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1 Introduction

The presence in string theory of BPS p-branes, i.e. objects that extend in p spatial di-

rections preserving portions of supersymmetry, has played a crucial role in establishing

non-perturbative duality relations among perturbatively different string models in various

dimensions [1–5]. From the low-energy viewpoint, branes in D dimensions with more than

one transverse direction correspond to supergravity solutions that are charged with respect

to the potentials of the D-dimensional supergravity theory or their magnetic duals. In

particular, (D − 3)-branes, also known as ‘defect branes’, are charged under (D − 2)-form

potentials, which are dual to the scalars, and give rise to solutions which are not asymp-

totically flat. On top of this, string theory also contains BPS states that are domain walls

and space-filling branes, charged under (D − 1) and D-form potentials, which can be in-

troduced in the gauge algebra of supergravity although they carry no degrees of freedom.

For example, the D8-brane in Type IIA string theory and the D9-brane in Type IIB string

theory are charged under the RR potentials C9 and C10, respectively.

For maximal theories, all (D − 1) and D-form potentials have been determined using

various methods. In the ten-dimensional case, they were obtained in [6] by suitably decom-

posing the very-extended Kac-Moody algebra E11 [7] and in [8–10] by imposing the closure

of the supersymmetry algebra of supergravity. The E11 analysis was subsequently extended

to any dimension in [11, 12] to obtain all the supergravity potentials as representations of

the corresponding duality symmetry group G, in agreement with the tensor hierarchy that

one obtains [13] using the embedding tensor formalism [14, 15]. In particular, in [11] the

representations of the potentials in the lower-dimensional theories were shown to arise from

the dimensional reduction of both standard potentials and mixed-symmetry potentials in

ten dimensions. Such mixed-symmetry potentials follow from the decomposition of the E11

algebra [6], and will be crucial for the analysis carried out in this paper.

The classification of 1/2-BPS branes in maximal supersymmetric theories was per-

formed in [16–18] by demanding that a gauge-invariant Wess-Zumino term consistent with

worldvolume supersymmetry can be constructed. This analysis shows that the number of

(D − 3), (D − 2) and (D − 1)-branes is less than the dimensions of the representation of
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G of the corresponding (D − 2), (D − 1) and D-form potentials, resprectively. This can

be understood from a group-theoretic viewpoint by observing that the components of the

potentials that couple to branes correspond to the long weights of the representation [19],

and in the maximal theory only the (D − 2), (D − 1) and D-form potentials belong to

representations whose weights have different lengths. This also gives a simple explanation

of the fact that the same classification of branes can be obtained by counting the real roots

of the very extended Kac-Moody algebra E11 [20]. This result has also a nice explana-

tion in terms of mixed-symmetry potentials. Indeed, the representations of the (D − 2),

(D − 1) and D-forms in lower dimensions are those that receive contributions from the

dimensional reductions of mixed-symmetry potentials in the ten-dimensional theory [11]

and in [18, 21–23] it was shown that not all the components of these potentials couple

to branes. Specifically, given a ten-dimensional mixed-symmetry potential Ap,q,r,... in a

representation such that p, q, r, . . . (with p ≥ q ≥ r . . .) denote the length of each column

of the Young tableau associated to this representation, this corresponds to a brane if some

of the indices p are compactified and contain all the indices q, which themselves contain

all the indices r and so on. All the other components correspond to shorter weights of

representations of G after dimensional reduction. Branes that couple to mixed-symmetry

potentials are typically referred to as exotic in the literature [24–28].

The representations of the supergravity potentials in D dimensions can be decomposed

in terms of the perturbative SO(d, d) T-duality subgroup that occurs in the embedding

G ⊃ R
+ × SO(d, d) , (1.1)

where d = 10 − D and R
+ is the dilaton shift symmetry. The long weights of a given

SO(d, d) representation that occurs in the decomposition are associated with branes whose

tensions T all scale in the same way with respect to the dilaton. In particular, in terms

of the non-positive integer α giving the scaling of the tension T ∼ (gs)
α with respect to

the string coupling in the string frame, one gets that the ten-dimensional branes are the

fundamental string with α = 0, the D-branes with α = −1 and the NS5-brane with α = −2.

The Type IIB theory also possesses a 7-brane with α = −3 (the S-dual of the D7-brane)

and a 9-brane with α = −4 (the S-dual of the D9-brane). In D dimensions, for each

α ≥ −3 the branes belong to representations of SO(d, d) whose number of long weights can

all be reproduced starting from the p-branes of the ten-dimensional theories by means of

the following “wrapping rules” [22, 29]

α = 0 :

{

wrapped → doubled

unwrapped → undoubled ,

α = −1 :

{

wrapped → undoubled

unwrapped → undoubled ,

α = −2 :

{

wrapped → undoubled

unwrapped → doubled ,

α = −3 :

{

wrapped → doubled

unwrapped → doubled .

(1.2)
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Here wrapped (unwrapped) means that the brane is compactified over a worldvolume

(transverse) direction while doubled (undoubled) means that the brane, after compacti-

fication, gives rise to two branes (one brane). The nice thing of these wrapping rules is

that they give the number of branes in any dimension knowing the number of branes in

one dimension higher. As far as the α = −4 branes are concerned, there is one particular

irreducible representation of space-filling branes that contains the dimensionally reduced

9-brane of IIB, and whose number is determined by the additional wrapping rule [18]

α = −4 : wrapped→ doubled . (1.3)

On top of this there are other α = −4 branes that are not related, via any compactification,

to the 9-brane of Type IIB string theory. The final outcome is that the number of all the

branes belonging to the SO(d, d) representations that contain, upon compactification, the

branes of the ten-dimensional theories can be simply obtained using the wrapping rules

above.

Recently, in [30] a universal T-duality rule for all the string theory potentials, p-form

as well as mixed-symmetry potentials, that couple to branes was derived. The rule can be

stated as follows: given an α = −n brane associated to a mixed-symmetry potential such

that the x index occurs p times (in p different sets of antisymmetric indices, i.e. columns

of the corresponding Young tableau), this is mapped by T-duality along x to the brane

associated to the potential in which the x index occurs n − p times. Schematically, this

can be written as

α = −n : x, x, . . . , x
︸ ︷︷ ︸

p

Tx
←→ x, x, . . . ., x

︸ ︷︷ ︸

n−p

. (1.4)

Using this rule, one can determine, starting from any brane, the full set of branes that

are related to it by chains of T-duality transformations. In the next section we will give

several examples of this universal T-duality rule and, furthermore, we will show that this

rule naturally explains the wrapping rules given above.

All the branes with α = −4 different from those satisfying the wrapping rule in

eq. (1.3), as well as all those with α ≤ −4, are not connected by SO(d, d) transformations

to any of the branes of the ten-dimensional theory. The fact that the highest dimension

in which all these branes appear is lower than ten means that the SO(d, d) representations

arise entirely from mixed-symmetry potentials of the ten-dimensional theory. On the other

hand, one can still apply the T-duality rule in eq. (1.4) to any of the brane components of

such mixed-symmetry potentials to connect it to all the other branes in the same represen-

tation. As we will see, this implies that a generalisation of the wrapping rules above can

be derived. The rule is the following: starting from the highest dimension in which a brane

belonging to the specific representation occurs, eq. (1.4) determines whether such brane

doubles or not upon dimensional reduction. On top of that, there is an additional universal

multiplicity due to the mixed-symmetry indices. Taking into account this generalized rule,

we manage to reproduce all the numbers of branes of the maximal theory in any dimension.

After discussing the maximal case, we proceed to apply the wrapping rules to the half-

maximal supersymmetric theory corresponding to the compactification of Type IIA/IIB

– 3 –
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string theory on (T 4/Z2) × Tn. The number of single-brane states of this theory in any

dimension was determined in [31]. In this reference it was shown that the wrapping rules

in eqs. (1.2) and (1.3) are still valid if one compactifies on tori starting from the six-

dimensional theory. We will show that the number of all the branes in this theory can be

determined starting from the highest dimensional representative of each chain of branes

by observing from eq. (1.4) whether the brane doubles or not, and by computing the

multiplicity that results from the mixed-symmetry indices of the corresponding potential.

This paper is organised as follows. In section 2 we consider the maximal case and show

that the number of all branes results from the generalised wrapping rules discussed above.

We then extend in section 3 this analysis to the half-maximal case and in particular we

consider the IIA and IIB theories compactified on (T 4/Z2)×Tn. We show that also in this

case the number of all branes can be derived by applying the same generalised wrapping

rules. Finally, section 4 contains our conclusions.

2 Wrapping rules for IIA/IIB on T n

The aim of this section is to show that the universal T-duality rules in eq. (1.4) allow to

derive generalised wrapping rules for all the branes in IIA/IIB string theory compactified

on a torus. These generalised wrapping rules contain, in addition to a doubling/undoubling

rule as those given in eqs. (1.2) and (1.3), a universal multiplicity factor. We first show

that the wrapping rules in eqs. (1.2) and (1.3) are a natural consequence of eq. (1.4). We

then move on to consider the branes that are not related by T-duality to any brane of

the ten-dimensional theory and show that for these branes the generalised wrapping rules

apply.

Following [18], we denote the potentials with α = 0,−1,−2,−3, . . . by B,C,D,E, . . .

and so on. In table 1 we list the full set of potentials corresponding to the branes that satisfy

the wrapping rules in eqs. (1.2) and (1.3). In particular, in the second column we give the

potentials of the D-dimensional theory as representations of SO(d, d). The A index is a

vector index of SO(d, d) while a and ȧ are spinor indices of opposite chirality. The indices

A1 . . . An are always meant to be completely antisymmetrised, and the potential F+

D,A1...Ad

in the last row belongs to the self-dual SO(d, d) representation with d antisymmetric indices.

The branes correspond to the long weights of all these representations [19]. In the IIA/IIB

column we list the mixed-symmetry potentials of the ten-dimensional theory that give rise

after dimensional reduction to all the components of the D-dimensional potentials that

correspond to branes. In particular, as reviewed in the introduction the branes correspond

to the components of the ten-dimensional mixed-symmetry potential Ap,q,r,... such that

some of the indices p are compactified and contain all the indices q, which themselves

contain all the indices r and so on.

One can obtain the number of independent branes in a given dimension by determining

the independent brane components of the corresponding mixed-symmetry potentials. We

consider as an example the α = −2 case. In ten dimensions only the NS5 brane corre-

sponding to D6 is present in both the IIA and IIB theories, while in D = 9 one has a

4-brane corresponding to D5x and two 5-branes corresponding to D6 and D6x,x. Here we
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α potential IIA IIB

0 B1,A B2 B2 gµν

−1 C2n+1,a C2n,ȧ C2n+1 C2n

−2 DD−4 DD−3,A DD−2,A1A2
DD−1,A1A2A3

DD,A1...A4
D6+n,n

−3 ED−2,ȧ ED−1,Aȧ ED,A1A2ȧ E8+n,2m+1,n E8+n,2m,n

−4 F+

D,A1...Ad
F10,2n+1,2n+1 F10,2n,2n

Table 1. The potentials associated to the branes that satisfy the wrapping rules in eqs. (1.2)

and (1.3) for the different values of α. In the second column we list the D-dimensional potentials as

representations of SO(d, d), while in the third and fourth we give the corresponding mixed-symmetry

potentials for both the IIA and IIB theory. For α = 0 and α = −2 the potentials for IIA and IIB

are the same.

have denoted with x the internal direction, and the 4-brane is the wrapped NS5, while the

5-branes are the unwrapped NS5 and the KK-monopole. Generalising this to all the branes

with α = −2 in all dimensions one finds that the right number is obtained by applying the

α = −2 wrapping rule in eq. (1.2). The same applies for the branes with different values

of α.

We now show that the T-duality rules of eq. (1.4) discovered in [30] naturally explain

all the wrapping rules for the branes that have a ten-dimensional origin. Again, we focus

for simplicity on the α = −2 case. In this case, as we read from table 1 the mixed-symmetry

potentials are D6+n,n and the T-duality rules state that

0→ 1, 1 1→ 1 . (2.1)

The first rule means that if the potential has no indices along x, after T-duality this is

mapped to a potential with x added on both sets of indices, while the second rule means

that if the potential has one index along x only in the first set of indices, this is mapped to

the same component of the T-dual theory. Suppose now that we compactify from 10 to 9

as discussed above. By T-duality along x, D6 goes to D6x,x while D5x is fixed. Therefore

the brane doubles when it does not wrap. The same applies for all the α = −2 branes in

any dimension.

For α = −3 one has

0→ 1, 1, 1 1→ 1, 1 , (2.2)

and so there are no potentials that are fixed under T-duality. As a consequence, these

branes always double exactly as the wrapping rule in eq. (1.2) states. Starting with E8 in

IIB, corresponding to the S-dual of the D7-brane, one gets in nine dimensions E7x, which

couples to a 6-brane, and E8, which couples to a 7-brane. Using eq. (2.2), the former is

mapped to E7x,x, and the latter is mapped to E8x,x,x. One therefore gets that from the

IIA perspective the 6-brane and 7-brane with α = −3 in nine dimensions arise from the IIA

mixed-symmetry potentials E8,1 and E9,1,1. In this case T-duality does not generate any

doubling, but simply gives a IIA origin in terms of mixed-symmetry potentials of the same

nine-dimensional branes. This is consistent with the fact that there are no α = −3 branes

in Type IIA string theory. By further compactifying to 8 dimensions along the coordinate

– 5 –
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α potential IIA IIB

−4 FD−1,A1...Ad−3
FD,AB1...Bd−3

F9+n,3+m,m,n

−4 FD−2,A1...Ad−6
FD−1,AB1...Bd−6

F8+n,6+m,m,n

−5 GD,A1...Ad−4ȧ G10,4+n,2m+1,n G10,4+n,2m,n

−5 GD−1,A1...Ad−6a GD,AB1...Bd−6a G9+p,6+n,2m,n,p G9+p,6+n,2m+1,n,p

−6 D = 4 : H4,A1...A4
D = 3 : H3,AB1...B5

H10,6+n,2+m,m,n

−7 D = 4 : I4,ȧ D = 3 : I3,ABȧ I10,6+n,6+n,2m+1,n,n I10,6+n,6+n,2m,n,n

Table 2. The potentials associated to all the branes of the maximal theory in four dimensions

and above that are not related by T-duality to branes that occur in ten dimensions. In the second

column we list the D-dimensional potentials as representations of SO(d, d), while in the third and

fourth column we list the corresponding ten-dimensional mixed-symmetry potentials. For α = −4

and α = −6 the IIA and IIB potentials are the same.

y, one gets that the IIB potential E8 gives E6xy, E7x, E7 y and E8. We can now perform

two T-dualities along x and y remaining in the same IIB theory. The rules in eq. (2.2) give

E6xy → E6xy,xy

E7x → E7xy,xy,y

E7 y → E7xy,xy,x

E8 → E8xy,xy,xy , (2.3)

resulting in the components of the potentials E8,2, E9,2,1 and E10,2,2. One can see that all

the branes double in going from nine to eight dimensions. The same applies in any other

dimension.

Finally, we discuss the α = −4 branes that satisfy the wrapping rule in eq. (1.3). In

this case the T-duality rule is

0→ 1, 1, 1, 1 1→ 1, 1, 1 1, 1→ 1, 1 . (2.4)

In IIB one has a space-filling brane corresponding to the potential F10. In nine dimensions

this gives F9x, which by T-duality is mapped to F9x,x,x corresponding to the F10,1,1 mixed-

symmetry potential of the IIA theory. Again, in this case there is no doubling, we just

obtain a IIA origin of the same nine-dimensional brane as an exotic brane. By further

compactifying toD = 8, one gets F8xy, which under two T-dualities is mapped to F8xy,xy,xy,

which is the brane component of the IIB mixed-symmetry potential F10,2,2. This doubling

continues to occur in any dimension.

The above analysis shows that the wrapping rules in eqs. (1.2) and (1.3) naturally

follow from the T-duality rules in eq. (1.4), when applied to the potentials in table 1. We

now show that from the same T-duality rules, when applied to all the other potentials

of IIA and IIB that correspond to branes in lower dimensions without a ten-dimensional

brane origin, one derives a set of generalised wrapping rules that allow to determine the

number of all the branes in any dimension. We list in table 2 all such potentials both as

representations of SO(d, d) and as ten-dimensional mixed-symmetry potentials in the IIA

– 6 –
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D

p
0 1 2 3 4 5

7 1

6 8 8

5 40 80

4 160 480

3 560 2240

Table 3. The F9,3 family of branes, whose number is obtained starting from the 5-brane in D = 7

by doubling times a multiplicity factor
(
d

3

)
.

and IIB theory. The rule for the values of m,n, p, . . . giving the numbers of the mixed-

symmetry indices in the third and fourth column of the table is that they take all possible

values with the condition that the number of indices cannot exceed ten and that any set of

indices is larger than or equal to the one to the right. Even when all these numbers vanish,

the potentials have mixed symmetry, which is a manifestation of the fact that there are

only exotic branes associated to these potentials.

The T-duality rules in eq. (1.4) connect all the brane components of each family of

potentials [30]. We can consider first the potentials F9+n,3+m,m,n in the first row of the

table. For m = n = 0, one gets the potential F9,3 which gives a 5-brane in D = 7, cor-

responding to the 6-form F6xyz,xyz. By applying the T-duality rule for α = −4, given in

eq. (2.4), one can see that F6xyz,xyz is fixed under T-duality along x, y, z. This means that

performing a single T-duality maps the brane in IIA to the same brane in IIB. Compacti-

fying to D = 6 along the direction w, one gets the potentials F6xyz,xyz (unwrapped brane)

and F5xyzw,xyz (wrapped brane). By T-duality along w the first potential goes to the com-

ponent F6xyzw,xyzw,w,w of F10,4,1,1, while the second goes to the component F5xyzw,xyzw,w

of F9,4,1. This means that one gets a doubling, but on top of this one should notice that in

D = 6 one has 4 possibilities to choose the directions x, y, z among the 4 compact direc-

tions, giving an additional factor of 4 for all the branes. Including this combinatorial factor,

this implies that in six dimensions one gets 8 4-branes and 8 5-branes. We list in table 3

the number of all branes in the F9,3 family in any dimension. The reader can see that all

these numbers result from extending to any dimension the method we have just used to

obtain the branes in six dimensions. Starting from the single 5-brane in seven dimensions,

one always has a doubling from the dimensional reduction, regardless of whether the brane

wraps or does not wrap the circle, and on top of this one has an additional factor
(
d
3

)
cor-

responding to the choice of the second set of indices in F9,3 among the d internal indices.

One gets 4 ·
(
5

3

)
= 40 3-branes and 8 ·

(
5

3

)
= 80 4-branes in five dimensions, 8 ·

(
6

3

)
= 160

2-branes and 24 ·
(
6

3

)
= 480 3-branes in four dimensions and, finally, 16 ·

(
7

3

)
= 560 1-branes

and 64 ·
(
7

3

)
= 2240 2-branes in three dimensions.

We now show how the same rule applies to all the other branes charged with respect

to the potentials in table 2. There is another family of α = −4 branes, charged under the

potentials F8+n,6+m,m,n. The first representative of this family is F8,6, corresponding to

m = n = 0, associated to a 1-brane in four dimensions. We list in table 4 the number

– 7 –
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D

p
0 1

4 1

3 14 14

Table 4. The F8,6 family of branes. These branes always double and there is an extra multiplicity

factor
(
d

6

)
.

D

p
0 1 2 3 4 5

6 8

5 80

4 480

3 2240

Table 5. The G10,4,1 (IIA) or G10,4 (IIB) family of branes. The branes double and there is an

extra multiplicity factor
(
d

4

)
.

D

p
0 1 2

4 32

3 448 448

Table 6. The G9,6 (IIA) or G9,6,1 (IIB) family of branes.

of all branes in this family in four and three dimensions. Again, the T-duality rule of

eq. (2.4) implies that these branes always double, and on top of this one has to consider

the additional multiplicity factor
(
d
6

)
corresponding to the choice of the second set of indices

of F8,6 among the d internal indices. This gives 2 ·
(
7

6

)
= 14 0-branes and 1-branes in three

dimensions in agreement with the table.

The potentials with α = −5 satisfy the T-duality rule

0→ 1, 1, 1, 1, 1 1→ 1, 1, 1, 1 1, 1→ 1, 1, 1 . (2.5)

As table 2 shows, there are two families of α = −5 branes. The first family results from

the mixed-symmetry potentials G10,4+n,2m+1,n in IIA or G10,4+n,2m,n in IIB. The number

of branes is given in table 5. In six dimensions one gets 8 5-branes from the potentials

with n = 0, i.e. G10,4,1 and G10,4,3 in IIA or G10,4, G10,4,2 and G10,4,4 in IIB. The reader

can check that by applying the rules in eq. (2.5) all these potentials are mapped into each

other by T-duality along any of the four internal directions. If one further compactifies to

five dimensions along say the direction x, eq. (2.5) shows that the resulting potentials are

not fixed under T-duality along x. This implies that the branes double. Because of the

choice of the second set of indices, there is an extra multiplicity factor
(
d
4

)
. By applying

this rule one gets all the numbers in table 5.

There is another family of α = −5 branes, coming from the potentials G9+p,6+n,2m,n,p

in IIA or G9+p,6+n,2m+1,n,p in IIB. The number of branes is shown in table 6. To obtain
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D

p
0 1 2 3

4 240

3 3360

Table 7. The H10,6,2 family of branes.

D

p
0 1 2 3

4 32

3 448

Table 8. The I10,6,6,1 (IIA) or I10,6,6 (IIB) family of branes.

a brane in four dimensions, one has to put n = 0 and therefore p = 0, giving G9,6, G9,6,2,

G9,6,4 and G9,6,6 in IIA or G9,6,1, G9,6,3 and G9,6,5 in IIB, giving a total of 32 2-branes.

Using eq. (2.5), these potentials are all mapped into each other by T-duality along any

of the six internal directions. By further compactifying to three dimensions, these branes

double and there is an extra multiplicity
(
d
6

)
which is 7 in three dimensions, resulting in

64 · 7 = 448 1-branes and 2-branes.

We next consider the α = −6 branes. The T-duality rule for α = −6 is

0→ 1, 1, 1, 1, 1, 1 1→ 1, 1, 1, 1, 1 1, 1→ 1, 1, 1, 1 1, 1, 1→ 1, 1, 1 . (2.6)

From table 2 one reads that the family of mixed-symmetry potentials is H10,6+n,2+m,m,n

in both IIA and IIB. The branes in this family in four and three dimensions are given in

table 7. The 240 four-dimensional 3-branes arise from the n = 0 potentials H10,6,2, H10,6,3,1,

H10,6,4,2, H10,6,5,3 and H10,6,6,4. By compactification to three dimensions, the branes double

because the wrapped branes are not fixed under eq. (2.6), and there is an extra multiplicity

factor
(
d
6

)
which is 7. One therefore expects 480 · 7 = 3360 2-branes, which agrees with the

table.

Finally, for α = −7 the T-duality rule is

0→ 1, 1, 1, 1, 1, 1, 1 1→ 1, 1, 1, 1, 1, 1 1, 1→ 1, 1, 1, 1, 1 1, 1, 1→ 1, 1, 1, 1 .

(2.7)

The mixed-symmetry potentials for the α = −7 branes are I10,6+n,6+n,2m+1,n,n in IIA and

I10,6+n,6+n,2m,n,n in IIB. The branes in four and three dimensions are given in table 8.

The 32 four-dimensional 3-branes result from the potentials with n = 0, which are I10,6,6,1,

I10,6,6,3 and I10,6,6,5 in IIA and I10,6,6, I10,6,6,2, I10,6,6,4 and I10,6,6,6 in IIB. The 448 2-branes

in three dimensions are in agreement with the doubling times a multiplicity factor
(
d
6

)
,

which is 7 in three dimensions.

This concludes the analysis of the branes of the maximal theory. In the next section we

will discuss the branes of Type IIA and Type IIB string theory compactified on (T 4/Z2)×T
n

and we will show that the same generalised wrapping rules apply, provided that one takes

into account only the cycles that are compatible with the orbifold.
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E
P
0
1
(
2
0
1
8
)
0
4
6

α branes 10d IIA origin

0 1 1-brane B2

−1 8 0-branes C2n+1

8 2-branes

8 4-branes

−2 1 1-brane D6+n,n

24 3-branes

8 5-branes D6+2n,2n

−3 32 4-branes E8+n,2m+1,n

−4 8 5-branes F10,2n+1,2n+1

8 5-branes F9+n,3+m,m,n

Table 9. The branes of the IIA theory compactified on T 4/Z2 and their corresponding ten-

dimensional origin in terms of mixed-symmetry potentials.

3 Wrapping rules for IIA/IIB on (T 4/ZZZ2) × T n

In [32, 33] it was shown that the wrapping rules satisfied by the branes of the maximal

theory are still valid if one compactifies the Type IIA and Type IIB string theories to the six

dimensional N = (1, 1) and N = (2, 0) theories on the orbifold T 4/Z2, provided that only

even cycles are taken into account. In [31] it was then shown that if the six-dimensional

theory is further reduced on a torus, the resulting branes with α = 0,−1,−2,−3 are

obtained starting from the six-dimensional ones by applying the standard wrapping rules.

The aim of this section is to first review how the branes of the six-dimensional theories

result from applying the wrapping rules of the maximal theory with only even cycles taken

into account, and then move to the lower-dimensional case showing that the analysis of [31]

can be extended so that all the branes of the (T 4/Z2)× Tn theory result from generalised

wrapping rules, where as explained in the previous section additional multiplicity factors

given by the mixed-symmetry indices of the potentials involved have to be taken into

account.

We first consider the six-dimensional IIA theory compactified on T 4/Z2. We list in

table 9 the number of branes with different values of α, together with the corresponding

mixed-symmetry potentials in ten dimensions. By denoting with xi, i = 1, . . . , 4 the

torus coordinates, the number of branes results from implementing the fact that when

compactifying the mixed-symmetry potentials of the maximal theory the total number

of x’s must be even. The outcome of this analysis is that for α = 0,−1,−2,−3 the same

number of branes can be obtained by starting from the ten-dimensional branes and applying

the wrapping rules with the additional requirement that there are only even cycles. The

only exception to this general rule are the 5-branes with α = −2, which are 8 instead

of 16, which is what one would naively get applying the wrapping rules. The reason of

this mismatch is that the 5-branes coming from D7,1 and D9,3 in the maximal theory

support a vector multiplet, which splits in the half-maximal theory into a vector and a

hyper-multiplet, and neither of the two are allowed for α = −2 branes in the IIA theory

on T 4/Z2.
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α branes 10d IIB origin

0 1 1-brane B2

−1 8 1-branes C2n

8 3-branes

8 5-branes

−2 1 1-brane D6+n,n

24 3-branes

8 5-branes D6+2n,2n

−3 8 3-branes E8+n,2m,n

48 5-branes

−4 8 5-branes F10,2n,2n

−5 8 5-branes G10,4,2m

Table 10. The branes of the IIB theory compactified on T 4/Z2 and their corresponding ten-

dimensional origin in terms of mixed-symmetry potentials.

The branes with α = −4 can be obtained applying the T-duality rules in eq. (1.4). We

first consider the F10,2n+1,2n+1 family. The first representative, corresponding to n = 0, is

F6x1...x4,x1,x1
, leading to four 5-branes. To remain in the same theory, we have to apply two

T-dualities. If one of these T-dualities is along x1 one remains in the same set of branes,

while if these T-dualities are along x2 and x3, the rule in eq. (2.4) gives F6x1...x4,x1x2x3,x1x2x3
,

which is another four branes. This gives eight branes in total. Similarly, the first representa-

tive of the F9+n,3+m,m,n family, for n = m = 0, is F6x1x2x3,x1x2x3
, which corresponds to four

5-branes. Performing two T-dualities, one of which along x4, one gets F6x1...x4,x1...x4,x4,x4
,

which are the four brane components of the potential F10,4,1,1. Again, one gets eight branes

in total.

In the case of the IIB theory compactified on T 4/Z2, we list the number of branes and

the corresponding IIB mixed-symmetry potentials in table 10. Again, the number of branes

results from implementing in the compactification of the mixed-symmetry potentials of the

maximal theory the fact that the total number of x’s must be even. For α = 0, . . . ,−4, the

resulting numbers can be obtained starting from the ten-dimensional branes and applying

the wrapping rules with the additional requirement that there are only even cycles. Exactly

as in the IIA theory, the α = −2 5-branes are an exception to this rule, because there are

only 8 branes instead of 16. Again, the reason is that the 5-branes coming from D7,1 and

D9,3 in the maximal theory support tensor multiplets, which split into tensor and hyper-

multiplets in the N = (2, 0) theory, which are both not allowed. Actually, exactly for the

same reason the F9+n,3+m,m,n family of mixed-symmetry potentials of the maximal theory

is projected out in the (2, 0) theory. Finally, in this case there are also eight branes coming

from the G10,4+n,2m,n family. The first representative of this family is G6x1...x4,x1...x4
,

corresponding to m = n = 0, and by applying two T-dualities (six possibilities) and four

T-dualities (one possibility) and using eq. (2.5) one gets eight branes in total, corresponding

to all the brane components in the family.

We now move on to discuss the branes of the lower-dimensional theories. The number of

branes of these theories for different values of α have been obtained in [31] by identifying the
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p
0 1 2 3 4 5

6A/6B 8/8

5 16

4 32

3 64

Table 11. The F10,1,1 (IIA) or F10 (IIB) family of branes for the (T 4/Z2)×Tn theories. Here and

in the next tables we denote with 6A and 6B the N = (1, 1) and N = (2, 0) theories, respectively.

dilaton scaling inside the non-perturbative symmetry of the half-maximal theory. Once this

symmetry is decomposed with respect to the perturbative one, the number of branes is given

as in the maximal theory by counting the number of long weights of the representation.1

What was then shown in [31] is that for the branes with α = 0,−1,−2,−3 the number

of branes are those that one obtains by applying the wrapping rules starting from six

dimensions. Here we want to refine this analysis and derive from the generalised wrapping

rules the number of branes with more-negative values of α in any dimension. We refer to

tables 3, 4 and 5 of [31] for the numbers of branes with different values of α in dimension

5, 4 and 3 respectively.

We start by considering the F10,2n+1,2n+1 (IIA) or F10,2n,2n (IIB) family of mixed-

symmetry potentials. We denote as before with x the orbifold directions, and we denote

with y the torus coordinates. By computing all allowed brane components in any dimension,

one arrives at the numbers listed in table 11. It is straightforward to see that the wrapping

rules apply exactly as in the maximal case, and the branes always double.

We then move to the F9+n,3+m,m,n family. To derive the number of branes in this case,

one should remember, as we already mentioned above, that in the N = (2, 0) theory in

six dimensions the components F6x1x2x3,x1x2x3
and F6x1...x4,x1...x4,x1,x1

are projected out,

and therefore they remain projected out after dimensional reduction. This means for

instance that if one compactifies on y and wants to derive the number of branes in the IIB

picture, the components F5x1x2x3y,x1x2x3
and F5x1...x4y,x1...x4,x1,x1

should not be included,

and equivalently, T-dualising along y, in the IIA picture the components F5x1x2x3y,x1x2x3y,y

and F5x1...x4y,x1...x4y,x1y,x1
should be ignored. The final result is that one ends up with the

number of branes given in table 12.

We want to determine these numbers from the generalised wrapping rules. We start

from six dimensions, where as we have already mentioned we have

D = 6 : F6x1x2x3,x1x2x3
→ 4× 2 = 8 (only IIA) , (3.1)

where 4 gives the multiplicity and 2 the doubling corresponding to performing two T-

dualities. By dimensional reduction, in lower dimensions we get

D = 5 : F5x1x2x3y,x1x2x3
→ 4× 2 = 8 ,

D = 4 : F4x1x2x3y1y2,x1x2x3
→ 4× 2× 2 = 16 ,

D = 3 : F3x1x2x3y1y2y3,x1x2x3
→ 4× 2× 4 = 32 , (3.2)

1In the case of non-split groups, one has actually to impose the additional requirement that the long

weight is real, where the reality properties are defined by the Tits-Satake procedure [34].
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D

p
0 1 2 3 4 5

6A/6B 8/0

5 24 8

4 96 208

3 304 1184

Table 12. The F9,3 family of branes for the (T 4/Z2)× Tn theories.

where the extra factor of 2 and of 4 in four and three dimensions is the doubling due to

the T-dualities in the y directions. For these components, starting from six dimensions,

the lower-dimensional numbers simply result from the wrapping rules.

Apart from the components of F9,3 listed in eq. (3.2), that arise from the dimensional

reduction of the six-dimensional one, there are additional components that can arise in

lower dimensions due to the index structure. In particular, in five dimensions one can have

F4x1...x4y,x1x2y, which is allowed because there is an even number of x indices, but does not

arise from six dimensions. One can determine the multiplicity of the family of branes that

result in any dimension as usual using the T-duality rules in eq. (2.4). The result is

D = 5 : F4x1x2x3x4y,x1x2y → 6× 2× 2 = 24

D = 4 : F3x1x2x3x4y1y2,x1x2y1 → 24× 2× 2 = 96

F4x1x2x3x4y1,x1x2y1 → 24× 2× 2 = 96

D = 3 : F2x1x2x3x4y1y2y3,x1x2y1 → 24× 4× 3 = 288

F3x1x2x3x4y1y2,x1x2y1 → 24× 4× 6 = 576 , (3.3)

where in five dimensions the factors 2 arise from T-dualities along x, while in four and

three dimensions the second factor arise from T-dualities along y directions and the third

factor from the choice of y indices. The reader can check that all the numbers in four and

three dimensions in eq. (3.3) are given by applying the wrapping rules on the 24 3-branes

in 5D supplemented by a factor 6−D.

In four dimensions there is an additional component F4x1x2x3y1y2,x1y1y2 that cannot

arise from higher dimensions. The number of corresponding 3-branes in the family is 12×8,

where 12 is due to the choices of x’s and 8 from all the possible non-trivial T-dualities.

One can also determine the branes in three dimensions, and the final result is

D = 4 : F4x1x2x3y1y2,x1y1y2 → 12× 8 = 96

D = 3 : F3x1x2x3y1y2y3,x1y1y2 → 96× 2× 3 = 576 , (3.4)

and again the number of 2-branes in three dimensions is given by the wrapping rules times

an extra multiplicity factor, which is
(
6−D
2

)
in this case. Finally, in three dimensions there

is the extra possibility

D = 3 : F2x1x2x3x4y1y2y3,y1y2y3 → 24 = 16 , (3.5)
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e 4 1

3 6 14

Table 13. The F8,6 family of branes for the (T 4/Z2)× Tn theories.

giving in total 16 branes because one can perform T-duality trasformations along all x

directions, while the component is fixed under T-dualities along the y directions.

This concludes the analysis of the branes in the F9,3 family. One can check that the

numbers we have derived using the generalised wrapping rules reproduce table 12. For

instance, from eqs. (3.2), (3.3) and (3.4) one gets 16 + 96 + 96 = 208 3-branes in four

dimensions and 32 + 576 + 576 = 1184 2-branes in three dimensions, which coincides with

table 12. Similarly, all the other numbers can easily be checked.

The last family of α = −4 potentials is the F8+n,6+m,m,n family, whose first represen-

tative is F8,6 which is relevant in four dimensions and below. By computing all possible

brane components in the family one gets the numbers that are given in table 13. In four

dimensions the only brane component is F2x1x2x3x4y1y2,x1x2x3x4y1y2 . This is fixed under all

T-dualities, and therefore has multiplicity 1. By dimensional reduction one gets

D = 4 : F2x1x2x3x4y1y2,x1x2x3x4y1y2 → 1

D = 3 : F1x1x2x3x4y1y2y3,x1x2x3x4y1y2 → 2× 3 = 6

F2x1x2x3x4y1y2,x1x2x3x4y1y2 → 2× 3 = 6 , (3.6)

and again in three dimensions one has the doubling times a factor 3 due to the y indices.

Finally, in three dimensions one has the additional component

D = 3 : F2x1x2x3y1y2y3,x1x2x3y1y2y3 → 2× 4 = 8 . (3.7)

It is easy to check that the branes in eqs. (3.6) and (3.7) reproduce table 13.

This concludes the analysis of the α = −4 branes in the orbifold theory. By putting

together the numbers in tables 11, 12 and 13, it is straightforward to check that the overall

numbers exactly reproduce tables 3, 4 and 5 of [31].

One can show that using the generalised wrapping rules one can also determine the

number of branes with more negative values of α in the orbifold theory. As an example

we consider the α = −5 case. We give in table 14 the number of such branes as derived

in [31]. The mixed-symmetry potentials that contribute are the G10,4+n,2m+1,n (IIA) or

G10,4+n,2m,n (IIB) family and the G9+p,6+n,2m,n,p (IIA) or G9+p,6+n,2m+1,n,p (IIB) family.

We determine in any dimension each component that is a representative of a T-duality

family in the orbifold theory and we determine the number of branes in the family by

simply looking at how the representative transforms under the T-duality rules given in

eq. (2.5). We take the IIB representatives for the first family and the IIA representative

for the second, but one can always map this to the other theory by a single T-duality in a
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y direction. Starting from G6x1...x4,x1...x4
in six dimensions we get

D = 6 : G6x1...x4,x1...x4
→ 8 (only IIB)

D = 5 : G5x1...x4y,x1...x4
→ 8

D = 4 : G4x1...x4y1y2,x1...x4
→ 16

D = 3 : G3x1...x4y1y2y3,x1...x4
→ 32 , (3.8)

and in this case the wrapping rule applies. The family G5x1...x4y,x1x2x3y,x1y gives

D = 5 : G5x1...x4y,x1x2x3y,x1y → 32

D = 4 : G4x1...x4y1y2,x1x2x3y1,x1y1 → 64× 2 = 128

D = 3 : G3x1...x4y1y2y3,x1x2x3y1,x1y1 → 128× 3 = 384 , (3.9)

and the doubling is corrected by a multiplicity factor 6−D due to the y index. One also has

D = 4 : G4x1...x4y1y2,x1x2y1y2 → 96

D = 3 : G3x1...x4y1y2y3,x1x2y1y2 → 192× 3 = 576 , (3.10)

where the multiplicity is
(
6−D
2

)
. Finally, the G10,4+n,2m,n also produces in three dimensions

D = 3 : G3x1...x4y1y2y3,x1y1y2y3,x1y1 → 128 . (3.11)

We then move to the G9+p,6+n,2m,n,p IIA family. The highest dimensional representative is

G3x1...x4y1y2,x1...x4y1y2 , giving

D = 4 : G3x1...x4y1y2,x1...x4y1y2 → 16

D = 3 : G2x1...x4y1y2y3,x1...x4y1y2 → 32× 3 = 96

G3x1...x4y1y2,x1...x4y1y2 → 32× 3 = 96 , (3.12)

satisfying the wrapping rules with an extra factor
(
6−D
2

)
. In three dimensions one can

also have

D = 3 : G2x1...x4y1y2y3,x1x2x3y1y2y3,x1y1 → 128 (3.13)

and

D = 3 : G3x1x2x3y1y2y3,x1x2x3y1y2y3 → 128 . (3.14)

The reader can check that summing all the α = −5 branes one recovers table 14. We leave

it as an exercise to show that the generalised wrapping rules are valid also for the branes

with lower values of α.

4 Conclusions and outlook

The main message of this paper is that one can formulate universal wrapping rules for

the branes of Type IIA and IIB string theory that reproduce the number of branes in

different D < 10 dimensions. For the case of maximal supersymmetry we presented the
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0 1 2 3 4 5

6A/6B 0/8

5 40

4 16 240

3 224 1344

Table 14. The α = −5 branes in the (T 4/Z2)× Tn theories.

basic wrapping rules in eqs. (1.2) and (1.3). These rules are valid for all branes that, by T-

duality, are related to a brane which can be obtained from a 10D brane via compactification.

We extended these rules to a set of generalized wrapping rules that are even valid for

families of branes that are not related, via duality, to any brane with a 10D brane origin.

The generalization consists of the fact that the number of branes produced by the basic

wrapping rules (1.2) and (1.3) must be multiplied by an additional combinatorial factor

that is determined by the mixed-index structure of the 10D potential that gives rise to the

highest-dimensional brane in the family of branes under consideration.

We also considered a case with half-maximal supersymmetry corresponding to the

compactification of Type IIA or Type IIB string theory over (T 4/Z2) × Tn. We found

that the same generalized wrapping rules apply to this case too but that not all branes in

D < 6 dimensions can be obtained by compactification of the 6D branes that arise after

the compactification over T 4/Z2. Additional branes, generating new families of branes,

pop up in D < 6 dimensions. We found that the number of branes in each such a new

family is determined by the same generalized wrapping rules we constructed before. These

new branes can be found by systematically investigating the components of the 10D mixed-

symmetry potentials that are allowed by the orbifold and torus reduction. An additional

subtlety that occurred in our analysis was the fact that a few seemingly allowed mixed-

symmetry components were projected out due to the fact that they corresponded to a

world-volume theory that was not allowed in the corresponding string theory.

Our analysis of the half-maximal case relies on the fact that we have a natural way of

implementing the action of Z2 on the mixed-symmetry potentials. It would be interesting

to see how the procedure can be extended to the other possible orbifold limits T 4/ZN of K3,

with N = 3, 4, 6. The generalisation to arbitrary K3’s is a non-trivial challenge due to the

fact that our method relies on T-duality, which is not well-defined on a generic K3 manifold.

On the other hand, the group-theory analysis of [31] shows that the number of 1/2-BPS

single-brane states does not depend on the particular choice of K3, which implies that

the wrapping rules still apply, although their interpretation in terms of mixed-symmetry

potentials and T-duality rules is not clear.

The remarkable thing about the wrapping rules we formulated in this paper is that

they seem to be universal. Independent of how complicated the T-duality representations

are, especially in the case of non-maximal supersymmetry, at the end of the day the BPS

p-branes that hide within these complicated representations satisfy the same simple set of

generalized wrapping rules. This simplicity suggests that the wrapping rules have some-

thing to say about the stringy geometry that is probed by these BPS p-branes.
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It would be interesting to compare our results with those of Double Field Theory

(DFT) [35–37] where the T-duality is made manifest by doubling the spacetime coordinates.

Mixed-symmetry potentials do enter also DFT as soon as one tries to dualise the NS-NS

2-form since by T-duality this 2-form is related to the metric [38]. Hence, to dualise

the 2-form into a 6-form in a T-duality covariant way one should also dualise the metric

which is a notoriously difficult issue. At the linearised level [7, 39] this dualisation leads

to a mixed-symmetry potential of the type D7,1 that couples to the 10D Kaluza-Klein

monopole. Unfortunately, we do not know how to extend this dualisation procedure to the

non-linear case [40, 41]. This is the main stumbling block of our present approach. Being

able to define mixed-symmetry potentials at the non-linear level will without doubt lead

to crucial insights into what the true nature of the elusive stringy geometry is.
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