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ABSTRACT
Microlensing of multiply imaged quasars is a unique probe of quasar structure, down to the
size of the accretion disc and the central black hole. Flux ratios between close pairs of images
of lensed quasars can be used to constrain the accretion disc size and temperature profile.
The starting point of any microlensing model is the macromodel of the lens, which provides
the convergence and shear values at the location of the multiple images. Here I present a
new approach of microlensing modelling independently of the macromodel of the lens. The
technique is applied to the close pair of images A1 and A2 of MG 0414+0534, for a set of flux
ratios with large variation with respect to wavelength. The inferred accretion disc size and
temperature profile measurements, as well as the smooth matter fraction at the location of the
images, are quite robust under a wide range of macromodel variations. A case of using purely
microlensing data (flux ratios) to constrain the macromodel is also presented. This is a first
application of the technique on a fiducial system and set of flux ratios; the method is readily
applicable to collections of such objects and can be extended to light-curve and/or imaging
data.

Key words: accretion, accretion discs – gravitational lensing: micro – gravitational lensing:
strong – quasars: individual: MG 0414+0534.

1 IN T RO D U C T I O N

Cosmological microlensing observations constitute a unique probe
of the structure of lensing galaxies and lensed quasars. Understand-
ing the dark (smooth) and stellar (compact) matter components in
galaxy-scale systems is an open issue and has many implications
for studying their formation and evolution scenarios (e.g. Conroy &
Wechsler 2009; Behroozi, Conroy & Wechsler 2010; Moster et al.
2010). To this end, using strong gravitational lenses has been valu-
able (e.g. Treu et al. 2010; Oguri, Rusu & Falco 2014; Leier et al.
2016).

In the case of the lensed source being a quasar, microlensing can
be employed to unveil the structure of the accretion disc and the
geometry of the emitting regions in the vicinity of the supermassive
black hole (e.g. Dai et al. 2010; Morgan et al. 2010; Guerras et al.
2013; O’Dowd et al. 2015). This, in turn, can be used to under-
stand the growth of the black hole (e.g. Rosas-Guevara et al. 2015;
Terrazas et al. 2017) and its relation to the quasar host galaxy and
its environment via feedback mechanisms (e.g. Bourne & Sijacki
2017; Cowley et al. 2018).

For any quasar to be microlensed, it has to be first multiply imaged
by a foreground lensing galaxy (the ‘macrolens’, or just ‘lens’). The
positions of the images, any extended lensed features of the back-
ground quasar host galaxy, and other available data (e.g. time delays

� E-mail: gvernard@astro.rug.nl

or flux ratios between the images) can be used to construct a mass
model for the lens (e.g. see Keeton 2001). Such models describe the
total mass of the lens, and provide the convergence, κ , and shear, γ ,
fields. However, the degeneracy between its baryonic and dark mat-
ter components remains. To lift this degeneracy, the light profile of
the lens can be used to measure the smooth matter fraction, s (equa-
tion 5), as a function of radius (Oguri et al. 2014; Foxley-Marrable
et al. 2018). This approach, however, is accompanied by the large
uncertainty in the stellar initial mass function, used to convert the
light into the mass distribution. The individual values of κ , γ , and
s, at the locations of the multiple images are the primary parameters
for setting the microlensing properties.

Incoming light rays from the background quasar are further de-
flected by several stellar-mass microlenses existing within the lens
and lying along the line of sight to the quasar images. The presence
of such collective deflections creates a network of caustics which
can be described by a magnification map (Kayser, Refsdal & Stabell
1986). The properties of these maps (e.g. the caustic density, orien-
tation, etc) depend mainly on κ , γ , and s, which set the mass density
of the essential grainy (i.e. stellar in this case) mass component. The
final result is a microlensing-induced time-dependent magnification
on the source, uncorrelated between its observed (macro) images.
Analysing observations using microlensing techniques can provide
a measurement for s (Schechter & Wambsganss 2002), which can
otherwise be only approximated as explained in the previous para-
graph. This has been done using microlensing light-curve data (e.g.
Chartas et al. 2009; Dai et al. 2010; MacLeod et al. 2015) or mi-
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4676 G. Vernardos

crolensing flux ratios (e.g. Bate et al. 2011; Pooley et al. 2012;
Jiménez-Vicente et al. 2015).

Besides κ , γ , and s, the size of the source with respect to the
caustics plays an important role: the smaller the background source,
the more prominent the microlensing induced brightness variations
will be. It is currently thought that quasar accretion discs are hotter
in their innermost regions and cool down further from the central
supermassive black hole. The standard thin-disc model (Shakura &
Sunyaev 1973) predicts a power-law dependence of the temperature
as a function of radius, with the power-law index fixed to 3/4. This
is easily transformed into a size–wavelength relation, making discs
appear bigger in long (red) and smaller in short (blue) wavelengths.
This wavelength-dependent microlensing effect has been used to
constrain quasar accretion discs (Bate et al. 2008; Floyd, Bate &
Webster 2009; Jimenez-Vicente et al. 2014; Rojas et al. 2014; Bate
et al. 2018).

All microlensing studies so far have employed the ‘traditional’
two-stage modelling approach. First, a lens mass model is fitted to
the imaging data and the individual values of κ , γ are extracted for
each image. Secondly, a set of microlensing magnification maps is
produced as a function of s (or other parameters like the microlens
masses, proper motions, etc). A series of flux ratios or light curves
are produced from the maps for different accretion disc profiles and
compared to the observations (in the case of light curves, the time
delay between the macro-images has to be used to correct the data
first). The very high computational cost associated with generating
magnification maps for different parameters (Bate & Fluke 2012),
and the adequately constrained lens mass models from imaging data
justify the choice of using fixed values for κ , γ .

The possibility of inferring microlensing constraints, and their
robustness, on the lens mass model has not been investigated
before. Conversely, studies of the effect of lens model varia-
tions/uncertainties on accretion disc constraints, or s, inferred by
microlensing have been very limited (e.g. see Vernardos & Fluke
2014b). The main reason behind this is the computationally de-
manding task of producing magnification maps for many different
combinations of κ , γ , and s.

The new approach presented in this work assesses the robustness
of the derived s and accretion disc constraints with respect to the
lens-mass model (i.e. the κ , γ ). The feasibility of using purely
microlensing data and methods in providing constraints to the lens-
mass model is also examined. Any constraints on κ , γ coming
from the macromodel (i.e. having them as fixed parameters) are
therefore dropped, and they are treated as free parameters instead.
Although a computationally more intensive task as a whole, the
bulk of the effort, which is computing magnification maps, can be
avoided by using the GERLUMPH1 collection of maps (Vernardos
et al. 2014; Vernardos & Fluke 2014a), whose uniform and extensive
coverage of the κ , γ , and s parameter space makes it ideal for such an
application. The model and its implementation, as well as the choice
of a fiducial system to apply it, are described in Section 2. Results
are presented in Section 3, followed by discussion and conclusions
in Section 4.

2 ME T H O D

The geometry of the multiple images of a lensed source is well
understood and can be reproduced by relatively simple elliptical

1http://gerlumph.swin.edu.au

mass models. Understanding the absolute brightness of the individ-
ual images is a more complicated task: one has to know the intrinsic
brightness of the source, its variability, and the time delays between
the images, which are much more sensitive to the exact lensing
mass configuration (Kochanek et al. 2006). Although these effects
can be mitigated by using the relative brightness, i.e. the flux ratios
of the images, one still has to take into account microlensing and
substructure in the lens (Mao & Schneider 1998; Metcalf & Madau
2001). In the absence of such contaminating effects, lensing theory
provides a useful result: close image pairs in a fold configuration
are expected to have magnifications of roughly the same magnitude
(Schneider, Kochanek & Wambsganss 2006) and therefore an ex-
pected magnification ratio of unity (a similar rule holds for a cusp
configuration of the images).

The new technique presented in Section 2.1 is applied to one such
system, i.e. the close image pair of MG 0414+0534, introduced in
Section 2.2. This pair, as expected, consists of a saddle point (A2)
and a minimum (A1) image, which are labelled accordingly in the
following. The specific details of applying the model to the data are
presented in Section 2.3.

2.1 Model description

The new approach introduced in this work consists of allowing the
κ , γ values for the images to vary. The relative contribution of
the smooth component to the total mass density is assumed to be
the same for both images. This assumption is justified by the close
separation of the image pair and its azimuthal orientation around
the centre of the lens (i.e. the images are found at roughly the same
direction and distance from the lens centre). This approximation has
been widely used in the literature (e.g. Bate et al. 2011; Jimenez-
Vicente et al. 2014; Bate et al. 2018) as it greatly facilitates the
computations, and, to first order, produces meaningful results.

The size of the accretion disc as a function of wavelength is given
a parametric power-law form

r = r0

(
λ

λ0

)ν

, (1)

where r0 is the size at the fiducial wavelength λ0 = 1026 Å, which
together with the power-law index, ν, constitute the two free pa-
rameters of the disc model. The size r is matched to the half-light
radius, r1/2, of a circularly symmetric (face-on) Gaussian bright-
ness profile for the source.2 The absolute values of the brightness
are unimportant because, as explained above, only flux ratios are
examined in this work.

The general form of the Bayesian posterior probability distribu-
tion is

P ( p|d, η) = L(d|η, p)Pr( p)

E(d|η)
, (2)

where p is the vector of the free parameters for this model (κmin,
γ min, κ sad, γ sad, s, r0, ν), and d is the data from Table 1. η is a
vector of parameters that we may choose to keep fixed (either κmin,
γ min, or κ sad, γ sad, see Section 3; other parameters that one may
wish to keep track of could be added here, e.g. the average mass
of the microlenses, etc) and is omitted in the rest. Pr is the prior

2Mortonson, Schechter & Wambsganss (2005) have shown that the actual
shape of such a profile does not play an important role, and it is the size of
the half-light radius that matters for the purposes of microlensing.
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Table 1. Flux ratios between images A2 and A1 of MG 0414+0534 as a
function of observed wavelength, λ, adopted from Bate et al. (2018).

λ (Å) A2/A1

7612 0.34 ± 0.03
8436 0.42 ± 0.02
12486 0.66 ± 0.01
15369 0.76 ± 0.01

probability of the parameters p, and E is the Bayesian evidence.
The likelihood term, L, for a fixed set of parameters p is given by

L(d| p) =
N∑

k=1

Lk =
N∑

k=1

exp

(
−χ2

k

2

)
, (3)

as the sum over all the chi-squared realizations

χ2
k =

4∑
i=1

(
f obs

i − f sim
i,k

σi

)2

, (4)

where the index i corresponds to the observed flux ratios, fobs, and
their uncertainties, σ , as a function of wavelength, and the index
k corresponds to our simulated flux ratios, fsim. Obtaining fsim, the
strategy of finding L as a function of the free parameters p, and the
priors used are described in the next sections.

2.2 The close pair of MG 0414+0534

The new approach presented here is applied to images A1 (mini-
mum) and A2 (saddle point) of the quadruply imaged quasar MG
0414+0534 which have a separation of δθ ≈ 0.4 arcsec (Hewitt
et al. 1992). Due to a deviation (anomaly) from the expected mag-
nification ratio of unity in the UV and optical, which persists in
infrared and radio observations (where any microlensing effect is
expected to be negligible), this particular system has been the fo-
cus of several studies of possible substructure in the lens (Mao &
Schneider 1998; Dalal & Kochanek 2002; Minezaki et al. 2009;
MacLeod et al. 2013).

Additionally, a number of microlensing analyses have been per-
formed on this system: Bate et al. (2008, 2011) and Blackburne et al.
(2011) find a temperature profile of the quasar accretion disc which
is consistent with the thin-disc model, while Pooley et al. (2007)
find a size larger than expected. Recently, Bate et al. (2018) have
used Hubble Space Telescope (HST) data to measure an accretion
disc with size ln(r0) < 1.07 (r0 in light days) and slope ν = 2.1+0.6

−0.6

(modelled after equation 1), marginally larger than thin disc theory
expectations.

In this study, we adopt the microlensing flux ratio data obtained by
Bate et al. (2018), shown in Table 1. We also use the macromodel of
MacLeod et al. (2013; table 3), which consists of three components:
the main lens, modelled as a singular isothermal ellipsoid (SIE) with
external shear, a known companion galaxy, modelled as a singular
isothermal sphere (SIS), and an unknown (dark) substructure, also
modelled as a SIS. Based on this macromodel, Bate et al. (2018)
computed the values of the convergence and the shear of each image
in the pair, hereafter referred to as κML13, γ ML13 (see Table 2).

Based on the data of Bate et al. (2018), the macromodel of
MacLeod et al. (2013), and general properties of close image pairs,
the following remarks/simplifications can be made. First, the time
delay between the images is expected to be very short (e.g. see
Pooley et al. 2007; for an analysis of 10 systems, including MG
0414+0534), and so the quasar can be essentially considered in the

same state for both images at the time of observation. Secondly,
the flux in each filter that is coming from regions (and physical
scales) beyond the accretion disc (and thus effected differently by
microlensing) is minimal; this has been achieved by carefully se-
lecting which HST filters to observe with (see fig. 1 of Bate et al.
2018). Thus, in the following, the wavelength dependence of the
flux ratios is attributed solely to the structure of the quasar accre-
tion disc and its ongoing microlensing. Lastly, as explained above,
in the case of an unperturbed lens-mass model and without any
differential extinction, the expected magnification ratio would be
equal to unity. However, the presence of substructure in the lens
(MacLeod et al. 2013) and/or the possible effect of differential ex-
tinction (which is harder to correct for as it requires spectroscopic
data, e.g. Jimenez-Vicente et al. 2014; O’Dowd et al. 2015) are
causing deviations from unity. These effects are taken into account
by setting a baseline magnification ratio of fbase = 0.93 ± 0.03,
assumed to be unaffected by microlensing. This was obtained from
the infrared observations and subsequent models of Minezaki et al.
(2009) and MacLeod et al. (2013).

2.3 Implementation

The macromodel, or lens, parameters consist of the convergences
and shears, κmin, γ min, κ sad, γ sad, and the smooth matter fraction,
s, assumed to be the same for both images. The accretion disc
parameters are the size, r0, and power-law slope, ν. Thus, the model
can have up to a total of seven free parameters. For the macromodel
parameters we adopt the ranges 0 < κ < 1, 0 < γ < 1.4, and 0 ≤ s ≤
0.9 (the last one in steps of 0.1). Magnification maps were retrieved
from the full GERLUMPH3 data set (see fig. 4 of Vernardos &
Fluke 2014a; and related text for details). The Einstein radius on
the source plane, REin, is set to 3.74 × 1016 cm for microlenses with
a fixed mass of 1 M�, using zS = 2.64 (Lawrence et al. 1995) and
zL = 0.96 (Tonry & Kochanek 1999) for the measured redshifts of
the source and the lens, and a Universe with H0 = 70 km s−1 Mpc−1,
�m = 0.3, and �� = 0.7. For the accretion disc parameters a regular
grid is selected such that ln(r0) = 0.3 × j for j = 0. . . 11 and ν =
0.25 × i for i = 0. . . 15, following Jimenez-Vicente et al. (2014).

The remaining procedure is almost identical to the one presented
in Bate et al. (2018). For each combination of ln(r0) and ν, a set of
two-dimensional, symmetric, face-on, Gaussian profiles (see Mor-
tonson et al. 2005) are generated for the accretion disc in each
wavelength of Table 1. The half-light radius of each profile is r1/2 =
1.18r, where r comes from equation (1), i.e. it is the standard devi-
ation of the Gaussian. The profiles are truncated at 2 × r1/2, having
a total width of 4 × r1/2. Whenever a profile has a total width larger
than 16 REin

4 it is regarded as being too large to be affected by mi-
crolensing and the flux ratio is assumed to have the baseline value
fbase.

For the rest of the profiles, in order to get the simulated flux
ratios, fsim, to be used in equation (4), a convolution with each mag-
nification map has to be carried out first. Due to the convolution
edge effects, instead of the entire convolved maps only a central
‘effective’ part of them is used. The size of this effective map is

3Both GD1 and GD3 data sets were used, which are computed on a regular
but sparse and an irregular but dense κ , γ grid, respectively. All the maps
are available online at: http://gerlumph.swin.edu.au
4This limit is debatable as the caustics can still have a structure on this
scale, depending on the values of κ , γ , and thus there could be still some
microlensing effect present. See also the discussion in Section 4.
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4678 G. Vernardos

Table 2. Expectation values for the macromodel (κ , γ , s) and accretion disc (ln(r0), ν) parameters at the 68 per cent confidence interval for the four sets of
results introduced in Section 3. The size parameter r0 is measured in light days. The κ , γ values for REF are based on MacLeod et al. (2013). Values that are
shown without uncertainties are kept fixed.

REF (both fixed) CON6 (one free) CON7 (one constrained) CON8 (both varying)
Minimum Saddle point Minimum Saddle point

κmin 0.51 0.41+0.17
−0.21 0.51 0.18+0.19

−0.11 0.51 0.42+0.26
−0.30

γ min 0.42 0.23+0.27
−0.17 0.42 0.74+0.12

−0.23 0.42 0.83+0.05
−0.30

κsad 0.56 0.56 0.41+0.36
−0.29 0.56 0.17+0.21

−0.12 0.50+0.34
−0.36

γ sad 0.51 0.51 1.09+0.14
−0.27 0.51 0.86+0.10

−0.18 0.90+0.07
−0.28

s 0.61+0.21
−0.24 0.65+0.18

−0.38 0.47+0.28
−0.31 0.66+0.18

−0.38 0.53+0.25
−0.28 0.62+0.20

−0.34

ln(r0) ≤1.00 ≤0.86 0.85+0.59
−0.53 ≤0.79 ≤0.82 ≤0.92

ν 1.65+0.50
−0.52 1.63+0.53

−0.60 1.59+0.54
−0.52 1.57+0.55

−0.56 1.65+0.52
−0.57 1.64+0.50

−0.52

determined by the largest profile, i.e. the one in the reddest wave-
length λ = 15369 Å, e.g. for ln(r0), ν = (0.3, 1) equation (1)
gives r = 5.23 × 1016 cm ≈ 1.4REin and the effective map size
is 18.4REin (from the 25 REin GERLUMPH maps). Magnification
values are drawn from a square grid of 104 points in each effec-
tive map, producing 108 simulated flux ratios in each wavelength.
Hence, first the χ2 term of equation (4) is calculated, and then the
sum of equation (3), that has N = 108 terms, is computed.

The analysis and results presented below are based on relative
posterior probabilities, therefore, the computationally demanding
calculation of the evidence term in equation (2) is disregarded.
Such a computation would be meaningful in the case of compar-
isons between different physically motivated models for the lens or
the disc, which is feasible within the general formulation introduced
above, but out of the scope of this paper. Because of this, the terms
likelihood and probability are used interchangeably in the follow-
ing. Fixed grids are adopted for the exploration of the parameter
space, leaving the use of other, more elaborate and efficient sam-
pling techniques, such as Markov Chains, Gibbs sampling, or other
optimizers, for future work.

Finally, all the priors were chosen to be flat, except for r0 that
has a logarithmic prior (Bate et al. 2018). One could argue that s
should have a logarithmic prior as well, since it is a multiplicative
parameter

κ∗ = (1 − s)κ, (5)

where κ∗ is the convergence in compact matter. In the next section
the results were computed using both priors for s.

3 R ESULTS

The model presented in the previous section has a total of seven
free parameters (κmin, γ min, κ sad, γ sad, s, r0, ν). A completely un-
constrained variation of the κ , γ values for both images, together
with the rest of the parameters, is a computationally demanding
task, especially when using fixed grids to explore the parameter
space. The results presented in this section are divided into sets
having different constraints. The flux ratio data, shown in Table 1,
are used in all cases and provide four constraints to the model. The
κ , γ of each, or both, of the images, are allowed to vary freely or
under some constraint:

(i) REF: this is a benchmark, or reference, set, keeping both κmin,
γ min and κ sad, γ sad fixed to the corresponding κML13, γ ML13 values
(the number of constraints is 8). The same parameter values and
setup are used as in Bate et al. (2018).

(ii) CON6 allowing either κmin, γ min or κ sad, γ sad to vary freely
in the parameter space while keeping the other fixed to the κML13,
γ ML13 values (the number of constraints is 6).

(iii) CON7: same as in the previous set, but in this case the
varying κ , γ are constrained by equation (6) in order to reproduce
the magnification given by the κML13, γ ML13 values (the number of
constraints is 7).

(iv) CON8: varying both κmin, γ min and κ sad, γ sad under the con-
straint of reproducing the magnification given by the κML13, γ ML13

values (using equation 6) and matching to a given slope of a fiducial
spherical potential for the lens (using equation 11; the number of
constraints is 8).

The magnification is obtained from the lens equation (e.g. see
Schneider et al. 2006) as

μ = 1

(1 − κ)2 − γ 2
. (6)

This equation is used to define the critical line, i.e. the locus of
points in the κ , γ plane, corresponding to a straight line, where
the magnification goes to infinity. The critical line serves also as a
division between the minimum (μ > 0) and saddle-point (μ < 0)
regions of the parameter space (see Fig. 1).

In the left-hand panel of Fig. 1, we show the probability sur-
face from equation (2) as a function of κmin, γ min and κ sad,
γ sad, respectively, marginalized over the remaining parameters s,
r0, and ν (CON6). This is equivalent to the likelihood surface of
equation (3) under the use of flat priors and examining relative prob-
ability values. A total of 140 (300) combinations of κmin, γ min (κ sad,
γ sad) is shown, selected randomly in the parameter space. The re-
sulting grid is irregular and a generic ‘pixel’ needs to be associated
with each probed location. Here, the κ , γ plane is partitioned in
Voronoi cells, which enclose the points closer to a specific probed
location than to any other location. Another choice of partitioning
could be the Delaunay triangulation, however, this would associate
three grid points rather than one, as is the case with a Voronoi cell
that is closer to the notion of a pixel centred on a measurement.
The Voronoi and Delaunay tessellations are the dual of each other,
and are unique. For further marginalization over either κ or γ (e.g.
to obtain the expectation values and confidence intervals shown in
Table 2), the likelihood is weighted by the area of each Voronoi cell.

The transformation provided by Paczynski (1986)

κeff = (1 − s)κ

1 − sκ
, γeff = γ

1 − sκ
, (7)

is a consequence of the mass-sheet degeneracy (Falco, Gorenstein &
Shapiro 1985), and reduces the three macromodel parameters κ , γ ,
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Figure 1. Results for CON6. Left: κ−γ joint probability density marginalized over s, r0, and ν, plotted as shaded Voronoi cells, with a darker (lighter) colour
indicating a higher (lower) probability. Right: probability density for κ , γ , s, marginalized over the accretion disc parameters r0 and ν, shown in the effective
parameter space (using the transformation of equation 7). The parameter space in each panel is divided by the critical line (black solid line, see also equation 6)
separating the saddle point and minimum regions, above and below it, respectively. The likelihood surface shown for the saddle point is computed while
keeping the minimum image fixed to its κML13, γ ML13 values (indicated by a cross) and vice versa. The locations of the effective κML13, γ ML13 are also marked
(grey stars), using the value of s = 0.61 from Table 2 (for REF).

s to only two: the effective convergence, κeff, and shear, γ eff, where
κeff is now due only to compact microlenses. This transformation
allows the collapsed likelihood,5 shown in the left-hand panel of
Fig. 1 as a function of κ , γ , to be shown as a function of κeff,
γ eff in the right-hand panel of the same figure. The transformation
introduces a weighting of the probability density by the determinant
of its Jacobian matrix∣∣∣∣det

∂(κ, γ )

∂(κeff, γeff )

∣∣∣∣ = (1 − sκ)3

1 − s
, (κ ≤ 1). (8)

For any fixed κ , γ , and a varying s, the resulting κeff, γ eff from
equation (7) lie on straight lines radiating from (1,0). This is the
reason for the higher concentration of points to the left and top of
the right-hand panel of Fig. 1 (see also fig. 1 of Vernardos & Fluke
2014b).

Next, a constrained rather than free variation of the κ , γ values
for each image is examined (CON7). Two new parameters are used,
namely, the magnification (equation 6) and the displacement along a
constant magnification contour, tμ. In this way, the observationally
motivated constraint on μ is easily achieved by allowing its value for
one image to vary slightly with respect to the fixed magnification of
the other image. Varying μ between 0.9 and 0.96 × fbase (the baseline
magnification without microlensing) in steps of 0.01, and t on fixed

5The likelihood in the left-hand panel of Fig. 1 is collapsed with respect to
s; for each κ , γ it is the sum of all the individual likelihoods for different
s. Having the likelihood as a function of κ , γ , and s allows to plot the
right-hand panel of Fig. 1.

intervals, creates a rectangular regular grid for both parameters.
Transforming between (t, μ) and (κ , γ ) is trivial, however, there is
a volume, or weight, associated with each resulting κ , γ location
due to the coordinate transformation∣∣∣∣det

∂(κ, γ )

∂(μ, t)

∣∣∣∣ = [(1 − κ)2 + γ 2]2

2γ
. (9)

To obtain the probabilities on this new grid of κ , γ under the as-
sumed constraint on μ, the likelihood values of CON6 (left-hand
panel of Fig. 1) are interpolated using the natural neighbour interpo-
lation technique (Sibson 1981). In Fig. 2, the constrained probability
distributions of κ , γ , s are shown (CON7), multiplied by the correct
weight and marginalized over the accretion disc parameters r0 and
ν, for varying κmin, γ min (left-hand panel) and κ sad, γ sad (right-hand
panel). As expected, the κ−γ joint probability contours follow the
shape of constant magnification contours [e.g. see fig. 1, fig. 3 of
Witt et al. (1995), or fig. 7b of Vernardos & Fluke (2014b)].

In the top panel of Fig. 3 we show 100 pairs of images, coloured
according to their probability (CON8). In this case, the assumption
of keeping one of the two images fixed to κML13, γ ML13 has been
dropped, but the constraint of the pair having a magnification ratio of
fbase has been retained. Witt et al. (1995) have investigated singular
spherical potentials for the lens having a convergence as a function
of radius r of the form

κ(r) = β

2

(
b

r

)2−β

, (10)

where β is the slope of the mass distribution (or potential, with β =
1 for a SIS model), and b is a scaling factor related to the Einstein
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4680 G. Vernardos

Figure 2. Constrained probability densities and histograms for κmin, γ min, s and κsad, γ sad, s (CON7), marginalized over the accretion disc parameters r0 and
ν. Contours are drawn at the 68, 95, and 99 per cent confidence intervals. Crosses indicate the location of the κML13, γ ML13 values.

radius of the lens, and derived the theoretical result

γ = 4 − β

β
κ − 1. (11)

We have used this relation to loosely correlate each pair shown in
Fig. 3 with the slope of such a fiducial potential for the lens (a
practical reason for this ‘looseness’ is the finite and irregular grid of
available magnification maps in the κ , γ parameter space). By fitting
equation (11) to each pair, the probability density of the slope β is
derived and shown in the bottom panel of Fig. 3. The expectation
value of β is 0.79+0.60

−0.53 at the 68 per cent confidence interval (which
is not really meaningful, given the flatness of the distribution in the
lower panel of Fig. 3). Transforming this to probability distributions
for κ and γ (as in the last column of Table 2), the following weights
have to be used

|∂κ

∂β
| = (κ + γ + 1)2

4(γ + 1)
, (12)

|∂γ

∂β
| = (κ + γ + 1)2

4κ
. (13)

The marginalized probabilities of the accretion disc parameters
r0 and ν are shown in Fig. 4 for all sets of results. Interestingly, the
shape of the probability contours and histograms is almost identical.

Finally, the expectation values for the accretion disc and the
lens parameters from all four sets of results are shown in Table 2.
Introducing a logarithmic prior on s (as discussed in Section 2.3) has
a minor effect on these values: slightly lower values are preferred for
the derived κmin and κ sad, values between 0.3 and 0.4 are preferred
for s, and slightly higher values between 1.7 and 1.8 are preferred for
ν. However, in both cases the derived values are consistent within
their confidence intervals.

3.1 The computations

The most computationally demanding part of the simulations un-
dertaken in this paper is generating the microlensing magnification
maps for a wide range of κ , γ , and s. However, this task has been al-
ready accomplished by the GERLUMPH parameter survey, which
has made available more than 70 000 magnification maps in the
targeted part of parameter space (see Vernardos et al. 2014; Vernar-
dos & Fluke 2014a). The number of individual magnification maps
used in the case of a fixed image was 10: a single κ , γ location
with 10 different values of s. A set of 1400 maps (140 κ sad, γ sad

locations) were used for a varying minimum image, and 3000 maps
(300 κmin, γ min locations) for a varying saddle point. To obtain the
probability of the 100 pairs shown in Fig. 3, 2000 maps were used.
The total number of magnification maps used is 6400, which would
have taken approx. 1830 d to generate on a single Graphics Pro-
cessing Unit (GPU), or just 29 d using the GPU-Supercomputer for
Theoretical Astrophysics Research (gSTAR). For comparison, the
remaining part of the computations, i.e. the convolutions between
maps and source profiles described below, took 10 d on gSTAR.

All the results share a common grid of the accretion disc param-
eters r0 and ν. This grid contains 192 unique combinations, which,
from equation (1), produce 768 different accretion disc sizes.6 From
these, only the 209 sizes that correspond to accretion disc profiles
smaller than 16 × REin – the adopted no-microlensing limit – were
convolved with magnification maps to extract simulated flux ratios,
while the rest have been given a fixed ratio equal to fbase.

A total of 26 752 000 convolutions between 10 0002-pixel maps
and profiles were performed (maps for both images had to be con-
volved with the same profile), using multiple GPUs on gSTAR over
a period of 10 d. Our final results consist of 12 288 000 likelihood
evaluations (equation 3), for each of which we computed 108 χ2

6The possible case of a combination of r0, ν, and λ resulting in practically
the same r from equation (1) is disregarded.
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Figure 3. Top: pairs of minimum – saddle-point images in the parameter
space, with darker (lighter) colours indicating higher (lower) probability
(CON8). Crosses mark the κML13, γ ML13 values (REF). The dashed lines
correspond to equation (11) for specific values of β, as in fig. 1 of Witt,
Mao & Schechter (1995). Bottom: probability density of the slope of a
fiducial spherical potential for the lens, obtained by fitting equation (11)
to the pairs shown in the top panel. The vertical solid line indicates the
case of an isothermal potential (β = 1), the dotted line shows the slope
value obtained by fitting κML13, γ ML13 for the two images, the dashed line
the value of β = 0.79 obtained from CON8 and the grey shaded area its
68 per cent confidence interval.

terms either by calculating fsim in equation (4) as described, or by
setting it equal to fbase.

4 D I S C U S S I O N A N D C O N C L U S I O N S

Despite the extreme variations in κ , γ , leading to dramatically
different magnification maps with respect to caustic structure and
magnification probability distribution, in all the examined cases the
same accretion disc constraints are derived, as shown in the last two
rows of Table 2 and in Fig. 4. This apparent independence of the
accretion disc on the macromodel supports the findings of Bate et al.
(2018): the derived accretion disc properties appear to be tightly
connected to the observed data, in this case, the large chromatic
variations of the flux ratios. The macromodel seems to be playing
an insignificant role, at least for MG 0414+0534 examined here and

Figure 4. Probability density and histograms for the accretion disc param-
eters r0 (in light-days) and ν, corresponding to the size of the accretion
disc at the rest wavelength λ0 = 1026Å and its power-law dependence on
wavelength (see equation 11). All the different sets of results presented here
are shown, marginalized over κ , γ , and s whenever applicable. Contours are
drawn at the 68, 95, and 99 per cent confidence intervals.

the given extreme chromatic variation of the flux ratios (Bate et al.
2018).

The accretion disc constraints of Table 2 are consistent with Bate
et al. (2008) for the size and the slope parameters of equation (1),
while for the slope the agreement with Bate et al. (2018) is marginal.
The main reason for this is that they used maps with a width of
100REin, much wider than the 25REin maps used here, allowing
for the inclusion of larger sources (>16REin) in calculating the
likelihood surface of Fig. 4. This and a number of other effects have
been identified to influence the derived accretion disc constraints to
a smaller or larger extent: the size of the effective map, the value of
the baseline ratio, fbase, and its uncertainty, the number of simulated
ratios between maps, and the way these were selected (from pixels
on a fixed grid, in random locations, etc). These potential sources
of bias will be examined in future work.

More than half of the matter at the location of the examined image
pair is found to be in the form of a smooth component, regardless of
the macromodel. This is not surprizing because the multiple images
form at the outskirts of the lensing galaxy, where the stellar den-
sity is expected to be low. In fact, higher smooth matter fractions
can be invoked to explain the observed flux ratio anomaly, usu-
ally manifesting itself as a demagnified saddle point (Schechter &
Wambsganss 2002; Vernardos et al. 2014). The value of s from Bate
et al. (2018) is 0.5+0.3

−0.3 (N. Bate, private communication), consistent
with the values of Table 2. Bate et al. (2011) find a value of 0.8 for
MG 0414+0534, Pooley et al. (2012) find a higher value of 0.93,
while (Jiménez-Vicente et al. 2015) find a value of 0.8 by exam-
ining a collection of 27 image pairs of lensed quasars. However,
the uncertainty on s (Table 2) is quite large in all cases, indicating
basically flat distributions.

Based purely on the microlensing observations, without using
any other kind of data, is there anything to be said about the lens
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mass model? The inferred values of κmin, γ min, and κ sad, γ sad, more
often disagree with the macromodel of MacLeod et al. (2013) than
agree. Of course, one has to take into account the largely undercon-
strained nature of the problem: the model has seven free parameters
and the result sets CON6, CON7, and CON8 use six, seven, and
eight constraints, respectively. Therefore, the values and confidence
intervals derived for κ , γ in Table 2 should be taken cautiously. In
general, for the observed flux ratios in Table 1, and without any in-
formation on the macromodel (derived from imaging data), it seems
that steeper mass distributions than isothermal are favoured, leading
to lower κ and higher γ values at the location of the close pair of
images (see Figs 2 and 3).

It is interesting to investigate the convergence of the solutions of
the model as more observational constraints are used. The method
introduced in this paper would be straightforward to apply by adding
more terms in equation (4) and assuming the flux ratios from dif-
ferent observational epochs are uncorrelated.7 Additionally, the ef-
fectiveness of using flux ratios with different (smaller) chromatic
variations should be tested. In fact, if each close pair image con-
figuration can be associated with distinct flux ratio properties, then
the solutions should converge to the correct κ , γ . This will be in-
vestigated in future work using mock data for several systems with
different κ , γ (similarly to what is suggested in Bate et al. 2018).

A similar ansatz, i.e. finding the macromodel parameters based
on microlensing observables, can be suggested and tested in the
case of light curves. The method presented here can be modified
accordingly to use light-curve data, and the model expanded to
include additional parameters such as the velocities of the observer,
source, and lens, etc. However, this would require a careful selection
of priors on the new parameters and an understanding of their effect
in the interpretation of the results. This is another path of exploration
spurring from this work.

Finally, it is relatively straightforward to combine the analysis
presented here with techniques that fit the macromodel to imaging
data; it would be a simple addition of flux ratio and image position
χ2 terms. Such an approach would be meaningful if the solutions
of the method presented here are indeed shown to converge to
useful values of κ , γ , and could be proven valuable in disentangling
microlensing effects from the presence of substructure in the lens.
Combining this method with imaging data would be easier than
with light curves.

In this paper, a joint analysis of the lens macromodel and the
accretion disc was performed for the first time, driven solely by
microlensing flux ratio data. The derived accretion disc constraints
were proven to be quite robust under broad variations of the κ , γ

for each image. With the method and machinery presented in this
study, one can envisage simultaneous analysis of different kinds of
available observations, deriving constraints on the lens mass and
accretion disc models of a lensed quasar. The cornerstone for such
multicomponent modelling approaches is a readily available col-
lection of magnification maps, like GERLUMPH, which removes
the need of the huge amount of computations associated with gen-
erating them. The future for lensing studies driven by a variety of
available observational data modelled in the same framework looks
promising.

7This means that the source will have to move across the sky by a distance
corresponding to at least its own size. Mosquera & Kochanek (2011) calcu-
late a median source crossing time-scale of 7.3 months based on a sample
of 87 lensed quasars.
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