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Abstract

Quantised consensus has been used in the context of opinion dynamics. In this context

agents interact with their neighbours and they change their opinion according to their inter-

ests and the opinions of their neighbours. We consider various quantised consensus mod-

els, where agents have different levels of susceptibility to the inputs received from their

neighbours. The provided models share similarities with collective decision making models

inspired by honeybees and evolutionary games. As first contribution, we develop an evolu-

tionary game-theoretic model that accommodates the different consensus dynamics in a

unified framework. As second contribution, we study equilibrium points and extend such

study to the symmetric case where the transition probabilities of the evolutionary game

dynamics are symmetric. Symmetry is associated with the case of equally favourable

options. As third contribution, we study stability of the equilibrium points for the different

cases. We corroborate the theoretical results with some simulations to study the outcomes

of the various models.

1 Introduction

Multi-agent systems find numerous applications in various research areas. Agents interact and

make decisions according to their selfish interests and the behaviour of the other agents. A

topic of increasing interest in various research areas is the consensus problem. In this problem,

agents are represented as nodes of a graph, directed or undirected, and the existence of an

edge between two nodes denotes the ability of two agents to communicate. Then the goal is for

the nodes to seek agreement on a value of a common quantity or variable. These variables

include but are not limited to resources which agents want to share, their cooperation levels

and communication bandwidth [1, 2].

In this article we are interested in consensus problems where the decision variables of the

agents are discrete, i.e. their choices are integer numbers. In engineering sciences the consen-

sus problem when the decision variable is discrete is often called “quantised consensus”. It can

emerge due to: constraints in communications, bounded capacity of the memory of sensors
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and noisy measurements and discrete nature of the decision variables [1, 3–6]. Another

research area that considers discrete consensus variables is opinion dynamics [7–17].

The opinion of each agent is represented by an integer and the interacting agents can

change their opinions based on the input they receive from neighbors [18–20]. Henceforth,

the terms opinion and decision variable will be used interchangeably.

Under a macroscopic representation of the quantised consensus problem, agents interact

with their neighbours and change their actions with a certain probability. Depending on the

characteristics of the agents, i.e. crowd seeking or crowd adverse behaviour, these probabilities

depend on the number of agents selecting each decision variable.

The main contributions of this paper are as follows. Firstly, a microscopic model, the quan-

tised consensus process, is considered. In this process agents are able to choose among three

possible options. A game is then developed which is equivalent to the consensus process. The

game is an evolutionary one with three available actions per player and describes the evolution

of the population from a macroscopic perspective. This game can be seen as an evolutionary

version of a two player strategic form game. Each player can be in one of three possible states,

namely coordinators, defectors and neutrals. The developed evolutionary game builds on the

notion of expected gain pairwise comparison which was first proposed in [21]. The relevance

of such a result is that we bring in a unified framework, namely the evolutionary game, five dif-

ferent consensus dynamics, which we refer to as Case 1 to 5. These cases model the impact of

other agents’ opinions to a single individual’s opinion through different reward functions.

Each reward function corresponds therefore to a different quantised consensus problem.

As second contribution, the proposed game is cast as a Markov process and the equilibrium

points are investigated through the analysis of the Markov chain. We obtain that the three ver-

tices of the simplex in R3 are all equilibrium points. These vertices correspond to the cases

where all the agents converge to the same option or remain all uncommitted. A fourth equilib-

rium point may be obtained which lies in the interior of the simplex and where the populations

committed to either one option or the other are related by a proportionality linear rule. We

study such an equilibrium point in the symmetric case where the transition probabilities from

and to the uncommitted state are symmetric.

As third contribution, we provide a stability analysis of the equilibrium points for each case.

Different stability properties are obtained depending on the agents’ behaviour and their ten-

dency to follow their peers.

The rest of this paper is organised as follows. In Section 2, relevant work is provided. In Sec-

tion 3, we formulate the problem, and we introduce the corresponding game formulation. The

unified framework between the consensus models and the Markov processes which emanate

from the game theoretic formulation is also presented in this section. In Section 4, the analysis

of five different models which correspond to different agents behaviours is presented. In Sec-

tion 5, theoretical analysis of the proposed models and simulation results are presented. Finally

Section 6 contains a discussion on our findings and directions for future works.

2 Related Work

Consensus algorithms are considered as the canonical example when coordination mecha-

nisms in multi-agent systems are considered. Agents which use consensus algorithms aim to

reach agreement when the common value of interest is considered. This is achieved by taking

into account the pairwise interactions between agents. These interactions then are analysed

using consensus algorithms. Consensus algorithms have been used in order to find solutions

among others in wireless networks [22], distributed multi-agent optimization [23, 24], signal

processing [25], numerical estimation [26, 27] and opinion dynamics [20, 28].

An evolutionary game perspective on quantised consensus in opinion dynamics
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Various consensus algorithms have been proposed in the literature with a variety of features

studied depending on the research area they were introduced. In [29] a literature review of

opinion dynamics models is presented. The reviewed algorithms were classified in two catego-

ries depending on the usage or not of external information. Additionally in each category the

algorithms were separated to discrete and continuous depending on the form of the opinion

they use. In [30] another survey of various opinion dynamics is presented. In this survey opin-

ion dynamics are considered as a fusion process of individual opinions.

In [31] a Markov model for disease spreading is presented, after a brief literature review of

various epidemic and rumour spreading algorithms. In contrast to the proposed methodology,

in [31] constant transition probabilities were used in the Markov model.

In [32] the consensus of societies towards social norms were studied through evolutionary

games. The players of the game were penalised if they were observed to deviate from the norm. In

[33] various models of the influence of other agents’ opinions on an agent’s decision were studied.

An approach which considers local information in the consensus problem was proposed in [34].

The interconnection between consensus and distributed optimisation was studied in [23,

35]. The impact of different media and their particular size in shaping of an opinion is pre-

sented in [36].

In [37, 38] the convergence properties and the speed of convergence of gossip algorithms

have been studied for various network topologies. In these works, in contrast to this article,

continuous decision variables have been used by the agents, which lead to a different update

rule for the consensus algorithm. Additionally in the majority of the gossip algorithms an

aggregation of the opinions of each neighbour leads to a change to an agent’s opinion. In con-

trast, in this article since the decision variables are discrete the agents are influenced by the

popularity of that particular opinion according to their characteristics.

A bio-inspired methodology which can be used to model consensus of interacting agents

comes from bee colonies. Particularly, from the method which bees adopt in order to choose

their nesting site. Scouts are sent to potential places for nesting and depending on the suitabil-

ity of each place the scouts persuade, or “recruit”, the other uncommitted members by per-

forming a waggle dance. Additionally, in order to stop other scouts from recruiting more

uncommitted members, scouts committed to one option try to intercept the waggle dance of

scouts committed to a different option. This can be viewed as a form of cross-inhibitory signal.

In analogy with the agent based decision making; the waggle dance represents agents who

intend to influence other agents to be committed to the same opinion as the one they have.

The cross-inhibitory signal on the other hand are agents who attempt to persuade an agent to

a different opinion than the one it currently has. Alternatively, consider the case where the for-

mation of an opinion is a process with two parts. The first one is the influence of an agent’s

peers with the same opinion, which we assimilate to the waggle dance. The second one is the

influence of agent’s peers which have different opinion than his current one.

Using this formulation behaviours as opinionated agents and crowd seeking or crowd adverse

agents can be modelled. In particular, when the cross inhibitory signals are considered, the

degree of an opinionated individual can be modelled. An opinionated individual will need more

of his peers in order to change his opinion towards another one, than a less opinionated one.

When the waggle dance is considered a crowd seeking agent would choose the action which is

followed by the majority of his peers, and the opposite will happen for a crowd averse agent.

3 Generic problem formulation

In this article the influence that opinions of neighbouring agents have in the formation of an

agent’s opinion is modelled. The underlying assumption is that the agents are able to choose

An evolutionary game perspective on quantised consensus in opinion dynamics
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one of three possible states to be, denoted by X, Y and Z hereafter. Each state will correspond

to one of the possible options: “committed to opinion X”, “committed to opinion Y”, or not

committed to any opinion (“committed to opinion Z”). Agents can change their opinion from

X to Z or from Y to Z and from Z to X and Y.

3.1 Quantised consensus approach

Let the state of the reference agent at time t� 0, which is henceforth referred to as agent i, be

indicated by the variable wi
t 2 fX;Y;Zg.

This decision process can be cast as a quantised consensus problem. Consider the case of a

well mixed population of N agents represented through a connected undirected graph

GðN ; EÞ. Each agent is represented as a node of the graph and an edge connects two nodes

if agents can interact, i.e. they are neighbours. Let w be the vector of the discretised decision

variables of all agents, we will write wi
t ¼ w to indicate that agent i’s decision at time t is w

and write wi
tþ1
ðwi

t ¼ wÞ to denote the decision variable of the reference agent i at time t + 1

given that his value at time t was w, w 2 {X, Y, Z}. For convenience of notation in the rest of

the paper, if not otherwise stated, a variable without a time index will denote the variable at

time t.
The evolution of the agents’ decisions can be illustrated by the following generic quantised

consensus process, where p~w is the probability of transitioning if the generic set of rules A are

satisfied:

wi
tþ1
ðwi

t ¼ wÞ ¼

(
~w;8 ~w 2 fX;Y;Zg; ~w 6¼ w with probabilility p~w under a set of rulesA;

w otherwise:
ð1Þ

Both the probabilities p~w and the set of rules A will be introduced in the following sections,

distinguishing five different cases.

To each microscopic dynamics we will associate a Markov process representation which

describes the probability distribution of wi
t over the set {X, Y, Z}. In generic terms, the Markov

process model can be expressed as

½xtþ1 ytþ1 ztþ1� ¼

PXX PXY PXZ

PYX PYY PYZ

PZX PZY PZZ

2

6
4

3

7
5

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
¼:P

½xt yt zt�: ð2Þ

3.2 A unified framework based on evolutionary game-theoretic

formulation

The aforementioned quantised consensus model is formulated from a microscopic perspective

which looks at a single agent, who was referred to as the reference agent i. From a macroscopic

perspective, which considers the evolution of the population over the three opinions, the dif-

ferent consensus dynamics can be cast as an evolutionary game. The relevance of such evolu-

tionary game model is that it provides a unified modelling framework accommodating the five

different opinion dynamics.

Before introducing the game-theoretic formulation, let us start by noting that the popula-

tion dynamics can be described via a Markov process in terms of x and y since x + y + z = 1.

An evolutionary game perspective on quantised consensus in opinion dynamics
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The equations of the system’s dynamics in discrete-time are:

xtþ1 ¼ xt � pXZxt þ pZXð1 � xt � ytÞ;

ytþ1 ¼ yt � pYZyt þ pZYð1 � xt � ytÞ;

ztþ1 ¼ ð1 � xt � ytÞ � ðpZX þ pZYÞð1 � xt � ytÞ þ pXZxt þ pYZyt:

ð3Þ

The third equation of (3) can be written as zt+1 = 1 − xt+1 − yt+1. Therefore (3) reduces to:

xtþ1 ¼ xt � pXZxt þ pZXð1 � xt � ytÞ;

ytþ1 ¼ yt � pYZyt þ pZYð1 � xt � ytÞ:
ð4Þ

To introduce the evolutionary game model, consider an identical payoff three action game

which is played over a population of N individuals. Each player in this game chooses an action

proportionally to the expected gain pairwise comparison in accordance with the definition

provided in [21] which we copy and adapt below. The resulting evolutionary dynamics adds to

the ones surveyed in [39]. In particular we have the following definition for the expected gain,

which can be viewed as the fitness function of a player.

Definition 1. For a generic n × n pay-off matrix, A the expected gain of action i when the cur-
rent action of a player is j is defined as:

Eij ¼
Xk¼n

k¼1

Iðaik � ajkÞxk; ð5Þ

where n is the number of available actions to the players, aik is the ikth element of matrix A, xk is

the fraction of players that have chosen action k and I ¼
aik � ajk if aik � ajk > 0

0 otherwise
:

(

The agents are now viewed as players and their opinions are referred to as actions. Let us

also denote the fraction of the population who are in state X as x, the fraction of the population

who are not committed (state Z) as z and the fraction of the population who are in state Y as y.

This is equivalent to the portion of agents whose opinions are wi = X, wi = Z and wi = Y respec-

tively. Since the population is constant the three fractions sum up to one, i.e. x + y + z = 1.

Given that transitions from X to Y are not allowed this should be also reflected in the pay-

off matrix by setting the rewards of these transitions to zero. Additionally, the rewards should

also reflect the tendency of the players to choose similar actions to other players and therefore

penalise deviations from others. We will briefly refer to such a phenomenon as crowd-seeking
behaviour. By taking this into account and considering that x + y + z = 1, the following pay-off

matrix can be considered:

AðX;YÞ ¼

X

Y

Z

X Y Z
a11f1ð�Þ � a12f2ð�Þ 0

� a21f3ð�Þ a22f4ð�Þ 0

0 0 0

0

B
B
B
B
@

1

C
C
C
C
A
; ð6Þ

where fi(�) i = 1,. . ., 4 are arbitrary functions of x and y which will be defined later to accom-

modate the five different opinion dynamics. From (5), the transition probabilities between

An evolutionary game perspective on quantised consensus in opinion dynamics
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actions are given as follows:

pZX ¼ a11xf1ð�Þ; pXZ ¼ a12yf2ð�Þ;

pYZ ¼ a21xf3ð�Þ; pZY ¼ a22yf4ð�Þ:
ð7Þ

Substituting the above transition probabilities in (4) we obtain:

xtþ1 ¼ xt � a12f2ð�Þxtyt þ a11xtf1ð�Þð1 � xt � ytÞ;

ytþ1 ¼ yt � a21f3ð�Þxtyt þ a22ytf4ð�Þð1 � xt � ytÞ;
ð8Þ

which is the dynamics we analyse in the rest of this paper.

The resulting evolution of x, y and z are described by the Markov process which is depicted

in Fig 1.

4 Analysis of particular models

In this section various opinion dynamics mechanisms are presented. Each of them represents

a different kind of influence that the neighbours of an agent have in his opinion formation pro-

cess. These models are build on different assumptions about how many of peers are needed to

influence an agent to adopt a specific opinion. Following the jargon of bio-inspired collective

decision making, the five cases considered in this article can be catalogued in terms of strength

of the cross-inhibitory and the waggle dance signals. More specifically, in Case 1 both the

cross-inhibitory and the waggle dance signals are linear. These can be considered as “broad

minded” agents since they can reconsider their decisions by taking into account only the state

of a single neighbour.

In Case 2 one observes a weak cross-inhibitory and a strong waggle dance signal. This sec-

ond case deals with stubborn agents who compare the decisions of more than one of their

neighbours in order to change their opinion with a given probability.

In Case 3 we have a strong cross-inhibitory and a weak waggle dance signal. The third case

deals with stubbornness of uncommitted agents. Consider a reference agent who is not com-

mitted, i.e. his opinion is wi = Z. He commits to opinion X or Y only if m randomly chosen

neighbours have opinion X or Y, respectively. Committed agents use the opinion of a single

randomly chosen neighbour.

Cases 4 and 5 are similar to Case 1. The difference is that the probabilities of changing opin-

ion depend solely on the percentage of the peers that belong to one of the two opinions X and

Y denoted by ~x and ~y respectively.

Let Mt and Dt denote two sets of m and d randomly selected neighbours of the reference

agent i at time t. The generic form of the quantised consensus process for a set of decision

Fig 1. Markov chain emerging from the generic form of A.

https://doi.org/10.1371/journal.pone.0209212.g001
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rules A, which emanate from the aforementioned five cases, is illustrated in Fig 2 and is

defined as:

wi
tþ1
ðwi

t ¼ XÞ ¼

(
Z with probabilility p1; if w

j
t ¼ Y; 8j 2Mt

X otherwise;
ð9Þ

wi
tþ1
ðwi

t ¼ YÞ ¼

(
Z with probabilility p2; if w

j
t ¼ X; 8j 2Mt;

Y otherwise;
ð10Þ

wi
tþ1
ðwi

t ¼ ZÞ ¼

(
X with probabilility p3; if w

j
t ¼ X; 8j 2 Dt;

Y with probabilility p4; if w
j
t ¼ Y; 8j 2 Dt;

Z otherwise:

ð11Þ

The cardinality of the sets M and D changes according to each case and are summarised in

Table 1.

Fig 2. A generic quantised consensus process. Individual X meets m Individuals Y and mutates into Individual Z
with probability PXZ = p1 (top-left); Individual Y meets m Individuals X and mutates into Individual Z with probability

PYZ = p2 (top-right); Individual Z meets d Individuals X and mutates into Individual X with probability PZX = p3

(bottom-left); Individual Z meets d Individuals Y and mutates into Individual Y with probability PZY = p4 (bottom-

right).

https://doi.org/10.1371/journal.pone.0209212.g002

An evolutionary game perspective on quantised consensus in opinion dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0209212 January 4, 2019 7 / 17

https://doi.org/10.1371/journal.pone.0209212.g002
https://doi.org/10.1371/journal.pone.0209212


The corresponding transition matrix P of the Markov process can be defined as:

P ¼

ð1 � p1ÞIMy þ ð1 � IMyÞ 0 p1IMy

0 ð1 � p2ÞIMx þ ð1 � IMxÞ p2IMx

p3IDx p4IDy ð1 � p3ÞIDx þ ð1 � p4ÞIDy þ
~IDxy

2

6
4

3

7
5: ð12Þ

where IMx and IMy, IDx and IDy are defined as:

IMx ¼

(
1 if wj

t ¼ X; 8j 2Mt;

0 otherwise;
IMy ¼

(
1 if wj

t ¼ Y; 8j 2Mt;

0 otherwise;

IDx ¼

(
1 if wj

t ¼ X; 8j 2 Dt;

0 otherwise;
IMy ¼

(
1 if wj

t ¼ Y; 8j 2 Dt;

0 otherwise:

and ~IDxy ¼ 1 � IMx � IMy:

Analytical definitions of the consensus process and their corresponding transition probabil-

ities for each case are provided in S1 File.

5 Results

In this section theoretical and simulation results are presented for various opinion dynamics

models.

5.1 Theoretical results

We are in the position to establish the first main result that states that the five opinion dynam-

ics can be formulated in a unified framework as evolutionary game dynamics for different

choices of the functions fi(�), i = 1,. . ., 4.

Theorem 1. The evolutionary game (8) describes the population dynamics in Cases 1 to 5 for
the following choices of functions fi(.), i = 1,. . ., 4:

ðCase 1Þ f1ð�Þ ¼ 1; f2ð�Þ ¼ 1; f3ð�Þ ¼ 1; f4ð�Þ ¼ 1;

ðCase 2Þ f1ð�Þ ¼ 1; f2ð�Þ ¼ ym� 1; f3ð�Þ ¼ xm� 1; f4ð�Þ ¼ 1;

ðCase 3Þ f1ð�Þ ¼ xm� 1; f2ð�Þ ¼ 1; f3ð�Þ ¼ 1; f4ð�Þ ¼ ym� 1;

ðCase 4Þ f1ð�Þ ¼ 1; f2ð�Þ ¼
1

xþ y
; f3ð�Þ ¼

1

xþ y
; f4ð�Þ ¼ 1;

ðCase 5Þ f1ð�Þ ¼
1

xþ y
; f2ð�Þ ¼ 1; f3ð�Þ ¼ 1; f4ð�Þ ¼

1

xþ y
:

ð13Þ

The proof of Theorem 1 is provided in S2 File.

Table 1. Cardinality of neighbour sets and probabilities of changing opinion for each case.

jMj jDj p1 p2 p3 p4

Case 1 1 1 p1 p2 p3 p4

Case 2 m 1 p1 p2 p3 p4

Case 3 1 d p1 p2 p3 p4

Case 4 1 1 p1
1

~xþ~y p2
1

~xþ~y p3 p4

Case 4 1 1 p1 p2 p3
1

~xþ~y p4
1

~xþ~y

https://doi.org/10.1371/journal.pone.0209212.t001
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The equilibrium points of the various models of the previous section was also studied.

From (8), the equilibrium points are obtained by equalising xt+1 = xt and yt+1 = yt which yields

PXZ

PZX
¼

a12f2ð�Þxtyt
a11xtf1ð�Þ

¼ ð1 � xt � ytÞ;

PYZ

PZY
¼

a21f3ð�Þxtyt
a22ytf4ð�Þ

¼ ð1 � xt � ytÞ:

ð14Þ

The above can equivalently be written as

a12f2ð�Þxtyt ¼ a11xtf1ð�Þð1 � xt � ytÞ;

a21f3ð�Þxtyt ¼ a22ytf4ð�Þð1 � xt � ytÞ:
ð15Þ

which implies:

yta12f2ð�Þa22f4ð�Þ ¼ xta11f1ð�Þa21f3ð�Þ: ð16Þ

In the next theorem we show that the vertices of the simplex in R3 are equilibrium points

and that there exists a fourth equilibrium point which satisfies the linear condition y = qx for

given scalar q� 0.

Theorem 2. The following tuples are equilibrium points for the evolutionary game (8):

ðx ¼ 1; y ¼ 0; z ¼ 0Þ; ðx ¼ 0; y ¼ 1; z ¼ 0Þ; ðx ¼ 0; y ¼ 0; z ¼ 1Þ:

In addition, a fourth equilibrium point may exist of type (x, qx, 1 − (1 + q)x).

The analytical form of the equilibrium types for the particular cases and the proof of Theo-

rem 2 are provided in S3 File.

In the above theorem, the equilibrium point y = qx may be outside the simplex inR3 which

would make it not feasible. In the following, we investigate the conditions of feasibility in the

case of symmetric parameters where q’ 1.

A list of the equilibrium points of the form y = qx and their corresponding feasibility condi-

tions, in the symmetric case where q’ 1 are provided in the corollary in S4 File.

A way to study the stability of the equilibrium solutions is to study the eigenvalues of the

Jacobian matrix J of the state space non-linear model, for each case, evaluated in each equilib-

rium point. Let λ = {λ1, λ2} be the eigenvalues of the Jacobian, then if evaluated in a specific

solution |λi|< 1, i 2 {1, 2} this solution is stable. We are ready to establish the following stabil-

ity properties.

Theorem 3. Depending on the case considered the vertices of the simplex and the tuple (x, qx,

1 − (1 + q)x) can be stable equilibria.

The form of the equilibria and proof of Theorem 3 for each case are provided in S5 File.

5.2 Simulations

In this section we provide some simulations to corroborate the theoretical results of the previ-

ous sections. Examples of the dynamics for the weak and strong cross inhibitory signal cases

are depicted in Fig 3.

The interconnection between the quantised consensus models and their corresponding

Markov process is shown for various reward matrices and uniformly chosen initial conditions.

Random graphs, “Erdős-Rényi” networks [40], were used for the set-up of the quantised con-

sensus formulation. In particular a graph GðN ;EÞ with 1000 agents was generated, and the
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neighbours of each agent were uniformly chosen among the available N � 1 agents with prob-

ability p = 0.2.

When a random graph is generated there is no guarantee of the minimum number of

neighbours that agents will have. Some of the quantised consensus models of this article

require that each agent will have at least m neighbours. For this reason in each simulation

instance when a graph was generated, if the number of neighbours of any agent was less than

m it was discarded. The process was repeated until a graph is generated with all nodes having

at least m neighbours.

The initial values of the decision variable w0 were uniformly chosen. Then based on the

same w0 and GðN ;EÞ the five quantised consensus processes were used as coordination mech-

anism among the agents. The distribution of the agents among the three categories in each

time step is reported.

The analysis of the evolution of the players’ behaviour, when the Markov process is consid-

ered, is indifferent to the structure of GðN ;EÞ. Therefore for the initialisation of the five Mar-

kov processes only the proportion of cooperators, defectors and neutrals in w0 was needed.

Four instances of the aforementioned process were considered. Each of them for different

constant values (a11, a12, a21, a22). The constants which were used in each simulation instance

are reported below.
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Fig 3. Phase portraits of the Markov decision processes.

https://doi.org/10.1371/journal.pone.0209212.g003
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The results of all four initial conditions are depicted in Fig 4. The results presented are for 200

iterations of both processes, consensus and Markov chains.

In all figures the quantised consensus and the Markov processes produce similar results.

The effect of the reward matrix, and in particular the impact of the ratios
a12

a11
and

a21

a22
on the

outcome of the quantised consensus algorithm is also studied. Uniformly chosen initial condi-

tions were used for the portion of the population which belonged to X, Y and Z respectively.

Fig 5 depicts the percentage of the agents’ population that belonged to X with respect to the

two ratios
a12

a11
and

a21

a22
. The yellow corresponds to the cases where the whole population was in

state X while the dark blue one corresponds to the cases where no agent was belonging to state

X. As it can be observed, the highest the value of
a21

a22
the highest the chances were to converge to

X independently of the value of
a12

a11
.

The previous simulation results are for highly connected networks which can be considered

as well mixed populations. In addition the structure of the network was randomly created. In

order to study the behaviour of the proposed methodology in structured environments small

world networks [41] were employed. On these ring-structured networks each agent is con-

nected with K
2
, 0 < K � N � 1 nodes on each side of the ring. It has been showed [42–44],

that the structure of the small world networks affects the speed of convergence of various con-

sensus algorithms. Therefore it is possible because of the structure of small world networks

that the quantised consensus algorithms and their corresponding Markov models will con-

verge to different outcomes.

In order to study the discrepancy between the quantised consensus and the Markov process

in structured networks, the following experiments were employed. A Watts-Strogatz graph

was created with 100 nodes connected with K
2

neighbours in each side and rewire probability p.

The number of instances that both processes converged to the same decision were counted.

These results are considered with regards to the number of connections that an agent can have
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and the impact that the reward function has. Since at least m neighbours are needed for the

Cases 2-5, we have K ¼ mþ j; j 2 f1; 2; 3; 4; 5; 6; 7; 8; 9; 10; 15; 20g. In the simulations the

case where m = 3 is considered. The simulations depicted in Fig 6 are of 100 replications of a

network with the same K and random rewards aij, i, j 2 {1, 2}. In each replication both pro-

cesses were repeated for 200 iterations. In order to take into account the importance of each

opinion, and thus the rewards, the fraction
a11a21

a22a12
is used. Which increases when opinion X is

more important, i.e. has greater reward, and decreases when opinion Y is more important.

The results for case one are depicted in the first panel of Fig 6. The two processes result in

the same decision as the value of
a11a21

a22a12
increases and the number of neighbours K increases.

The decisions of the two processed for the Cases 2,4 and 5, second fourth and fifth panel of

Fig 6 respectively, depend more on the reward function rather than on K. On the other hand,

in the third case the structured environment seems to influence the algorithms in a way that

only when the importance of X is very high they converge to the same decision.

6 Discussion

The interconnection between agent-based decision-making and centralised decision-making

through game theory is studied. In this article a scenario where agents that change their opin-

ions depending on their peers is considered. Changes of opinions were modelled using a biol-

ogy-inspired process based on the way bees choose the place of their next beehive.

Fig 4. Simulation results. The players in X, Y and Z, are depicted as straiht, dashed and dotted lines in the figures.

Each row represent one of the five cases. The left column corresponds to the results of the Markov process and the

right column to the quantised consensus process. The x-axis corresponds to the iteration number and the y-axis to the

distribution of the population over the three states.

https://doi.org/10.1371/journal.pone.0209212.g004
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Fig 5. Convergence of the quantised consensus algorithm to the coordinators class with respect to the ratios
a12

a11
and

a21

a22
. The x-axis represents the

ratio
a12

a11
and the y-axis the ratio

a21

a22
.

https://doi.org/10.1371/journal.pone.0209212.g005

Fig 6. Simulation results for the X population when small world networks are considered. Dark blue colour

denotes that quantised consensus and the markov chain resulted in the same decision in all the simulations. When

yellow colour denotes that the results were the same only on the 40% of the cases. The x-axis corresponds to the

minimum number of neighbours that an agent could have, in addition to the m neighbours which were necessary to

have. The y-axis represents the various values of
a11a21

a22a12
.

https://doi.org/10.1371/journal.pone.0209212.g006
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Using the ideas of cross inhibitory signals, bees’ waggle dance and a quantised consensus

process, different agent’s behaviours were formulated in the same model. This includes opin-

ionated agents and crowd seeking or crowd averse agents. These behaviours were model based

on the number of neighbours a person needed in order to change his opinion.

A game-theoretic approach was presented as a unifying formulation to the quantised con-

sensus problem. Based on the expected gain pay-off function the quantised consensus process

was cast as an evolutionary game. It was shown that for a game with three possible action

“committed to opinion X”, “committed to opinion Y” and “not committed to any opinion” the

game theoretic representation is equivalent to the quantised consensus process for well mixed

populations.

The equilibria and their stability were analysed using the corresponding Markov process of

each case. In all cases the whole population would eventually converge to a single opinion X, Y
or Z. Exemption is the case of strong cross-inhibition signal where opinion Z is not a stable

equilibrium. In this case it is also possible to observe a stable mixed equilibrium among the

three opinions.

The impact that rewards have in the outcome of the processes have been also studied

through simulations. In particular we have analysed the effect that
a12

a11
and

a21

a22
had in the deci-

sion process. In all cases there is an area where the process will always converge to a single

opinion depending on which fraction is greater. Therefore if the rewards, value of an opinion,

are sufficiently large the outcome will always converge to that opinion given a randomly cho-

sen initial state of the population.

The validity of the results on structured networks was also studied through simulations, in

small world networks. In the simulations of Case 1, if the rewards of an action and the number

of an agent’s neighbours are sufficiently large, the quantised consensus process and the Mar-

kov process produce the same results. When Cases 2,4 and 5 are considered, similar results

obtained when the reward of an action was excreting the other rewards by a certain level. The

number of neighbour an agent had small or no effect on the number of instances that the two

process produced the same results in those 3 cases. On the third case the number of neighbours

is not mainly influences the results. Additionally, in this case the two processes have similar

results only when there are big differences in the rewards of each action, i.e.
a11a21

a22a12
> 140. These

results indicate that for some of the cases studied it is possible to use the Markov process in

structure environments as an alternative under specific conditions.

Among various future research directions an interesting extension of the current work is

the study of an inhomogeneous case where some players are more important to their neigh-

bours than others. In addition similarly to [45] the case where some “malicious” agents/players

try to influence the equilibrium of the game will be studied.

Supporting information

S1 File. Quantised consensus models for each case.

(PDF)

S2 File. Proof of Theorem 1.

(PDF)

S3 File. Proof of Theorem 2.

(PDF)

S4 File. Corollary for the case q’ 1.

(PDF)

An evolutionary game perspective on quantised consensus in opinion dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0209212 January 4, 2019 14 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209212.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209212.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209212.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209212.s004
https://doi.org/10.1371/journal.pone.0209212


S5 File. Proof of Theorem 3.

(PDF)

S6 File. Appendix.

(PDF)

Author Contributions

Conceptualization: Michalis Smyrnakis, Dario Bauso.

Formal analysis: Michalis Smyrnakis, Dario Bauso.

Investigation: Dario Bauso.

Methodology: Michalis Smyrnakis, Dario Bauso, Tembine Hamidou.

Visualization: Michalis Smyrnakis.

Writing – original draft: Michalis Smyrnakis, Dario Bauso.

Writing – review & editing: Michalis Smyrnakis, Dario Bauso, Tembine Hamidou.

References
1. Xiao L, Boyd S, Lall S. A scheme for robust distributed sensor fusion based on average consensus. In:

IPSN 2005. Fourth International Symposium on Information Processing in Sensor Networks, 2005.;

2005. p. 63–70.

2. Olfati R Saber, Murray R. Agreement problems in networks with directed graphs and switching topol-

ogy. In: Proceedings of the 42nd IEEE Conference on Decision and Control (CDC); 2003.

p. 4126–4132.

3. Kashyap A, Başar T, Srikant R. Quantized consensus. Automatica. 2007; 43(7):1192–1203. https://doi.

org/10.1016/j.automatica.2007.01.002

4. Aysal TC, Coates MJ, Rabbat MG. Distributed Average Consensus With Dithered Quantization. IEEE

Transactions on Signal Processing. 2008; 56(10):4905–4918. https://doi.org/10.1109/TSP.2008.

927071

5. Carli R, Fagnani F, Frasca P, Taylor T, Zampieri S. Average consensus on networks with transmission

noise or quantization. In: 2007 European Control Conference (ECC); 2007. p. 1852–1857.

6. Nedic A, Olshevsky A, Ozdaglar A, Tsitsiklis JN. On distributed averaging algorithms and quantization

effects. In: 2008 47th IEEE Conference on Decision and Control; 2008. p. 4825–4830.

7. Acemoğlu D, Como G, Fagnani F, Ozdaglar A. Opinion fluctuations and disagreement in social net-

works. Math of Operation Research. 2013; 38(1):1–27.

8. Acemoğlu D, Ozdaglar A. Opinion dynamics and learning in social networks. International Review of

Economics. 2011; 1(1):3–49.

9. Aeyels D, Smet FD. A mathematical model for the dynamics of clustering. Physica D: Nonlinear Phe-

nomena. 2008; 237(19):2517–2530. https://doi.org/10.1016/j.physd.2008.02.024

10. Banerjee A. A simple model of herd behavior. Quarterly Journal of Economics. 1992; 107(3):797–817.

https://doi.org/10.2307/2118364

11. Blondel VD, Hendrickx JM, Tsitsiklis JN. Continuous-time average-preserving opinion dynamics with

opinion-dependent communications. SIAM J Control and Optimization. 2010; 48(8):5214–5240. https://

doi.org/10.1137/090766188

12. Castellano C, Fortunato S, Loreto V. Statistical physics of social dynamics. Rev Mod Phys. 2009;

81:591–646. https://doi.org/10.1103/RevModPhys.81.591

13. Como G, Fagnani F. Scaling limits for continuous opinion dynamics systems. The Annals of Applied

Probability. 2011; 21(4):1537–1567. https://doi.org/10.1214/10-AAP739

14. Hegselmann R, Krause U. Opinion dynamics and bounded confidence models, analysis, and simula-

tions. Journal of Artificial Societies and Social Simulation. 2002; 5(3).

15. Krause U. A discrete nonlinear and non-autonomous model of consensus formation. In: Communica-

tions in Difference Equations, S. Elaydi, G. Ladas, J. Popenda, and J. Rakowski editors, Gordon and

Breach, Amsterdam; 2000. p. 227–236.

An evolutionary game perspective on quantised consensus in opinion dynamics

PLOS ONE | https://doi.org/10.1371/journal.pone.0209212 January 4, 2019 15 / 17

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209212.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0209212.s006
https://doi.org/10.1016/j.automatica.2007.01.002
https://doi.org/10.1016/j.automatica.2007.01.002
https://doi.org/10.1109/TSP.2008.927071
https://doi.org/10.1109/TSP.2008.927071
https://doi.org/10.1016/j.physd.2008.02.024
https://doi.org/10.2307/2118364
https://doi.org/10.1137/090766188
https://doi.org/10.1137/090766188
https://doi.org/10.1103/RevModPhys.81.591
https://doi.org/10.1214/10-AAP739
https://doi.org/10.1371/journal.pone.0209212


16. Pluchino A, Latora V, Rapisarda A. Compromise and Synchronization in Opinion Dynamics. The Euro-

pean Physical Journal B—Condensed Matter and Complex Systems. 2006; 50(1-2):169–176. https://

doi.org/10.1140/epjb/e2006-00131-0

17. Sznitman AS. Topics in propagation of chaos. Springer Lecture Notes in Mathematics. 1991;

1464:165–251. https://doi.org/10.1007/BFb0085169

18. Ozturk MK. Dynamics of discrete opinions without compromise. Advances in Complex Systems. 2013;

16(06):1350010. https://doi.org/10.1142/S0219525913500100

19. Gordon MB, Nadal JP, Phan D, Semeshenko V. Discrete choices under social influence: Generic prop-

erties. Mathematical Models and Methods in Applied Sciences. 2009; 19:1441–1481. https://doi.org/10.

1142/S0218202509003887

20. Allahverdyan AE, Galstyan A. Opinion Dynamics with Confirmation Bias. PLOS ONE. 2014; 9(7):1–14.

https://doi.org/10.1371/journal.pone.0099557

21. Stella L, Bauso D. Evolutionary Game Dynamics for Collective Decision Making in Structured and

Unstructured Environment; 2017. To appear in proceeding of the 20th IFAC World Congress, Toulouse,

France.

22. Boyd S, Ghosh A, Prabhakar B, Shah D. Gossip algorithms: Design, analysis and applications. In:

INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer and Communications Societies.

Proceedings IEEE. vol. 3; 2005. p. 1653–1664.
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