
 

 

 University of Groningen

Nonrelativistic string theory and T-duality
Bergshoeff, Eric; Gomis, Jaume; Yan, Ziqi

Published in:
Journal of High Energy Physics

DOI:
10.1007/JHEP11(2018)133

IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from
it. Please check the document version below.

Document Version
Publisher's PDF, also known as Version of record

Publication date:
2018

Link to publication in University of Groningen/UMCG research database

Citation for published version (APA):
Bergshoeff, E., Gomis, J., & Yan, Z. (2018). Nonrelativistic string theory and T-duality. Journal of High
Energy Physics, 2018(11), [133]. https://doi.org/10.1007/JHEP11(2018)133

Copyright
Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the
author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons).

Take-down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the
number of authors shown on this cover page is limited to 10 maximum.

Download date: 29-04-2019

https://doi.org/10.1007/JHEP11(2018)133
https://www.rug.nl/research/portal/en/publications/nonrelativistic-string-theory-and-tduality(9a6ca120-fddb-4c18-9807-dedbcfbfb0ed).html


J
H
E
P
1
1
(
2
0
1
8
)
1
3
3

Published for SISSA by Springer

Received: July 27, 2018

Accepted: November 10, 2018

Published: November 22, 2018

Nonrelativistic string theory and T-duality

Eric Bergshoeff,a Jaume Gomisb and Ziqi Yanb

aVan Swinderen Institute, University of Groningen,

Nijenborgh 4, 9747 AG Groningen, The Netherlands
bPerimeter Institute for Theoretical Physics,

31 Caroline St N, Waterloo, ON N2L 6B9, Canada

E-mail: e.a.bergshoeff@rug.nl, jgomis@pitp.ca, zyan@pitp.ca

Abstract: Nonrelativistic string theory in flat spacetime is described by a two-dimensional

quantum field theory with a nonrelativistic global symmetry acting on the worldsheet fields.

Nonrelativistic string theory is unitary, ultraviolet complete and has a string spectrum and

spacetime S-matrix enjoying nonrelativistic symmetry. The worldsheet theory of nonrela-

tivistic string theory is coupled to a curved spacetime background and to a Kalb-Ramond

two-form and dilaton field. The appropriate spacetime geometry for nonrelativistic string

theory is dubbed string Newton-Cartan geometry, which is distinct from Riemannian ge-

ometry. This defines the sigma model of nonrelativistic string theory describing strings

propagating and interacting in curved background fields. We also implement T-duality

transformations in the path integral of this sigma model and uncover the spacetime in-

terpretation of T-duality. We show that T-duality along the longitudinal direction of the

string Newton-Cartan geometry describes relativistic string theory on a Lorentzian geom-

etry with a compact lightlike isometry, which is otherwise only defined by a subtle infinite

boost limit. This relation provides a first principles definition of string theory in the dis-

crete light cone quantization (DLCQ) in an arbitrary background, a quantization that

appears in nonperturbative approaches to quantum field theory and string/M-theory, such

as in Matrix theory. T-duality along a transverse direction of the string Newton-Cartan

geometry equates nonrelativistic string theory in two distinct, T-dual backgrounds.
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1 Introduction

A beautiful feature of string theory is the intricate interplay between worldsheet and target

space physics. The global symmetries of the two-dimensional quantum field theory (QFT)

on the string worldsheet encode the symmetries of the target space geometry. Vertex

operators of the two-dimensional QFT correspond to physical excitations propagating in

the target space background, and correlation functions of the worldsheet theory determine

the spacetime S-matrix.

A striking and originally unwarranted prediction of string theory is the existence of a

vertex operator corresponding to a massless spin two excitation in the target space. This

excitation has the quantum numbers of the quantum of geometry, the graviton. The low

energy tree-level S-matrix of string theory around Minkowski spacetime is that of General

Relativity, which unavoidably emerges from the dynamics of relativistic string theory.

In [1] a consistent, unitary and ultraviolet complete string theory described by a two-

dimensional QFT with a (string)-Galilean invariant global symmetry was put forward.

This string theory has additional worldsheet fields beyond those parametrizing spacetime

coordinates. These additional fields play a central role for the consistency of this string

theory.1 This novel type of string theory was dubbed nonrelativistic string theory [1].2

This string theory was shown to be endowed with a spectrum of string excitations with a

(string)-Galilean invariant dispersion relation and S-matrix. Nonrelativistic string theory

1The construction in [1] was motivated in part by [2]. See also [3].
2In order to avoid potential confusions, we emphasize that the two-dimensional QFT is relativistic and

that the nonrelativistic symmetries act on the target space, i.e. on the worldsheet fields. Nonrelativistic

string theory is defined by a sum over two-dimensional Riemann surfaces. The special structure of the

worldsheet theory localizes the path integral of nonrelativistic string theory to submanifolds in the moduli

space of Riemann surfaces (see [1] for details).
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has a simple target space interpretation: it describes strings propagating and interacting

in a string-Galilean invariant flat spacetime background geometry [1]. The target space

geometry of nonrelativistic string theory differs from the conventional Riemannian one, in

particular there is no Riemannian, Lorentzian metric in the target space. Likewise, the

spacetime effective action of nonrelativistic string theory is not described at low energies by

General Relativity. Indeed, nonrelativistic string theory does not have massless particles

and is therefore not described at low energies by General Relativity. Nonrelativistic string

theory, being ultraviolet finite, provides a quantization of nonrelativistic spacetime geome-

try akin to how relativistic string theory provides a quantization of Riemannian geometry

and of (Einstein) gravity.

We couple nonrelativistic string theory to background fields: a curved target space

geometry, a Kalb-Ramond two-form field and a dilaton. This defines the nonlinear sigma

model describing string propagation on a nonrelativistic target space structure with back-

ground fields, which we will write down in this paper.3 The appropriate spacetime ge-

ometry that the nonrelativistic string couples to is the so-called string Newton-Cartan

geometry [5, 6], a geometric structure that is distinct from a Riemannian metric.4 Quan-

tum consistency of the nonlinear sigma model determines the background fields on which

nonrelativistic string theory can be consistently defined. Nonrelativistic string theory pro-

vides a quantum definition of the classical target space theory that appears in the low

energy expansion.

In this work we also study T-duality of the path integral defining nonrelativistic string

theory on an arbitrary string Newton-Cartan spacetime background and in the presence

of a Kalb-Ramond and dilaton field. The string Newton-Cartan spacetime geometry of

nonrelativistic string theory admits two physically distinct T-duality transformations: lon-

gitudinal and transverse. This is a consequence of the foliation of the string Newton-Cartan

structure that the nonrelativistic string couples to. We derive the explicit form of the T-

dual background fields in nonrelativistic string theory.

An interesting conclusion is reached in the study of longitudinal T-duality. We show

that T-duality along a longitudinal spatial direction leads to a worldsheet theory that ad-

mits the following interesting interpretation: it is the worldsheet theory of a relativistic

string propagating on a Riemannian, Lorentzian manifold with a compact lightlike isometry

and in the presence of Kalb-Ramond and dilaton fields!5 Therefore, nonrelativistic string

theory on a string Newton-Cartan geometry with a longitudinal isometry can be used to

solve for the quantum dynamics of relativistic string theory on a Riemannian, Lorentzian

manifold with a compact lightlike isometry in the discrete light cone quantization (DLCQ).

The DLCQ of QFTs and string/M-theory plays an important role in nonperturbative ap-

proaches to QCD and in Matrix theory [12–15]. Previously, the DLCQ of string theory

was only defined via a subtle limit of compactification on a spacelike circle [14–16]. In-

3See also [4].
4We emphasize that this is also different from the well-studied Newton-Cartan geometry (more below).

For other recent work on strings propagating in different nonrelativistic backgrounds, see [7–11]. Also see

footnote 13 for a more precise relation between [10] and the string Newton-Cartan geometry.
5See also [1, 3, 4].
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stead, we find that the relation to nonrelativistic string theory via a longitudinal T-duality

transformation provides a first principles definition of string theory in the DLCQ on arbi-

trary Lorentzian backgrounds with a lightlike isometry. The DLCQ of relativistic string

theory on a Lorentzian geometry is thus described by the sigma model of nonrelativistic

string theory, with additional worldsheet fields beyond those corresponding to spacetime

coordinates.

For the convenience of the reader, we summarize here the results of performing the

T-duality transformation of nonrelativistic string theory according to the nature of the

isometry direction:

1. Longitudinal spatial T-duality : Nonrelativistic string theory on a string Newton-

Cartan background is mapped to relativistic string theory on a Riemannian,

Lorentzian background geometry with a compact lightlike isometry. See section 3.1

for the precise mapping between the string Newton-Cartan data with background

Kalb-Ramond and dilaton fields, and the Lorentzian metric with background Kalb-

Ramond and dilaton fields.

2. Longitudinal lightlike T-duality : Nonrelativistic string theory on a string Newton-

Cartan background is mapped to nonrelativistic string theory on a T-dual string

Newton-Cartan background with a longitudinal lightlike isometry. The precise map-

ping between the two T-dual string Newton-Cartan background fields can be found

in section 3.2.

3. Transverse T-duality : Nonrelativistic string theory on a string Newton-Cartan back-

ground is mapped to nonrelativistic string theory on a T-dual string Newton-Cartan

background. See section 3.3 for the precise T-duality transformation rules.

The plan for the remainder of this paper is as follows. In section 2 we describe the

string Newton-Cartan geometry that nonrelativistic string theory can be coupled to. We

proceed to write down the sigma model describing nonrelativistic string theory coupled

to such a string Newton-Cartan background, together with a Kalb-Ramond two-form field

and a dilaton. We study the path integral of this sigma model and study T-duality along a

longitudinal spatial direction in section 3.1, a longitudinal lightlike direction in section 3.2

and a transverse spatial direction in section 3.3. Finally, in section 4 we present our

conclusions.

2 Nonrelativistic string theory in a string Newton-Cartan background

In this section we present the construction of the two-dimensional nonlinear sigma model

describing nonrelativistic string theory on a string Newton-Cartan background in the pres-

ence of a Kalb-Ramond two-form field and a dilaton (see also [4, 5]). This sigma model

extends the worldsheet theory in flat spacetime of [1] to arbitrary curved background fields.

In section 2.1 we review some basic properties of this string Newton-Cartan background

– 3 –



J
H
E
P
1
1
(
2
0
1
8
)
1
3
3

spacetime structure.6 Subsequently, in section 2.2, we discuss the nonrelativistic string

sigma model action coupled to this geometry and background fields.

2.1 String Newton-Cartan geometry

We define string Newton-Cartan geometry on a D + 1 dimensional spacetime manifold

M as follows. Let Tp be the tangent space attached to a point p in M. We decompose

Tp into two longitudinal directions indexed by A = 0, 1 and D − 1 transverse directions

indexed by A′ = 2, · · · , D, respectively.7 A two-dimensional foliation is attributed to M
by introducing a generalized clock function τµ

A, also called the longitudinal Vielbein field,

that satisfies the constraint

D[µτν]
A = 0 . (2.1)

The derivative Dµ is covariant with respect to the longitudinal Lorentz transformations

acting on the index A.8 As a consequence of the foliation constraint (2.1), we have

∂[µ

(
τν
Aτρ]

BεAB
)

= 0 → τµ
Aτν

BεAB = ∂[µρν] (2.2)

for some vector field ρµ.

We consider now the following transformations with corresponding generators:

longitudinal translations HA

transverse translations PA′

string Galilei boosts GAA′

longitudinal Lorentz rotations MAB

transverse spatial rotations JA′B′

We refer to the Lie algebra spanned by these generators as the string Galilei algebra [1,

5, 18, 19]. This defines the local spacetime symmetry that replaces the spacetime Lorentz

symmetry SO(D, 1) in the relativistic case. Besides the longitudinal Vielbein field τµ
A

corresponding to HA, we only introduce the transverse Vielbein field Eµ
A′

corresponding

to the generators PA′ . The dependent spin-connection fields corresponding to the other

generators GAA′ ,MAB and JA′B′ will not be needed in what follows.

The (projective) inverse Vielbein fields τµA and EµA′ corresponding to τµ
A and Eµ

A′
,

respectively, are defined via the relations

Eµ
A′
EµB′ = δA

′
B′ , τµAτµ

B = δBA , τµ
AτνA + Eµ

A′
EνA′ = δνµ , (2.4a)

τµAEµ
A′

= 0 , τµ
AEµA′ = 0 . (2.4b)

6The corresponding spacetime nonrelativistic gravity theory was called “stringy” Newton-Cartan gravity

in [5]. An extensive description improving a few results of [5] can be found in [6].
7A particular curved spacetime foliation structure of string Newton-Cartan type appeared in [17] as the

outcome of the nonrelativistic limit of string theory on AdS5 × S5 [4].
8Dµ contains a dependent spin-connection field ωµ

AB(τ) whose explicit expression will not be needed

here. For more details, see [5, 6].
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Parametrizing the string Galilei boost transformations by ΣA
A′

, the Vielbeine and their

inverses transform under string Galilei boosts as follows:

δΣτµ
A = 0 , δΣEµ

A′
= −τµAΣA

A′
, (2.5a)

δΣτ
µ
A = EµA′ΣA

A′
, δΣE

µ
A′ = 0 . (2.5b)

From the Vielbeine we construct a longitudinal metric τµν and a transverse metric Hµν ,

τµν ≡ τµAτνBηAB , Hµν ≡ EµA′EνB′δA
′B′

. (2.6)

Both metrics are not only invariant under the (longitudinal and transverse) rotations but

also invariant under the string Galilei boost transformations (2.5). They are orthogonal in

the sense that τµρH
ρν = 0.

In order to write down the action for a string moving in a string Newton-Cartan back-

ground, we will also need a transverse two-tensor Hµν with covariant indices.9 However,

the näıve choice, Eµ
A′
Eν

B′
δA′B′ , is not invariant under the string Galilei boosts (2.5). The

lack of a boost-invariant inverse for Hµν (and similarly for τµν) prohibits the longitudinal

and transverse metrics from combining into a single Riemannian metric on M.

Constructing a boost-invariant transverse two-tensor Hµν requires introducing a non-

central extension ZA of the string Galilei algebra that occurs in the following commutation

relations:10

[GAA′ , PB′ ] = δA′B′ZA . (2.7)

We introduce gauge fields mµ
A corresponding to the generators ZA, which transform under

a gauge transformation with parameter σA and under the Galilean boosts as

δmµ
A = Dµσ

A + Eµ
A′

ΣA
A′ , (2.8)

where the derivative Dµ is covariant with respect to the longitudinal Lorentz rotations. By

using this extra gauge field, we can define the boost-invariant (but not ZA gauge-invariant!)

two-tensor,

Hµν ≡ EµA
′
Eν

B′
δA′B′ +

(
τµ
Amν

B + τν
Amµ

B
)
ηAB . (2.9)

We refer to the geometry described by the fields τµ
A , Eµ

A′
and mµ

A as the string

Newton-Cartan geometry.11

9A longitudinal two-tensor τµν with contra-variant indices will not be needed.
10When ZA is included in the string Galilei algebra, requiring the Jacobi identities to hold leads to a

further extension by a generator ZAB with ZAB = −ZBA [6, 18]. The gauge field associated to this generator

will not play a role in this paper.
11In contrast to string Newton-Cartan geometry, Newton-Cartan geometry is characterized by a one-

dimensional foliation with a clock function τµ
0 satisfying ∂[µτν]

0 = 0. We denote the generators of the

Galilei algebra by {H ,PA′ , GA′ , JA′B′} with A′ = 1, · · · , D . In addition to the field τµ
0, the theory also

contains a transverse Vielbein field Eµ
A′

, associated with the spatial translation generators PA′ , and a single

central charge gauge field mµ, associated with a central charge generator Z. This generator Z appears in

the commutator of a spatial translation and a Galilean boost generator,

[PA′ , GB′ ] = δA′B′Z . (2.10)
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2.2 Nonrelativistic string theory sigma model

We proceed now to writing down the sigma model describing nonrelativistic string theory in

a general curved string Newton-Cartan background and in the presence of a Kalb-Ramond

and dilaton field. Since the nonrelativistic string sigma model is actually relativistic on the

two-dimensional worldsheet (but not on the target space), the sigma model is defined on

a Riemann surface Σ. In nonrelativistic string theory we must integrate over all Riemann

surfaces [1].

The sigma model of nonrelativistic string theory on a string Newton-Cartan back-

ground can be constructed by deforming the worldsheet theory in flat spacetime constructed

in [1] by suitable vertex operators. These acquire an elegant spacetime interpretation as

spacetime fields. The worldsheet fields of nonrelativistic string theory include worldsheet

scalars parametrizing the spacetime coordinates xµ and two one-form fields on the world-

sheet, which we denote by λ and λ.12 These additional fields are required to realize the

extended string Galilei symmetry on the worldsheet theory and are responsible for inter-

esting peculiarities of nonrelativistic string perturbation theory [1].

Let the worldsheet surface Σ be parametrized by σα, with α = 0, 1. In order to

write down the action of nonrelativistic string theory in a curved string Newton-Cartan

background, we pullback from the target space M to the worldsheet Σ the Vielbeine

{τµA , EµA
′} and the covariant, string Galilei boost invariant two-tensors {τµν , Hµν} defined

in (2.6) and (2.9). Nonrelativistic string theory also couples to a dilaton field Φ and a

nonrelativistic Kalb-Ramond B-field Bµν , both of which are target space fields defined

on M.

Nonrelativistic string theory in the Polyakov formalism is endowed with an independent

worldsheet metric hαβ(σ). We introduce Vielbeine eα
a, a = 0, 1 on Σ such that

hαβ = eα
aeβ

bηab . (2.11)

Using light-cone coordinates for the flat index a on the worldsheet tangent space, we define

locally

eα ≡ eα0 + eα
1 , eα ≡ eα0 − eα1 . (2.12)

On the other hand, using light-cone coordinates for the flat index A on the spacetime

tangent space Tp, we define locally

τµ ≡ τµ0 + τµ
1 , τµ ≡ τµ0 − τµ1 . (2.13)

This defines the Bargmann algebra (the centrally extended Galilei algebra). Taking the nonrelativistic

limit of particles and strings coupled to general relativity, one finds that, whereas strings couple to string

Newton-Cartan geometry, particles naturally couple to Newton-Cartan geometry: it defines the background

geometric structure to which nonrelativistic QFTs in flat nonrelativistic spacetime can be canonically cou-

pled to.
12In spite of the additional worldsheet fields, the critical dimension of nonrelativistic string theory is

either 10 or 26 [1].
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The sigma model of nonrelativistic string theory on an arbitrary string Newton-Cartan

geometry, B-field and dilaton background is given by (see also [4])

S = −T
2

∫
d2σ

[√
−hhαβ ∂αxµ∂βxνHµν + εαβ

(
λ eατµ + λ eατµ

)
∂βx

µ
]

− T

2

∫
d2σ εαβ∂αx

µ∂βx
νBµν +

1

4π

∫
d2σ
√
−hRΦ , (2.14)

where h = dethαβ , hαβ is the inverse of hαβ , R is the scalar curvature of hαβ and T is

the string tension. The fields λ and λ are worldsheet scalars under diffeomorphisms. It

is only after imposing the conformal gauge (see below around (2.20)) that they become

worldsheet one-forms. This sigma model encodes the coupling of the worldsheet to the

appropriate combination of gauge fields τµ
A , Eµ

A′
and mµ

A defining the string Newton-

Cartan geometry. From the point of view of the two-dimensional QFT on the worldsheet,

these spacetime gauge fields are coupling constants of the QFT.

The symmetries of the nonrelativistic sigma model (2.14) are

• Worldsheet diffeomorphisms: under a change of worldsheet coordinates σ′α(σ) the

worldsheet fields transform as

h′αβ(σ′) =
∂σγ

∂σ′α
∂σδ

∂σ′β
hγδ(σ) , (2.15a)

ε′αβ(σ′) =

∣∣∣∣ ∂σ∂σ′
∣∣∣∣ ∂σ′α∂σγ

∂σ′β

∂σδ
εγδ(σ) (2.15b)

x′µ(σ′) = xµ(σ) , (2.15c)

λ′(σ′) = λ(σ) , (2.15d)

λ
′
(σ′) = λ(σ) . (2.15e)

Note that λ and λ also transform under Lorentz transformations on the worldsheet,

which is made manifest by using the light-cone notation.

• Worldsheet Weyl invariance: under a local Weyl transformation w(σ) the worldsheet

fields transform as

h′αβ(σ) = e2w(σ)hαβ(σ) , (2.16a)

ε′αβ(σ) = εαβ(σ) , (2.16b)

x′µ(σ) = xµ(σ) , (2.16c)

λ′(σ) = e−w(σ)λ(σ) , (2.16d)

λ
′
(σ) = e−w(σ)λ(σ) . (2.16e)

• Target space reparametrizations: under a change of worldsheet variables xµ(x′) the

action (2.14) transforms covariantly if Hµν , τµ and τµ transform as tensors under

– 7 –
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spacetime diffeomorphisms

H ′µν(x′) =
∂xρ

∂x′µ
∂xσ

∂x′ν
Hρσ(x) , (2.17a)

τ ′µ(x′) =
∂xρ

∂x′µ
τρ(x) , (2.17b)

τ ′µ(x′) =
∂xρ

∂x′µ
τρ(x) , (2.17c)

as dictated by the string Newton-Cartan geometry. Moreover, the fact that τµ and τµ
also transform under the longitudinal Lorentz transformations is made manifest by

using the light-cone notation. In addition to these longitudinal Lorentz transforma-

tions, the action (2.14) is invariant under all the other tangent space transformations

generated by the extended string Galilei algebra. In the case of the ZA gauge trans-

formations parametrized by σA in (2.8), the worldsheet fields λ and λ transform

nontrivially as follows:

δλ =
1√
−h

εαβ eα∂βx
µDµσ , δλ =

1√
−h

εαβeα∂βx
µDµσ , (2.18)

where σ ≡ σ0 + σ1 and σ ≡ σ0 − σ1 . Note that the gauge parameter σA used

here is not to be confused with the worldsheet coordinates σα . We also note that

the action (2.14) is only invariant under the σA transformations when the constraint

D[µτν]
A = 0 in (2.1) is imposed.13

Imposing quantum mechanical Weyl invariance of the path integral based on the ac-

tion (2.14), that is setting the beta-functions of the background fields to zero, determines

the spacetime background fields on which nonrelativistic string theory can be consistently

defined. This parallels the mechanism which determines the consistent backgrounds of

relativistic string theory and that leads to Einstein’s equations in relativistic string the-

ory [20, 21]. In nonrelativistic string theory the consistent backgrounds are solutions of a

nonrelativistic gravitational theory [6].

The string Newton-Cartan background fields that describe nonrelativistic string theory

in flat spacetime are

τµ
A = δAµ , Eµ

A′
= δA

′
µ , mµ

A = 0 . (2.19)

The nonlinear sigma model (2.14) with these background fields reproduces the action of

nonrelativistic string theory in flat spacetime in the conformal gauge [1],

S = −T
2

∫
d2σ

(
∂xA

′
∂xB

′
δA′B′ + λ ∂X + λ ∂X

)
, (2.20)

13In [10], strings in a different nonrelativistic spacetime geometry are introduced from a rather different

perspective. However, if one requires the zero torsion condition dτ = 0 in [10], then the theory considered

there can be reinterpreted as a string propagating in Newton-Cartan geometry with an additional worldsheet

scalar representing the longitudinal spatial direction along the string. This geometry is a special case of

string Newton-Cartan geometry (with zero Kalb-Ramond and dilaton field) and can be obtained from the

general case considered in the current paper by a reduction over the longitudinal spatial direction followed

by a truncation.
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where for simplicity we have set Bµν = 0 . We also defined

X ≡ x0 + x1 , X ≡ x0 − x1 , (2.21)

as well as

∂ ≡ ∂

∂σ0
+

∂

∂σ1
, ∂ ≡ − ∂

∂σ0
+

∂

∂σ1
. (2.22)

This worldsheet theory (2.20) in flat spacetime is invariant under various global symmetry

transformations of the worldsheet fields, which, in retrospective, already determines the

spacetime symmetry algebra to be the extended string Galilei algebra [5, 18]. This is

analogous to relativistic string theory, in which global symmetries of the worldsheet theory

in flat spacetime determine the Poincaré algebra to be the symmetry algebra of spacetime.

It is also possible to formulate nonrelativistic string theory in a Nambu-Goto-like

formulation. Integrating out the worldsheet fields λ and λ in (2.14) yields the following

two constraints:

εαβeα∂βx
µτµ = 0 , εαβeα∂βx

µτµ = 0 . (2.23)

These two constraints imply that hαβ = ταβ ≡ ∂αx
µ∂βx

ντµν up to a conformal factor.

Plugging this solution into the sigma model action (2.14) we arrive at the following Nambu-

Goto-like formulation of nonrelativistic string theory (see also [4, 5]):

SNG = − T

2

∫
d2σ

(√
−τ ταβ∂αxµ∂βxνHµν + εαβ∂αx

µ∂βx
νBµν

)
+

1

4π

∫
d2σ
√
−τ R(τ) Φ , (2.24)

where τ ≡ det ταβ and
√
−τ d2σ defines the volume 2-form on Σ. Furthermore, ταβ is the

inverse of the two by two matrix ταβ . The Ricci scalar R(τ) is defined with respect to the

pullback metric ταβ .

We note that the nonrelativistic string sigma model defined in (2.14) and (2.24) triv-

ializes if one reduces the target space tangent symmetry from the extended string Galilei

algebra to the Bargmann algebra.14 This selects the string Newton-Cartan geometry (as-

sociated with the extended string Galilei algebra) as the appropriate background structure

for nonrelativistic string theory, as opposed to Newton-Cartan geometry (associated with

the Bargmann algebra).15 The string Newton-Cartan geometry is to nonrelativistic string

theory what Riemannian geometry is to relativistic string theory.

In this paper we will exclusively work with the Polyakov string action (2.14).

3 T-duality of nonrelativistic string theory

Our next goal is to study the consequences of worldsheet duality acting on the path integral

of the nonrelativistic string sigma model defined in (2.14). A nonrelativistic string propa-

gating on different backgrounds that are related by a duality transformation gives rise to

14In the latter case there is only one longitudinal timelike direction A = 0, which leads to degenerate

terms in (2.14) and (2.24). To see explicitly that SNG is degenerate, we note that τµν = −τµ0τν
0 and thus

τ = 0 in the Bargmann case.
15See footnote 11 for more details on Newton-Cartan geometry.
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the same physics. The backgrounds are related by a T-duality transformation, which we

derive by implementing the worldsheet duality transformation on the sigma model path

integral. Due to the foliation structure of the string Newton-Cartan geometry, there are

three distinct types of duality transformations that can be implemented: one may trans-

form along a spatial isometry direction that is either longitudinal or transverse; moreover,

for completeness, one may also introduce a lightlike isometry in the longitudinal direction

and perform a T-duality transformation in this lightlike direction. We will study these

three cases in turn.

3.1 Longitudinal spatial T-duality

We now assume that the string sigma model defined by (2.14) has a longitudinal spatial

Killing vector kµ, i.e.

τµ
0kµ = 0, τµ

1kµ 6= 0 , Eµ
A′
kµ = 0 . (3.1)

We introduce a coordinate system xµ = (y, xi) adapted to kµ, such that kµ∂µ = ∂y . We

note that xi contains a longitudinal coordinate. Then, the associated abelian isometry

is represented by a translation in the longitudinal spatial direction y. It is also possible

to perform the duality transformation by gauging the isometry as in [22]. From (3.1), it

follows that

τy
0 = 0, τy

1 6= 0 , Ey
A′

= 0 → τy = −τy 6= 0 . (3.2)

In this adapted coordinate system, all background fields and general coordinate transfor-

mation (g.c.t.) parameters are independent of y.

We perform a T-duality transformation along the isometry y-direction by first defining

vα = ∂αy . (3.3)

The nonrelativistic string action (2.14) is equivalent to the following “parent” action:

Sparent = − T

2

∫
d2σ
√
−hhαβ

(
vαvβHyy + 2vα∂βx

iHyi + ∂αx
i∂βx

jHij

)
− T

2

∫
d2σ εαβ

[
λ eα

(
vβτy + ∂βx

iτi

)
+ λ eα

(
vβτy + ∂βx

iτ i

)]
− T

2

∫
d2σ εαβ

(
2vα∂βx

iByi + ∂αx
i∂βx

jBij + 2 ỹ ∂αvβ

)
+

1

4π

∫
d2σ
√
−hRΦ . (3.4)

In Sparent, vα is considered to be an independent field. Moreover, ỹ is an auxiliary field

that plays the role of a Lagrange multiplier imposing the Bianchi identity εαβ∂αvβ = 0.

Obviously, solving this Bianchi identity leads us back to the original action (2.14). Instead,

we consider the equation of motion for vα,

δSparent

δvα
= 0 , (3.5)
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which is solved by

vα = −Hyi

Hyy
∂αx

i +
hαβε

βγ

Hyy

√
−h

[
1

2

(
λ eγτy + λ eγτy

)
− ∂γxiByi − ∂γ ỹ

]
. (3.6)

Integrating out vα by substituting the solution (3.6) back into Sparent, we obtain the dual

action

S′long. = − T

2

∫
d2σ

(√
−hhαβ∂αx̃µ∂βx̃νH ′µν + εαβ∂αx̃

µ∂βx̃
νB′µν

)
− T

2

∫
d2σ

1

Hyy

(
τyy
√
−hλλ− λ ζ − λ ζ

)
+

1

4π

∫
d2σ
√
−hRΦ′ , (3.7)

where x̃µ = (ỹ, xi) and

ζ =
√
−hhαβeα

(
∂βx

iByi + ∂β ỹ
)
τy − εαβ eα∂βxi (Hyyτi −Hyiτy) , (3.8a)

ζ =
√
−hhαβeα

(
∂βx

iByi + ∂β ỹ
)
τy − εαβ eα∂βxi (Hyyτ i −Hyiτy) . (3.8b)

Moreover,

H ′yy =
1

Hyy
, Φ′ = Φ− 1

2
logHyy , (3.9a)

H ′yi =
Byi
Hyy

, B′yi =
Hyi

Hyy
, (3.9b)

H ′ij = Hij +
ByiByj −HyiHyj

Hyy
, B′ij = Bij +

ByiHyj −ByjHyi

Hyy
. (3.9c)

The shift of the dilaton Φ comes by regularizing as in [23] the determinant in the path

integral as the result of integrating out vα. The transformations (3.9) are akin to the

Buscher rules [24] in relativistic string theory.

In order to complete the T-duality transformation we integrate out λ and λ, whose

equations of motion are given by

λ =
ζ

τyy
√
−h

, λ =
ζ

τyy
√
−h

. (3.10)

Substituting (3.10) back into S′long., we find that the dual action takes the following equiv-

alent form:

S̃long. = −T
2

∫
d2σ

(√
−hhαβ ∂αx̃µ∂βx̃ν G̃µν + εαβ ∂αx̃

µ∂βx̃
ν B̃µν

)
+

1

4π

∫
d2σ
√
−hR Φ̃ , (3.11)
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where x̃µ = (ỹ, xi) and

G̃yy = 0 , Φ̃ = Φ− 1

2
log τyy , (3.12a)

G̃yi =
τi
Aτy

BεAB
τyy

, B̃yi =
τyi
τyy

, (3.12b)

G̃ij = Hij +

(
Byiτj

A +Byjτi
A
)
τy
BεAB +Hyyτij −Hyiτyj −Hyjτyi

τyy
, (3.12c)

B̃ij = Bij +
Byiτyj −Byjτyi −

(
Hyyτi

Aτj
B −Hyiτy

Aτj
B +Hyjτy

Aτi
B
)
εAB

τyy
. (3.12d)

We note that integrating out λ and λ contributes a determinant in the path integral, which

can be regularized in the same way as it is done for the determinant originating from

integrating out vα [23]. This determinant contributes a shift to the dilaton Φ′, which leads

to the following expression for the T-dual of Φ:

Φ̃ = Φ′ − 1

2
log

τyy
Hyy

= Φ− 1

2
log τyy . (3.13)

These T-duality transformations act in a very complicated way on the fundamental fields

of the string Newton-Cartan geometry τµ
A , Eµ

A′
and mµ

A but much simpler on the string

Galilei boost invariant variables τµν and Hµν we have introduced earlier.

Starting with the action (2.14) that describes a nonrelativistic string on a string

Newton-Cartan background, which is not endowed with a Riemannian metric, we find

that the T-dual action is given by (3.11), which is the action of a relativistic string prop-

agating on a Lorentzian, Riemannian geometry with a lightlike isometry. The lightlike

nature of the dual coordinate ỹ follows from the fact that G̃yy = 0 in (3.12a).

We note that, in (3.12), a given general relativity background is mapped under T-

duality to many different string Newon-Cartan backgrounds.16 This is related to the fact

that the corresponding sigma model action for strings on these different string Newton-

Cartan backgrounds are related to each other by the following field redefinitions of the

Lagrange multipliers:17

λ = Cλ′′ +
1√
−h

εαβ eα∂βx
µCµ , λ = C λ

′′
+

1√
−h

εαβ eα∂βx
µCµ . (3.14)

where C,Cµ and Cµ are arbitrary functions. After these field redefinitions the non-

relativistic string action (2.14) reads

S = − T

2

∫
d2σ

[√
−hhαβ∂αxµ∂βxνH ′′µν + εαβ

(
λ′′ eα∂βx

µτ ′′µ + λ
′′
eα∂βx

µ τ ′′µ

)]
− T

2

∫
d2σ εαβ∂αx

µ∂βx
νB′′µν +

1

4π

∫
d2σ
√
−hRΦ′′ . (3.15)

16We thank the referee for raising this question.
17The rescaling factors in front of λ′′ and λ

′′
are taken to be the same so that there is no longitudinal

Lorentz boost being introduced. This boost symmetry is already fixed by committing to a coordinate

system adapted to the longitudinal isometry direction y .
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Here, with Cµ ≡ Cµ0 + Cµ
1 and Cµ ≡ Cµ0 − Cµ1 , we have

H ′′µν = Hµν −
(
Cµ

Aτν
B + Cν

Aτµ
B
)
ηAB , B′′µν = Bµν +

(
Cµ

Aτν
B − CνAτµB

)
εAB ,

τ ′′µ = C τµ , τ ′′µ = C τµ , Φ′′ = Φ + logC . (3.16)

Plugging (3.16) into (3.12) one can show that the C-function dependence drops out in the

Buscher rules, as expected. By making special choices for the C-functions, one can always

arrange it that, for instance, τ ′′yy , H ′′yµ and B′′yµ are fixed, in which case the remaining string

Newton-Cartan data in (3.12) are uniquely determined for given G̃µν and B̃µν .

Let us now discuss how to perform the inverse T-duality transformation to map the

relativistic string action S̃long. in (3.11) back to the nonrelativistic string action (2.14). We

start with defining ṽα = ∂αỹ. Then, we define a parent action S̃parent that is equivalent

to S̃long.,

S̃parent = S̃long. (∂αỹ → ṽα)− T
∫
d2σ εαβy ∂αṽβ , (3.17)

where S̃long.(∂αỹ → ṽα) is obtained by replacing ∂αỹ with ṽα in (3.11). Moreover, y is a

Lagrange multiplier that imposes the Bianchi constraint εαβ∂αṽβ = 0. Solving this Bianchi

identity leads us back to S̃long. in (3.11). Instead, we would like to integrate out ṽα in the

path integral to compute the dual action of S̃long.. Note that, since G̃yy = 0, S̃parent is

linear in ṽα.

Before performing the ṽα integral, let us use the dictionary in (3.12) to rewrite G̃µν
and B̃µν in S̃parent in terms of the string Newton-Cartan data τµ

A, Hµν and Bµν . Then,

we introduce back the auxiliary fields λ and λ and rewrite S̃parent as

S′parent = S′long. (∂αỹ → ṽα)− T
∫
d2σ εαβy ∂αṽβ , (3.18)

where S′long.(∂αỹ → ṽα) is obtained by replacing ∂αỹ with ṽα in (3.7). Now, S′parent is

quadratic in ṽα. Integrating out ṽα in S′parent reproduces the nonrelativistic string action

in (2.14), including the appropriate dilaton field. Thus we conclude that the relativistic

string action propagating on a Lorentzian, Riemannian background with a compact lightlike

isometry can be mapped to the action (2.14) of a nonrelativistic string moving in a string

Newton-Cartan background. We note that in order to define T-duality of relativistic string

theory along a lightlike direction requires introducing additional worldsheet fields λ and λ,

which goes beyond the well-known path integral manipulations considered by Buscher.

As a particular case, we find that, for a nonrelativistic string in flat spacetime, the

T-dual along a longitudinal spatial circle is given by a relativistic string moving in a flat

Lorentzian spacetime with a lightlike compactified coordinate. This flat spacetime result

was anticipated by different means in [1, 3]. In this way, we have established the relation

between the DLCQ of relativistic string theory on an arbitrary Lorentzian, Riemannian

background and nonrelativistic string theory on the T-dual string Newton-Cartan back-

ground.18

18This relation was noticed for a particular curved background in [4].
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3.2 Longitudinal lightlike T-duality

We have shown in the previous subsection that the T-dual of relativistic string theory with

a lightlike compactified circle is nonrelativistic string theory on a string Newton-Cartan

background with a longitudinal spatial circle. It is then natural to ask a formal question:

what happens if one T-dualizes the nonrelativistic string action (2.14) along a lightlike

isometry direction? We will show in this subsection that a lightlike T-duality transforma-

tion maps nonrelativistic string theory on a string Newton-Cartan background to nonrel-

ativistic string theory on a T-dual string Newton-Cartan background with a longitudinal

lightlike isometry. Here, the longitudinal lightlike T-duality is presented for completeness,

its physical significance is, however, not clear.

Let us assume that the string sigma model defined by (2.14) has a longitudinal lightlike

Killing vector `µ in the longitudinal sector, i.e.

τµ`
µ 6= 0 , τµ`

µ = 0 , Eµ
A′
`µ = 0 . (3.19)

We define a coordinate system, xµ = (u, xi), adapted to `µ, such that `µ∂µ = ∂u. Then,

the associated abelian isometry is represented by a translation in the longitudinal lightlike

direction u. From (3.19), it follows that

τu 6= 0 , τu = 0 , Eu
A′

= 0 . (3.20)

In this adapted coordinate system, all background fields and g.c.t. parameters are inde-

pendent of u.

To perform a T-duality transformation along the lightlike isometry u-direction, it is

convenient to introduce an auxiliary field fα. Then, we rewrite the sigma model of nonrel-

ativistic string theory (2.14) as

Slight. = − T

2

∫
d2σ

(√
−hhαβ∂αxµ∂βxνHµν + εαβ∂αx

µ∂βx
νBµν

)
+

1

4π

∫
d2σ
√
−hRΦ

− T

2

∫
d2σ εαβ

(
eαfβ + 2η fα∂βx

µτµ + λ eα∂βx
iτ i

)
, (3.21)

where η is a Lagrange multiplier that imposes a constraint,

εαβfα∂βx
µτµ = 0 . (3.22)

Integrating out η sets

fα = λ ∂αx
µτµ . (3.23)

Plugging this solution into Slight. to eliminate fα we reproduce the sigma model of nonrel-

ativistic string theory (2.14) with τu = 0. Note that the worldsheet field λ reappears in

the solution to fα as an integration constant. Next, let us define

vα = ∂αu . (3.24)
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Then, Slight. is equivalent to the following parent action:

Sparent = − T

2

∫
d2σ
√
−hhαβ

(
vαvβHuu + 2vα∂βx

iHui + ∂αx
i∂βx

jHij

)
− T

2

∫
d2σ εαβ

[
eαfβ + 2ηfα

(
vβτu + ∂βx

iτi

)
+ λ eα∂βx

iτ i

]
− T

2

∫
d2σ εαβ

(
2vα∂βx

iBui + ∂αx
i∂βx

jBij + 2ũ ∂αvβ

)
+

1

4π

∫
d2σ
√
−hRΦ . (3.25)

In Sparent , vα is considered to be an independent field. Moreover, ũ is an auxiliary field

that plays the role of a Lagrange multiplier imposing the Bianchi identity εαβ∂αvβ = 0.

Obviously, solving this Bianchi identity leads us back to Slight.. Instead, we consider the

equation of motion for vα,
δSparent

δvα
= 0 , (3.26)

which is solved by

vα = −Hui

Huu
∂αx

i +
hαβε

βγ

Huu

√
−h

(
ηfγτu − ∂γxiBui − ∂γ ũ

)
. (3.27)

If we integrate out vα by substituting this solution back into Sparent, then we obtain the

dual action,

S′light. = −T
2

∫
d2σ

(√
−hhαβ∂αx̃µ∂βx̃νH ′µν + εαβ∂αx

µ∂βx
νB′µν

)
− T

2

∫
d2σ εαβ

(
eαfβ + λ eα∂βx

iτ i

)
+

1

4π

∫
d2σ
√
−hRΦ′

− T

2

∫
d2σ

1

Huu

[
(η τu)2

√
−hhαβfαfβ − 2η hαβfα ξβ

]
, (3.28)

where x̃µ = (ũ, xi) and

ξα =
√
−h
(
∂αx

iBui + ∂αũ
)
τu − hαβεβγ∂γxi (Huuτi −Huiτu) . (3.29)

Moreover,

H ′uu =
1

Huu
, Φ′ = Φ− 1

2
logHuu , (3.30a)

H ′ui =
Bui
Huu

, B′ui =
Hui

Huu
, (3.30b)

H ′ij = Hij +
BuiBuj −HuiHuj

Huu
, B′ij = Bij +

BuiHuj −BujHui

Huu
. (3.30c)

The shift of the dilaton Φ comes by regularizing as in [23] the determinant in the path

integral from integrating out vα.
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In order to complete the T-duality transformation, we integrate out fα in S′light., whose

equation of motion is

fα =
Huuhαβ ε

βγeγ + 2η ξα

2 (η τu)2√−h
. (3.31)

Substituting (3.31) back into S′light., the dual action takes the following equivalent form:

S̃light. = − T

2

∫
d2σ

[√
−hhαβ ∂αx̃µ∂βx̃νH̃µν + εαβ

(
λ eα∂βx̃

µτ̃µ + λ eα∂βx
i τ i

)]
− T

2

∫
d2σ εαβ∂αx̃

µ∂βx̃
νB̃µν +

1

4π

∫
d2σ
√
−hR Φ̃ , (3.32)

where x̃µ = (ũ, xi) and

τ̃u =
1

τu
, (3.33a)

τ̃i =
Buiτu −Huuτi +Huiτu

τuτu
, Φ̃ = Φ− log |τu| , (3.33b)

H̃uµ = 0 , B̃ui =
τi
τu
, (3.33c)

H̃ij = Hij +
Huuτiτj − (Huiτj +Hujτi) τu

τuτu
, B̃ij = Bij +

Buiτj −Bujτi
τu

. (3.33d)

Note that τ i remains unchanged. Moreover,

λ =
1

η
. (3.34)

One may check that λ and η−1 indeed transform in the same way under worldsheet dif-

feomorphisms and worldsheet Weyl transformation. Note that integrating out fα in S′light.

contributes a determinant in the path integral, which can be regularized in the same way

as it is done for the determinant from integrating out vα [23]. Moreover, the change of

variables in (3.34) also contributes a Jacobian in the path integral, which cancels the η

dependence in the determinant from integrating out fα. Finally, these measure terms

generate a shift to the dilaton Φ′,

Φ̃ = Φ′ − 1

2
log

τuτu
Huu

= Φ− log |τu| . (3.35)

If one applies the duality transformations in (3.33) again on τ̃µ, H̃µν and B̃µν , it does

not give back the original geometry τµ, Hµν and Bµν . Nevertheless, the Z2 symmetry of

the T-duality transformation is still preserved once we take into account the following field

redefinition:

fα → fα +
eα

2η
√
−h

εβγ eβ∂γx
µCµ . (3.36)

This field redefinition gives rise in (3.21) to the following shifts of Hµν and Bµν :

Hµν → Hµν +
1

2

(
τµCν + τνCµ

)
, Bµν → Bµν −

1

2

(
τµCν − τνCµ

)
. (3.37)
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Plugging (3.37) back into (3.33) one can show that Cµ drops out in the Buscher rules, as

expected. By making special choices of the Cµ, one can always arrange it that Huµ = 0 .

The T-duality rules are then given by

τ̃u =
1

τu
, Φ̃ = Φ− log |τu| , (3.38a)

τ̃i =
Bui
τu

, B̃ui =
τi
τu
, (3.38b)

H̃ij = Hij , B̃ij = Bij +
Buiτj −Bujτi

τu
. (3.38c)

Note that H̃uµ = 0 remains unchanged. It is straightforward to check that applying the

duality transformations (3.38) a second time indeed brings τ̃µ, H̃µν and B̃µν back to the

original fields τµ, Hµν and Bµν .

We could also have imposed the condition Huµ = 0 at the very beginning without

affecting the final result for the T-duality rules. In fact, the procedure of the T-duality

transformation simplifies significantly. Now, the parent action in (3.25) becomes

Sparent = −T
2

∫
d2σ
√
−hhαβ∂αxi∂βxjHij +

1

4π

∫
d2σ
√
−hRΦ

− T

2

∫
d2σ εαβ

[
eαfβ + 2ηfα

(
vβτu + ∂βx

iτi

)
+ λ eα∂βx

iτ i

]
− T

2

∫
d2σ εαβ

(
2vα∂βx

iBui + ∂αx
i∂βx

jBij + 2ũ ∂αvβ

)
, (3.39)

which is linear in vα . Integrating out vα in the path integral results in the following

constraint on fα ,

fα =
1

ητu

(
∂αx

iBui + ∂αũ
)
. (3.40)

Plugging this solution to fα back into (3.39) and applying the change of variables in (3.34)

reproduces the dual action S̃light. in (3.32) with H̃uµ = 0 and the same H̃ij , τ̃µ and B̃µν as

given in (3.38). The shift in the dilaton field now comes from imposing the constraint on

fα in (3.40). In contrast, in the more involved procedure presented without fixing Huµ to

zero, the shift of Φ can be derived in the standard way as in [23].19

We conclude that the T-duality transformation along a lightlike isometry direction

maps to each other nonrelativistic string theory on two different string Newton-Cartan

background geometries, whose relations are given in (3.38). In particular, this duality

maps between two lightlike circles of reciprocal radii.

3.3 Transverse T-duality

Finally, we consider the nonrelativistic string sigma model defined by (2.14) with a trans-

verse spatial Killing vector pµ, i.e.

τµ
Apµ = 0 , Eµ

A′
pµ 6= 0 . (3.41)

19One may also use the field redefinitions in (3.14) to fix Hyµ to zero in section 3.1 to derive the T-duality

transformation rules in (3.12) except for the dilaton shift.
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We define a coordinate system xµ = (xi, z) adapted to pµ, such that pµ∂µ = ∂z. Then, the

associated abelian isometry is represented by a translation in the transverse direction z.

From (3.41), it follows that

τz
A = 0 , Ez

A′ 6= 0 → τz = τ z = 0, Hzz 6= 0 . (3.42)

In this adapted coordinate system, all background fields and g.c.t. parameters are assumed

to be independent of z. Under the above conditions, the string action (2.14) reduces to the

following form:

Strans. = − T

2

∫
d2σ
√
−hhαβ

(
∂αz ∂βz Hzz + 2 ∂αz ∂βx

iHzi + ∂αx
i∂βx

jHij

)
− T

2

∫
d2σ εαβ

(
2 ∂αz ∂βx

iBzi + ∂αx
i∂βx

jBij
)

+
1

4π

∫
d2σ
√
−hRΦ

− T

2

∫
d2σ εαβ

(
λ eατi + λ eατ i

)
∂βx

i . (3.43)

Remarkably, as far as the derivation of the T-duality rules is concerned, the λ and λ terms

in the last line of (3.43) are not involved and the nonrelativistic string action is in form

the same as the relativistic string action in the Polyakov formalism. Therefore, the dual

action S̃trans. must take the same form as Strans. ,

S̃trans. = − T

2

∫
d2σ

[√
−hhαβ ∂αx̃µ∂βx̃νH̃µν + εαβ

(
λ eα ∂βx

µ τµ + λ eα ∂βx̃
µ τµ

)]
− T

2

∫
d2σ εαβ∂αx̃

µ∂βx̃
νB̃µν +

1

4π

∫
d2σ
√
−hR Φ̃ , (3.44)

where x̃ = (xi, z) and the transformations of various fields satisfy the T-duality rules,

H̃zz =
1

Hzz
, Φ̃ = Φ− 1

2
logHzz , (3.45a)

H̃zi =
Bzi
Hzz

, B̃zi =
Hzi

Hzz
, (3.45b)

H̃ij = Hij +
BziBzj −HziHzj

Hzz
, B̃ij = Bij +

BziHzj −BzjHzi

Hzz
. (3.45c)

The background fields τµ and τµ remain unchanged. Performing the duality transforma-

tions (3.45) again maps H̃µν and B̃µν back to the original fields Hµν and Bµν . We thus

obtain a duality between nonrelativistic string theory propagating in two different string

Newton-Cartan backgrounds with Kalb-Ramond and dilaton fields. The difference between

the lightlike T-duality rules (3.38) is that, for the transverse case, the duality transforma-

tions mix up the Kalb-Ramond field Bµν with the transverse two-tensor Hµν instead of

the longitudinal Vielbein τµ. This transverse duality maps between two transverse circles

of reciprocal radii.

4 Conclusions

Nonrelativistic string theory is a theory with rather distinctive features both in the world-

sheet and in the target space in comparison to relativistic string theory. The degrees of
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freedom on the worldsheet go beyond the usual worldsheet fields parametrizing spacetime

coordinates. The additional λ and λ fields play a central role in the inner workings of

nonrelativistic string theory. They are responsible for realizing the nonrelativistic space-

time symmetries on the worldsheet fields and endow nonrelativistic string theory with its

distinctive string perturbation theory [1].

Nonrelativistic strings couple to a very specific background geometric structure: string

Newton-Cartan geometry. This geometry is ultimately dictated by the vertex operators of

nonrelativistic string theory and is rather different from the familiar Riemannian geometry

that relativistic strings couple to. The couplings of nonrelativistic string theory to an ar-

bitrary string Newton-Cartan geometry are encoded in the nonlinear sigma model (2.14).

String Newton-Cartan geometry is to nonrelativistic string theory what Riemannian geom-

etry is to relativistic string theory. It would be interesting to write down the sigma model

for nonrelativistic superstring theory and investigate the corresponding superspace target

space geometry.

We have studied duality transformations of the path integral of the nonrelativistic

string sigma model and derived an equivalence between string theories propagating in

distinct, but T-dual backgrounds. The most interesting case is the action of T-duality along

a longitudinal (spatial) direction. We have shown that nonrelativistic string theory coupled

to a string Newton-Cartan background with a compact longitudinal spatial direction is

equivalent to relativistic string theory propagating on a Lorentzian, Riemannian geometry

with a compact lightlike isometry. This duality provides a tantalizing example of how string

theory in a conventional geometric background (a Lorentzian geometry) is equivalent to

string theory with a non-Riemannian, but still recognizable geometric structure — string

Newton-Cartan geometry.

This general relation between nonrelativistic string theory and relativistic string theory

with a lightlike compact isometry provides a first principles definition of the worldsheet

theory of relativistic string theory with a compact lightlike isometry, i.e. a definition of

DLCQ20 of relativistic string theory. Until hitherto, the DLCQ of relativistic string the-

ory could only be defined by considering a subtle, singular infinite boost limit of a small

spacelike circle [14–16]. Instead, the nonrelativistic string theory sigma model gives a fi-

nite, explicit definition of DLCQ of relativistic string theory on an arbitrary Lorentzian,

Riemannian metric with a lightlike isometry. A key ingredient in defining DLCQ of rela-

tivistic string theory is the presence of the additional worldsheet fields λ and λ, that have

no direct spacetime interpretation. The DLCQ of string/M-theory has played a central

role in various nonperturbative approaches, most notably in Matrix theory [12–15]. It

would be interesting to use the worldsheet definition of the DLCQ of string theory on an

arbitrary background to give a nonperturbative Matrix theory definition of string theory

for a broader class of backgrounds and also to compute string amplitudes in DLCQ of

relativistic string theory using (2.14), as was done for flat spacetime in [1]. The study of

boundary conditions in the nonrelativistic sigma model and the effective field theory living

on the corresponding D-branes provides a strategy to address this problem.

20We recall that DLCQ stands for discrete light cone quantization.
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We have also studied the duality transformations of the path integral of the nonrel-

ativistic string sigma model in a string Newton-Cartan background with a longitudinal

lightlike and a transverse spatial direction. We have shown that T-duality mixes the

Kalb-Ramond field Bµν with the longitudinal Vielbein τµ in the former case and with the

transverse two-tensor Hµν in the latter case. In both cases, however, in contrast to the

duality transformation along a longitudinal spatial isometry direction, the T-dual theory

remains a nonrelativistic string theory on a string Newton-Cartan geometry.

Recently, there has been work on general relativity with a lightlike isometry direction

in the context of nonrelativistic strings [10, 11], where a “null reduction” is applied to

a relativistic string in order to obtain a string in a nonrelativistic background.21 There

is other recent work where a particle limit of relativistic strings is considered leading to

so-called Galilean strings with nonrelativistic worldsheets moving in a Newtonian space-

time [7–9]; these different works deal with strings moving in a Newton-Cartan background

with a one-dimensional foliation as opposed to the string Newton-Cartan background with

a two-dimensional foliation that we consider in the current work. If one wishes to consider

a nonrelativistic theory with a non-empty Hilbert space of string excitations, one is led

to consider the string Newton-Cartan geometry. There are also interesting connections

with [25, 26], where nonrelativistic string theory in flat space [1] is embedded in the double

field theory formalism.

Many interesting lines of investigation in nonrelativistic string theory remain, and we

close with a few of them. The sigma model of nonrelativistic string theory is classically

Weyl invariant and quantum consistency of the worldsheet theory determines the back-

grounds on which nonrelativistic string theory can be consistently defined. It would be

interesting to derive the spacetime equations of motion for the string Newton-Cartan fields

(possibly including the foliation constraint (2.1)), the Kalb-Ramond field and the dilaton

that determine the classical solutions of nonrelativistic string theory by analyzing the Weyl

invariance of the worldsheet theory at the quantum level. It would also be interesting to

derive the spacetime (string) field theory that reproduces the S-matrix defined by the world-

sheet correlation functions of nonrelativistic string theory. Last but not least, there are

potential interesting applications to non-relativistic holography that are worth exploring.
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