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Abstract

Motivation: In biology, we are often faced with multiple datasets recorded on the same set of

objects, such as multi-omics and phenotypic data of the same tumors. These datasets are typically

not independent from each other. For example, methylation may influence gene expression, which

may, in turn, influence drug response. Such relationships can strongly affect analyses performed

on the data, as we have previously shown for the identification of biomarkers of drug response.

Therefore, it is important to be able to chart the relationships between datasets.

Results: We present iTOP, a methodology to infer a topology of relationships between datasets.

We base this methodology on the RV coefficient, a measure of matrix correlation, which can be

used to determine how much information is shared between two datasets. We extended the RV co-

efficient for partial matrix correlations, which allows the use of graph reconstruction algorithms,

such as the PC algorithm, to infer the topologies. In addition, since multi-omics data often contain

binary data (e.g. mutations), we also extended the RV coefficient for binary data. Applying iTOP to

pharmacogenomics data, we found that gene expression acts as a mediator between most other

datasets and drug response: only proteomics clearly shares information with drug response that is

not present in gene expression. Based on this result, we used TANDEM, a method for drug re-

sponse prediction, to identify which variables predictive of drug response were distinct to either

gene expression or proteomics.

Availability and implementation: An implementation of our methodology is available in the R

package iTOP on CRAN. Additionally, an R Markdown document with code to reproduce all figures

is provided as Supplementary Material.

Contact: a.k.smilde@uva.nl or l.wessels@nki.nl

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Rapid developments in high throughput measurement techniques to-

gether with rapid reduction in profiling costs have, for many bio-

logical problems, endowed us with multiple molecular datasets

recorded on the same set of objects. For example, pharmacogenom-

ics data contain, in addition to cancer type and drug response, vari-

ous omics datasets (mutation, copy number aberration (CNA),

methylation, gene expression and proteomics) recorded on the same

set of tumor cell lines (Iorio et al. 2016; Li et al. 2017). While this

provides an unprecedented view on the underlying biological prob-

lem, it also comes with some unique challenges. Specifically, the

recorded datasets are not independent of each other, but are

characterized by specific relationships. For example, copy number

alterations and methylation changes may influence gene expression,

which may, in turn, influence drug response. As we have demon-

strated earlier (Aben et al. 2016), these relationships can have pro-

found effects on further integrative analyses, especially biomarker

discovery. It is therefore imperative to obtain a full quantitative

characterization of these relationships, such as the illustrative top-

ology of relationships between datasets depicted in Figure 1A.

Here, we set out to characterize the relationships between data-

sets in terms of the amount of information that is shared between a

pair of datasets, and, more importantly, how this shared informa-

tion manifests itself in the relationship of a pair of datasets to a third
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dataset. For example, suppose we have two datasets, X1 and X2.

Suppose we can characterize the amount of shared information be-

tween X1 and X2 by a number between 0 and 1, with 0 being no

shared information and 1 representing maximal overlap in informa-

tion (Fig. 1B). This characterization of pairwise relationships can be

informative as such, as it can reveal whether, for example, there is

any shared information between gene expression and mutation data.

If we now introduce a third dataset, X3, we can also quantify the

amount of information shared between X1 and X3 and X2 and X3.

Assuming that these relationships are non-zero, we obtain the graph

in Figure 1C. Now it becomes particularly interesting to know

whether the shared information between X1 and X3 depends on X2.

Specifically, is the shared information between X1 and X3 contained

in the information in X2? In other words, does X2 mediate the effect

between X1 and X3? When these questions can be answered for all

datasets at hand, it reveals the minimal graph that represents the

conditional relationships between all datasets. As the number of

datasets grows, such a graph not only gives a very concise overview

of the relationships, but it is also an important guide in structuring

the analyses aimed at finding biomarkers of a given phenotype.

More specifically, suppose that X1, X2 and X3 represent mutation,

gene expression and drug response data for a cell line panel, and

that our goal is to extract molecular biomarkers of drug response.

Assume that, from our analyses, it emerged that all the information

shared between mutation (X1) and drug response (X3) is contained

in the gene expression data (X2) (Fig. 1D). This implies that we only

need to employ gene expression data to find biomarkers of drug

response.

To infer dataset topologies, we draw upon the approaches

employed to infer topologies between single variables (instead of

matrices). Specifically, for our earlier example, we can employ par-

tial correlation, e.g. cor x1; x3jx2ð Þ, to quantify the amount of infor-

mation that is shared between two variables (x1 and x3) that is not

present in the other variable (x2). If the effect of x1 on x3 is (almost

fully) mediated through x2, it follows that cor x1; x3jx2ð Þ � 0, which

implies that we can remove the direct link between x1 and x3

(Fig. 1E). Graph reconstruction algorithms, such as the PC algo-

rithm (Colombo and Maathuis 2014; Peter et al. 2000), use this

property to infer the topology between multiple variables.

Here, we propose iTOP, a methodology for inferring topologies

between datasets. As with topology inference for single variables,

this methodology consists of two components: (i) a measure of (con-

ditional) similarity between datasets and (ii) the PC algorithm that

employs the (conditional) similarity measure to perform structure

learning, i.e. to infer the topology. As similarity measure we employ

the RV coefficient (Robert and Escoufier 1976), a measure of matrix

correlation. The basic idea of the RV coefficient is that datasets are

correlated when they have a similar configuration (e.g. similar clus-

tering) of the objects. We extend the RV coefficient to be applicable

to binary data by using Jaccard similarity to determine the configur-

ation of objects. This allows us to measure the shared information

between any of the molecular datasets, including intrinsically binary

datasets such as mutation data. In addition, to measure conditional

matrix similarity, we extend the RV coefficient for partial matrix

correlations. This allows us to quantify the amount of information

that is shared between two datasets (matrices), but not present in the

other dataset, analogous to single variables.

We employ iTOP, i.e. partial matrix correlation in conjunction

with the PC algorithm, to infer a topology of relationships between

datasets. First, we will demonstrate the RV coefficient with both

extensions (i.e. for partial matrix correlations and for binary data)

on artificial data. Subsequently, we will use this to infer the topology

of relationships between the pharmacogenomics datasets. We show

that gene expression acts as a mediator between most other datasets

and the drug response, and that only proteomics clearly shares infor-

mation with drug response that is not present in gene expression.

A B E

C

D

Fig. 1. High-level overview of this work. (A) The goal of this work is to infer a topology of relationships between pharmacogenomics datasets (an example top-

ology is illustrated here). (B) When two datasets share information (i.e. when their RV coefficient is non-zero), we will indicate them as connected in a topology.

(C) A topology of three datasets that all share information. We will convert this topology to the one depicted in (D) if the shared information between X1 and X3 is

fully contained in X2. (E) To create these topologies we will draw on methods for inferring a topology between single variables using partial correlations. Top: the

original causality graph. Middle: the topology as inferred using correlations. Bottom: the inferred topology using partial correlations
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Based on this result, we will employ TANDEM, a method for drug

response prediction from multiple datasets (Aben et al. 2016), to

identify markers predictive of drug response that are distinct for pro-

teomics and gene expression.

2 Materials and methods

2.1 Matrix correlation using the RV coefficient
For dataset i, consider Xi the n � pi data matrix with objects in the

rows and variables in the columns. Here, we assume Xi to be

column-centered (of note, there is no need to scale the columns of

Xi). We define the corresponding n�n configuration matrix Si as

follows:

Si ¼ XiX
T
i

Now consider a second dataset j, whose data matrix Xj has the

same objects on the same rows as Xi, but has a different set of varia-

bles. Hence, Xj is of size n � pj. Analogous to Xi, we will define a

configuration matrix Sj for Xj.

Sj ¼ XjX
T
j

Using the configuration matrices Si and Sj, we can then determine

the matrix correlation between these matrices using the RV

coefficient:

RV Si; Sj

� �
¼

vec Sið ÞTvec Sj

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vec Sið ÞTvec Sið Þ � vec Sj

� �T
vec Sj

� �q
Where vec Sð Þ is the n2 � 1 vector in which the columns of S are

stacked on top of each other. When Xi and Xj are column-centered,

then mean vec Sið Þð Þ ¼ 0 and mean vec Sj

� �� �
¼ 0, which means we

can interpret the above as a Pearson correlation coefficient.

RV Si; Sj

� �
¼ cor vec Sið Þ; vec Sj

� �� �

2.2 The modified RV coefficient
For data matrices X where the number of variables is much greater

than the number of objects (i.e. P� n), the RV coefficient is

known to be biased upwards (Mayer et al. 2011; Smilde et al.

2009). To account for this bias, we subtract the diagonal from the

configuration matrix, as in the modified RV coefficient (Smilde

et al. 2009).

~S i ¼ Si � diag Sið Þ
~S j ¼ Sj � diag Sj

� �

RV ~S i; ~S j

� �
¼

vec ~S i

� �T
vec ~S j

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vec ~S i

� �T
vec ~S i

� �
� vec ~S j

� �T
vec ~S j

� �r

For a more complete discussion of the modified RV coefficient,

as well as our rationale for not using the adjusted RV coefficient

(Mayer et al. 2011) instead, we refer to the Supplementary

Material.

2.3 Partial matrix correlations
We extend the above matrix correlation formulation to partial ma-

trix correlations. Consider a third dataset, the n � pk matrix Xk,

that will be processed as above.

Sk ¼ XkXT
k

~Sk ¼ Sk � diag Skð Þ

We can then compute the partial matrix correlation between

dataset i and j, corrected for dataset k, as

RV ~S i; ~S jj~Sk

� �
¼ cor vec ~S i

� �
; vec ~S j

� �
jvec ~Sk

� �� �
Of note, the concept of partial matrix correlations has been

explored previously by Smouse et al. (1986), who based their meas-

ure on the Mantel Test (Nathan 1967). For a discussion of the

Mantel Test and why we prefer to base our measure of partial ma-

trix correlation on the RV coefficient, we refer to the Supplementary

Material.

2.4 Statistical inference for partial matrix correlations
We provide two methods for statistical inference for partial

matrix correlations: significance estimates and confidence inter-

vals. We note that these cannot be determined analytically (e.g.

using Fisher Transformation, which is commonly used to derive a

P-value for Pearson correlations), as the entries in vec Sð Þ are not

i.i.d.: multiple entries in vec Sð Þ correspond to the same object in S.

Instead, we will discuss a permutation test for significance esti-

mates and a bootstrapping procedure for calculating confidence

intervals.

We used a permutation test to assess significance of a (partial)

matrix correlation. In every permutation, the objects of every data-

set were independently shuffled and the (partial) matrix correlation

was computed on the shuffled data. Subsequently, the observed

(partial) matrix correlation was compared to the permuted values,

and the P-value was set to

p ¼

Pnperm
i¼1 1RVobs <RVi

nperm
; for RVobs � 0

Pnperm
i¼1 1RVobs>RVi

nperm
; for RVobs < 0

8>>><
>>>:

Where 1A is the indicator function that equals 1 when A is true,

RVobs is the observed (partial) matrix correlation, RVi the permu-

tated (partial) matrix correlation from the ith permutation and

nperm the number of permutations. Throughout the manuscript, we

used nperm ¼ 1000.

We used a percentile bootstrap procedure to calculate confidence

intervals. In each bootstrap, objects were obtained by drawing com-

plete cases randomly (with replacement) from the dataset, after

which the (partial) matrix correlation was calculated as defined

above. The 99% percentile interval of the obtained (partial) matrix

correlations was then used as a confidence interval. Throughout the

manuscript, we used 1000 bootstraps to determine a confidence

interval.

We note that row-wise permutation of the data matrices

(X ind;½ �, with ind the indices of the objects after permutation) is

equivalent to permutation of both the rows and the columns of the

configuration matrices (S ind; ind½ �). Using this property, we decided

to permute the configuration matrices, as this prevents having to cal-

culate the configuration matrix in each permutation and hence

greatly speeds up the calculations. A similar approach was used for

bootstrapping.

2.5 Binary similarity measures
An advantage of converting the data matrices X to configuration

matrices S is that it allows us to use different similarity measures

i990 N.Aben et al.
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for different data types. For example, for continuous data,

we use:

S ¼ XXT

Note that each entry of S corresponds to an inner product be-

tween different objects in X, i.e.

S ¼ XXT ¼

xT
1 x1 xT

1 x2 � � � xT
1 xn

xT
2 x1 xT

2 x2 � � � xT
2 xn

..

. ..
. . .

. ..
.

xT
n x1 xT

n x2 � � � xT
n xn

0
BBBBBB@

1
CCCCCCA

Where xi is the i’th row in X and n is the number of rows in X.

We will refer to this similarity measure as ‘inner product similarity’.

2.5.1 Jaccard similarity

For binary data, we use Jaccard similarity. Jaccard similarity is

defined as the ratio of the number of elements where these vectors

have ones in common and the total number of positions where ones

occur in any of these two vectors. Consider the following contin-

gency table.

Where a is the number of elements where x¼0 and y¼0, b is

the number of elements where x¼1 and y¼0, etc. The Jaccard

Similarity can then be written as:

Jaccard x; yð Þ ¼ d

bþ cþ d

When all x¼0 and all y¼0, then b¼ c ¼ d¼0, which would re-

sult in Jaccard x; yð Þ¼0=0. In these cases, we define the Jaccard simi-

larity as Jaccard(x, y) ¼ 0.

Note that the Jaccard similarity is based on the number of posi-

tive matches (d) and not at all on the number of negative matches

(a). This is in line with our intuition of similarity in the binary data

at hand (mutation, CNA and cancer type). For example, when two

objects share the same mutations, we think this should contribute

more to their similarity than the number of mutations that both

objects lack.

We define configuration matrices using the Jaccard similarity in

the following way:

S ¼ Jaccard config Xð Þ

¼

Jaccard x1;x1ð Þ Jaccard x1; x2ð Þ � � � Jaccard x1; xnð Þ

Jaccard x2;x1ð Þ Jaccard x2; x2ð Þ � � � Jaccard x2; xnð Þ

..

. ..
. . .

. ..
.

Jaccard xn;x1ð Þ Jaccard xn; x2ð Þ � � � Jaccard xn; xnð Þ

0
BBBBBBBBB@

1
CCCCCCCCCA

2.5.2 Kernel centering

We used kernel centering to center the configuration matrix S rather

than the underlying data matrix X. Essentially, kernel centering is

double centering (i.e. column- and row-wise centering) of the config-

uration matrix S (or in other words: the kernel), which we will show

to be equal to first column-centering the data matrix X and then

computing S ¼ XXT . Consider X the original data matrix and �X the

column-centered data matrix. Likewise, consider S the original con-

figuration matrix and �S the centered configuration matrix. Finally,

consider m the column-wise means of X and n the number of rows

in X. We will first consider an example using inner products as a

similarity measure.

S ¼ XXT

�S ¼ �X �X
T

¼ ðX� 1mTÞðX� 1mTÞT

¼ X� 11TX

n

 !
X� 11TX

n

 !T

¼ XXT � 11TXXT

n
�XXT11T

n
þ 11TXXT11T

n2

¼ S� 11TS

n
� S11T

n
þ 11TS11T

n2

Interestingly, the final term expresses the kernel centered �S in

terms of the non-centered S. This allows us to center configuration

matrices that are not based on inner-product similarity, such as

S ¼ Jaccard config Xð Þ. Column-centering X (the input space) makes

no sense here, as the resulting matrix would not consist of 0 s and 1 s

anymore and hence Jaccard config �X
� �

is not defined. However, we

can use kernel centering here to center the so-called kernel space cor-

responding to S.

S ¼ Jaccard config Xð Þ

�S ¼ S� 11TS

n
� S11T

n
þ 11TS11T

n2

2.6 Pharmacogenomics data
The mutation, copy number aberration (CNA), methylation, cancer

type, gene expression and drug response data were sourced from

GDSC1000 (Iorio et al. 2016), and the proteomics data were

sourced from MCLP (Li et al. 2017) (Table 1). For the mutation and

CNA data, we used the reduced set of Cancer Functional Events

(CFEs) (Iorio et al. 2016), resulting in 300 and 425 binary variables,

respectively. For the methylation data, we used the CpG-island sum-

marized data, resulting in 14 426 continuous variables. For the can-

cer type data, we used the classification into 30 TCGA cancer types

or ‘OTHER’, resulting in 31 binary variables (Iorio et al. 2016). For

gene expression data, we used the gene level summarized data,

resulting in 17 419 continuous variables. The proteomics data con-

sist of 452 variables, of which 108 represent phospho-protein levels

and the remaining 344 represent protein abundance levels. For the

drug response data, we used the IC50-values (concentration at

which half of the cells are killed) for all 265 drugs.

Table 1. Overview of the pharmacogenomics datasets used in this

manuscript

Dimensionality Source Type Missing

values

Mutation 300 GDSC1000 Binary No

CNA 425 GDSC1000 Binary No

Methylation 14 429 GDSC1000 Continuous No

Cancer type 31 GDSC1000 Binary No

Gene expression 17 419 GDSC1000 Continuous No

Proteomics 452 MCLP Continuous Yes

Drug response 265 GDSC1000 Continuous Yes
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Of the 282 cell lines that were profiled in both GDSC1000 and

MCLP, 266 cell lines were characterized across all seven datasets.

This number was further reduced due to missing values in the pro-

teomics and drugs response data. For the proteomics data, after

removing all variables with >30% missing values, we retained 186

variables. Subsequently, after removing all objects with >30%

missing values, we retained 221 objects. We then intersected all

datasets with these 221 objects and applied the same two steps to

the drug response data, where we retained 206 objects and 217 vari-

ables. These 206 objects cover 27 of the 31 cancer types in the

GDSC1000 data. The remaining missing values (1% for the proteo-

mics and 5% for the drug response) were imputed using SVD im-

putation (Troyanskaya et al. 2001) as implemented in the

R package bcv.

3 Results

3.1 The RV coefficient
To illustrate the RV coefficient, consider the following example.

Figure 2A represents data matrix X1, a dataset with two variables

and 100 objects, where the first 50 objects form the green cluster

and the second 50 objects form the purple cluster. The second data

matrix, X2 (Fig. 2B), also consists of two variables and the same 100

objects with the same clustering as in X1. The third data matrix, X3

(Fig. 2C), is again a dataset with two variables and the same objects

as before, but now without any apparent clustering.

When converting these data matrices to configuration matrices

(similarity matrices), which indicate the configuration of the differ-

ent objects with respect to each other, it can be readily observed that

X1 and X2 contain the same information in terms of clustering

(Fig. 2D and E). Indeed, when computing the RV coefficient be-

tween X1 and X2 (by computing the Pearson correlation of the vec-

torized forms of the corresponding configuration matrices, see

Section 2), we obtain an RV coefficient close to one, indicating a

strong relationship. Conversely, when computing the RV coefficient

between X2 and X3, where the latter contains no clustering informa-

tion, we see that the configuration matrices are very different and R

V X2;X3ð Þ � 0 (Fig. 2C and F).

3.2 Extending the RV coefficient for partial matrix

correlations
We illustrate partial matrix correlations using the following ex-

ample. Consider three datasets: X1, X2 and X3. Let X1 affect X2,

and let X2 affect X3 (Fig. 3). Observe that, consistent with the pro-

posed causality, X1 is most similar to X2 (only the purple cluster in

the bottom-left has been moved) and X3 is most similar to X2 (only

the blue cluster in the bottom-right has been moved). This of course

means that RV X1;X2ð Þ and RV X2;X3ð Þ will be non-zero.

However, note that also RV X1;X3ð Þ will be non-zero, as X1 and X3

do share information: the top three clusters have the same configur-

ation in both datasets. Therefore, if we were to infer a topology

based on the matrix correlations, we cannot rule out a direct link

from X1 to X3.

A B C

D E F

Fig. 2. The RV coefficient explained using three simple example datasets. The data matrices X1, X2 and X3 (represented in A-C) are converted to configuration

matrices S1, S2 and S3, respectively (D–F). Using the configuration matrices, it can be readily seen that RV ðX1;X2Þ � 1 and RV ðX2;X3Þ � 0
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Using the partial matrix correlation RV X1;X3jX2ð Þ, we can

rule out a direct link from X1 to X3. As X2 has the same configur-

ation in the top three clusters, correcting for X2 results in

RV X1;X3jX2ð Þ ¼ 0:005, which is not significantly different from

zero (P-value: 0.354, 99% confidence interval: �0.27 to 0.28).

Therefore, using partial matrix correlations, we can indeed recon-

struct the original topology.

3.3 Extending the RV coefficient for binary data
The RV coefficient has been proposed for comparing data matrices

containing continuous values. Specifically, in the original formula-

tion of the RV coefficient, the configuration matrices are determined

using the inner product between objects (Section 2), which is tail-

ored to comparing continuous values. To determine (partial) matrix

correlations for datasets containing binary values, we propose to

create the configuration matrices using Jaccard similarity, which

determines similarity between binary variables (Section 2). We

assessed the performance of this approach using a simulation study.

First, to establish a reference, we performed a simulation study

in which two continuous valued matrices were compared. In this

simulation, the values in X1 and X2 were randomly drawn from

N(10, 1) and N(0, 1), respectively, where N(l,r) represents a

Gaussian distribution with mean l and standard deviation r.

Subsequently, we defined a third matrix as X3 ¼ (1 – a)X1 þ aX2.

We compared RV X1;X3ð Þ for different values of a, and both with

and without column-wise centering of the data matrices (Fig. 4A).

Regardless of centering, we found that RV X1;X3ð Þ ¼ 1 for a ¼ 0

and RV X1;X3ð Þ � 0 for a ¼ 1, as expected. For intermediate values

of a however, we see big differences between the approach using

centering and the one without centering. Without centering, RV

X1;X3ð Þ remains very close to 1 for values of a approaching 1,

which is counterintuitive. With centering, RV X1;X3ð Þ slowly

decreases to 0 as a increases, which is according to expectation.

These differences can be attributed to the fact that inner product dis-

tance is dependent on the relative position of the objects with respect

to the origin: in the uncentered case, for a	0.9, the vectors repre-

senting the objects in X1 and X3 will be highly collinear, resulting in

an RV coefficient close to one (Supplementary Fig. S1). This experi-

ment emphasizes the importance of centering the data prior to

applying the RV coefficient.

We then performed a simulation in which two binary valued

matrices were compared. Values in X1 were randomly drawn from

Binom(0.5) (Binomial distribution with P¼0.5). X2 was set equal

to X1, but with a the fraction of binary values that were flipped. We

varied a only up to 0.5, as this is the point at which the configur-

ation of objects in X1 and X2 is maximally apart (at a ¼ 1, X1 and

X2 are simply inverted and, given that the RV coefficient is rotation

independent, the resulting RV coefficient will be 1 again). Again RV

X1;X2ð Þ was compared for different values of a and both with and

without centering (Fig. 4B). As binary data cannot be column cen-

tered (it would not be binary anymore after centering), we instead

used kernel centering to center the configuration matrix obtained

using the Jaccard similarity (Section 2). For a ¼ 0, RV X1;X2ð Þ ¼ 1,

both with and without centering, as the two matrices are exactly the

same. However, for a in (0, 50], RV X1;X2ð Þ remained very close to

1 in the uncentered case, while it slowly decreased to 0 in the cen-

tered case. Hence, as at a ¼ 0.5 the configuration of X1 and X2 is

maximally apart, the centered case is preferable.

Using these simulation experiments, we have shown that the

Jaccard similarity can be used to construct configuration matrices

for binary data. Additionally, we have shown the importance of cen-

tering and that kernel centering can be used for the binary case.

3.4 Application to pharmacogenomics data
We applied the RV coefficient with both extensions to a collection

of pharmacogenomics data (a combination of GDSC1000 (Iorio

et al. 2016) and MCLP (Li et al. 2017), see Section 2) to infer how

the different datasets in this collection are related to each other. This

collection consists of three binary datasets (mutation, CNA and can-

cer type) and four continuous datasets (methylation, gene expres-

sion, proteomics and drug response). Intersecting the objects that

are present in all datasets resulted in data for 206 objects.

We used the PC algorithm (Colombo and Maathuis 2014; Peter

et al. 2000) (Supplementary Material) to study the relationships

A

B

Fig. 3. Illustration of the partial matrix correlation. (A) We will create artificial data such that X1 influences X2, which in turn influences X3. (B) Artificial data con-

sistent with the abovementioned causality, resulting in RV ðX1;X3jX2Þ � 0
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between datasets. Briefly put, this algorithm starts out with a

fully connected graph, where each node corresponds to a dataset,

and removes the edge between two datasets X1 and X2 when

RV X1;X2jCð Þ � 0 (i.e. when it is not significantly different from 0).

This step is repeated for increasingly larger sets of C, from C ¼ Ø

(no datasets) to C ¼ U n fX1;X2g (all datasets except X1 and X2),

until either the edge is removed or all possible sets have

been assessed. Finally, the PC algorithm attempts to, under

certain assumptions, determine the directionality of the edges

(Supplementary Material). However, for the pharmacogenomics

data, the algorithm was unable to infer the directionality of any

edge in the graph.

Using the approach outlined above, the PC algorithm essentially

summarizes the set of all 560 partial matrix correlations in a top-

ology. An important caveat of this approach is that it uses the ab-

sence of a significant association to determine the absence of a

relation between two datasets. As this may not always be true (there

may be such a relation, but we may not have enough objects to

detect it), we will also inspect the underlying (partial) matrix corre-

lations and their confidence intervals for the most important

hypotheses generated from the topology.

Figure 5 shows the topology resulting from the PC algorithm.

Gene expression takes up a strikingly central position in the graph,

being connected to all other data types. Using the underlying partial

correlations and their confidence intervals, we verify that gene ex-

pression acts as a mediator between the ‘upstream data’ (mutation,

CNA, methylation and cancer type) on the one hand and the drug

response data on the other hand: the partial matrix correlations be-

tween these datasets and the drug response drop to nearly zero when

correcting for gene expression (Fig. 6A).

Proteomics also takes up an interesting position in the graph.

The proteomics data shows a very strong relationship with gene ex-

pression (RV ¼ 0.76). Interestingly, using the underlying partial ma-

trix correlations, we see that this relationship fully contains the

information shared between the upstream data and proteomics:

RV Xi; proteomics j expressionð Þ � 0, for each dataset Xi in the

upstream datasets (Fig. 6B). Finally, gene expression and proteomics

share information with drug response that is not present in the other

dataset: RV expression; drug response j proteomicsð Þ > 0 and RV

proteomics; drug response j expressionð Þ > 0 (Fig. 6C). Hence,

even though gene expression and proteomics share a large amount

of information, they both contain unique information with respect

to drug response.

Overall, we have shown here that our methodology can be used

to infer how different datasets are related to each other.

3.5 Identifying which variables predictive of drug

response are distinct to either gene expression or

proteomics
The topology that we have inferred suggests that for accurate predic-

tion of drug response we only need gene expression and proteomics.

Indeed, when we train Elastic Net models (Zou and Hastie 2005)

(Supplementary Material) to predict the drug response from either

all datasets (other than drug response) or from only gene expression

and proteomics, we found that they result in virtually identical pre-

dictive performance (Supplementary Fig. S2A).

We then asked which variables are both predictive of drug re-

sponse and distinct to either gene expression or proteomics. To an-

swer this question, we used TANDEM (Aben et al. 2016)

(Supplementary Material). Briefly, given a response vector y (e.g.

drug response of a single drug) and two datasets X1 and X2 (e.g.

gene expression and proteomics), TANDEM uses two stages of

Elastic Net regression to first identify all variables in X1 that are

associated with y, and then identify all variables in X2 that are asso-

ciated with y but whose information is not present in X1.

For each drug, we trained two TANDEM models:

• GEXunique: a model that uses proteomics in the first stage and

gene expression in the second stage, thereby identifying variables

with information that is unique to the gene expression data.
• PROTunique: the counterpart of GEXunique, with gene expression

in the first stage and proteomics in the second stage.

We found that GEXunique mostly uses proteomics data and

PROTunique mostly uses gene expression data, while both achieve

similar predictive performance (Supplementary Fig. S2B–D). This is

A B

Fig. 4. Artificial data experiment in which the RV coefficient (y-axis) is measured at different levels of similarity (a, x-axis), both with and without centering, for (A)

two continuous datasets and (B) two binary datasets
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of course not very surprising, as we have already seen using the RV

coefficient that a lot of information is shared between the gene ex-

pression and proteomics data.

For each drug and for both TANDEM models, we then deter-

mined variable importance scores (Supplementary Material) and

averaged these over drugs to identify variables that made the

largest overall contribution to the prediction of drug response. For

GEXunique, the most important gene expression variable was ABCB1

expression. ABCB1 is a protein in the cell membrane that pumps for-

eign substances (including drugs) out of the cell. As such, it is known

to be associated with resistance to a wide range of drugs (Garnett

et al. 2012). The proteomics data we considered here did not con-

tain ABCB1, hence it is not unexpected that this information is not

present in the proteomics data.

For PROTunique, the most important variable was MEK1 S217/

S221 phosphorylation (pMEK1). The phosphorylation of MEK1

indicates MAPK pathway activation and is hence associated to sensi-

tivity to MAPK pathway inhibitors, such as BRAF, MEK and ERK

inhibitors. As the proteomics data contains both phosphorylation

and protein abundance variables, we wondered whether one of these

classes might be enriched in the distinct proteomics—drug response

part. However, we found no significant difference between the vari-

able importance scores in the PROTunique models for these two

classes (P¼0.68, Mann–Whitney U Test) (Supplementary Fig. S2E).

Altogether, we have shown here that, informed by the topology

of the datasets we inferred with iTOP, we can identify which varia-

bles correspond to distinct gene expression—drug response and pro-

teomics—drug response relationships.

4 Discussion

In this work, we have introduced iTOP, a methodology to infer a

topology of relationships between datasets. To this end, we have

extended the RV coefficient for partial matrix correlations, allowing

one to identify how much information is shared between two data-

sets, but not present in other datasets. In addition, we have also

extended the partial RV coefficient for binary data, using the

Jaccard coefficient. We have tested both extensions using artificial

data and used them to infer a topology of the pharmacogenomics

data. Finally, we have zoomed in on part of the topology and have

identified variables predictive of drug response that are distinct to ei-

ther gene expression or proteomics using TANDEM.

A B C

Fig. 6. The (partial) matrix correlations for different RV ðX1;X2jX3Þ in the pharmacogenomics data. For each bar in the barplot, X1 and X2 are indicated by the black

blocks, and X3 is indicated by the red block. A (partial) matrix correlation was significant when P<0.01. The error bars indicate the 99% confidence interval. mut,

mutation; meth, methylation; expr, gene expression; prot, proteomics; drug, drug response

Fig. 5. Relationships between datasets in the pharmacogenomics data, as

determined using the PC algorithm run on the partial matrix correlations. An

edge indicates that two datasets share information that is not present in any

of the other datasets
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An important caveat of the PC algorithm used in our approach is

that the absence of a significant P-value does not necessarily mean

the absence of a relationship between two datasets: it can also mean

this relationship is present, but that we did not have enough power

to detect it. Of note, this also means that the inferred topology can

change as the number of objects increases, simply because this

enhances our ability to detect very small effects. For these reasons,

we suggest to not solely rely on P-values to determine the absence or

presence of these links. Instead, we suggest using the PC algorithm

as a tool to summarize the results from the numerous possible par-

tial matrix correlations into a topology, after which the hypotheses

generated from this topology should also be assessed by inspecting

the relevant (partial) matrix correlations and their confidence inter-

vals. These values will give an indication of both the strength of the

associations and how well we can estimate these, and may hence

suggest the inclusion of an association that is strong but uncertain,

or the exclusion of a certain—but weak—association.

We note that there are other options for binary similarity meas-

ures besides the Jaccard coefficient. For example, we have consid-

ered the phi coefficient, which is the Pearson correlation applied to

binary measurements (Yule 1912; Zegers 1986). The main benefit of

the phi coefficient is that it is a centered measure and hence kernel

centering of the resulting configuration is not required. A minor dis-

advantage of the phi coefficient is that it is not defined in cases

where objects consist of only zeroes or only ones. This can be easily

circumvented however, for example by defining phi(x, y) ¼ 0 in

these cases. The main disadvantage of the phi coefficient lies in its

definition of similarity: for the phi coefficient, both coinciding

zeroes and ones contribute towards similarity, whereas for the

Jaccard similarity only coinciding ones do. We believe objects are

similar when they share the same mutations (rather than the absence

of mutations) and hence prefer the Jaccard similarity here.

In future work, the RV coefficient could be further extended for

other types of data. For example, a matrix with ordinal data could

be converted into a configuration matrix using the Spearman rank

correlation or the rOZ coefficient similarity (Vegelius 1976; Zegers

1986). Additionally, other semi-positive definite kernels that de-

scribe the similarity between objects could be used as a configur-

ation matrix. For example, if we were to consider a dataset that is

represented as a graph (where each node corresponds to an object),

then a configuration matrix could be constructed using a graph dif-

fusion kernel (Imre Kondor and John 2002). Finally, as many multi-

omics data contain patient survival data, defining a configuration

matrix for survival data opens up interesting avenues for future re-

search. For each of these extensions, careful assessment of the need

of kernel centering will be required.

We believe that iTOP can be applied to a broad range of data,

beyond the pharmacogenomics data analyzed here. Essentially, for

all data in which the same objects have been characterized in mul-

tiple modalities, this methodology can be used to infer a topology of

relationships between the resulting datasets. Hence, as multi-omics

and phenotypic data is collected for increasingly more experiments,

we believe our methodology will be highly relevant and widely

applicable.
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