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BACKGROUND: Canagliflozin is approved for glucose lowering in type 2 
diabetes and confers cardiovascular and renal benefits. We sought to 
assess whether it had benefits in people with chronic kidney disease, 
including those with an estimated glomerular filtration rate (eGFR) 
between 30 and 45 mL/min/1.73 m2 in whom the drug is not currently 
approved for use.

METHODS: The CANVAS Program randomized 10 142 participants 
with type 2 diabetes and eGFR >30 mL/min/1.73 m2 to canagliflozin 
or placebo. The primary outcome was a composite of cardiovascular 
death, nonfatal myocardial infarction, or nonfatal stroke, with other 
cardiovascular, renal, and safety outcomes. This secondary analysis 
describes outcomes in participants with and without chronic kidney 
disease, defined as eGFR <60 and ≥60 mL/min/1.73 m2, and according 
to baseline kidney function (eGFR <45, 45 to <60, 60 to <90, and 
≥90 mL/min/1.73 m2).

RESULTS: At baseline, 2039 (20.1%) participants had an eGFR 
<60 mL/min/1.73 m2, 71.6% of whom had a history of cardiovascular 
disease. The effect of canagliflozin on the primary outcome was similar 
in people with chronic kidney disease (hazard ratio, 0.70; 95% CI, 
0.55–0.90) and those with preserved kidney function (hazard ratio, 0.92; 
95% CI, 0.79–1.07; P heterogeneity = 0.08). Relative effects on most 
cardiovascular and renal outcomes were similar across eGFR subgroups, 
with possible heterogeneity suggested only for the outcome of fatal/
nonfatal stroke (P heterogeneity = 0.01), as were results for almost all 
safety outcomes.

CONCLUSIONS: The effects of canagliflozin on cardiovascular and renal 
outcomes were not modified by baseline level of kidney function in 
people with type 2 diabetes and a history or high risk of cardiovascular 
disease down to eGFR levels of 30 mL/min/1.73 m2. Reassessing current 
limitations on the use of canagliflozin in chronic kidney disease may allow 
additional individuals to benefit from this therapy.

CLINICAL TRIAL REGISTRATION: URL: https://www.clinicaltrials.gov. 
Unique identifiers: NCT01032629, NCT01989754.
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Excess mortality and morbidity in type 2 diabetes 
primarily result from cardiovascular and kidney dis-
ease.1,2 Sodium glucose cotransporter 2 (SGLT2) in-

hibitors are a class of medications that promote urinary 
glucose excretion and natriuresis, and alter glomerular 
hemodynamics.3 These changes have been noted to 
result in improvements in glycemic status, blood pres-
sure, weight, and proteinuria in patients with type 2 
diabetes,3 and have translated into a reduction in car-
diovascular events and preservation of kidney function 
in large cardiovascular outcome trials.4–6

The glucose-lowering effect of SGLT2 inhibitors is 
reliant on glomerular filtration. Previous studies have 
shown that the glycemic efficacy of SGLT2 inhibitors 
is attenuated in people with chronic kidney disease 
(CKD), defined as an estimated glomerular filtration 
rate (eGFR) <60 mL/min/1.73 m2.7,8 As such, these 
agents are not currently recommended for use in peo-
ple with significantly reduced kidney function, defined 
as an eGFR <45 mL/min/1.73 m2 with canagliflozin 
and empagliflozin or <60 mL/min/1.73 m2 with dapa-
gliflozin and ertugliflozin.9,10 Conversely, the efficacy 
of SGLT2 inhibitors at reducing blood pressure and 

proteinuria may be maintained in people with diabe-
tes and CKD.8,11

As individuals with CKD are among the highest-risk 
groups for cardiovascular disease and progression to 
end-stage kidney disease,12 it is important to under-
stand whether the benefits of SGLT2 inhibitors for car-
diovascular events and progression of renal disease are 
similar to those in people with normal kidney function.

We undertook a range of post hoc analyses of data 
from the CANVAS Program to determine the effect of 
canagliflozin on cardiovascular, renal, and safety out-
comes across different levels of kidney function to bet-
ter understand whether this agent may have a role in 
people with type 2 diabetes and CKD at high cardiovas-
cular risk, including those with eGFR between 30 and 
45 mL/min/1.73 m2 for whom this treatment is not cur-
rently approved.

METHODS
Data from the CANVAS Program will be made available in 
the public domain via the Yale University Open Data Access 
Project (http://yoda.yale.edu/) once the product and relevant 
indication studied have been approved by regulators in the 
United States and European Union, and the study has been 
completed for 18 months. The trial protocols and statistical 
analysis plans were published along with the primary CANVAS 
Program manuscript.4

Study Design and Participants
The CANVAS Program comprised 2 multicenter, double-blind, 
placebo-controlled, randomized trials, CANVAS and CANVAS-R, 
conducted in comparable populations and designed to col-
lectively assess the cardiovascular safety and efficacy of cana-
gliflozin, as well as its effect on renal and adverse outcomes, in 
subjects with type 2 diabetes and a history or high risk of cardio-
vascular disease. Both trials were scheduled for joint closeout 
and analysis when at least 688 cardiovascular events occurred 
and the last randomized participant had undergone at least 
78 weeks of follow-up.4 Local institutional ethics committees 
approved the trial protocols at each site, and these are available 
online (ClinicalTrials.gov NCT01032629 and NCT01989754). 
All participants provided written informed consent.

The main entry criteria for both trials were identical and 
included participants with type 2 diabetes (glycohemoglobin 
[HbA1c] ≥7.0% and ≤10.5%) who were either ≥30 years 
old with established atherosclerotic vascular disease or ≥50 
years old with 2 or more cardiovascular risk factors. These 
risk factors included duration of diabetes of at least 10 
years; systolic blood pressure >140 mm Hg while receiving 1 
or more antihypertensive agents; current smoking; microal-
buminuria or macroalbuminuria; or high-density lipoprotein 
cholesterol level <1 mmol/L. Participants with a baseline eGFR  
<30 mL/min/1.73 m2 were excluded.

Randomization and Masking
All potentially eligible participants underwent a 2-week, 
single-blind, placebo run-in period before randomiza-
tion. Participants in CANVAS were randomly assigned in a 

Clinical Perspective

What Is New?
•	 Canagliflozin is currently not approved for the 

treatment of type 2 diabetes in people with 
estimated glomerular filtration rate (eGFR) 
<45 mL/min/1.73 m2 because glycemic efficacy is 
dependent on kidney function.

•	 In the CANVAS Program, the effect of canagliflozin 
on glycohemoglobin was progressively attenuated 
at lower eGFR levels, but blood pressure and body 
weight reductions were comparable.

•	 The reduction in risk of major adverse cardiovascu-
lar events, hospitalization for heart failure, and pro-
gression of kidney disease appeared similar across 
different levels of kidney function down to eGFR  
30 mL/min/1.73 m2.

•	 Safety outcomes were also mostly consistent, but 
risk of hypoglycemia may increase as eGFR declines.

What Are the Clinical Implications?
•	 People with type 2 diabetes and chronic kidney dis-

ease are at high risk of cardiovascular events and 
progression to end-stage kidney disease.

•	 Canagliflozin could be considered for the manage-
ment of type 2 diabetes in people at high cardio-
vascular risk with eGFR down to 30 mL/min/1.73 m2 
to reduce the risk of both cardiovascular and renal 
outcomes.

•	 Reconsidering current eGFR-based limitations on 
the use of canagliflozin may allow additional indi-
viduals to benefit from this therapy.
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1:1:1 ratio to receive canagliflozin 100 mg daily, canagliflozin 
300 mg daily, or placebo, while participants in CANVAS-R 
were randomly assigned in a 1:1 ratio to receive canagliflozin 
100 mg daily or matching placebo, with an optional increase 
to 300 mg or matching placebo daily starting from week 
13. Randomization was performed centrally through a web-
based response system with the use of a computer-generated 
randomization schedule with randomly permuted blocks that 
were prepared by the trial sponsor. All participants and trial 
staff were blinded to individual treatment allocations until the 
end of the trial.

Procedures
Face-to-face follow-up was scheduled at least 3 times in 
the first year and at intervals of every 6 months thereafter 
with telephone follow-up between face-to-face assessments. 
Serum creatinine was measured at least 3 times in the first 
year, and then once every 26 weeks. Urine albumin/creatinine 
ratio (UACR) was measured at week 12, and then annually in 
CANVAS, and every 26 weeks in CANVAS-R. Off-treatment 
serum creatinine was measured approximately 30 days after 
cessation of randomized treatment in CANVAS-R participants. 
Adverse event assessment was performed at each visit. Other 
glycemic and cardiovascular risk factor management, includ-
ing renin-angiotensin system (RAS) blockade, was guided by 
best practice in accordance with local guidelines.

Outcomes
Definitions for the clinical outcomes of the CANVAS Program 
have been previously published.4

The primary outcome was a composite of death from car-
diovascular causes, nonfatal myocardial infarction, or nonfa-
tal stroke. Other secondary cardiovascular outcomes included 
cardiovascular death, fatal/nonfatal myocardial infarction, 
fatal/nonfatal stroke, and hospitalization for heart failure.

The main renal outcomes were sustained and indepen-
dently adjudicated composites of end-stage kidney disease, 
renal death, and either 40% decrease in eGFR or doubling of 
serum creatinine. End points of 40% reduction in eGFR and 
doubling of serum creatinine were sent for adjudication if sus-
tained for 2 consecutive measures of ≥30 days apart or occur-
ring on the last available measure. Further analyses of the 
adjusted mean eGFR slope difference between canagliflozin 
and placebo groups were also performed. Central end point 
adjudication committees blinded to treatment allocation 
assessed cardiovascular, renal, and key safety outcomes.

The Modification of Diet in Renal Disease Study equation 
was used to calculate eGFR based on centrally measured serum 
creatinine collected at study visits. Albuminuria was measured 
in first-morning void urine specimens and calculated as a UACR.

Adverse events, both serious and nonserious, were col-
lected and reported for the CANVAS trial until January 2014, 
as mandated by the US Food and Drug Administration and 
other regulatory bodies as a requirement for initial approval for 
the use of canagliflozin. After this time, only serious adverse 
events, adverse events leading to study drug discontinuation, 
or selected adverse events of interest were collected in the 
CANVAS trial. We therefore reported all adverse events for the 
CANVAS trial separately, along with all serious adverse events 
across the CANVAS Program (CANVAS and CANVAS-R).

Statistical Analysis
Baseline characteristics across eGFR subgroups were com-
pared using χ2 and ANOVA tests for dichotomous and cat-
egorical variables.

The effects of canagliflozin on the primary and other 
cardiovascular, renal, and safety outcomes were analyzed 
in participants with and without CKD (defined as <60 and 
≥60 mL/min/1.73 m2. Analyses were also conducted for all 
outcomes using more granular eGFR categories (<45, 45 to 
<60, 60 to <90, and ≥90 mL/min/1.73 m2.

Hazard ratios (HRs) and 95% CIs for primary and other 
cardiovascular and renal outcomes were estimated with Cox 
regression models, with stratification according to trial and 
history of cardiovascular disease (except for renal outcomes) 
using an intention-to-treat approach, for all canagliflozin 
groups combined versus placebo. Annualized incidence 
rates were calculated per 1000 patient-years of follow-up. 
Sensitivity analyses adjusting for competing risk of death were 
performed for the main cardiovascular and renal outcomes 
using the Fine and Gray method.13

The average change in eGFR over time and the differ-
ences between canagliflozin and placebo arms were assessed 
by a piecewise linear mixed-effect model in 2 time periods: 
baseline to week 13, and week 13 to last available measures 
during the trial period, using an intention-to-treat approach. 
A time spline variable measuring the follow-up time from 
week 13 was introduced in the model to accommodate the 
nonlinear trends of the eGFR time trajectory. eGFR data col-
lected at the scheduled visits were regressed by the fixed 
effects with terms for treatment and study, and with linear 
covariates of time, time spline, and interactions of treatment 
by time and treatment by the spline variable. Intercept, time, 
and time spline were included as random effects to allow 
variation between participants. Time covariates included 
in the model were calculated in years in order to estimate 
annualized changes in eGFR. In CANVAS-R, the difference in 
change from baseline to off-treatment eGFR levels between 
the canagliflozin and placebo arms was assessed based on 
serum creatinine measurements approximately 30 days after 
treatment discontinuation.

The effect of canagliflozin on intermediate markers of car-
diovascular risk, including HbA1c, blood pressure, and body 
weight, were calculated as mean change from baseline across 
the entire follow-up period. The average change in these con-
tinuous outcomes (HbA1c, blood pressure, and body weight) 
over time, and the difference between canagliflozin and pla-
cebo, were analyzed using mixed-effect models for repeated 
measurements that included all the post-baseline data up 
to week 338 and the covariates for study, visit, treatment, 
baseline measures, treatment-by-visit, and baseline-by-visit 
interactions. Due to the highly skewed distribution of UACR 
data, UACR were log-transformed, and the geometric mean 
of post-baseline UACR was estimated using the similar mixed-
effect model. Changes in albuminuria were calculated as the 
ratio of the geometric mean of postrandomization UACR 
measures with canagliflozin compared to placebo.

Heterogeneity of treatment effect across different levels 
of kidney function was tested by adding eGFR as a covari-
ate and a term for eGFR by treatment interaction to the rel-
evant model. Terms for eGFR by time interaction were also 
included in the piecewise linear mixed model. The global  
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P values for heterogeneity across all levels of baseline eGFR 
were obtained through the likelihood ratio test. For major 
cardiovascular, renal, and safety outcomes, further analyses 
were performed, investigating effect modification by eGFR as 
a continuous variable.

For safety outcomes, on-treatment analysis was per-
formed (with data from participants who had a safety out-
come while they were receiving canagliflozin or placebo, or 
within 30 days after discontinuation of the drug or placebo). 
The exception was for amputation and fracture outcomes, 
where analyses included participants who received at least 
1 dose of canagliflozin or placebo and had an event at any 
time during follow-up.

Absolute risk differences for the primary outcome, hos-
pitalization for heart failure, progression to the composite 
renal outcome, and risk of amputation were estimated by 
subtracting the incidence rates (per 1000 patient-years) 
of placebo from those of canagliflozin and multiplying by 
5 years. The CIs for these estimates were similarly calculated 
by multiplying both the lower and upper CI values (which 
were estimated using the method described by Altman and 
Andersen14) by 5. The heterogeneity tests for absolute risk 
differences were performed using a nonlinear mixed-effect 
model with treatment, subgroup, and treatment-by-sub-
group interaction as the covariates.

Analyses were performed with SAS software, version 9.2, 
and SAS Enterprise Guide, version 7.11.

Role of the Funding Source
The trials were sponsored by Janssen Research & Development, 
LLC, and were conducted collaboratively by the sponsor, an 
academic steering committee, and an academic research 
organization, George Clinical. The sponsor was responsible 
for study oversight and data collection, and had a representa-
tive on the Steering Committee, which was responsible for 
study design, data analysis, data interpretation, and writing of 
this report. All authors had full access to all the data and had 
final responsibility for the decision to submit for publication.

RESULTS
The CANVAS Program randomized 10 142 participants 
with a mean follow-up duration of 188.2 weeks. At 
baseline, 2039 (20.1%) participants had CKD (mean 
age, 68 years; blood pressure, 137/76 mm Hg; HbA1c, 
8.3%; eGFR, 49 mL/min/1.73 m2; median UACR, 
22 mg/g), of whom 71.6% had a prior history of cardio-
vascular disease. This included 554 participants (5.5%) 
in the eGFR <45 mL/min/1.73 m2 category, among 
whom 73.3% had a history of cardiovascular disease.

Baseline characteristics of participants with eGFR 
<45, 45 to <60, 60 to <90, and ≥90 mL/min/1.73 m2 
are presented in Table 1. In progressively lower catego-
ries of eGFR, participants were older and more likely to 
be female; be white; have a longer duration of diabe-
tes; have established micro- or macrovascular disease; 
have a history of heart failure, micro- or macroalbu-
minuria; and be treated with insulin and cardiovascular 

protective therapies (all P<0.0001). Baseline character-
istics for participants with and without CKD were well 
balanced across randomized groups and have been 
previously published.15

Intermediate Outcomes
Canagliflozin significantly reduced HbA1c, systolic 
blood pressure, body weight, and albuminuria com-
pared to placebo in participants across all levels of kid-
ney function, although effects on HbA1c were attenu-
ated progressively in lower eGFR subgroups (Figure 1). 
The placebo-adjusted mean difference in HbA1c 
in participants with baseline eGFR ≥90, 60 to <90, 
45 to <60, and <45 mL/min/1.73 m2 was −0.76%, 
−0.57%, −0.45%, and −0.35%, respectively (P het-
erogeneity <0.0001). In contrast, reductions in body 
weight (−2.45, −2.23, −1.95, and −2.30 kg) and blood 
pressure (−3.92, −4.06, −3.66, and −3.29 mm Hg) 
were similar across the respective eGFR subgroups (P 
heterogeneity = 0.16 and 0.46). The geometric mean 
ratio of UACR compared to placebo was −17%, −17%, 
−26%, and −13% for the same eGFR categories (P 
heterogeneity = 0.01).

When intermediate outcomes were compared in par-
ticipants with and without CKD (Figure I in the online-
only Data Supplement), similar results were observed; 
however, the effect of canagliflozin on body weight 
was attenuated in participants with CKD (−1.32 kg ver-
sus −1.67 kg; P heterogeneity = 0.0002).

Cardiovascular Outcomes
The effects of canagliflozin on cardiovascular outcomes 
stratified into 4 eGFR subgroups are summarized in Fig-
ure 2. Cardiovascular outcomes in participants with CKD 
are shown in Figure II in the online-only Data Supplement 
and compared to those with preserved kidney function 
in Figures III and IV in the online-only Data Supplement.

The relative risk reduction in the primary outcome 
for the overall trial population (HR, 0.86; 95% CI, 
0.75–0.97) was similar across 4 eGFR subgroups and 
for participants with and without CKD (P heterogene-
ity = 0.33 and 0.08, respectively). Similarly, the effect 
on cardiovascular death (HR, 0.87; 95% CI, 0.72–
1.06) was not modified by baseline kidney function  
(P heterogeneity >0.50).

While overall effects on fatal/nonfatal myocardial in-
farction (HR, 0.89; 95% CI, 0.73–1.09) and hospitaliza-
tion for heart failure (HR, 0.67; 95% CI, 0.52–0.87), 
were consistent across 4 eGFR subgroups (P heteroge-
neity = 0.08 and >0.50, respectively), heterogeneity 
was observed for the effect on fatal/nonfatal stroke 
(HR, 0.87; 95% CI, 0.69–1.09), with possibly greater 
benefits with declining kidney function (P heterogene-
ity = 0.01). The same effect modification was observed 
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Table 1.  Characteristics of Participants With eGFR <45, 45 to <60, 60 to <90, and ≥90 mL/min/1.73 m2 at Baseline*

 

eGFR <45  
mL/min/1.73 m2  

(N = 554)

eGFR 45 to <60  
mL/min/1.73 m2  

(N = 1485)

eGFR 60 to <90  
mL/min/1.73 m2  

(N = 5625)

eGFR ≥90  
mL/min/1.73 m2  

(N = 2476)

Age, y, mean (SD) 68.7 (8.0) 67.2 (7.6) 63.6 (7.6) 59.0 (7.9)

Sex, No. (%)

 ������� Male 309 (55.8) 877 (59.1) 3674 (65.3) 1648 (66.6)

 ������� Female 245 (44.2) 608 (40.9) 1951 (34.7) 828 (33.4)

Race, No. (%)

 ������� White 461 (83.2) 1212 (81.6) 4475 (79.6) 1794 (72.5)

 ������� Asian 53 (9.6) 163 (11.0) 716 (12.7) 352 (14.2)

 ������� Black or African American 16 (2.9) 30 (2.0) 137 (2.4) 153 (6.2)

 ������� Other† 23 (4.3) 80 (5.4) 297 (5.3) 177 (7.2)

Current smoker, No. (%) 64 (11.6) 162 (10.9) 949 (16.9) 631 (25.5)

History of hypertension, No. (%) 524 (94.6) 1404 (94.6) 5083 (90.4) 2112 (85.3)

History of heart failure, No. (%) 115 (20.8) 249 (16.8) 805 (14.3) 291 (11.8)

Duration of diabetes, y, mean (SD) 16.8 (8.3) 15.6 (8.3) 13.4 (7.6) 11.9 (7.0)

Drug therapy, No. (%)

 ������� Insulin 367 (66.3) 877 (59.0) 2766 (49.2) 1085 (43.8)

 ������� Sulfonylurea 181 (32.7) 577 (38.9) 2460 (43.7) 1141 (46.1)

 ������� Metformin 222 (40.1) 940 (63.3) 4534 (80.6) 2129 (86.0)

 ������� GLP-1 receptor agonist 22 (4.0) 61 (4.1) 217 (3.9) 107 (4.3)

 ������� DPP-4 inhibitor 87 (15.7) 196 (13.2) 677 (12.0) 301 (12.2)

 ������� Statin 460 (83.0) 1130 (76.1) 4239 (75.4) 1771 (71.5)

 ������� Antithrombotic 438 (79.1) 1181 (79.5) 4142 (73.6) 1710 (69.0)

 ������� RAAS inhibitor 438 (79.1) 1217 (82.0) 4558 (81.0) 1901 (76.8)

 ������� Beta blocker 363 (65.5) 912 (61.4) 3038 (54.0) 1107 (44.7)

 ������� Diuretic 361 (65.2) 861 (58.0) 2453 (43.6) 815 (32.9)

Microvascular disease history, No. (%)

 ������� Retinopathy 157 (28.3) 398 (26.8) 1177 (20.9) 397 (16.0)

 ������� Nephropathy 250 (45.1) 399 (26.9) 804 (14.3) 321 (13.0)

 ������� Neuropathy 196 (35.4) 498 (33.5) 1734 (30.8) 682 (27.5)

Atherosclerotic vascular disease history, No. (%)‡

 ������� Coronary 348 (62.8) 924 (62.2) 3247 (57.7) 1202 (48.6)

 ������� Cerebrovascular 132 (23.8) 325 (21.9) 1059 (18.8) 441 (17.8)

 ������� Peripheral 146 (26.4) 359 (24.2) 1092 (19.4) 516 (20.8)

 ������� Any 436 (78.7) 1146 (77.2) 4050 (72.0) 1691 (68.3)

CV disease history, No. (%)§ 406 (73.3) 1054 (71.0) 3654 (65.0) 1541 (62.2)

History of amputation, No. (%) 29 (5.2) 55 (3.7) 105 (1.9) 49 (2.0)

Body mass index, kg/m2, mean (SD) 32.6 (6.1) 32.2 (6.0) 31.9 (5.8) 31.8 (6.2)

Systolic BP, mm Hg, mean (SD) 137.4 (17.8) 137.5 (16.0) 136.7 (15.5) 135.7 (15.7)

Diastolic BP, mm Hg, mean (SD) 74.1 (10.5) 76.0 (9.9) 78.0 (9.5) 78.8 (9.4)

Glycohemoglobin, %, mean (SD) 8.3 (1.0) 8.2 (0.9) 8.2 (0.9) 8.3 (0.9)

Total cholesterol, mmol/L, mean (SD) 4.4 (1.1) 4.4 (1.2) 4.3 (1.1) 4.4 (1.2)

Triglycerides, mmol/L, mean (SD) 2.2 (1.4) 2.2 (1.3) 2.0 (1.3) 2.0 (1.7)

HDL-C, mmol/L, mean (SD) 1.2 (0.3) 1.2 (0.3) 1.2 (0.3) 1.2 (0.3)

LDL-C, mmol/L, mean (SD) 2.2 (0.9) 2.3 (0.9) 2.3 (0.9) 2.4 (0.9)

LDL-C/HDL-C ratio, mean (SD) 2.0 (0.9) 2.1 (0.9) 2.0 (0.9) 2.1 (0.9)

(Continued )
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for participants with and without CKD (P heterogeneity 
= 0.01; Figure IV in the online-only Data Supplement). 
When interaction tests were undertaken using eGFR as 
a continuous variable, heterogeneity was again found 
for the effect on stroke (P heterogeneity = 0.004), but 
not any of the other cardiovascular outcomes (all P het-
erogeneity >0.20). Results for all cardiovascular out-
comes were similar in sensitivity analyses adjusted for 
competing risk of death.

Renal Outcomes
The reduction in risk of progression to the adjudicated 
renal composite outcome of sustained 40% decrease 
in eGFR, end-stage kidney disease, or renal death with 
canagliflozin in the overall trial population (HR, 0.60; 
95% CI, 0.47–0.77) was consistent across 2 and 4 
eGFR subgroups (P heterogeneity = 0.28 and >0.50, 
respectively), and when doubling of serum creatinine 
was substituted for 40% decrease in eGFR in the renal 
composite (HR, 0.53; 95% CI, 0.33–0.84 for all par-
ticipants; P heterogeneity = 0.21 and >0.50, respec-
tively). When interaction tests were undertaken using 
eGFR as a continuous variable, the renoprotective ef-
fect of canagliflozin (for both 40% decrease in eGFR 
and doubling of serum creatinine–based composite 
outcomes) continued to suggest benefit at all levels of 
kidney function, but may be attenuated with declin-
ing kidney function (P heterogeneity = 0.02 and 0.01, 
respectively). Effects on the composite renal outcomes 
were similar in sensitivity analyses adjusting for com-
peting risk of death.

The difference in eGFR slope between canagliflozin 
and placebo arms varied during follow-up. Within the 
first 13 weeks, participants who received canagliflozin 
experienced a decline in eGFR, which was similar in 
participants with eGFR ≥90, 60 to <90, 45 to <60, 
and <45 mL/min/1.73 m2 at baseline (placebo-sub-
tracted differences of −1.89, −2.33, −2.85, and −2.75 
mL/min/1.73 m2, respectively; P heterogeneity = 0.09). 

From week 13 to the end of follow-up (ie, the chronic 
eGFR slope), canagliflozin significantly slowed the annu-
al decline in kidney function in all subgroups (Figure 3), 
with placebo-subtracted mean slope differences of 1.47, 
1.09, 1.05, and 1.35 mL/min/1.73 m2 per year for re-
spective eGFR subgroups (P heterogeneity = 0.21). The 
overall eGFR slope during follow-up for canagliflozin- 
and placebo-treated participants in each eGFR subgroup 
is shown in Figure V in the online-only Data Supplement. 
In participants who were re-evaluated approximately  
30 days after treatment discontinuation (as part of the 
CANVAS-R protocol), the differences in change from 
baseline to off-treatment eGFR levels between cana-
gliflozin and placebo arms across 2 and 4 eGFR sub-
groups are summarized Figures VI and VII in the online-
only Data Supplement, respectively.

Adverse Outcomes
Effects of canagliflozin on safety outcomes were con-
sistent across eGFR subgroups, including for seri-
ous renal safety outcomes (Figures  4 and 5). The ex-
ception was a borderline significant interaction test 
observed for hypoglycemia across 4 eGFR subgroups  
(P heterogeneity = 0.06), which persisted when assessed 
using eGFR as a continuous variable (P heterogeneity = 
0.004), although participants were more likely to be re-
ceiving concomitant insulin therapy as kidney function 
declined. Relative effects on other safety outcomes were 
broadly consistent when interaction tests were applied 
across 4 eGFR subgroups or were undertaken using 
eGFR as a continuous variable.

Absolute Risk Reduction
The absolute differences in risk between canagliflozin 
and placebo across 4 eGFR subgroups and among 
participants with and without CKD are shown in Fig-
ure 6 and Figure VIII in the online-only Data Supple-
ment. Absolute effects were consistent across 4 eGFR 

eGFR, mL/min/1.73 m2, mean (SD) 38.2 (5.1) 53.2 (4.2) 74.6 (8.3) 103.2 (13.2)

UACR, mg/g, median (IQR) 43.4 (10.3, 310.5) 17.3 (7.2, 82.1) 11.2 (6.3, 34.2) 11.5 (6.8, 31.5)

Albuminuria

 ������� Normoalbuminuria, No. (%) 241 (44.0) 888 (60.5) 4047 (72.8) 1829 (74.5)

 ������� Micro- or macroalbuminuria, No. (%) 307 (56.0) 580 (39.5) 1513 (27.2) 626 (25.5)

BP indicates blood pressure; CV, cardiovascular; DPP-4, dipeptidyl peptidase-4; eGFR, estimated glomerular filtration rate; GLP-1, glucagon-like peptide-1; 
HDL-C, high-density lipoprotein cholesterol; IQR, interquartile range; LDL-C, low-density lipoprotein cholesterol; RAAS, renin angiotensin aldosterone system; 
SD, standard deviation; and UACR, urinary albumin/creatinine ratio.

*Two participants had missing eGFR at baseline and were included in the overall trial population but not subgroup analyses by baseline eGFR.
†Includes American Indian or Alaska Native, Native Hawaiian or other Pacific Islander, multiple, other, and unknown.
‡Some participants had ≥1 type of atherosclerotic disease. 
§As defined in the protocol.

Table 1.  Continued

 

eGFR <45  
mL/min/1.73 m2  

(N = 554)

eGFR 45 to <60  
mL/min/1.73 m2  

(N = 1485)

eGFR 60 to <90  
mL/min/1.73 m2  

(N = 5625)

eGFR ≥90  
mL/min/1.73 m2  

(N = 2476)
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subgroups, with the exception of a borderline possibly 
greater absolute reduction in risk of hospitalization for 
heart failure with declining kidney function (P hetero-
geneity = 0.06; Figure 6). Similar possible heterogene-

ity for the absolute effect on heart failure was also ob-
served when comparing participants with and without 
CKD (P heterogeneity = 0.02; Figure VIII in the online-
only Data Supplement).

A

C D

B

Figure 1. Changes in intermediate outcomes with canagliflozin compared to placebo in participants with eGFR <45, 45 to <60, 60 to <90, and  
≥90 mL/min/1.73 m2 at baseline.  
Represents the mean difference in change from baseline between canagliflozin and placebo from post-baseline to end of follow-up, except for UACR, where it is 
percent change in the geometric mean of canagliflozin relative to placebo. BP indicates blood pressure; eGFR, estimated glomerular filtration rate; HbA1c, glycohe-
moglobin; and UACR, urinary albumin/creatinine ratio. 
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DISCUSSION
In this secondary analysis of the CANVAS Program, the 
relative effects of canagliflozin on the primary and most 
other cardiovascular outcomes were consistent across 
different levels of kidney function with possibly hetero-
geneity observed only for the outcome of fatal/nonfa-
tal stroke. Absolute effects were also similar, with the 
exception of a possibly greater absolute benefit with 
respect to heart failure across progressively lower eGFR 
subgroups. These data also suggest the renoprotective 
effects of canagliflozin are not likely to be modified 
by baseline eGFR, with slower rates of kidney func-
tion loss at all levels of baseline kidney function and 
similar effects on the composite renal outcomes in all 
eGFR strata, while also raising the possibility that the 
magnitude of benefit might be somewhat attenuated 

in participants with lower baseline eGFR levels. Taken 
together, these data suggest that the cardiovascular 
and renal effects of canagliflozin are consistent across 
different levels of kidney function in people with type 2 
diabetes with or at high risk of cardiovascular disease 
down to eGFR levels of 30 mL/min/1.73 m2.

One of the hallmark characteristics of this class of 
agents is their lesser effect on urinary glucose excre-
tion with decreasing kidney function,16,17 which has 
been demonstrated with a number of agents in the 
class,8,18,19 and is likely to be mediated by reduced avail-
able nephron mass, and therefore, diminished glucose 
reabsorption capacity. In contrast, while effects on so-
dium reabsorption and natriuresis are equally likely to 
be dependent on kidney function, the blood pressure‒
lowering effects of canagliflozin were similar across 
eGFR subgroups. A synergistic hemodynamic effect 

Figure 2. Effects of canagliflozin on cardiovascular and renal outcomes in participants according to baseline eGFR categories <45, 45 to <60,  
60 to <90, and ≥90 mL/min/1.73 m2.  
CV indicates cardiovascular; eGFR, estimated glomerular filtration rate; HF, heart failure; HR, hazard ratio; MACE, major adverse cardiovascular event; and MI, 
myocardial infarction. *Renal composite: 40% decrease in eGFR, end-stage kidney disease, or renal death. 
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with other blood pressure‒lowering agents or diuretics 
could potentially explain these findings, given that par-
ticipants were more likely to be taking these drugs in 
progressively lower eGFR categories. Another possibility 
may be that patients with CKD exhibit higher sensitivity 
to changes in renal sodium and glucose handling,8 or 
that there are other as yet unrecognized mechanisms 
involved. The variations in UACR reduction across eGFR 
subgroups were not explained by the use of RAS block-
ade, which was similar at baseline and during follow-up 
for the canagliflozin and placebo arms across all levels 
of kidney function, highlighting the need for further 
mechanistic insights into SGLT2 inhibition.

The reason that the relative cardiovascular benefits 
are at least as large in participants with CKD is therefore 
unclear, and the results of this analysis require confir-
mation and clarification in dedicated, separately pow-
ered trials in people with diabetic kidney disease. Our 
findings are broadly consistent with a similar analysis 
of empagliflozin.18 While it is unclear why treatment 
heterogeneity was observed for the outcome of stroke, 
qualitatively similar findings have been reported with 
empagliflozin,18 supporting the need for better under-
standing of this finding. Given the attenuated effect on 
HbA1c in patients with CKD, as well as the inconsis-
tent evidence for glucose lowering for the prevention 
of macrovascular complications in type 2 diabetes,20–22 
these data suggest that the cardiovascular benefits in 
patients with CKD are not likely to be driven by glu-
cose excretion alone.22 The preserved blood pressure‒
lowering effect in this population highlights sodium 
and volume overload as critical contributors to the in-
creased cardiovascular and renal burden in people with 
CKD.23 Other mechanisms may also contribute; for ex-
ample, there is evidence that SGLT2 inhibition modestly 
increases the production of circulating ketones, thus 

providing an alternative energy substrate that might 
improve myocardial cell function in the setting of hy-
poxic or ischemic stress.22,24–26 The strength of these 
findings is supported by the consistency of the results 
when eGFR is further subdivided into a greater number 
of categories and analyzed as a continuous variable.

It is likely that SGLT2 inhibitors confer kidney ben-
efits through a direct renal mechanism. Head-to-head 
trials with other glucose-lowering agents have shown 
that canagliflozin slows decline in kidney function in-
dependent of glycemic control.19 An increasingly cited 
physiological explanation for the renoprotective prop-
erties of this class of agents is their ability to enhance 
afferent arteriolar tone by manipulating tubuloglo-
merular feedback,3 thereby reducing intraglomerular 
pressure via mechanisms that parallel and are comple-
mentary to those of RAS blockade.27 Clinically this is 
reflected in the acute dose-dependent decline in eGFR 
on initiation of SGLT2 inhibition, followed by stabiliza-
tion and preservation of kidney function, which has 
been demonstrated in trials of this and other agents 
in the class.6,15 The data from this analysis suggest that 
these effects on renal hemodynamics (as measured by 
changes in albuminuria and eGFR), and the likely kidney 
protection that results, might be similar across differ-
ent levels of kidney function. The ongoing CREDENCE 
trial (NCT02065791) will specifically study the effects of 
SGLT2 inhibition in 4401 participants with established 
kidney disease and macroalbuminuria, almost 60% of 
whom have eGFR <60 mL/min/1.73 m2 at baseline, 
and will provide additional data in this regard.28 Other 
dedicated CKD outcome trials for empagliflozin (EMPA-
KIDNEY) and dapagliflozin (DAPA-CKD) have also been 
announced or are underway.29,30 Given the unique renal 
hemodynamic effects of SGLT2 inhibition, there is con-
siderable interest as to whether the potential benefits 

Figure 3. Effect on eGFR slope from week 6/13 until end of follow-up in participants with eGFR <45, 45 to <60, 60 to <90, and ≥90 mL/min/1.73 m2 
at baseline.  
eGFR indicates estimated glomerular filtration rate; and SE, standard error. *Data are mean±SE. †Data are reported for week 6 in CANVAS and week 13 in CANVAS-R. 
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may extend to CKD patients without diabetes. As such, 
both trials aim to recruit patients with and without dia-
betes, and will be powered to detect benefits in the 
nondiabetic cohort.

Across all outcomes, event rates increased with de-
clining kidney function, underscoring the fact that CKD 
is a cause, consequence, and risk multiplier of cardio-
vascular disease.31,32 The absolute risk reductions in 
these outcomes among participants with CKD tended 
to be larger than those observed in the overall trial pop-
ulation and are likely to be greater than the increase 
in risk of amputations, especially major amputations. 
These benefits are also likely to be clinically important, 
especially as they occurred in addition to the standard 

of care that included RAS blockade in approximately 
80% of participants. Importantly, there appears to be 
no increased risk of renal adverse events, including 
acute kidney injury or hyperkalemia, when SGLT2 in-
hibitors are used in combination with RAS blockade in 
participants with CKD, including those with eGFR be-
tween 30 and 45 mL/min/1.73 m2.

This study has a number of strengths. Data were de-
rived from a large, multicenter, placebo-controlled trial 
program that was conducted to an extremely high stan-
dard. The cardiovascular and renal outcomes are clini-
cally meaningful and were adjudicated by expert com-
mittees. While not explicitly powered to assess results in 
participants with established kidney disease, this repre-

Figure 4. Adverse events across the CANVAS Program in participants with eGFR <45, 45 to <60, 60 to <90, and ≥90 mL/min/1.73 m2 at baseline. 
eGFR indicates estimated glomerular filtration rate; and HR, hazard ratio. 
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Figure 5. Adverse events collected in CANVAS alone in participants with eGFR ≤45, 45 to <60, 60 to <90, and ≥90 mL/min/1.73 m2 at baseline.  
The annualized incidence rates, estimates for HRs, and 95% CIs are reported for the CANVAS study alone through January 7, 2014, because after this time, 
only serious adverse events or adverse events leading to study drug discontinuation, or selected adverse events of interest were collected. eGFR indicates 
estimated glomerular filtration rate; and HR, hazard ratio. *Note that 1 patient in the placebo group who experienced an event had a missing baseline eGFR 
value; therefore, this patient is only counted in the overall total. †Data collected in CANVAS and CANVAS-R. Includes infections of male genitalia and phimo-
sis and excludes circumcision. 
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sents one of the largest analyses to date of the effects of 
SGLT2 inhibition on cardiovascular and renal outcomes 
in this high cardiovascular and renal risk population.

This secondary analysis of the CANVAS Program is 
limited by drawbacks inherent to all post hoc analy-
ses of randomized trials. The interaction P values re-
ported for eGFR subgroups are nominal in nature, and 
no correction was applied for multiple comparisons. 
The relatively small number of participants with eGFR 
<45 mL/min/1.73 m2 precludes our ability to draw de-
finitive conclusions about the effects of canagliflozin 
in participants with significantly reduced kidney func-
tion, but underscores the importance of CREDENCE 
and other planned or ongoing CKD outcome trials for 
dapagliflozin and empagliflozin.29,30 The high propor-
tion of participants with a history of cardiovascular 
disease limits the generalizability of these findings to 
the broader CKD population. However, the magnitude 
and consistency of effect size on a range of outcomes, 
as well as concordance with subgroup data from the 
EMPA-REG OUTCOME trial, support the likely benefi-
cial effects of SGLT2 inhibitors in high cardiovascular 
risk patients with type 2 diabetes and eGFR levels 
down to 30 mL/min/1.73 m2. The number of events 
for some outcomes, particularly progression to end-

stage kidney disease, were too few to draw definitive 
conclusions. Finally, participants with an eGFR below 
30 mL/min/1.73 m2 were excluded, so the effects in 
this population remain to be determined.

In conclusion, despite smaller effects on HbA1c with 
declining kidney function, the effects of canagliflozin on 
cardiovascular and renal outcomes were not modified by 
baseline eGFR in people with type 2 diabetes and a histo-
ry or high risk of cardiovascular disease. Reassessing cur-
rent limitations on the use of canagliflozin in CKD may 
allow additional individuals to benefit from this therapy.
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