.06767

GLRLMFeatures2Dvmrg Low grey level run emphasis 0.0255327 0.059191

GLRLMFeatures2Dvmrg High grey level run emphasis 2446.26 557.776

GLRLMFeatures2Dvmrg Short run low grey level emphasis 0.0250246 0.058631

GLRLMFeatures2Dvmrg Short run high grey level emphasis 2383.55 545.883

GLRLMFeatures2Dvmrg Long run low grey level emphasis 0.0277521 0.061453

GLRLMFeatures2Dvmrg Long run high grey level emphasis 2717.04 607.414

GLRLMFeatures2Dvmrg Grey level non uniformity 286.882 141.544

GLRLMFeatures2Dvmrg Grey level non uniformity normalized 0.0112287 0.024126

GLRLMFeatures2Dvmrg Run length non uniformity 24373.8 5624.04

GLRLMFeatures2Dvmrg Run length non uniformity normalized 0.954002 0.958588
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Table 4. (Continued)

Melanoma 2 Melanoma 3

GLRLMFeatures2Dvmrg Run percentage 0.975749 0.978486

GLRLMFeatures2Dvmrg Grey level variance 2.01E+07 1.03E+06

GLRLMFeatures2Dvmrg Run length variance 689.218 136.164

GLRLMFeatures2Dvmrg Run entropy -201228 -40420

GLRLMFeatures3Davg short run emphasis 0.980412 0.981167

GLRLMFeatures3Davg long runs emphasis 1.08557 1.08249

GLRLMFeatures3Davg Low grey level run emphasis 0.0257903 0.05891

GLRLMFeatures3Davg High grey level run emphasis 2444.81 558.033

GLRLMFeatures3Davg Short run low grey level emphasis 0.0254143 0.057993

GLRLMFeatures3Davg Short run high grey level emphasis 2377.03 544.775

GLRLMFeatures3Davg Long run low grey level emphasis 0.0273925 0.062963

GLRLMFeatures3Davg Long run high grey level emphasis 2741.96 615.531

GLRLMFeatures3Davg Grey level non uniformity 71.5843 35.2249

GLRLMFeatures3Davg Grey level non uniformity normalized 0.0112336 0.024114

GLRLMFeatures3Davg Run length non uniformity 6053.15 1390.71

GLRLMFeatures3Davg Run length non uniformity normalized 0.949712 0.951732

GLRLMFeatures3Davg Run percentage 0.973478 0.974496

GLRLMFeatures3Davg Grey level variance 786.11 175.765

GLRLMFeatures3Davg Run length variance 0.0299645 0.028894

GLRLMFeatures3Davg Run entropy 6.76268 5.62812

GLRLMFeatures3Dmrg short run emphasis 0.980491 0.981291

GLRLMFeatures3Dmrg long runs emphasis 1.08516 1.08189

GLRLMFeatures3Dmrg Low grey level run emphasis 0.0257892 0.058913

GLRLMFeatures3Dmrg High grey level run emphasis 2444.9 558.061

GLRLMFeatures3Dmrg Short run low grey level emphasis 0.0254144 0.058007

GLRLMFeatures3Dmrg Short run high grey level emphasis 2377.37 544.889

GLRLMFeatures3Dmrg Long run low grey level emphasis 0.0273848 0.062922

GLRLMFeatures3Dmrg Long run high grey level emphasis 2740.75 615.11

GLRLMFeatures3Dmrg Grey level non uniformity 930.273 457.594

GLRLMFeatures3Dmrg Grey level non uniformity normalized 0.0112296 0.024097

GLRLMFeatures3Dmrg Run length non uniformity 78677.6 18074

GLRLMFeatures3Dmrg Run length non uniformity normalized 0.949743 0.951766

GLRLMFeatures3Dmrg Run percentage 0.973478 0.974496

GLRLMFeatures3Dmrg Grey level variance 786.146 175.777

GLRLMFeatures3Dmrg Run length variance 0.0299309 0.028857

GLRLMFeatures3Dmrg Run entropy 6.78179 5.66008

GLSZMFeatures2Davg small zone emphasis 0.933076 0.939815

GLSZMFeatures2Davg Large zone emphasis 1.34218 1.29124

GLSZMFeatures2Davg Low grey level zone emphasis 0.0320386 0.096903

GLSZMFeatures2Davg High grey level zone emphasis 1995.37 410.732

GLSZMFeatures2Davg Small zone low grey level emphasis 0.0294297 0.094436

GLSZMFeatures2Davg Small zone high grey level emphasis 1818.57 376.276

GLSZMFeatures2Davg Large zone low grey level emphasis 0.0438078 0.108737

GLSZMFeatures2Davg Large zone high grey level emphasis 2997.25 574.297

GLSZMFeatures2Davg Grey level non uniformity GLSZM 2.52354 1.7533

GLSZMFeatures2Davg Grey level non uniformity normalized GLSZM 0.0302619 0.102261

GLSZMFeatures2Davg Zone size non uniformity 114.018 30.1663
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Table 4. (Continued)

Melanoma 2 Melanoma 3

GLSZMFeatures2Davg Zone size non uniformity normalized 0.842786 0.860976

GLSZMFeatures2Davg Zone percentage GLSZM 0.909545 0.921198

GLSZMFeatures2Davg Grey level variance GLSZM 577.607 110.069

GLSZMFeatures2Davg Zone size variance 0.127283 0.100304

GLSZMFeatures2Davg Zone size entropy 5.76471 4.16039

GLSZMFeatures2Dvmrg small zone emphasis 0.934618 0.938805

GLSZMFeatures2Dvmrg Large zone emphasis 1.35072 1.30153

GLSZMFeatures2Dvmrg Low grey level zone emphasis 0.0251546 0.061019

GLSZMFeatures2Dvmrg High grey level zone emphasis 2371.63 544.046

GLSZMFeatures2Dvmrg Small zone low grey level emphasis 0.0230808 0.059012

GLSZMFeatures2Dvmrg Small zone high grey level emphasis 2153.7 496.801

GLSZMFeatures2Dvmrg Large zone low grey level emphasis 0.0350439 0.07091

GLSZMFeatures2Dvmrg Large zone high grey level emphasis 3616.15 766.913

GLSZMFeatures2Dvmrg Grey level non uniformity GLSZM 67.7991 33.6278

GLSZMFeatures2Dvmrg Grey level non uniformity normalized GLSZM 0.0114101 0.024492

GLSZMFeatures2Dvmrg Zone size non uniformity 5011.05 1170.12

GLSZMFeatures2Dvmrg Zone size non uniformity normalized 0.843327 0.852234

GLSZMFeatures2Dvmrg Zone percentage GLSZM 0.90773 0.915944

GLSZMFeatures2Dvmrg Grey level variance GLSZM 767.831 172.677

GLSZMFeatures2Dvmrg Zone size variance 0.137093 0.109568

GLSZMFeatures2Dvmrg Zone size entropy 7.02124 5.86214

GLSZMFeatures3D small zone emphasis 0.813499 0.79262

GLSZMFeatures3D Large zone emphasis 3.12934 2.81191

GLSZMFeatures3D Low grey level zone emphasis 0.0273345 0.061632

GLSZMFeatures3D High grey level zone emphasis 2152.63 519.802

GLSZMFeatures3D Small zone low grey level emphasis 0.022273 0.050623

GLSZMFeatures3D Small zone high grey level emphasis 1620.14 389.07

GLSZMFeatures3D Large zone low grey level emphasis 0.05964 0.154209

GLSZMFeatures3D Large zone high grey level emphasis 9643.6 1750.46

GLSZMFeatures3D Grey level non uniformity GLSZM 56.1058 26.4197

GLSZMFeatures3D Grey level non uniformity normalized GLSZM 0.0120141 0.024971

GLSZMFeatures3D Zone size non uniformity 2880.98 617.66

GLSZMFeatures3D Zone size non uniformity normalized 0.616912 0.583799

GLSZMFeatures3D Zone percentage GLSZM 0.713413 0.705804

GLSZMFeatures3D Grey level variance GLSZM 715.552 165.878

GLSZMFeatures3D Zone size variance 1.16454 0.804518

GLSZMFeatures3D Zone size entropy 7.54889 6.50013

ngtdmFeatures2avg coarseness 0.0471159 0.100679

ngtdmFeatures2avg contrast 3.69375 3.76385

ngtdmFeatures2avg busyness 0.0330006 0.090373

ngtdmFeatures2avg complexity 19785.2 2763.6

ngtdmFeatures2avg strength 140.446 40.8436

ngtdmFeatures2Dmrg coarseness 0.00157834 0.003713

ngtdmFeatures2Dmrg contrast 0.876573 0.967

ngtdmFeatures2Dmrg busyness 0.218762 0.523067

ngtdmFeatures2Dmrg complexity 55714.2 8060.35

ngtdmFeatures2Dmrg strength 10.9094 4.23507

(Continued)
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Table 4. (Continued)

Melanoma 2 Melanoma 3

ngtdmFeatures3D coarseness 0.00167336 0.004049

ngtdmFeatures3D contrast 0.834316 0.892503

ngtdmFeatures3D busyness 0.206339 0.47965

ngtdmFeatures3D complexity 52577 7434.46

ngtdmFeatures3D strength 11.4619 4.58857

gldzmFeatures2Davg small distance emphasis GLDZM 0.485879 0.700448

gldzmFeatures2Davg Large distance emphasis GLDZM 6.1895 2.67393

gldzmFeatures2Davg Low grey level zone emphasis GLDZM 0.0320386 0.096903

gldzmFeatures2Davg High grey level zone emphasis GLDZM 1995.37 410.732

gldzmFeatures2Davg Small distance low grey level emphasis GLDZM 0.0315578 0.096197

gldzmFeatures2Davg Small distance high grey level emphasis GLDZM 297.816 130.51

gldzmFeatures2Davg Large distance low grey level emphasis GLDZM 0.0353462 0.100135

gldzmFeatures2Davg Large distance high grey level emphasis GLDZM 24386.8 2261.63

gldzmFeatures2Davg Grey level non uniformity GLDZM 2.52354 1.7533

gldzmFeatures2Davg Grey level non uniformity normalized GLDZM 0.0302619 0.102261

gldzmFeatures2Davg Zone distance non uniformity GLDZM 33.9535 15.1022

gldzmFeatures2Davg Zone distance non uniformity normalized GLDZM 0.305874 0.51943

gldzmFeatures2Davg Zone percentage GLDZM 0.909545 0.921198

gldzmFeatures2Davg Grey level variance GLDZM 31.3469 0

gldzmFeatures2Davg Zone distance variance GLDZM 1.29699 0.401122

gldzmFeatures2Davg Zone distance entropy GLDZM 6.06286 4.23159

gldzmFeatures2Dmrg small distance emphasis GLDZM 0.425335 0.629694

gldzmFeatures2Dmrg Large distance emphasis GLDZM 7.27129 3.19519

gldzmFeatures2Dmrg Low grey level zone emphasis GLDZM 0.0251546 0.061019

gldzmFeatures2Dmrg High grey level zone emphasis GLDZM 2371.63 544.046

gldzmFeatures2Dmrg Small distance low grey level emphasis GLDZM 0.0246857 0.060325

gldzmFeatures2Dmrg Small distance high grey level emphasis GLDZM 324.83 158.264

gldzmFeatures2Dmrg Large distance low grey level emphasis GLDZM 0.0287398 0.064406

gldzmFeatures2Dmrg Large distance high grey level emphasis GLDZM 30951.9 3192.03

gldzmFeatures2Dmrg Grey level non uniformity GLDZM 67.7991 33.6278

gldzmFeatures2Dmrg Grey level non uniformity normalized GLDZM 0.0114101 0.024492

gldzmFeatures2Dmrg Zone distance non uniformity GLDZM 1425.64 558.978

gldzmFeatures2Dmrg Zone distance non uniformity normalized GLDZM 0.239925 0.407122

gldzmFeatures2Dmrg Zone percentage GLDZM 0.226932 0.228986

gldzmFeatures2Dmrg Grey level variance GLDZM 767.831 172.677

gldzmFeatures2Dmrg Zone distance variance GLDZM 1.65642 0.569046

gldzmFeatures2Dmrg Zone distance entropy GLDZM 7.91749 6.14384

gldzmFeatures3D small distance emphasis GLDZM 0.469261 0.662652

gldzmFeatures3D Large distance emphasis GLDZM 6.01905 2.9195

gldzmFeatures3D Low grey level zone emphasis GLDZM 0.0271717 0.061783

gldzmFeatures3D High grey level zone emphasis GLDZM 2170.54 524.408

gldzmFeatures3D Small distance low grey level emphasis GLDZM 0.0268065 0.061231

gldzmFeatures3D Small distance high grey level emphasis GLDZM 342.609 166.064

gldzmFeatures3D Large distance low grey level emphasis GLDZM 0.0297729 0.064514

gldzmFeatures3D Large distance high grey level emphasis GLDZM 24688 2833.94

gldzmFeatures3D Grey level non uniformity GLDZM 52.7628 25.5975

gldzmFeatures3D Grey level non uniformity normalized GLDZM 0.0119671 0.024828

(Continued)
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Table 4. (Continued)

Melanoma 2 Melanoma 3

gldzmFeatures3D Zone distance non uniformity GLDZM 1199.29 449.805

gldzmFeatures3D Zone distance non uniformity normalized GLDZM 0.27201 0.43628

gldzmFeatures3D Zone percentage GLDZM 0.673541 0.687792

gldzmFeatures3D Grey level variance GLDZM 723.5 167.231

gldzmFeatures3D Zone distance variance GLDZM 1.35486 0.511129

gldzmFeatures3D Zone distance entropy GLDZM 7.66533 6.0446

ngldmFeatures2Davg Low dependence emphasis 0.871333 0.887265

ngldmFeatures2Davg High dependence emphasis 1.61322 1.51255

ngldmFeatures2Davg Low grey level count emphasis 0.0325137 0.093737

ngldmFeatures2Davg High grey level count emphasis 2075.48 422.07

ngldmFeatures2Davg Low dependence low grey level emphasis 0.0276252 0.089119

ngldmFeatures2Davg Low dependence high grey level emphasis 1719.51 356.977

ngldmFeatures2Davg High dependence low grey level emphasis 0.0533236 0.115751

ngldmFeatures2Davg High dependence high grey level emphasis 3894.25 707.096

ngldmFeatures2Davg Grey level non uniformity 2.85545 1.97342

ngldmFeatures2Davg Grey level non uniformity normalized 0.0314145 0.103863

ngldmFeatures2Davg Dependence count non uniformity 106.547 28.6239

ngldmFeatures2Davg Dependence count non uniformity normalized 0.723421 0.764331

ngldmFeatures2Davg Dependence count percentage 1 1

ngldmFeatures2Davg Grey level variance 595.774 110.807

ngldmFeatures2Davg Dependence count variance 0.194989 0.150106

ngldmFeatures2Davg Dependence count entropy 5.8177 4.18319

ngldmFeatures2Davg dependence Count Energy 0.0266979 0.098093

ngldmFeatures2Dmrg Low dependence emphasis 0.870168 0.880351

ngldmFeatures2Dmrg High dependence emphasis 1.64253 1.54837

ngldmFeatures2Dmrg Low grey level count emphasis 0.025608 0.058652

ngldmFeatures2Dmrg High grey level count emphasis 2472.08 561.663

ngldmFeatures2Dmrg Low dependence low grey level emphasis 0.0216438 0.054694

ngldmFeatures2Dmrg Low dependence high grey level emphasis 2028.56 470.824

ngldmFeatures2Dmrg High dependence low grey level emphasis 0.0429454 0.077768

ngldmFeatures2Dmrg High dependence high grey level emphasis 4760.04 957.841

ngldmFeatures2Dmrg Grey level non uniformity 73.1607 36.038

ngldmFeatures2Dmrg Grey level non uniformity normalized 0.0111764 0.024041

ngldmFeatures2Dmrg Dependence count non uniformity 4665.79 1096.4

ngldmFeatures2Dmrg Dependence count non uniformity normalized 0.712769 0.731422

ngldmFeatures2Dmrg Dependence count percentage 1 1

ngldmFeatures2Dmrg Grey level variance 791.594 176.755

ngldmFeatures2Dmrg Dependence count variance 0.216866 0.174513

ngldmFeatures2Dmrg Dependence count entropy 7.28585 6.09145

ngldmFeatures2Dmrg dependence Count Energy 0.00834373 0.018491

ngldmFeatures3D Low dependence emphasis 0.636942 0.621879

ngldmFeatures3D High dependence emphasis 3.82004 3.48699

ngldmFeatures3D Low grey level count emphasis 0.025608 0.058652

ngldmFeatures3D High grey level count emphasis 2472.08 561.663

ngldmFeatures3D Low dependence low grey level emphasis 0.017273 0.039185

ngldmFeatures3D Low dependence high grey level emphasis 1326.35 313.408

ngldmFeatures3D High dependence low grey level emphasis 0.0703404 0.176361
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To make radiomic studies comparable across studies and institutions, it is essential that the

different radiomic software packages calculate the same feature values for every defined fea-

ture. Therefore, the standardization of feature definitions and calculations is essential [19,20].

IBSI provides benchmark feature definitions and feature values extracted from phantom scans.

As RaCaT follows these definitions and calculates feature values in compliance with these stan-

dard, it could be used to standardize other software packages.

Some small deviations were found in the calculation of the morphological features when

compared with the IBSI standard. These deviations include the calculated volume and surface

of the object and therefore all features depending on these two values. These deviations are

due to a different implementation of the 3D presentation of the image mask. Also when com-

paring the morphological features extracted from the spheres of the NEMA image quality

phantom, the deviations between ideal and calculated volume were in the majority of the cases

small. Only for the smaller spheres, the deviation increased. This increase in deviation is likely

more due to the partial volume effect than to mistakes in the implementation. The partial vol-

ume effect has especially an impact on smaller objects.

One limitation of RaCaT is that it does not provide any Graphical User Interface or automatic

algorithm to perform segmentation tasks. It calculates radiomic features from previous per-

formed segmentations. Moreover, after feature calculation, it provides also no further processing

of the calculated features. I.e. no machine or deep learning algorithm are implemented and

RaCaT can therefore not directly be used to build predictive models. However, as it can be called

by any programming language, it can easily be included in any machine or deep learning script.

Further development

The following additional features will be implemented in further releases:

Additional discretization methods

Many other ways for image discretization have been proposed. Among them intensity histo-

gram equalization and the Lloyd-max algorithm [21]. The next release will include both discre-

tization methods.

Read several DICOM series stored in one folder

When images are extracted from the scanner, different image series are often stored in one

folder. For a future release, it will be possible to read a folder containing several DICOM image

series and the program will calculate for every DICOM image series the features separately.

Table 4. (Continued)

Melanoma 2 Melanoma 3

ngldmFeatures3D High dependence high grey level emphasis 12867.8 2371.72

ngldmFeatures3D Grey level non uniformity 73.1607 36.038

ngldmFeatures3D Grey level non uniformity normalized 0.0111764 0.024041

ngldmFeatures3D Dependence count non uniformity 2626.57 598.625

ngldmFeatures3D Dependence count non uniformity normalized 0.401248 0.39935

ngldmFeatures3D Dependence count percentage 1 1

ngldmFeatures3D Grey level variance 791.594 176.755

ngldmFeatures3D Dependence count variance 0.965357 0.721061

ngldmFeatures3D Dependence count entropy 8.06942 6.88305

ngldmFeatures3D dependence Count Energy 0.00500475 0.010548

https://doi.org/10.1371/journal.pone.0212223.t004
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Several tumors in one mask

Up to now, the calculator can only handle masks that come with one marked VOI. For future

releases, it will be possible that more than one VOI can be marked in one mask and the feature

values of the different VOIs will be calculated separately.

Additional distances for the calculation of textural matrices

In the current version of RaCaT only distance 1 is used for the calculation of textural matrices

as this is the common distance for calculations. In future releases, also other distances can be

set by the user.

Additional output formats

Up to now, the output is only available as .csv file. It is planned that an output in ontology for-

mat [22] is also available.

Conclusion

We implemented and tested successfully RaCaT, an easy to use Radiomics calculator that can

be included in any programming language or used from the command line. The calculated fea-

tures are meeting the IBSI standards. The calculator is ready to use without requiring any pro-

gramming skills, but can also be downloaded, built from source and extended if needed. As

the implementation of the calculator is highly modularized, it is easily extendable. A documen-

tation including the description of how to use the calculator as well as a more extensive

description of the programming concepts, can be found on GitHub.
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