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Abstract: It is shown that odd harmonic azimuthal correlations, including the directed

flow v1, in forward two-particle production in peripheral proton-nucleus (pA) collisions can

arise simply from the radial nuclear profile of a large nucleus. This requires consideration

of the C-odd part of the gluonic generalized transverse momentum dependent (GTMD)

correlator of nucleons in the nucleus. The gluonic GTMD correlator is the Fourier trans-

form of an off-forward hadronic matrix element containing gluonic field strength tensors

that are connected by gauge links. It is parametrized in terms of various gluon GTMD

distribution functions (GTMDs). We show (in a gauge invariant way) that for the relevant

dipole-type gauge link structure in the small-x limit the GTMD correlator reduces to a

generalized Wilson loop correlator. The Wilson loop correlator is parametrized in terms

of a single function, implying that in the region of small x there is only one independent

dipole-type GTMD, which can have a C-odd part. We show that the odderon Wigner dis-

tribution, which is related to this C-odd dipole GTMD by a Fourier transform, generates

odd harmonics in the two-particle azimuthal correlations in peripheral pA collisions. We

calculate the first odd harmonic v1 for forward production within the color glass condensate

framework in the limit of a large number of colors. We find that nonzero odd harmonics

are present without breaking the rotational symmetry of the nucleus, arising just from its

inhomogeneity in the radial direction. Using a CGC model with a cubic action, we illus-

trate that percent level v1 can arise from this C-odd mechanism. In contrast, we show that

only even harmonics arise in diffractive dijet production in ultra-peripheral pA collisions

where this gluon dipole GTMD also appears.
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1 Introduction

Generalized transverse momentum dependent distributions (GTMDs) of partons inside

hadrons are off-forward matrix elements that combine information on transverse momen-

tum dependent distributions (TMDs) and generalized parton distributions (GPDs) [1, 2].

The (forward) TMDs depend on the longitudinal momentum fraction x as well as on the

partonic transverse momentum k2. The GPDs, on the other hand, involve off-forward

states (i.e. ∆ ≡ p′ − p 6= 0) and depend on x, the skewness parameter ξ, and the trans-

verse momentum transfer ∆2. The GTMDs appear in the parametrization of the GTMD

correlator. The parametrization for the quark case is given in [3, 4] and [5] covers also

the gluon case. The Fourier transform of the GTMDs from ∆ to the impact parameter

b, gives the Wigner distributions which provide information on both the spatial and mo-

mentum structure of hadrons. They are the quantum mechanical analogues of the classical

phase-space distributions of the parton-hadron system. We will discuss gluon (rather than

quark) GTMDs and Wigner distributions as we will focus on the small-x kinematic region

where gluons dominate the hadron structure.

The gluon-gluon (G)TMD correlator is the Fourier transform of a bilocal hadronic ma-

trix element of two field strength tensors. The nonlocality includes transverse directions

and is bridged by gauge links that ensure color gauge invariance [6, 7]. The integration

paths of the gauge links are not unique, but in fact depend on the process [8–10]. The most

important gauge link structures involve the so-called future- and past-pointing staple-like

gauge links U [+] and U [−] respectively. The well-known unintegrated dipole gluon distribu-

tion [11] features both of these links [12, 13]. For the dipole-type gauge link structure, the

gluon-gluon TMD correlator simplifies in the small-x limit to the Fourier transform of a

hadronic matrix element containing a single Wilson loop. It was recently shown in [14, 15]

that this Wilson loop correlator can be used to greatly reduce the number of independent
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TMDs in the small-x limit. We will show that a similar thing can be done for the GTMD

case as well. With respect to [5], we provide an alternative parametrization of the gluon-

gluon GTMD correlator (for unpolarized hadrons) in terms gluon GTMDs. We show that in

the limit of small x and ξ we are left with only one independent dipole-type gluon GTMD.

In the second part of the paper, we will consider the dipole-type gluon GTMDs and

Wigner distributions within the color glass condensate (CGC) framework [16]. In partic-

ular, we will study those distributions as sources for angular correlations that have been

observed experimentally in proton-proton (pp) and proton-nucleus (pA) collisions at the

LHC [17–38] and RHIC [39–43]. The source of large azimuthal asymmetries in hadron

production in pp and pA collisions has been widely addressed in the CGC framework and

especially the initial-state origin of azimuthal harmonics (as opposed to final-state interac-

tions and hydrodynamic flow) has been studied [44–75]. Here, we concentrate on generating

nonzero odd harmonics entirely from initial-state effects which is less understood compared

to generating even harmonics. The natural way of obtaining odd azimuthal asymmetries

for quarks scattering off the CGC field comes from the C-odd imaginary part of the funda-

mental dipole scattering amplitude, called the dipole odderon. The cross section for hadron

production from an incoming quark is proportional to the Fourier transform of the expec-

tation value of the dipole operator S = Tr[U(x)U †(y)]/Nc, where U(x) is a fundamental

Wilson line. The real part of S produces even harmonics, while the imaginary part (the

odderon) generates odd harmonics. Odd harmonics for quark scattering, from initial-state

effects, have been studied in [66, 67, 76, 77]. In those works, the odd angular coefficients

vanish once the contribution from antiquarks is taken into account. For the case of gluon

scattering, odd harmonics in double-inclusive gluon production from initial-state effects

were recently introduced in [78, 79].

In this paper we study odd azimuthal correlations between two hadrons produced in

pA collisions and connect them to the odderon Wigner distribution (the impact parameter

dependent odderon). We mostly restrict the analysis to forward rapidities and consider

dihadron production from two incoming quarks from the proton (the quarks are in the

valence region) that interact with a large nucleus. The scatterings of the quarks are taken

as independent and only the leading contribution in the number of colors (disconnected

diagrams) is considered. Our analysis follows the work of [80], extending it to include the

odderon Wigner distribution and showing the appearance of nonzero odd harmonics. We

show that the odderon Wigner distribution at small x is related to the v1 flow coefficient

(that characterizes the so-called directed flow) in dihadron production in pA collisions.

Compared to previous literature, the source of odd azimuthal asymmetries in our model is

the relative orientation between the impact parameter and the transverse momentum of the

produced particle for a nucleus that is inhomogeneous in the transverse plane. The same

mechanism was discussed in [81] for the case of even harmonics and for single-inclusive par-

ticle production. The connection between even azimuthal asymmetries and the orientation

of the dipole with respect to its impact parameter was studied in [53, 82–84]. Although v1
can arise from C-odd fluctuations in an anisotropic rotationally noninvariant target [76], we

show that it can also arise from C-odd correlations without breaking of rotational symme-

try. In the latter case it enters as a C-odd squared effect. We derive an explicit expression

– 2 –
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p = P − ∆

2
p′ = P +

∆

2

k +
∆

2
k − ∆

2

G

P = (P−, P+,0),

∆ = (2ξP−,−2ξP+,∆),

k = (k−, xP+,k),

P 2 = 2P+P− =
M2 + 1

4∆
2

1− ξ2

Figure 1. The kinematical set-up; the green ‘blob’ represents the gluon-gluon GTMD correlator.

for the v1 flow coefficient in the semi-classical limit of the CGC theory in the limit of a

large number of colors (Nc) and observe a nonzero effect in the region of small transverse

momenta with the same order of magnitude as is experimentally observed. We also argue

that away from forward rapidities, in which case also antiquarks in the proton contribute,

the same mechanism gives rise to odd azimuthal asymmetries.

For comparison, we also consider the production of two jets in diffractive DIS and

in ultra-peripheral pA collisions. The cross section for these processes involves the gluon

dipole GTMD [75, 85, 86], but unlike dihadron production in pA collisions, we find that

the odderon GTMD does not produce odd azimuthal asymmetries and only contributes to

the even harmonics.

The paper is organized as follows. In section 2 we parametrize the gluon-gluon GTMD

correlator for an unpolarized hadron in terms of gluon GTMDs. Subsequently, in section 3

we study the dipole-type GTMD correlator and find that for vanishing x and ξ there is

only one independent dipole GTMD. In section 4 we study odd azimuthal correlations in

two-particle production in pA collisions and we calculate v1 within the CGC framework.

Finally, we conclude in section 5.

2 Parametrization of the GTMD correlator

We parametrize the momenta in a ‘symmetric’ way where the average hadron momentum

is given by P ≡ (p′ + p)/2, the momentum transfer by ∆ ≡ p′ − p, and the average gluon

momentum is denoted by k, see also figure 1. Furthermore, in our applications the momenta

p and p′ can be taken to have large plus components p+ = p·n and p′+ = p′·n. In figure 1

the momenta P , ∆, and k are given in terms of light-cone components.1 We take hadrons

of the same mass, p2 = p′2 = M2, the light-cone fraction of k is defined as x ≡ k+/P+,

and the skewness parameter is given by 2ξ ≡ −∆+/P+.

The gluon-gluon GTMD correlator for an unpolarized hadron generalizes the TMD

correlator [87] and is defined as [5]

G[U,U ′]µν;ρσ(x,k, ξ,∆;P, n)

≡ 2

P+

∫

dz− d2z

(2π)3
eik·z 〈p′|Tr

(

Fµν
(

− z
2

)

U
[− z

2 ,
z
2 ]
F ρσ

(

z
2

)

U ′

[ z2 ,−
z
2 ]

)

|p〉
∣

∣

∣

∣

z+=0

. (2.1)

1Throughout the paper we make use of light-cone coordinates: we represent a four-vector a as (a−, a+,a),

where a± ≡ (a0±a3)/
√
2 and a ≡ (a1, a2). We also define the four-vector aT ≡ (0, 0,a), so that a2

T = −a
2.
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Similar to the TMD case, it was recently shown that a proper definition of the GTMD

correlator includes additional dependence on soft-gluon radiation [88], however as this

will not play any role in this paper it is not discussed here explicitly. The two process-

dependent gauge links U and U ′ are required for color gauge invariance. Later we will

consider a specific gauge link structure that is built from the future- and past-pointing

gauge links U
[+]
[a,b] and U

[−]
[a,b] respectively, defined as

U
[±]
[a,b] ≡ Un

[a−,±∞;a] U
T
[±∞;a,b] U

n
[±∞,b−;b], (2.2)

where the links along the minus (indicated by the lightlike vector n) and transverse direc-

tions are given by

Un
[a−,±∞;a] ≡ P exp

[

−ig

∫ ±∞

a−
dη−A+(η+ = 0, η−,η = a)

]

, (2.3)

UT
[±∞;a,b] ≡ P exp

[

−ig

∫ b

a

dη ·A(η+ = 0, η− = ±∞,η)

]

, (2.4)

and likewise for the third factor in eq. (2.2).

Counting powers of the inverse hard scale relevant in the process, leads to the definition

of the leading-power (usually referred to as leading-twist) correlator:

G[U,U ′] ij(x,k, ξ,∆) ≡ G[U,U ′] +i;+j(x,k, ξ,∆;P, n), (2.5)

where i, j are transverse indices and for convenience we suppress the dependence on P and

n. The correlator in eq. (2.5) can be parametrized in terms of GTMDs. This has been done

already in [5] based on the light-front formalism (in fact, up to all powers in the inverse hard

scale and including vector polarization) and here we present an alternative, but equivalent,

parametrization. It is convenient to parametrize correlators in terms of symmetric traceless

tensors to ensure that the distribution functions are of definite rank [15, 89, 90]. In the

GTMD case, one should use symmetric traceless tensors in both kT and ∆T . Hermiticity

and time reversal (unlike parity) do not affect the Lorentz structure of the parametrization;

they rather impose constraints on the GTMDs [5]. A possible parametrization is given by:2

G[U,U ′] ij(x,k, ξ,∆) = x

(

δijT F1 +
kijT
M2

F2 +
∆ij

T

M2
F3 +

k
[i
T∆

j]
T

M2
F4

)

, (2.6)

where δijT is the Kronecker delta in transverse space, the rank-2 symmetric traceless tensors

kijT and ∆ij
T are defined as aijT ≡ aiTa

j
T + 1

2a
2gijT , and the square brackets denote antisym-

metrization of the indices. The functions Fi = F [U,U ′]
i (x, ξ,k2,∆2,k·∆) are complex-

valued GTMDs; they are related to the leading-twist TMDs [91] and GPDs [92] for unpo-

larized hadrons upon setting ∆ = 0 and integrating over k respectively.

2In principle, one could also have a function that comes with the symmetric and traceless Lorentz

structure k
{i
T
∆

j}
T

+ (k·∆) gij
T
. However, this function would not be independent from the other ones; more

specifically, it could be eliminated by suitable redefinitions of the functions F2 and F3.

– 4 –
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3 Wilson loop correlators and dipole-type GTMDs at small x

In order to study the dipole-type GTMD correlator, we start with the correlator that

has a link structure involving both a future- and a past-pointing Wilson line as given in

eq. (2.2). This link structure appears in the dipole gluon distribution, which is one of the

distributions that describes unpolarized gluons inside unpolarized hadrons [11, 13]. The

correlator is written as

G[+,−] ij(x,k, ξ,∆) =
2

P+

∫

dz−d2z

(2π)3
eik·z

× 〈p′|Tr
(

F+j
(

z
2

)

U
[−]†

[− z
2 ,

z
2 ]
F+i

(

− z
2

)

U
[+]

[− z
2 ,

z
2 ]

)

|p〉
∣

∣

∣

∣

LF

=
2

P+

∫

dz−d2z

(2π)3
eik·z−i∆·b

× 〈p′|Tr
(

F+j(x)U
[−]†
[y,x] F

+i(y)U
[+]
[y,x]

)

|p〉
∣

∣

∣

∣

LF

, (3.1)

where x ≡ b+ z/2 and y ≡ b− z/2, and ‘LF’ indicates the light front (z+ = x+ = y+ = 0).

Giving the operator combination an overall shift b corresponds to a phase in the off-

forward case. Using that the limit ∆ → 0 of 〈p′|p〉 = (2π)3 2p+δ(∆+) δ(2)(∆) is given

by 〈P |P 〉 = 2P+
∫

db−d2b, we can write

G[+,−] ij(x,k, ξ,∆) = 4

∫

d3x d3y

(2π)3
eik·(x−y)−i∆·

x+y
2

×
〈p′|Tr

(

F+j(x)U
[−]
[x,y] F

+i(y)U
[+]
[y,x]

)

|p〉
∣

∣

∣

LF

〈P |P 〉 . (3.2)

In the rest of this paper we will consider this GTMD correlator in the small-x kinematic

region where the gluonic content of hadrons is particularly relevant, i.e. the region where

x ∼ ξ is smaller than the square of the hadronic scale divided by the relevant hard scale,

which includes both the DGLAP region (for which |ξ| < x) and the ERBL region (for

which x < |ξ|) [93]. Let us consider the limit

G[+,−] ij(k,∆) ≡ lim
x,ξ→0

G[+,−] ij(x,k, ξ,∆), (3.3)

in which case the x− and y− integrations can be performed. The correlator depends on

the virtuality k2 = −k2, the momentum transfer t ≡ ∆2 = −∆2, and the azimuthal angle

between these spacelike transverse vectors. Similar to the TMD case in [15], the minus

integrations are used to express the result in terms of gluonic pole operators,

Gα
T (x) ≡

1

2

∫ ∞

−∞

dη− Un
[x−,η−;x] F

+α(x+, η−,x)Un
[η−,x−;x], (3.4)

which upon using the relation [94]

[

i∂α
x , U

[±]
[a,x]

]

= ± g U
[±]
[a,x]G

α
T (x), (3.5)

– 5 –
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leads for the dipole-type GTMD correlator to a correlator of a Wilson loop:

G[+,−] ij(k,∆) = 16

∫

d2x d2y

(2π)3
e−ik·(x−y)+i∆·

x+y

2

×
〈p′|Tr

(

Gj
T (x)U

[−]
[x,y]G

i
T (y)U

[+]
[y,x]

)

|p〉
∣

∣

∣

LF

〈P |P 〉

=
4

g2

∫

d2x d2y

(2π)3
e−ik·(x−y)+i∆·

x+y

2

〈p′| ∂j
x∂

i
y Tr

(

U [�]
)

|p〉
∣

∣

∣

LF

〈P |P 〉 , (3.6)

where now the off-forwardness is only transverse (∆) and where U [�] ≡ U
[+]
[y,x] U

[−]
[x,y] is a

rectangular Wilson loop with transverse orientation r ≡ x− y, stretched to infinity in the

longitudinal direction. We can apply partial integration twice and write eq. (3.6) as3

G[+,−] ij(k,∆) =
2Nc

αs

[

1

2

(

k2 − ∆2

4

)

δijT + kijT − ∆ij
T

4
− k

[i
T∆

j]
T

2

]

G[�](k,∆), (3.7)

where

G[�](k,∆) ≡
∫

d2x d2y

(2π)4
e−ik·(x−y)+i∆·

x+y

2
〈p′|S[�](x,y) |p〉

∣

∣

LF

〈P |P 〉 , (3.8)

is the Fourier transform of the Wilson loop operator

S[�](x,y) ≡ 1

Nc
Tr
(

U [�]
)

. (3.9)

The off-forward correlator G in eq. (3.8) is the generalized Wilson loop correlator of which

the forward limit is the correlator discussed in [15]. The Wilson loop operator in eq. (3.9)

is the color gauge invariant version of the dipole operator Tr[U(x)U †(y)]/Nc, which defines

the S-matrix for a quark-antiquark pair scattering on a nucleus with the quark at position

x and the antiquark at position y.

Similar to the TMD case in [15], the Wilson loop correlator can be parametrized in

terms of GTMDs. We choose the following parametrization:

G[�](k,∆) =
αs

2NcM2
E(k2,∆2,k·∆), (3.10)

where E is a Wilson loop GTMD. Hence, at vanishing x and ξ the picture is very simple:

there is only one independent GTMD. From eq. (3.7) it follows that in the limit of small x

and ξ the GTMDs defined in eq. (2.6) are related as follows:

lim
x,ξ→0

xF1 = lim
x,ξ→0

xF (1)
2 = −4 lim

x,ξ→0
xF (1)

3 = −2 lim
x,ξ→0

xF (1)
4 = E(1), (3.11)

where we used the shorthand notation F (n)
i ≡ [(k2 − ∆2/4)/(2M2)]nFi. We stress that

the relation in eq. (3.11) only holds for the dipole-type gauge link structure and in the

leading-twist picture we consider. In the forward limit (i.e. upon setting ∆ = 0), we

3Eq. (3.7) is consistent with the result in [85] where only the term with δij
T

was considered.

– 6 –
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recover the result for the (real) TMDs, limx→0 xf1 = limx→0 xh
⊥(1)
1 , which was already

found in [15]. The Wilson loop GTMD E is related to the Wilson loop TMD e defined

in [15] as lim∆→0 E(k2,∆2,k·∆) = e(k2).

The Wilson loop operator in eq. (3.9) can be written in terms of its real and imaginary

parts:

S[�](x,y) = P(x,y) + iO(x,y), (3.12)

where the pomeron and odderon operators are respectively given by

P(x,y) ≡ 1

2Nc
Tr
(

U [�] + U [�]†
)

, O(x,y) ≡ 1

2iNc
Tr
(

U [�] − U [�]†
)

. (3.13)

The pomeron operator is C-even and T-even, whereas the odderon operator is both C-

odd and T-odd. Following the notation of [95], the T-odd contribution to the dipole-type

GTMD correlator in eq. (3.7) is given by

G
(T-odd) ij
(d) (k,∆) ≡ 1

2

(

G[+,−] ij(k,∆)−G[−,+] ij(k,∆)
)

=
Nc

αs

[

1

2

(

k2 − ∆2

4

)

δijT + kijT − ∆ij
T

4
− k

[i
T∆

j]
T

2

]

×
(

G[�](k,∆)−G[�†](k,∆)
)

=
2iNc

αs

[

1

2

(

k2 − ∆2

4

)

δijT + kijT − ∆ij
T

4
− k

[i
T∆

j]
T

2

]

×
∫

d2x d2y

(2π)4
e−ik·(x−y)+i∆·

x+y

2 〈O(x,y)〉|LF . (3.14)

From the hermiticity and time reversal constraints, respectively given by

G[�]∗(k,∆) = G[�](k,−∆), G[�]∗(k,∆) = G[�†](−k,−∆), (3.15)

it follows that the combination G[�](k,∆) − G[�†](k,∆) appearing on the second line

of eq. (3.14) only contains odd powers of k·∆. Hence, the odderon contains only odd

harmonics cos[(2n − 1)(φk − φ∆)], with n ≥ 1. Note that in the forward limit, i.e. for

∆ → 0, the T-odd contribution (3.14) vanishes. This means that for unpolarized hadrons

there are no odderon contributions in the TMD case; there is no spin-independent odderon

for ∆ = 0.

The Fourier transform of the GTMD correlator is the Wigner distribution

W [�](b,k) =

∫

d2∆ e−i∆·b G[�](k,∆). (3.16)

The normalization of the correlator G in eq. (3.8) is
∫

d2k G[�](k,∆) = δ(2)(∆), or for

the Wigner distribution
∫

d2k W [�](b,k) = 1, independent of the impact parameter b of

the nucleon. Indeed, for ∆ = 0 the nucleon expectation value in impact parameter space,
〈

S[�]
(

b+ r
2 , b− r

2

)〉

≡ 〈P |S[�]
(

b+ r
2 , b− r

2

)

|P 〉 / 〈P |P 〉, is independent of b, as it would
also be in an infinite nuclear environment with constant nucleon density. However, for a
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finite, sufficiently large, nucleus there is a dependence on b, even if one takes ∆ ≈ 0 for the

nucleons inside the nucleus. Rather than a constant density one has a transverse impact

parameter profile for b that reflects the nucleon density in a nucleus,

T (b) =

∫ ∞

−∞

dz ρA

(
√

b2 + z2
)

, (3.17)

where ρA(r) is the density of nucleons in the nucleus. For a heavy nucleus one typically

takes a Woods-Saxon profile, which is slowly varying for b values not too close to the edge

of the nucleus. By assuming the b dependence of the nuclear state to be approximately

constant on the scale of the nucleon size, we effectively take |p′〉 ≈ |p〉 ≈ |P 〉 for nucleons
in the nucleus. In a large nucleus the Wigner distribution then becomes4

W
[�]
A (b,k) =

∫

d2r

(2π)2
e−ik·r

〈

S[�]
(

b+ r
2 , b− r

2

)

〉

A
, (3.18)

where the nuclear averaged matrix element 〈. . .〉A is evaluated between nucleon states at

a given impact parameter b in the nucleus of which the distribution follows that of the

normalized transverse impact parameter space profile function T (b). In what follows, we

will refer to WA in eq. (3.18) as the dipole Wigner distribution (and similarly for the

dipole GTMD distribution). We already noted that in the forward limit ∆ = 0, where

one integrates over all b values, odderon effects disappear. Similarly, in an infinite nucleus

the b dependence becomes irrelevant and all odderon effects disappear. In a finite nucleus,

however, double parton scattering effects in peripheral pA collisions can retain odderon

effects as will be discussed in the next section.

4 Probing odd azimuthal correlations at small x

In this section we study odd azimuthal correlations in particle production in high-energy

collisions originating from the dipole Wigner and GTMD distributions of gluons in the

nucleus. We first consider the production of two hadrons in pA collisions through double

parton scattering. The source for azimuthal angular correlations (both even and odd) in the

cross section of this process is the relative orientation between the transverse momentum

k of the produced particle and its impact parameter b for an inhomogeneous nucleus,

which is encoded in the dipole Wigner distributions. Secondly, we briefly comment on

exclusive diffractive dijet production in ultra-peripheral pA collisions. For this process the

source of azimuthal correlations is given by the relative orientation between the transverse

momentum k and the momentum transfer ∆, encoded in the dipole GTMDs. No odd-

harmonic correlations in the cross section are identified in this case.

4.1 Dihadron production through double parton scattering in pA collisions

We consider the production of two hadrons in pA collisions at forward rapidity (in the

fragmentation region of the proton) in the hybrid formalism [96]. The produced hadrons

4In the next section, the gauge link dependence of W , G, and S will be implicit, and we will suppress

the subscript A of W .
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probe the proton at large values of the longitudinal momentum fraction x (the proton is

dilute), while on the nucleus side the small-x gluons govern the interaction (the nucleus

is dense). The high gluon density state of the nucleus can be described by the CGC

framework. We study double parton scattering with two incoming (valence) quarks from

the proton that scatter off the CGC system, producing the two final-state hadrons. The

distribution of the quarks from the proton is described by the double parton distribution

(DPD) Fp(x1, x2, b1 − b2), with x1 and x2 denoting the longitudinal momentum fractions

of the quarks and b1 and b2 denoting their scattering positions with respect to the center

of the nucleus.

The transverse momentum of the final quarks is acquired through multiple rescatterings

off the gluon field of the nucleus which are resummed into fundamental Wilson lines. The

scattering of a quark at transverse position x in a covariant gauge and in the eikonal

approximation is given by a fundamental Wilson line U(x) ≡ Un
[−∞,∞;x], see eq. (2.3). The

operator that describes the scattering of two quarks off the CGC at the level of the cross

section is given by

〈

1

Nc
Tr
[

U(x1)U
†(y1)

] 1

Nc
Tr
[

U(x2)U
†(y2)

]

〉

x,A

= 〈S(x1,y1)S(x2,y2)〉x,A , (4.1)

where S is the dipole operator. The average 〈· · · 〉x,A is the CGC average over the nucleus

state, probed at some small, but finite, longitudinal momentum fraction x. Generalizing

the single-inclusive cross section for quark production [97], one can write the cross section

for the production of two quarks with momenta k1 and k2 as (see e.g. [67]):

dσpA

dy1dy2 d2k1d2k2
∝
∫

d2b1 d
2b2 Fp(x1, x2, b1 − b2)

∫

d2r1d
2r2

(2π)4
e−ik1·r1−ik2·r2

×
〈

S
(

b1 +
r1
2 , b1 −

r1
2

)

S
(

b2 +
r2
2 , b2 −

r2
2

)〉

x,A
, (4.2)

where r1 ≡ x1−y1 and r2 ≡ x2−y2 are the dipole orientations, and b1 ≡ (x1+y1)/2 and

b2 ≡ (x2 + y2)/2 are the corresponding impact parameters.5 We will work in the large-Nc

limit and consider only the leading contributions in 1/Nc to the azimuthal correlations. At

large Nc, the expectation value of the product of traces factorizes:

〈

S
(

b1 +
r1
2 , b1 −

r1
2

)

S
(

b2 +
r2
2 , b2 −

r2
2

)〉

x,A

≈
〈

S
(

b1 +
r1
2 , b1 −

r1
2

)〉

x,A

〈

S
(

b2 +
r2
2 , b2 −

r2
2

)〉

x,A
. (4.3)

The neglected corrections have been shown to give rise to azimuthal asymmetries

in [67, 72, 73]; here we demonstrate that odd azimuthal asymmetries arise already at lead-

ing power in 1/Nc. Under this assumption, the cross section in eq. (4.2) can been written

5In our model we are neglecting quantum interference effects as discussed in [98, 99].
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as a convolution of two dipole Wigner distributions:

dσpA

dy1dy2 d2k1d2k2
∝
∫

d2b1 d
2b2 Fp(x1, x2, b1 − b2)

∫

d2r1d
2r2

(2π)4
e−ik1·r1−ik2·r2

×
〈

S
(

b1 +
r1
2 , b1 −

r1
2

)〉

x,A

〈

S
(

b2 +
r2
2 , b2 −

r2
2

)〉

x,A

=

∫

d2b1 d
2b2 Fp(x1, x2, b1 − b2)xW (x, b1,k1)xW (x, b2,k2), (4.4)

where W is defined in eq. (3.18).

To extract the angular correlations, we parametrize the Wigner distribution in terms

of the different harmonic contributions [85]:

xW (x, b,k) = xW0(x, b
2,k2) + 2 cos(φb − φk)xW1(x, b

2,k2)

+ 2 cos 2(φb − φk)xW2(x, b
2,k2) + . . . (4.5)

The elliptic flow resulting from the elliptic Wigner distribution xW2 has been analyzed

in [80, 81, 100]. Here we focus on the odd-harmonic correlations generated by the imaginary

part of the dipole scattering amplitude (the odderon). We will only consider the first odd

contribution explicitly, i.e. the one associated to xW1.

We consider the angular asymmetries generated by the inhomogeneity of the nucleus

in the transverse plane, which is naturally larger on the edge of the nucleus and hence our

main focus is on peripheral collisions. For peripheral collisions involving an inhomogeneous

nucleus, the distribution of quarks inside the proton in transverse space becomes important.

For simplicity, we assume that the dependence on b1 − b2 in the double quark distribution

factorizes and we take a Gaussian ansatz for the transverse density profile [101, 102]:

Fp(x1, x2, b1 − b2) = fp(x1, x2)
1

4πR2
N

e
−

(b1−b2)
2

4R2
N , (4.6)

where RN denotes the radius of the proton. Using eqs. (4.5) and (4.6) in the cross sec-

tion (4.4), and integrating over the angles φb1 and φb2 , we obtain

dσpA

dy1dy2 d2k1d2k2
∝ π

8R2
N

fp(x1, x2)

∫

db21 db
2
2 e

−
b21+b22
4R2

N

×
[

2I0

(

b1b2
2R2

N

)

xW0(x, b
2
1,k

2
1)xW0(x, b

2
2,k

2
2)

+ 4 cos(φk1 − φk2) I1

(

b1b2
2R2

N

)

xW1(x, b
2
1,k

2
1)xW1(x, b

2
2,k

2
2)

+ 4 cos 2(φk1 − φk2) I2

(

b1b2
2R2

N

)

xW2(x, b
2
1,k

2
1)xW2(x, b

2
2,k

2
2)

]

+ . . . , (4.7)

where b1,2 ≡ |b1,2| and In is the nth modified Bessel function of the first kind. We note

that the odderon Wigner distribution xW1 of the nucleus gives rise to odd azimuthal cor-

relations between the transverse momenta of the produced particles. The cos(φk1 − φk2)
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correlation comes with xW1 xW1, which is suppressed compared to the mixed terms of the

form xW0 xW1 that however vanish upon integration over the impact parameter angles

φb1 and φb2 . One can also consider single-particle production and azimuthal correlations

at fixed impact parameter between the direction of the produced particle in the transverse

plane and the reaction plane. In the latter case one obtains nonvanishing odd angular coef-

ficients from the mixed terms xW0 xW1. However, since b1 and b2 are not experimentally

observable, we consider only two-particle correlations that survive the integration over the

directions of the impact parameters.

The standard way of quantifying azimuthal correlations in particle production is

through the flow coefficients vn [103]. For two-particle correlations, we have [32]

vn(k,k
ref) ≡ Vn(k,k

ref)
√

Vn(k
ref,kref)

, (4.8)

where the coefficients Vn are obtained from the decomposition of the cross section into

Fourier modes in the relative azimuthal angle between the produced particles, and kref

is a reference momentum corresponding to an experimental reference bin. The first odd

coefficient, which characterizes the directed flow, is given by

V1(k
2
1,k

2
2) ≡

∫

db21 db
2
2 e

−
b21+b22
4R2

N I1

(

b1b2
2R2

N

)

xW1(x, b
2
1,k

2
1)xW1(x, b

2
2,k

2
2)

∫

db21 db
2
2 e

−
b21+b22
4R2

N I0

(

b1b2
2R2

N

)

xW0(x, b
2
1,k

2
1)xW0(x, b

2
2,k

2
2)

. (4.9)

We next derive an explicit expression for V1 in the semi-classical picture of the CGC

framework for small (but finite) x. We assume x is not too small so that, as a first step,

we can ignore quantum corrections from energy evolution. The expression for the angular-

independent contribution, xW0, can be obtained from the real part of the dipole operator,

P defined in (3.13), which has been calculated in the McLerran-Venugopalan (MV) model

using a Gaussian distribution of color sources [104]:

〈

P
(

b+ r
2 , b− r

2

)〉

x,A
= exp

[

−1

4
r2Q2

s(b) ln
1

rΛ

]

, (4.10)

where the dipole size is r ≡ |r| and the scale Λ serves as an infrared cutoff. The quark

saturation scale Q2
s(b) characterizes the nonlinear gluon dynamics in the nucleus and can

be defined in terms of the nuclear profile function T (b) in eq. (3.17):

Q2
s(b) ≡

4πα2
sCF

Nc
T (b). (4.11)

For the nucleon number density ρA(~r) entering T (b) one typically takes the Woods-Saxon

distribution,

ρA(r) =
NA

1 + exp
(

r−RA

δ

) , (4.12)
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with RA = (1.12 fm)A1/3 the nuclear radius, δ = 0.54 fm the width of the ‘nuclear edge’ [81],

and NA is a normalization factor such that
∫

d3~r ρA(~r) = A, the number of nucleons inside

the nucleus. For our numerical calculation of v1 we will consider a lead nucleus with

A = 208 and a copper nucleus with A = 63. To save computation time, we will use the

leading asymptotic expansion for Ii

(

b1b2
2R2

N

)

, since b1 and b2 both are taken larger than

b0 ≈ 1 fm, and we will use

T (b) = β

(

1− 1

1 + e−(b/b0−γ)

)

, (4.13)

with β = 2.13 fm−2 and γ = 5.4 for A = 208, and β = 1.38 fm−2 and γ = 3.5 for A = 63,

which approximates the Woods-Saxon distribution sufficiently well for our purpose.

Using eq. (4.10), the angular-independent Wigner function xW0 is given by

xW0(x, b
2,k2) =

∫

d2r

(2π)2
e−ik·r

〈

P
(

b+ r
2 , b− r

2

)〉

x,A

=
1

2π

∫ ∞

0
dr r exp

[

−1

4
r2Q2

s(b) ln
1

rΛ

]

J0(k r), (4.14)

where k ≡ |k| and Jn is the nth Bessel function of the first kind.

Now we turn to the calculation of the first odd-harmonic Wigner function xW1 that

can be obtained from the expectation value of the odderon operator O defined in (3.13). An

analytical expression for the initial conditions of the impact parameter dependent odderon

has been derived in [105–108]. Here we employ the model result of [108] where the odderon

was derived for a nucleus consisting of A distinct nucleons. The expectation value of the

odderon for a nuclear system is given by [108]

〈

O
(

b+ r
2 , b− r

2

)〉

x,A
= − 3

4R4
N

c0α
3
sr

2 exp

[

−1

4
r2Q2

s(b) ln
1

rΛ

]

× r ·
∫

d2b̃ b̃ T
(

|b+ b̃|
)

θ(RN − b̃), (4.15)

where c0 ≡ −(N2
c − 4)(N2

c − 1)/(12N3
c ). The impact parameter of the dipole with respect

to the center of the struck nucleon is −b̃ (and b̃ ≡ |b̃|), whereas b is the impact parameter

with respect to the center of the nucleus, as before. The geometry of the scattering is

illustrated in figure 2. The result in eq. (4.15) is expected to be a good approximation for

r < RN (which means that the dipole is perturbatively small) and for b̃ ≪ RN .

We focus on peripheral collisions for which b̃ ≪ b, as b̃ is confined to the area of the

nucleon. Hence, we can expand the nuclear profile function in powers of b̃/b:

T
(

|b+ b̃|
)

=

[

1 + b̃i
∂

∂bi
+

1

2
b̃ib̃j

∂2

∂bi∂bj
+

1

3!
b̃ib̃j b̃k

∂3

∂bi∂bj∂bk
+ . . .

]

T (b). (4.16)

Plugging this expansion (up to second order in b̃/b) in eq. (4.15) and performing the

integration over b̃, we obtain:

〈

O
(

b+ r
2 , b− r

2

)〉

x,A
≈ −3π

16
c0α

3
sr

2 exp

[

−1

4
r2Q2

s(b) ln
1

rΛ

]

b · r
b

T ′(b)

= −3π

16
c0α

3
sr

3 exp

[

−1

4
r2Q2

s(b) ln
1

rΛ

]

cos(φb − φr)T
′(b). (4.17)
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b̃

x y

RA

RN

Figure 2. Geometrical picture of the dipole hitting the nucleon inside the nucleus.

Note that only the linear term in the expansion survives the integration; it has given rise

to a cos(φb − φr) correlation.
6 From the Fourier transform of the odderon,

∫

d2r

(2π)2
e−ik·r

〈

O
(

b+ r
2 , b− r

2

)〉

x,A
= − 3

32
ic0α

3
s cos(φb − φk)T

′(b)

∫ ∞

0
dr r4

× exp

[

−1

4
r2Q2

s(b) ln
1

rΛ

]

J1(k r), (4.18)

one can extract xW1, as defined in eq. (4.5):

xW1(x, b
2,k2) =

3

32
c0α

3
s T

′(b)

∫ ∞

0
dr r4 exp

[

−1

4
r2Q2

s(b) ln
1

rΛ

]

J1(k r). (4.19)

With the results in eqs. (4.14) and (4.19) we have obtained all the ingredients needed

to calculate the directed flow v1 defined in eqs. (4.8) and (4.9) in the CGC framework.

We perform an approximate numerical calculation to estimate the size of v1 in our model.

We calculate v1 for a lead nucleus with A = 208 and for a copper nucleus with A = 63 in

order to demonstrate the A dependence of the result. Furthermore, we take αs = 0.3 and

Λ = ΛQCD = 0.24GeV. In figure 3 we show v1 as a function of k for kref = 0.8GeV. Our

result is strictly valid for perturbatively small dipoles, i.e. for r < RN ∼ 1/ΛQCD, so we

expect the calculation to break down for small momenta k < ΛQCD. We plot v1 starting

from k = 0.12GeV for A = 63 and k = 0.14GeV for A = 208, as unphysical fluctuations

are present at lower values of k where it should go to zero as k → 0. From the plot for a

lead nucleus (blue curve) we infer that the observed sign change in the ATLAS data [24] is

not present in our result and we do not have the same behavior at large k.7 However, our

goal here is not to describe the data, but rather to illustrate our main point with a simple

model. It shows that the magnitude of v1 for lower values of k is of the same order as the

maximal value observed in the data. We emphasize that we do not have any fit parameters

in our result. The behavior and magnitude of v1 are similar for other choices of kref.

6The quadratic term in the expansion gives rise to a cos 2(φb − φr) correlation in the real part of the

dipole operator, see [81].
7Note that we do not include the sign function sgn(kref − k0) that is used in the definition of v1 in [24].

The sign function is defined to be negative for kref < k0 = 1.5GeV and is positive otherwise.
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v1

Figure 3. The directed flow v1(k) for a lead nucleus with A = 208 (blue curve) and for a copper

nucleus with A = 63 (red curve). We take αs = 0.3, Λ = 0.24GeV, and kref = 0.8GeV.

Figure 3 shows that v1 in our model calculation decreases with increasing A. This

is expected, since the odderon contribution xW1 has been computed with the MV model

extended by a cubic action [107], i.e. an action that includes a subleading correction in

1/A1/3 compared to the original MV model. Therefore, the whole observable is subleading

in 1/A1/3, as expected for an effect that is proportional to the derivative of the nuclear

thickness function T (b). However, the precise dependence on A is not straightforward to

extract analytically from the explicit expressions because of the non-trivial Qs dependence.

Finally, let us comment that the odd harmonics computed in [67] in the nonlinear

Gaussian approximation are suppressed in 1/Nc compared to our result, since we are con-

sidering the leading-order terms in the 1/Nc expansion in eq. (4.3) which do not produce

odd harmonics in the mechanism considered in [67].

The results so far have been derived for the production of two hadrons by two incoming

quarks from the proton that scatter off the nuclear CGC. This description is valid at forward

rapidity, such that the proton consists of valence quarks only. Moving away from the

forward-rapidity region, one needs to account for the presence of sea quarks and antiquarks

in the proton’s wave function. The scattering of an antiquark is given by the complex

conjugate of the quark’s dipole operator, which implies that xWquark
1 = −xWantiquark

1 .

Hence, if one assumes that away from the valence region the proton consists of an equal

number of quarks and antiquarks with exactly the same DPDs for qq, q̄q̄, and qq̄ pairs, the

sum over all partons scattering off the nucleus would not give any odd harmonics. However,

it is known that for values of x ≤ 10−1, the DPDs differ for different pairs of partons with

an x-dependent width in the Gaussian model [109, 110]. In general, the proton DPD takes

the following form:

Fp(x1, x2, b1 − b2) = fab(x1, x2)
1

4πhab(x1, x2)
e
−

(b1−b2)
2

4hab(x1,x2) , (4.20)

where the labels a, b refer to quarks or antiquarks. The precise form of hab, including

numerical values for the relevant parameters, can be found in [110]. Due to the fact that

the proton DPDs differ for different combinations of quarks and antiquarks, our mechanism

would also produce nonzero odd azimuthal correlations away from the forward-rapidity

region. For the case of gluon production, the odd harmonics in our model are zero by
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construction. This is because the adjoint dipole operator SA = Tr[V (x)V †(y)]/(N2
c − 1),

describing the scattering of gluons off the CGC, is purely real.

4.2 Diffractive dijet production in ultra-peripheral pA collisions

The gluon dipole GTMD distribution (and therefore the dipole Wigner distribution) ap-

pears also in the cross section for diffractive dijet production in DIS and in ultra-peripheral

pA collisions, which has been shown in [75, 85, 86]. However, the mechanism we have dis-

cussed so far does not generate odd azimuthal angular correlations between the produced

jets. The cross section for this process involves the absolute value squared of the dipole op-

erator and the odderon only gives corrections to the angle-independent and cos 2(φR−φ∆)

coefficients. For completeness we derive the form of these corrections.

Analogous to the parametrization in eq. (4.5) in terms of Wigner distributions, the

dipole GTMD correlator, defined in eq. (3.8), can be parametrized as

G(x,k,∆) = G0(x,k
2,∆2) + 2 i cos(φk − φ∆)G1(x,k

2,∆2)

+ 2 cos 2(φk − φ∆)G2(x,k
2,∆2) + . . . (4.21)

The produced jets have transverse momenta k1 and k2 such that k1 + k2 = −∆, and the

relative transverse momentum of the dijet is given by R ≡ (k2 − k1)/2. The contributions

from the functions G0 and G2 to the dijet production cross section have been calculated

in [86]:
dσpA

dy1dy2 d2k1d2k2
∝ A2 + 2 cos 2(φR − φ∆)AB, (4.22)

where

A(x,R2,∆2) ≡ −
∫ R

0
dk k G0(x,k

2,∆2), (4.23)

B(x,R2,∆2) ≡ −
∫ R

0
dk

k3

R2
G2(x,k

2,∆2) +

∫ ∞

R
dk

R2

k
G2(x,k

2,∆2), (4.24)

with k ≡ |k| and R ≡ |R|. The odd function G1 modifies the cross section in eq. (4.22) to

dσpA

dy1dy2 d2k1d2k2
∝
(

A2 +
1

2
C2

)

+ 2 cos 2(φR − φ∆)

(

AB +
1

4
C2

)

, (4.25)

where

C(x,R2,∆2) ≡ −
∫ R

0
dk

k2

R
G1(x,k

2,∆2) +

∫ ∞

R
dk R G1(x,k

2,∆2). (4.26)

We infer from eq. (4.25) that the GTMD odderon G1 only corrects the size of the even

harmonics and does not lead to odd harmonics.

5 Discussion and conclusions

We have provided an alternative parametrization of the gluon-gluon GTMD correlator for

unpolarized hadrons in terms of definite-rank GTMDs of leading twist. For the dipole-type
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gauge link structure and for vanishing x and ξ this correlator is related to the correlator of a

Wilson loop. The fact that the Wilson loop correlator can be parametrized in terms of just

a single GTMD, implies that the dipole GTMDs all become proportional to each other in

this particular limit. Hence, one expects that in the small-x kinematic region where gluon

effects dominate those of quarks, the picture of gluon GTMDs becomes very simple. The

gluon GTMDs with a dipole-type gauge link contain both C-even (pomeron) and C-odd

(odderon) contributions, the latter disappearing in the forward limit where GTMDs reduce

to TMDs.

The odderon contribution to the gluon GTMD (in a situation without polarization)

originates from correlations between the off-forwardness and the gluon momentum in the

transverse plane. In practice this means that we need to look for correlations between the

impact parameter b of nucleons and the noncollinearity of gluon operators appearing in

the transverse size r of Wilson lines, in particular the Wilson loop. Odderon effects will

then show up as odd flow coefficients in pA collisions. Using a simple model for dihadron

production from double parton scattering in peripheral pA collisions, we have shown that

the odderon Wigner distribution gives rise to odd azimuthal asymmetries, even in the large-

Nc limit and for a radially symmetric nucleus. At leading order in 1/Nc, the cross section

of this process is proportional to a convolution of two dipole Wigner distributions which

encode partonic correlations within the nuclear wave function. Those distributions give

rise to both even and odd harmonics in the two-particle angular correlations, the latter

being a double C-odd effect. Within the CGC model, we have calculated the directed

flow coefficient v1 that quantifies the contribution of the first harmonic with respect to

the angular independent contribution. For peripheral collisions involving a lead nucleus

described by a Woods-Saxon-like profile, we find a v1 at the percent level. This order

of magnitude is consistent with the ATLAS measurements [24], although the shape of v1
is not well-described using the simple model. We point out that a nonzero v3 can be

generated from higher-order corrections to eq. (4.15) and from the third derivative of the

profile function in eq. (4.16).

It would be interesting to see how quantum effects from small-x evolution modify our

result derived in the classical approach. In the CGC framework, one can calculate the small-

x evolution of xW0 and xW1 from the nonlinear Jalilian-Marian-Iancu-McLerran-Weigert-

Leonidov-Kovner (JIMWLK) equation [111–116] applied to the real (P) and imaginary (O)

parts of the dipole operator, respectively. The small-x evolution of v3 has been considered

in [66, 67] and they observed that v3 decreases with decreasing x, while [77] found that v1
and v3 increase with decreasing x for small values of the dipole size. We leave the analysis

of quantum corrections to the odd angular coefficients for the future.
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