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ABSTRACT: This paper describes tunneling junctions
comprising self-assembled monolayers that can be converted
between resistor and diode functionality in-place. The
rectification ratio is affected by the hydration of densely
packed carboxylic acid groups at the interface between the
top-contact and the monolayer. We studied this process by
treatment with water and a water scavenger using three
different top-contacts, eutectic Ga−In (EGaIn), conducting-
probe atomic force microscopy (CP-AFM), and reduced
graphene oxide (rGO), demonstrating that the phenomena is
molecular in nature and is not platform-speciffc. We propose a
mechanism in which the tunneling junctions convert to diode
behavior through the lowering of the LUMO, which is
suffcient to bring it close to resonance at positive bias, potentially assisted by a Stark shift. This shift in energy is supported by
calculations and a change in polarization observed by X-ray photoelectron spectroscopy and Kelvin probe measurements. We
demonstrate light-driven modulation using spiropyran as a photoacid, suggesting that any chemical process that is coupled to
the release of small molecules that can tightly bind carboxylic acid groups can be used as an external stimulus to modulate
rectification. The ability to convert a tunneling junction reversibly between a diode and a resistor via an effect that is intrinsic to
the molecules in the junction extends the possible applications of Molecular Electronics to reconfigurable circuits and other new
functionalities that do not have direct analogs in conventional semiconductor devices.

KEYWORDS: Rectification, molecular diode, EGaIn, graphene, self-assembled monolayers

Modern information technology relies on computational
platforms across a broad range of length-scales from

embedded, Internet of Things devices to personal, mobile
devices to supercomputing clusters to data centers. These
platforms increasingly demand specialized electronics suited to
a particular application, e.g., low-power and neuromorphic
chips.1 Molecular electronics (the transport of charge through
molecules spanning two or more electrodes) has tremendous
potential for specialized computation because changes at the
Ångstrom-scale can translate into exponential effects at the
device level.2 And because the functional units are molecules,
these effects can arise from chemical phenomena like
photoisomerization.3,4 Molecular diodes, the basis of logic
circuits,5 are now well established in both single-molecule
junctions6 and devices7 comprising self-assembled monolayers
(SAMs) with eutectic Ga−In (EGaIn) top-contacts.8 However,
the realization of new concepts in computation requires new
functionality that exploits the chemical nature of molecular
electronics.

This paper describes the reversible interconversion of
molecular tunneling junctions comprising SAMs between
diodes and resistors. The molecules in the SAM are terminated
by carboxylic groups (CO2H), which, when densely packed,
can bind water tightly, affecting surface states in the SAM and
the electronic structure of the molecules therein, hence the
current density vs voltage (J/V) characteristics. The
rectification ratio, R = |J(V+)/J(V−)|, of tunneling junctions
comprising SAMs is highly sensitive both to the structure of
the SAM and to the molecules in the SAM and can be tuned
synthetically, i.e., by comparing R between junctions formed
from structurally similar SAMs.9,10 Rectification can also be
induced by breaking the symmetry of electrodes in an
electrochemical (ionic) environment.11 However, these
approaches cannot produce a junction whose function can
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be changed in-place because they rely either on comparing
different SAMs or different environments around a transient
single-molecule junction. And, while it is possible to affect R by
altering the relative humidity,12 the state of the junction
depends on the environment surrounding the experimental
setup during measurement; the value of R is, therefore,
transient and specific to one experimental platform. Similarly,
both R and conductance can be affected by changes to the
hydration state of specific substrates supporting monolayers.13

However, because we alter the properties of the SAM in-place
and independently of the experimental platform, electrodes,
and the conditions under which the junctions are measured, a
junction can be converted between diode and a resistor
behavior by switching the SAM itself between persistent
rectifying and nonrectifying states. Moreover, through the use
of a photoacid, we demonstrate that this process can be
coupled to light and, therefore, any extrinsic phenomenon that
generates (or absorbs) free protons.
Results and Discussion. Electrical Measurements. We

followed literature procedures for forming high-quality SAMs
of long-chain ω-thiol carboxylic acids, which require care to
avoid the formation of bilayers and internally hydrogen-
bonded structures.14 To ensure that the resulting SAMs are
fully protonated, we grew the SAMs in dry ethanol (EtOH)
and compared them to SAMs grown in EtOH acidified with

acetic acid15 and found no difference in the J/V characteristics.
We grew the SAMs on either template-stripped16 Au (AuTS) or
vapor deposited Au (AuVD) and formed AuTS/SAM//EGaIn,
AuTS/SAM//AuAFM, and AuVD/SAM //rGO junctions where
“/’ and ‘//” denote covalent and van der Waals contacts,
respectively, AuAFM is a gold-coated atomic force microscopy
(AFM) tip, and rGO is reduced graphene oxide.17 Using
EGaIn and AuAFM top-contacts, we altered the J/V character-
istics from the as-prepared, nonrectifying (resistor) to the
rectifying (diode) state by exposure to water or a photoacid
and back to the nonrectifying state using 2,2-dimethoxypro-
pane (DMP) as a water scavenger18 or NaOH in EtOH as an
anhydrous base. In the presence of catalytic acid (e.g.,
RCO2H) DMP reactions quantitatively with water to form
acetone and methanol. The junctions are stable in both states;
exposure to ambient conditions does not increase R over time
and exposure to high vacuum (down to 1 × 10−8 mbar) or
heating to 80 °C in moderate vacuum does not decrease it
(Figure S2).
Figure 1a shows the value of log|R| over two complete cycles

of alternating exposure to H2O and DMP, and Figure 1b shows
semilog plots of log|R| vs potential (R/V) curves of AuTS/
S(CH2)11CO2H//EGaIn junctions. Each value of log|R| is the
peak of a Gaussian fit to a histogram of log|R| for that value of |
V|, and the shaded areas are the 99% confidence intervals.

Figure 1. In-place modulation of the rectification of junctions comprising SAMs of S(CH2)11CO2H. (a) log|R| at 1.5 V versus H2O/2,2-
dimethoxypropane exposure cycles for AuTS/S(CH2)11CO2H//EGaIn junctions. (b) Semilog plots of the rectification ratio (log|R|) versus absolute
potential (|V|) for AuTS/S(CH2)11CO2H//EGaIn junctions before and after the SAMs are treated with H2O or H2O and then DMP. Black, pristine,
as-prepared; red, after exposure to H2O (l); blue, after exposure to H2O (l) and then DMP; green, after exposure to H2O (g); magenta, after
exposure to H2O (g) and then DMP. (c) Plots of log|R| versus |V| for AuTS/S(CH2)11CO2H//Au

AFM junctions after the SAMs are treated with
H2O or H2O and then DMP. black, pristine; red, after exposure to H2O (g); blue, after exposure to H2O (g) and then DMP. (d) Plots of log|R|
versus |V| for AuVD/S(CH2)15CH3//rGO (black) and AuVD/S(CH2)15CO2H//rGO (red) junctions.
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These measurements were performed inside a flowbox with 1−
3% O2 in N2 and relative humidity (RH) < 10%.19 (The
presence of O2 is necessary to form tips of EGaIn.) It is
possible that the nonzero RH induces the small degree of
rectification in the as-prepared SAMs (the dashed line in
Figure 1b shows a perfect resistor, log|R| = 0) or that the
asymmetric nature of AuTS/S(CH2)11CO2H//EGaIn junctions
introduces a slight asymmetry in the J/V characteristics.7

However, after exposure to H2O (vapor or liquid), increases
exponentially with |V|. (We reiterate that the SAMs are grown
in rigorously anhydrous conditions and are always measured
under controlled and invariant conditions; the exposure to
H2O alters the intrinsic properties of the SAM and occurs
completely spatially and temporally separate from the
measurement.) An obvious explanation for the increase in
log|R| is that H2O in the junction undergoes redox chemistry
and the R/V dependence is simply a reflection of the different
oxidation reduction potentials; however, that behavior is both
time-dependent and hysteretic,20 neither of which is true for
the junctions we measured (Figure S4). Moreover, subsequent
exposure to a 1:1 by volume solution of DMP in ethanol
returns the R/V curve to the pristine, nonrectifying state,
which is a clear indication that no irreversible processes occur
during J/V cycling in the rectifying state (i.e., after exposure to
H2O). We hypothesize that the primary cause of the
dampening is mechanical stress to the SAM from repeated
exposure to H2O and DMP between measurements. Although
the magnitude of the change in R dampens, the fact that the
junctions survive multiple cycles proves that the underlying
mechanism is inherently reversible and can therefore likely be
improved with better molecular design and junction/device
optimizations. Moreover, the magnitude of log|R| is already
among the higher values reported (Figure S3).

The rate of tunneling charge transport through S-
(CH2)15CH3 (C16) and oligophenyleneethynylene junctions
is sensitive to both ambient humidity and exposure H2O (g),
which affects the height of the tunneling barrier.21,22 However,
exposure to H2O (g) and/or H2O (l) does not affect log|R| for
AuTS/SAM//EGaIn junctions comprising C16 or S-
(CH2)11CH3 (Figure S5). The simplest, most robust, and
widely accepted measure of the barrier height of a tunneling
junction is the tunneling decay coefficient, β, which is extracted
from J = J0 e

−βd where d is the barrier width and J0 is the
theoretical value of J when d = 0. Although the rate of
tunneling and the details of the energy landscape within a
tunneling junction depend on many factors, β is defined only
by the average height of the tunneling barrier ϕ and the
constants ℏ and m; β ϕ= ℏ− m2 21 . Thus, the magnitude of β
directly reflects the difference in energy between the Fermi
level Ef and the most accessible molecular orbital, and if the
change in R were the result of changes to molecular orbital
states or symmetry (as is the case in ref 12), β would differ in
the nonrectifying and rectifying states.
We determined β for the series {S(CH2)7CO2H, S-

(CH2)11CO2H, S(CH2)15CO2H} in the nonrectifying and
rectifying states (by exposure to H2O (g), Figure 2). The low-
bias value of β = 0.55−1 is lower than the consensus value of
0.70 Å−1 for SAMs of alkanethiolates,23−25 but it does not
differ significantly between the nonrectifying and rectifying
states, indicating that the mechanism of rectification does not
involve changing the average barrier height that is imposed by
the aliphatic molecular backbone. Thus, the effects of exposure
to H2O are likely confined to the SAM//top-contact interface
via strong interactions between the terminal CO2H groups and
H2O, which is supported spectroscopically (see below) and by

Figure 2. Plots of ln|J| versus |V| of AuTS/S(CH2)nCO2H//EGaIn junctions where n = 7, 11, 15 in the nonrectifying (a) and rectifying (c) states.
The tunneling decay coefficient, β, extracted from fits of ln|J| versus molecular length (Å) show a weak, approximately symmetric voltage
dependence in the nonrectifying (b) and rectifying (d) state.
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the observation that H2O does not desorb in vacuum with
heating (Figure S2).
It is possible to induce rectification (with symmetric

molecules) in molecular tunneling junctions by altering the
electric double layer of the electrodes such that they experience
different electrostatic environments.11 This mechanism is
plausible, as EGaIn forms a 7 Å thick layer of Ga2O3 that
should interact strongly with both carboxylic acids and water.26

However, Figure 1c shows R/V curves for AuTSS/
(CH2)11CO2H//Au

AFM junctions, which exhibit the same
behavior as AuTS/S(CH2)11CO2H//EGaIn junctions; as-
prepared SAMs do not rectify until exposed to H2O (l) and
they return to their initial state upon exposure to DMP. A
mechanism that depends on the electrodes should show
markedly different behavior between dissimilar AuTS/EGaIn
and nearly identical AuTS/AuAFM pairs of electrodes. To
exclude electrode effects completely, we measured AuTS/
S(CH2)15CO2H//rGO junctions; however, without in situ
access to the SAM, we compared the rectifying state (because
the devices are prepared in a water bath) to AuTS/
S(CH2)15CH3//rGO junctions. Figure 1d shows an abrupt
increase in log|R| around 1.5 for the CO2H-terminated SAMs
that is absent for the alkane SAMs. Thus, the effect is entirely
molecular and independent of the identity and composition of
the electrodes. This is an important observation, as it means
that the underlying mechanism of rectification switching is
generalizable and can be utilized in any present or future
device platform.

Mechanism of Rectification. For insight into the influence
of bound water on the electronic structure of the SAMs, we
characterized SAMs of S(CH2)11CO2H by X-ray photoelectron
spectroscopy (XPS) in the pristine state, after exposure to
water, and after subsequent treatment with DMP. These data
are summarized in Figure 3. The three main peaks in the C1s
core-level region correspond to aliphatic CH2−CH2, CH2−S,
and CO2H carbons.27,28 The binding energies associated with
these carbons in both the pristine and DMP-treated SAMs
(i.e., the nonrectifying sates) are 285.1 eV, 286.6 and 288.8 eV,
respectively. In the C 1s spectra of the SAMs in the rectifying
state (i.e., after exposure to H2O, but before DMP treatment),
the CO2H peak shifts to a higher binding energy by 0.3 eV,
suggesting that the CO2H group becomes more electropositive
when complexed with water.27,39 Simultaneously, the aliphatic
CH2−CH2 and CH2−S peaks shift to lower binding energies
by 0.3 and 0.2 eV, which indicates that the SAM becomes
polarized when water binds. Kelvin-probe AFM (KPFM)
shows that the work function of SAMs of S(CH2)11CO2H is
approximately 600 meV higher than that of their S(CH2)11CH3
alkane analogues and confirms the increased polarization at the
CO2H terminus of the SAM when water binds, which shifts it
higher by approximately an additional 135 meV (Figure S9).
This increase in polarization may also explain the small
differences in the bias-dependence of β (Figure 2) between the
rectifying and nonrectifying states.
Although the shifts in binding energies are small, they are

within the resolution of the instrument and are reproducible
and the Au 4f peaks are invariant (see Figure S1 and related

Figure 3. C 1s core X-ray photoemission spectra of SAMs of S(CH2)11CO2H before and after exposure to H2O and H2O subsequent treatment
with DMP. Top: C 1s core-level region of a pristine SAM showing three main peaks located at 285.1, 286.6, and 288.8 eV, corresponding to CH2
aliphatic, CH2−S, and CO2H, respectively. Center: After exposure to H2O (l), the CO2H peak shifts 0.3 eV to higher binding energy while the CH2
aliphatic and CH2−S peaks shift 0.3 eV to lower binding energy. Bottom: After exposure to H2O and then DMP, the three main C 1s peaks shift
back to their initial position with respect to the pristine state.
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discussion in the Supporting Information). Importantly, all
three C 1s peaks return to the binding energies of the pristine
state after exposure to H2O and subsequent treatment with
DMP, indicating that the effects of binding H2O are chemically
reversible. Thus, the dampening effect in Figure 1 is not due to
irreversible chemical processes and is most likely physical stress
that introduces disorder, pinholes, and so forth. This type of
fatigue can be mitigated through the optimization or use of
different device platforms30,31 much more readily than
chemical fatigue.
Based on the experimental data described above, we describe

the SAMs in the rectifying state as being formally hydrated by
water: CO2H·H2O. This is an imperfect description because
we cannot know the stoichiometry of the complexation in the
SAM and solution-phase phenomena do not always directly
map onto surface-chemistry phenomena. For example,

exposing SAMs bearing terminal CO2H groups to H2O can
form up to six monolayers32 of H2O. However, we would
expect physisorbed water to promote electrochemical
processes under bias for which, as described above, there is
no evidence. Given that we dry the SAMs thoroughly after
exposure to H2O and only treatment with DMP is sufficient to
restore the SAMs to the pristine, nonrectifying state, we
propose that, in the rectifying state, the SAMs bear a (partial)
monolayer of tightly bound H2O, which is best described as
CO2H·H2O.
While it is possible that the dipoles arising from the

polarization of the SAM directly lead to rectification,33,34 the
magnitude of log|R| suggests the involvement of frontier
molecular orbitals.35 The XPS and KPFM data show that the
polarization of SAMs of S(CH2)nCO2H·H2O translates into a
lowering of frontier orbitals both from the increased

Figure 4. Proposed mechanism of rectification. Frontier orbitals are depicted as purple (LUMO) and orange (HOMO) Lorentzians. Solid lines
indicate the relative positions when the vacuum level is shifted by the applied field. Dashed lines depict the direction of the Stark shift according to
ab initio OVGF calculations (seethe Supporting Information). The Fermi level of the substrate is indicated as Ef, and the offset between the peak of
the orbitals and the electrodes is indicated by ε, which is shifted by an amount eV at the grounded electrode. (a) In the nonrectifying (resistor)
state, both frontier orbtials are relatively far from Ef, resulting in symmetric J/V curves within the accessible bias window. (b) In the rectifying
(diode) state, the complexation of water creates a surface dipole that shifts the vacuum level in the same direction as positive bias, bringing the
LUMO closer to Ef such that the tail can cross Ef at positive bias, giving rise to asymmetric J/V curves. (c) B3LYP/Def2QZVPP HOMO and
LUMO orbitals of HS(CH2)11CO2H·H2O. (d) Plots of log|J| versus applied bias (V) of AuTS/S(CH2)11COOH//EGaIn junctions in the pristine,
nonrectifying (black squares) and rectifying (red circles) states. Each data point is the mean value from a Gaussian fit to a histogram of log|J| for a
value of V. The error bars are the 95 confidence intervals of the fit. The J/V data are approximately symmetric in the nonrectifying state. After
exposure to H2O (l), log|J| decreases by approximately 1.5 until a threshold positive bias at which point it rises sharply, giving rise to rectification.
(e) Plots of log|I| at 0.50 V as a function of inverse temperature for AuTS/S(CH2)15CO2H//EGaIn junctions in the pristine, nonrectifying state
(black squares) and rectifying state (red circles) suggesting the absence of thermally activated processes.
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electronegativity of the terminal CO2H groups and the
increased work function, i.e., binding H2O lowers the absolute
and relative energy of the LUMO. The direction of the
rectification, J(+V) > J(−V), implicates the LUMO as the
dominant frontier orbital;35,36 however, variable-temperature
measurements reveal a lack of thermally activated processes
(Figure 4e), thus we can exclude a tunneling-hopping
mechanism.37 Instead, we propose the mechanism shown in
Figure 4, in which the binding of water to the carboxylic acid
groups brings the LUMO sufficiently close to the Fermi level
that its tail is brought into resonance with the bottom electrode
at bias. This mechanism is consistent with the observation that
rectification is conserved across electrode pairs of AuTS/EGaIn,
AuTS/AuAFM, and AuVD/rGO. It is further supported by the
observation that the conductance drops upon binding water,
except at positive bias above a certain threshold; the binding of
water increases the width of the tunneling barrier, decreasing
the conductance until a threshold bias at which the tail of the
LUMO crosses Ef (Figure 4b and d).
Given that the B3LYP/def2-TZVPP gas-phase energy of the

LUMO of S(CH2)11CO2H·H2O is −0.06 eV, the expectation is
that, at zero bias, the HOMO (−6.46 eV) would dominate
tunneling charge-transport (at least in single-molecule
junctions). Rectification, however, is observed in SAMs and
at bias, which shifts the vacuum level and which can induce
Stark shifts that alter the positions and energies of atomic and/
or molecular orbitals in the presence of an electric field. Frisbie
et al. recently examined the Stark effect in Au/S(CH2) nCH3//
AuAFM junctions, where n = 7,8,9,10,12, using ab initio outer-
valence Greens function (OVGF) calculations.38 They found a
linear dependence of the energy of the HOMO on the applied
field and an approximately parabolic dependence of the
LUMO, centered around zero, concluding that transport is
dominated by the HOMO, which tracks with the tip bias such
that it moves closer to Ef at negative bias. The resulting
asymmetry in the I/V data is very small because most of the
voltage drops at the Au−S interface. We applied the same
methodology to HS(CH2)11CO2H and HS(CH2)11CO2H·
H2O to examine the influence of the additional molecular
orbtials localized on the carboxylic acid group, finding the
same dependence of the HOMO and LUMO on applied field
(Figure S7). These shifts are depicted with dashed-line curves
in Figure 4a and b, which either add to or subtract from the
vacuum-level shift induced by the electric field. In the
nonrectifying state, the LUMO does not play a substantial
role (Figure 4a); however, the complexation of water makes
the terminal CO2H group more electropositive (Figures 3 and
S9), lowering the LUMO and inducing a dipole moment at the
surface that adds to the Stark shift at positive bias and subtracts
from it at negative bias (Figures 4b and S7). The HOMO is
localized at the thiol (and hybridized with the substrate),
shifted down in energy with respect to its alkyl analogue, and
its contribution to tunneling charge-transport is, therefore,
small and constant in both states. Figure 4c shows isoplots of
the frontier orbtials. The presence of H2O does not affect the
isoplots in these minimized geometries and, for single
molecules in the gas phase, has a negligible impact on the
energies of the orbitals, shifting them by only 0.08.eV.
Light-Driven Switching. Treatment with H2O and DMP to

affect R is a direct chemical input in that it requires physically
exposing a SAM to either H2O or a solution containing DMP.
Photoacids trigger the release of acidic protons upon treatment
with light. Thus, if protic species other than H2O can also

induce polarization at the CO2H interface, it should be
possible to affect R with light. For example, a photoacid
dissolved in an alcohol produces equilibrium amounts of
ROH2

+, which could potentially serve as a proxy for H2O to
affect switching optically rather than physically.
To explore the role of H2O in the polarization of CO2H

groups, we examined the influence of pH on log by |R| treating
the as-prepared SAMs with aqueous solutions of 1 × 10−4 M
HCl, 1 × 10−4 M CH3CO2H, and 3% NH4OH. All three
induced rectifying behavior, while 1 × 10−4 M NaOH in
anhydrous ethanol did not (Figure S6). This observation
confirms that the SAMs bind H2O irrespective of pH and that,
upon removal from contact with water (vapor or liquid), they
are polarized through strong interactions between CO2H and
H2O. It also suggests that labile protons play an important role.
The acid/base properties of SAMs bearing CO2H groups is
counterintuitive since the pKa of free CO2H groups is about
3−5; however, bulk dissociation constants do not directly
inform the protonation/charge state of interfaces39 and SAMs
bearing CO2H can be protonated by HCl in methanol,
resulting in a positive ζ-potential.29 When packed into a SAM,
ΔG of (de)protonation is strongly affected by the van der
Waals interactions between the alkane backbones and the
intermolecular hydrogen bonding of the CO2H groups; The
effective pKa of SAMs of carboxylic acids increases by up to 4
pKa units and is sensitive to chain-lengths.40 This behavior is
due to the fact that protonation creates more hydrogen bonds
while simultaneously causing Coulomb repulsion; the former is
energetically favorable, while the latter becomes increasingly
unfavorable as van der Waals interactions in the backbone are
disrupted. That balance is why increasing the radius of
curvature of nanoparticles decorated with CO2H-terminated
ligands increases their pKa.

41 It should be possible, therefore,
to trigger the rectifying state of SAMs of S(CH2)nCO2H by
exposure to a sufficiently strong acid.
Having already determined that aqueous acids have little

impact on the magnitude of log|R|, we chose a merocyanine
salt (MCH+Cl−) that is a relatively weak acid. Exposure to blue
light induces a ring-closure to form spiropyran (SP) and HCl
(pKa ≈ −8 in water). We chose MCH+Cl− in anhydrous
ethanol because it is well-characterized42 and has been shown
to protonate CO2H-terminated SAMs upon photoinduced
ring-closure to SP.29 The switching process and a schematic of
the resulting protonation is shown in Figure 5a, and the
resulting R/V data are shown in Figure 5b. Exposure to 1 mM
ethanolic solutions of MCH+Cl− for 30 min has no effect on
log|R| for Au/S(CH2)11COOH//EGaIn junctions, indicating
that the pKa of MCH+Cl− in ethanol is too high to protonate
CO2H-terminated SAMs directly. With the addition of blue
(350−450 nm) light, however, the junctions switch to the
rectifying state, producing R/V curves that are almost
indistinguishable from those that result from exposure to
H2O (Figure 1b). We attribute this result to the protonation of
the terminal CO2H groups by HCl, which can be thought of as
CO2H·HCl insofar as the rectifying behavior is the same as
CO2H·H2O and the work function shifts downward by an
additional 25 meV.
In conclusion, the ability to alter the function of a tunneling

junction reversibly between resistor and diode creates the
possibility of fabricating molecular-electronic devices that
exhibit unique functions that are difficult or impossible to
achieve with conventional semiconductor technology. Because
rectification is self-referencing (i.e., it is independent of the
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absolute magnitude of J), rectification-modulation can
potentially be used as a sensor or dosimeter. Although we
used exposure to H2O to characterize the effect and prove that
it is molecular in nature, the XPS spectra and KPFM data
suggest that the switching process is ultimately driven by the
formation of a dipole moment when water binds the terminal
CO2H groups. Rectification can also be triggered by a strong
acid, which can, in turn, be controlled with light or other
inputs to produce devices with unique properties. For example,
the function of a diode-logic circuit would depend on the
outcomes of previous, proton-coupled events through the
reversible switching of individual circuit elements; the
magnitudes of log|R| in this work are already sufficient to
create diode-logic circuits using EGaIn top-contacts.5 There
are myriad ways of delivering and transporting protons, and
because the switching effect does not depend on the
electrodes, proton-mediated rectification-modulation can

potentially be both fast and robust with sufficient optimization
in an appropriate device platform.
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