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Abstract
Endothelial–mesenchymal transition occurs during intimal hyperplasia and neointima formation via mechanisms
that are incompletely understood. Endothelial MAPK7 signaling is a key mechanosensitive factor that protects
against endothelial–mesenchymal transition, but its signaling activity is lost in vessel areas that are undergoing
pathological remodeling. At sites of vascular remodeling in mice and pigs, endothelial MAPK7 signaling was
lost. The TGF-induced microRNA-374b targets MAPK7 and its downstream effectors in endothelial cells, and
its expression induces endothelial–mesenchymal transition. Gain-of-function experiments, where endothelial
MAPK7 signaling was restored, precluded endothelial–mesenchymal transition. In human coronary artery disease,
disease severity is associated with decreased MAPK7 expression levels and increased miR-374b expression
levels. Endothelial–mesenchymal transition occurs in intimal hyperplasia and early lesion formation and is
governed in part by microRNA-374b-induced silencing of MAPK7 signaling. Restoration of MAPK7 signaling
abrogated these pathological effects in endothelial cells expressing miR-374b. Thus, our data suggest that the
TGF-miR-374b-MAPK7 axis plays a key role in the induction of endothelial–mesenchymal transition during
intimal hyperplasia and early lesion formation and might pose an interesting target for antiatherosclerosis therapy.
© 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain
and Ireland.
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Introduction

The development of atherosclerosis is preceded by inti-
mal hyperplasia and neointima formation [1]. Although
the commonly recognized risk factors for the develop-
ment of lesions and atherosclerosis are present at the
systemic level [2], neointima formation and atheroscle-
rosis manifest focally in so-called atheroprone regions
[3]. These atheroprone regions are characterized by low
levels of nonuniform shear stress, typically encountered
at the outer walls of vascular bifurcations and at the inner
wall of vascular curvatures, whereas atheroprotected
regions are characterized by high levels of uniform
laminar shear stress (LSS) [4].

We and others have recently described a major con-
tribution of endothelial cells to intimal hyperplasia and
atherosclerosis development [5–7]. Upon exposure to
inflammatory and profibrotic growth factors (i.e. TGFβ)
and cytokines, endothelial cells lose their endothelial
cell markers and functionality, start to express markers
of the mesenchymal lineage, and gain contractile behav-
ior [8–10]. During early lesion formation, endothelial
cells that undergo this endothelial–mesenchymal transi-
tion (EndMT) acquire a fibroproliferative mesenchymal
phenotype and migrate from the endothelial monolayer
to the underlying lesion [5,6].

TGFβ is a major inducer of EndMT and is highly
expressed in neointimal lesions [11], which may cause
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EndMT. We discovered that high levels of uniform
LSS – observed at atheroprotected regions of the
arteries – activates a specific mitogen-activated kinase
(MAPK), namely, MAPK7 [also known as Erk5 or
Big MAPK (BMK1)], which inhibits the induction of
EndMT by TGFβ1 [5]. Corroboratively, knockdown of
MAPK7 in endothelial cells causes EndMT, even in the
absence of exogenous TGFβ1 [5], suggesting a pivotal
balance between TGFβ and MAPK7 signaling in the
induction of EndMT and the formation of early lesions.
Indeed, TGFβ1 represses endothelial MAPK7 expres-
sion through unidentified mechanisms (unpublished
data), and the loss of endothelial MAPK7 signaling
aggravates atherosclerosis development [12].

MicroRNAs (miRNAs) are small, noncoding RNAs
that cause post-translational repression of their target
genes. MicroRNAs elicit translational repression by
imperfect base-pairing to the 3′-UTR of their gene tar-
gets [13], which allows any specific microRNA to target
multiple genes simultaneously. Moreover, multiplicity
of microRNA targets might also allow one microRNA
to specifically target multiple genes within one sig-
nal transduction cascade [14], efficiently abolishing its
activity.

TGFβ induces a shift in endothelial miRNA expres-
sion levels [15–18] that may reduce MAPK7 signaling
and thus facilitate EndMT induction. Here, we hypoth-
esized that TGFβ1 induces the expression of a specific
miRNA that targets MAPK7 and its signaling interme-
diates, resulting in the induction of EndMT.

Materials and methods

Additional details are provided in supplementary mate-
rials, Supplementary materials and methods.

Clinical samples
Human coronary arteries were obtained from autopsy
specimens from 10 patients who died from an acute
coronary episode at the Heart Institute (InCor), Sao
Paulo, Brazil. During necropsy, each dissected coronary
artery was fixed in neutral-buffered formalin with con-
stant perfusion at a quasinormal perfusion pressure. The
mean age of subjects contributing pathology specimens
was 65 years. Hypertension was present in nine subjects
and diabetes in six. Five individuals were active smok-
ers. The patients’ next of kin gave informed consent,
and the investigation was performed according to institu-
tional guidelines (InCor, Sao Paulo; #SDC 3723/11/141
and #CAPPesq 482/11) and the Declaration of Helsinki.

Animals and surgical procedures
Porcine abdominal trifurcations were obtained
from healthy male slaughterhouse Yorkshire pigs
(12–13 weeks of age; body weight 30–35 kg, n = 3,
V.O.F. van Beek, Lelystad, The Netherlands). Animals
were fed a normal diet and were euthanized under

anesthesia [ketamine (Nimatek) and midazolam with
a bolus of pentobarbital and heparin (Actrapid)]. No
ethical approval is needed for the use of slaughter-
house materials according to Dutch law. Male C57Bl/6j
wild-type mice (8–12 weeks of age, n = 8, Harlan,
Horst, The Netherlands) were subjected to transverse
aortic constriction (TAC) under anesthesia [2% Isoflu-
orane (Forene; Abbott, Zwolle, The Netherlands) and
oxygen] and analgesia (Carprofen, 5 mg/kg). In brief,
an incision was made in the second intercostal space,
and a small incision was made in the parietal pleura
to expose the ascending loop of the aorta. The aorta
was supported with a 27G needle, and a suture was
placed around the aorta and drawn tight, after which the
needle was removed. Next, the pleura, muscle layers,
and skin were closed by sutures. Animals received
postoperative analgesia (Carprofen, 5 mg/kg/day for
48 h). Animals were kept on a 12 h light:dark cycle
with access ad libitum to standard laboratory chow and
water. Eight weeks after aortic constriction, animals
were sacrificed under deep anesthesia (3% Isofluorane
by exsanguination), after which the thoracic aorta was
explanted. Experiments on mice were approved by the
local Institutional Animal Care and Use Committee
(University of Groningen, #DEC-5910).

Human umbilical vein endothelial cell culture
Human umbilical vein endothelial cells (HUVEC,
Lonza, Walkersville, MD, USA) were cultured
in endothelial cell medium up to passage 5 as described
previously [8]. EndMT was initiated by replating the
HUVEC in RPMI1640, supplemented with 20% FCS,
1% penicillin–streptomycin, 2 mM L-glutamine, 5 U/ml
heparin, and 10 ng/ml TGFβ1 (Peprotech, NJ, USA).
For shear stress experiments, HUVEC were plated
on 1% gelatin-coated μ-Slides (Ibidi, Martinsried,
Germany) and grown to confluence prior to exposure to
20 dynes per⋅cm of unidirectional uniform LSS. LSS
was generated using the Ibidi Pump System (Ibidi).

3′-UTR reporter analysis
Gene-specific 3′-UTR fragments were isolated from a
cDNA pool derived from various human tissues using
oligonucleotides extended with SgfI (GCGATCGC)
and NotI (GCGGCCGC) restriction sequences in the
sense and antisense primer, respectively (see sup-
plementary material, Table S1). DNA amplification
was performed using the DyNAzyme EXT PCR kit
(Finnzymes, Vantaa, Finland) according to the manufac-
turer’s instructions. Amplicon size was validated by gel
electrophoresis on 1% agarose gels. 3′-UTR fragments
were cloned into the SgfI/NotI-sites of the psiCHECK-2
dual luciferase reporter vector (Promega, Madison, WI,
USA). COS-7 cells were transfected with 100 ng/ml
3′-UTR reporter plasmid and 50 nM miR-374b mimic
or scrambled control (Life Technologies, Carlsbad,
CA, USA) using Lipofectamine2000 (ThermoFisher,
Waltham, MA, USA). Luciferase activity was assayed
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48 h post-transfection using the DualGlo Luciferase
assay system (Promega) and recorded for 1 s on a
Luminoskan ASCENT photometer (ThermoFisher).

Plasmids and lentiviral expression of miR-374b,
shRNA, and MAPK7 signaling members
For lentiviral expression of miR-374b and small
hairpin RNA (shRNA) against MAPK7 signaling
members, DNA oligonucleotides containing the endoge-
nous miR-374b hairpin or specific 21-mer targeting
sequences for human MAP3K3, MAPK7, MEF2D, or
KLF4 (all Sigma-Aldrich, St. Louis, MO, USA, see
supplementary material, Table S2) were cloned into
the BamHI/EcoRI sites of the pGreenPuro shRNA
expression vector (System Biosciences, Palo Alto, CA,
USA), Scrambled sequences were used as control.

Gene-CDS fragments were isolated from a cDNA
pool derived from various human tissues using oligonu-
cleotides extended with EcoRI (GAATTC) and BamHI
(GGATCC) restriction sequences in the sense and
antisense primer, respectively (see supplementary mate-
rial, Table S3). Amplification was performed using the
DyNAzyme EXT PCR kit (Finnzymes, Vantaa, Finland)
according to the manufacturer’s instructions. Ampli-
con size was validated by gel electrophoresis on 1%
agarose gels. Gene-CDS fragments were cloned into the
EcoRI/BamHI sites of the pCDH-CMV-MCS-EF1-Puro
lentiviral expression vector (System Biosciences).
Empty vectors served as control.

For lentiviral transduction, HEK293 cells were
transfected with pGreenPuro or pCDH- CMV-
MCS-EF1-Puro shuttle vectors and second-generation
lentiviral helper plasmids using Endofectin
(GeneCopoeia, MD, USA). Viral supernatants were col-
lected every 24 h, supplemented with 6 μg/ml polybrene
and directly transferred to HUVEC cultures for two
consecutive rounds. Transduced cells were selected for
puromycin resistance 72 h post-transduction (4 μg/ml
puromycin) for 24 h and reseeded into a puromycin-free
medium for the experiments. Transduced cells did not
differ in cell viability or proliferative capacity from
nontransduced cells or cells transduced with control
vectors.

MicroRNA and gene transcript analysis
Total RNA was isolated using TRIzol reagent (Invitro-
gen, Carlsbad, CA, USA) according to manufacturer’s
instructions. For microRNA transcript analyses, 20 ng
of total RNA was reverse transcribed using a Taqman
MicroRNA Reverse Transcription kit (Applied Biosys-
tems, Foster City, CA, USA) using microRNA-specific
stemloop primers (see supplementary material, Table
S4). For gene transcript analysis, 1 μg of total RNA was
reverse transcribed using the RevertAid First Strand
cDNA Synthesis Kit (Applied Biosystems) according to
manufacturer’s protocol. Quantitative PCR expression
analysis was performed on a reaction mixture con-
taining 10 ng cDNA equivalent, 0.5 μM sense primers,

and 0.5 μM antisense primers (for microRNA primers
see supplementary material, Table S4 and gene tran-
script primers see supplementary material, Table S5,
all Sigma-Aldrich, St. Louis, MO, USA) and FastStart
SYBR Green (Roche, Almere, The Netherlands). Anal-
yses were run on a Viia7 real-time PCR system (Applied
Biosystems).

Immnunofluorescence
Heat-induced antigen retrieval was performed
on formalin-fixed paraffin-embedded sections using
0.1 M Tris–HCl (pH 9.0, 80 ∘C, 20 min) prior
to immunohistochemistry. Sections were incubated
with primary antibodies at room temperature for 2 h,
followed by incubation with secondary antibodies
at room temperature for 1 h (Table S6). Detailed
descriptions of the imaging procedures are provided
in supplementary material, Supplementary materials
and methods.

microRNA in situ hybridization
Proteinase K was used to demask microRNAs in the
formalin-fixed paraffin-embedded sections prior to in
situ hybridization. Sections were incubated with double
DIG-labelled probes against miR-374b (Exiqon/Qiagen,
Vedbaek, Denmark) at 44 ∘C according to the manufac-
turer’s protocol. Detection of miR-374b was performed
using 1 μg/ml anti-DIG-fluorescein antibodies (Roche).

Immunoblotting
Whole-cell lysates were prepared in RIPA buffer (Ther-
moFisher) supplemented with 1% protease inhibitor
cocktail (Sigma-Aldrich) and 1% HALT-phosphatase
inhibitor cocktail (ThermoFisher). Protein concentra-
tions were determined using the detergent-compatible
protein assay (Bio-Rad, Hercules, CA, USA) according
to manufacturer’s protocol. Equal amounts of protein
were loaded on a 10% denaturing SDS–polyacrylamide
gel and separated by gel electrophoresis (110 V). Next,
proteins were blotted onto nitrocellulose membranes
using the Trans-Blot Turbo System (Bio-Rad) accord-
ing to manufacturer’s instructions. Blots were blocked
in Odyssey Blocking Buffer (Li-COR Biosciences,
Lincoln, NE, USA) at room temperature for 30 min
and incubated at 4 ∘C with primary antibodies (see
supplementary material, Table S7) in Odyssey Block-
ing Buffer overnight, after which membranes were
incubated with secondary antibodies (see supplemen-
tary material, Table S7) in Odyssey Blocking Buffer
at room temperature for 1 h. Protein was detected using
the Odyssey Infrared Imaging System (Li-COR Bio-
sciences). Densitometric analysis was performed using
Totallab 120 (Nonlinear Dynamics, Newcastle upon
Tyne, UK).

Angiogenic sprouting capacity
A total of 10 μl of MatriGel (BD Biosciences, San
Jose, CA, USA) was solidified in μ-Slide Angiogenesis
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(Ibidi); 10 000 cells per well were cultured on the solid-
ified MatriGel in endothelial growth medium, and the
formation of sprouts was analyzed by conventional light
microscopic analysis after overnight incubation.

Collagen contraction assay
Cells were suspended in a solution of rat tail Collagen
type I (Corning, Corning, NY, USA) containing 3 mg/ml
NaHCO3 and 0.1 M Na2HPO4. Aliquots of 50 μl (con-
taining 100 000 cells and 0.5 mg Collagen type I) were
solidified at 37 ∘C in a humidified incubator with 5%
CO2 for 30 min. The collagen gels were released from
the culture dishes by the addition of 2 ml endothe-
lial growth medium and were imaged using a common
Flatbed sc anner and allowed to contract for an addi-
tional 24 h. The degree of gel contraction was deter-
mined by measuring the total gel area and dividing the
areas of the contracted gels by the areas of the gels
before contraction.

Statistical analysis
Data are presented as means±SEM. n values relate to
independent experiments/samples. P values were calcu-
lated using one-way ANOVA followed by Bonferroni’s
post hoc comparisons tests using GraphPad Prism
(GraphPad Software, San Diego, CA, USA). p < 0.05
was considered statistically significant.

Results

MicroRNA-374b targets MAPK7 signaling
Database analysis (miRanda [19,20]) identified 12
microRNAs that putatively target MAPK7 (see supple-
mentary material, Figure S1). We crosschecked these
microRNAs against other genes in the MAPK7 signal-
ing cascade (see supplementary material, Figure S1)
and found that the miR-374 family (miR-374a and
miR-374b) target not only MAPK7 but also its upstream
activators Rac1, MAP3K3, and MAP3K7. More-
over, miR-374 also putatively targets the downstream
transcription factors of the myocyte enhancer fac-
tor (MEF)-2 family as well as Krüppel-like factor
(KLF)-4 (see supplementary material, Figure S2).
TGFβ1 induced the expression of miR-374a, miR-374b,
miR-143, miR-24, and miR-410 in endothelial cells
(p < 0.05 versus unstimulated control cells), whereas it
decreased the expression of miR-488 (p < 0.05 versus
unstimulated control cells). The expression of miR-429,
miR-200b, miR-200c, miR-183, miR-124, and miR-506
were unchanged (see supplementary material, Figure
S3) upon TGFβ1 treatment.

MicroRNA-374a and miR-374b collectively have
1305 putative gene targets, of which 527 and 434 are
unique to miR-374a and miR-374b, respectively. A
total of 344 putative gene targets are shared between
miR-374a and miR-374b (see supplementary material,

Figure S2). Analysis of genes within the MAPK7
signaling cascade indicates that MAP3K7 (TAK1),
MAPK7 (ERK5), MEF2A, and MEF2C are putative
targets of miR-374a and miR-374b, whereas Rac1,
MAP3K3 (MEKK3), MEF2D, and KLF4 are targets of
miR-374b only. None of the genes within the MAPK7
signaling cascade where unique targets to miR-374a
(see supplementary material, Figure S2).

MicroRNA-374b and MAPK7 are differentially
expressed at atheroprone regions
EndMT contributes to the formation of intimal
hyperplasia [5], which is aggravated by the loss of
protective MAPK7 signaling [12]. Cells coexpress-
ing an endothelial-specific molecule (ESM)-1 and
the mesenchymal protein SM22α were abundantly
present in the hyperplastic intima of the porcine tri-
furcation – a well-documented model of early lesion
formation [21–23] – compared to the nonhyperplastic
intima (11.5 versus 1.0%; p < 0.001, Figure 1A). In the
atheroprone hyperplastic regions, endothelial MAPK7
expression was decreased two-fold (p = 0.01) com-
pared to endothelial cells in the atheroprotected regions
within the same trifurcation (Figure 1B). We dissected
the atheroprone and atheroprotected areas of the porcine
trifurcation and found increased expression levels of
miR-374b in the atheroprone regions (∼three-fold,
p = 0.04, Figure 1C). Concurrently, in mice with trans-
verse aortic banding, atheroprone regions characterized
by disturbed fluid shear stress were characterized by the
accumulation of cells expressing both the endothelial
marker CD31 and the mesenchymal protein SM22α
(12.3%, Figure 1D), indicative of EndMT. At these
atheroprone sites, endothelial MAPK7 expression was
decreased (1.6-fold, p = 0.04, Figure 1E), whereas
the expression of miR-374b was elevated (four-fold,
p = 0.01, Figure 1F). We assessed the expression pat-
tern and level of miR-374b by fluorescence in situ
hybridization in mice with aortic banding. At athero-
protected sites, miR374b levels were low and primarily
present in endothelial cells, whereas miR-374b was
evident in the endothelium (CD31-positive cells) at
atheroprone regions where its abundance was increased
∼three-fold (p < 0.001; Figure 1G).

In vitro, endothelial cells treated with TGFβ1 dis-
played cell death and hypertrophy (Figure 1H) and had
increased levels of miR-374b (∼nine-fold compared
to nonstimulated cells, p < 0.001), which was com-
pletely abolished by the addition of a small molecule
inhibitor of ALK5 (SB431542) (Figure 1H,I). The
hypertrophic endothelial cells are reminiscent of
senescent endothelial cells; however, no change in
expression of senescence-associated (SA) expression
of p16INK4 or p21 was detected, nor was a change
in SA-β-Galactosidase expression found (see sup-
plementary material, Figure S4). The increase in
miR-374b expression associated with decreased expres-
sion of MAPK7 (r2 = 0.797, p < 0.001, Figure 1J,K)
and intermediates of MAPK7 signaling, that is, Rac1

© 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2019; 247: 456–470
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Figure 1. Legend on next page.
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(r2 = 0.595, p < 0.01), MAP3K7 (r2 = 0.688, p < 0.01),
MAPK7 (r2 = 0.797, p < 0.01), MEF2D (r2 = 0.682,
p < 0.001), and KLF4 (r2 = 0.555, p < 0.01, see supple-
mentary material, Figure S5A), as well as a decreased
expression of endothelial markers, CDH5 (VE-cadherin;
r2 = 0.678, p < 0.001) and NOS3 (eNOS; r2 = 0.546,
p < 0.01, see supplementary material, Figure S5B)
and increased expression of mesenchymal markers
TAGLN (SM22α; r2 = 0.872, p < 0.001) and CNN1
(r2 = 0.814, p < 0.001, see supplementary material,
Figure S5C).

Under LSS, endothelial cells aligned in the direc-
tion of flow, indicating mechanosensory behavior
(Figure 1L). In contrast to the static cell cultures,
endothelial cells exposed to LSS did not became
hypertrophic and did not increase their expression of
miR-374b, even when exogenous TGFβ1 was applied
(Figure 1M). Corroboratively, MAPK7 expression,
which is diminished by TGFβ1 in static cultures,
remained high under LSS even in the presence of
TGFβ1 (Figure 1N).

MiR-374b targets multiple members of the MAPK7
signaling cascade
Computational analysis of putative miR-374b targets
identified multiple members of the MAPK7 signal-
ing cascade (Figure 2A). Reporter assays, wherein the
3′-UTR regions of miR-374b gene targets are coupled
to a luciferase gene, demonstrated that the MAPK7 sig-
naling members Rac1, MAP3K3, MAP3K7, MAPK7,
MEF2d, and KLF4 are genuine miR-374b target genes
(Figure 2B) because cotransfection of these reporter
plasmids with miR-374b mimics reduced luciferase
activity (all p < 0.01). In contrast, cotransfection of
reporter plasmids with a scrambled miR-374b sequence
did not alter luciferase activity (Figure 2B). MEF2a
and MEF2c were identified as putative gene targets of
miR-374b by in silico analyses; however, cotransfection
of their respective reporter constructs with miR-374b
mimics did not result in decreased luciferase activity

(Figure 2B), implying that MEF2a and MEF2c are not
genuine targets of miR-374b.

To establish if MAPK7 signaling members are in fact
endogenous miR-374b targets in mature endothelial
cells, we used lentiviral overexpression of miR-374b
or its scrambled sequence. Unstimulated control cells
readily expressed MAPK7 and its signaling members
(Figure 2C). Stimulation of mature endothelial cells
with TGFβ1 drastically reduced the expression of these
molecules (Figure 2C) to approximately 50% of con-
trol endothelial cell levels (all p < 0.01). Endothelial
cells that expressed miR-374b had reduced expres-
sion of MAP3K3 (∼33%, p < 0.01), MAPK7 (∼47%,
p < 0.01), MEF2d (∼37%, p < 0.01), and KLF4 (∼42%,
p < 0.001) compared to endothelial cells treated with
scrambled controls (Figure 2C). We questioned if
the loss of MAPK7 expression would also augment
MAPK7 signaling activity and therefore assessed the
expression of MAPK7 gene targets KLF2, KLF4 and
endothelial nitric oxide synthase (NOS3). Endothe-
lial cells that express miR-374b had decreased gene
expression of KLF2 (∼44%, p < 0.001), KLF4 (∼45%,
p < 0.01) and NOS3 (∼41%, p < 0.01). As KLF2
and NOS3 do not have a binding site for miR-374b
in their 3′-UTR, these data indicate that miR-374b
decreases endogenous MAPK7 signaling beyond direct
targets of miR-374b (see supplementary material,
Figure S6).

TGF-β1 suppresses MAPK7 expression through
induction of miR-374b and causes
endothelial–mesenchymal transition
We questioned whether ectopic expression of miR-374b
in endothelial cells would facilitate EndMT. Lentiviral
expression caused a ∼four-fold increase of miR-374b
in endothelial cells (Figure 3A). Consequently, endothe-
lial cells lost their typical cobblestone morphology and
started to show signs of hypertrophy (Figure 3B).
Consistent with EndMT, the expression of typical
endothelial cell markers, that is, VE-cadherin and

Figure 1. MicroRNA-374b and MAPK7 are differentially expressed in early lesions. (A) Porcine intimal hyperplastic lesions contain
myoendothelial cells (myoEC) that coexpress the endothelial cell marker ESM-1 (red) and mesenchymal cell marker SM22α (green). Nuclei
are stained with DAPI (blue). The atheroprotected regions are indicated by 1, and atheroprone regions are indicated by 2. (B) The expression
of MAPK7 (pMAPK7, green) is reduced in endothelial cells (ESM-1, red) in the atheroprone regions of the porcine trifurcation (n = 5),
whereas in (C), the expression of miR-374b was increased in the atheroprone areas compared to atheroprotected areas of the same porcine
trifurcation (n = 5). Mice were subjected to TAC. (D) Eight weeks after TAC, myoEC that coexpress the endothelial cell marker CD31 (red)
and the mesenchymal cell marker SM22α (green) were detected at the areas exposed to disturbed flow (annotated 2, n = 5, *=ligation). (E)
The expression of MAPK7 (pMAPK7, green) was reduced in endothelial cells (CD31, red) in the areas exposed to disturbed flow compared
to areas exposed to laminar flow (n = 5), which coincides with (F) an increase in the expression of miR-374b (n = 5). (G) The expression
of miR-374b was confirmed by fluorescence in situ hybridization, which indicates a strong endothelial signal, especially at aortic regions
exposed to disturbed shear stress (n = 4). H) In vitro, endothelial cells treated with TGFβ1 were hyperplastic (which was inhibited by the
ALK5-inhibitor SB431542 at 10 μM) and (I) increased their expression of miR-374b (n = 6). (J) The expression of MAPK7 was reduced in
TGFβ1-stimulated endothelial cells, compared to untreated control cells or endothelial cells treated with TGFβ1 and the ALK5-inhibitor
SB431542 (n = 6). (K) The expression levels of miR-374b were inversely associated with MAPK7 expression levels (n = 6). (L) Laminar fluid
shear stress (20 dyne⋅cm2) antagonized the cellular hypertrophy induced by TGFβ1 in endothelial cells and (M) inhibited the increase in
miR-374b expression (n = 5). (N) Concurrently, when exposed to fluid shear stress, MAPK7 expression was unaltered in TGFβ1-treated
endothelial cells compared to unstimulated control cells (n = 5). T -test for comparison between two groups; one-way ANOVA for analyses
between multiple groups. *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 2. MicroRNA-374b interferes with MAPK7 signaling at multiple levels. (A) In silico analysis (TarBase [24]) demonstrates that
miR-374b putatively targets multiple genes within the MAPK7 signaling cascade with different efficacies (miRSVR-scores indicate the
predicted target site efficacy [20]). (B) Cotransfection of 3′-UTR reporter constructs with miR-374b mimics or scrambled control sequences
in COS7 cells suggests that Rac1, MAP3K3, MAP3K7, MAPK7, MEF2D, and KLF4 are genuine miR-374b target genes (n = 5). (C, D)
Transfection of miR-374b mimics in endothelial cells mimics the TGFβ1-induced decrease in expression of MAPK7 signaling members
(n = 3). One-way ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001.

eNOS, was lost (Figure 3B,C), whereas expression
of mesenchymal cell markers, that is, SM22α and
Calponin 1 (CNN1), was induced (Figure 3B,C). In
addition, miR-374b gain of function in endothelial cells
reduced the ability to form capillary-like sprouts on
Matrigel (Figure 3D) and fostered the gain of contractile
behavior (Figure 3E), all consistent with mesenchymal
transition.

Loss of specific miR-374b targets induces
endothelial–mesenchymal transition
We questioned whether the loss of function of spe-
cific miR-374b targets would suffice for EndMT
induction and used a shRNA approach to specifically

decrease MAP3K3, MAPK7, MEF2d, or KLF4 expres-
sion in endothelial cells (see supplementary material,
Figure S7). Decreased expression of MAPK7 signal-
ing members caused the dissociation of endothelial
cell–cell contacts and decreased the expression
of VE-cadherin. Concurrently, the expression of
SM22α was increased upon loss of MAPK7 signal-
ing (Figure 4A). The expression of endothelial markers
VE-cadherin and eNOS was abrogated, and the expres-
sion of mesenchymal markers SM22α and Calponin
was induced (Figure 4B,C). Moreover, angiogenic
sprouting ability decreased (Figure 4D). In contrast
to the EndMT induction by the loss of downstream
MAPK7 signaling members, MAP3K3 deficiency did
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Figure 3. MicroRNA-374b gain-of-function induces EndMT. (A) Transformation of endothelial cells with a lentivirus encoding the stemloop
sequence of miR-374b increased its expression ∼four-fold. (B) MiR-374b-expressing endothelial cells were hypertrophic and decreased
their expression of the endothelial cell marker VE-cadherin and increased expression of the mesenchymal cell marker SM22α, compared to
endothelial cells that expressed a scrambled control sequence. (C) VE-cadherin and eNOS expression were decreased in endothelial cells
expressing miR-374b, whereas the expression of SM22α and CNN1 was increased. (D) Endothelial cells expressing miR-374b had a reduced
angiogenic sprouting capacity and (E) increased contractile capacity compared to endothelial cells that expressed a scrambled control
sequence. All n = 5, t-test for comparison between two groups, *p < 0.05, **p < 0.01, ***p < 0.001.

not alter the expression of endothelial or mesenchy-
mal marker proteins (Figure 4B,C). Yet, angiogenic
sprouting ability was lost (Figure 4D), and contractile
behavior acquired (Figure 4E) by endothelial cells was
deficient in MAP3K3.

Maintenance of endothelial MAPK7 signaling
abrogates miR-374b-induced
endothelial–mesenchymal transition
To investigate whether restoration of MAPK7 signal-
ing members could block miR-374b-induced EndMT,
we used lentiviral expression of miR-374b together
with the protein-coding sequences of MAP3K3,
MAPK7, MEF2D, and KLF4 (Figure 5A). VE-cadherin

expression was reduced in endothelial cells that express
miR-374b, whereas the expression of SM22α was
induced. In contrast, cells that coexpressed MAP3K3 or
MAPK7 together with miR-374b maintained their
expression of VE-cadherin and eNOS and were
refractory to the induction of SM22a and Calponin by
miR-374b (Figure 3B–D), whereas cells coexpressing
KLF4 and miR-374b maintained only the expression
of eNOS (Figure 3C,D). Restoration of MEF2D in
endothelial cells expressing miR-374b inhibited the
expression of the mesenchymal proteins SM22α and
Calponin but failed to maintain the expression of
endothelial marker proteins VE-cadherin and eNOS
(Figure 3B–D). Restoration of all MAPK7 signaling
members in endothelial cells expressing miR-374b
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Figure 4. Knockdown of specific microRNA-374b gene targets induces EndMT. (A) Transformation of endothelial cells with lentiviruses
encoding shRNA sequences to MAP3K3, MAPK7, MEF2D, and KLF4 induced cellular hypertrophy, decreased the expression of the endothelial
cell marker VE-cadherin, and increased expression of the mesenchymal cell marker SM22α, compared to endothelial cells that expressed
scrambled control sequences. (B, C) VE-cadherin and eNOS expression were decreased in endothelial cells expressing shMAPK7, shMEF2D,
and shKLF4, whereas their expression was unaltered in endothelial cells expressing shMAP3K3. The expression of SM22α and CNN1 was
increased in endothelial cells expressing shMAPK7, shMEF2D, and shKLF4. (D) Endothelial cells expressing shRNA sequences to MAP3K3,
MAPK7, MEF2D, and KLF4 had a reduced angiogenic sprouting capacity and (E) increased contractile capacity compared to endothelial cells
that expressed a scrambled control sequence. All n = 6, one-way ANOVA, *p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 5. Re-expression of microRNA-374b target genes inhibits EndMT. (A) The expression of miR-374b target genes was restored by
lentiviral transformation using plasmids encoding the coding sequences (CDS) of MAP3K3, MAPK7, MEF2D, and KLF4 in endothelial cells
that overexpressed miR-374b. The (re-)expression of these genes was confirmed by RT-qPCR. (B–D) Endothelial cells that express miR-374b
decreased their expression of VE-cadherin and increased their expression of SM22α. These effects were counteracted by the expression of
MAPK7 signaling members. (E) Endothelial cells that expressed MAP3K3, MAPK7, MEF2D, or KLF4 have an enhanced angiogenic sprouting
capacity and (F) decreased contractile capacity compared to endothelial cell that express miR-374b. The levels of angiogenic sprouting and
contractile behavior were similar to that of endothelial cells transformed using scrambled control sequences. All n = 5, one-way ANOVA,
*p < 0.05, **p < 0.01, ***p < 0.001.
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Figure 6. MicroRNA-374b is increased in human coronary artery stenosis. (A–D) Verhoeff stain of progressive coronary artery stenosis
characterized by (E) an increasing intima/media ratio. (F) miR-374b expression is elevated in human coronary artery stenosis and (G)
correlated to the degree of stenosis. (H) Conversely, the expression levels of MAPK7 decrease with progressive stenosis and (I) are
inversely associated to the expression level of miR-374b. One-way ANOVA for comparison between groups, Pearson correlations, two-tailed.
**p < 0.01, ***p < 0.001.

maintained the angiogenic ability (Figure 3E) and pre-
cluded the contractile behavior induced by miR-374b
expression (Figure 3F).

MicroRNA-374b levels are increased in human
coronary artery stenosis
We assessed the expression levels of miR-374b
and MAPK7 in samples from progressive human
coronary artery stenosis. Increasing intima media
thickness (IMT) is associated with the severity of coro-
nary stenosis (Figure 5A,B) and increased miR-374b
expression (Figure 6C). Moreover, miR-374b levels
were associated with IMT (r2 = 0.5874, p < 0.01,
Figure 6D). Conversely, MAPK7 expression lev-
els progressively decrease with increasing stenosis
(Figure 6E). In human coronary artery stenosis, the
levels of miR-374b are associated with the expression
levels of MAPK7 (r2 = 0.3341, p < 0.01, Figure 6F),
suggesting that the miR-374b-induced loss of MAPK7

signaling might contribute to stenosis development and
progression.

Discussion

Here, we have shown that EndMT occurs in intimal
hyperplasia and early lesion formation and is governed
in part by microRNA-374b. We have previously
identified the inhibitory effects of MAPK7 signaling
on EndMT [5] and questioned whether MAPK7 signal-
ing is silenced at atheroprone areas in the vasculature.
We uncovered that the TGFβ-induced microRNA-374b
silences MAPK7 signaling and induces EndMT in
the absence of exogenous TGFβ (see supplemen-
tary material, Figure S8). Moreover, restoration of
MAPK7 signaling abrogated these pathological effects
in endothelial cells expressing miR-374b. Interestingly,
we uncovered that miR-374b levels are elevated in

© 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd J Pathol 2019; 247: 456–470
on behalf of Pathological Society of Great Britain and Ireland. www.pathsoc.org www.thejournalofpathology.com



miRNA-374b induces EndMT 467

human coronary artery disease and inversely related
with MAPK7 expression. These data suggest that the
TGFβ-miR-374b-MAPK7 axis plays a detrimental role
in the induction of EndMT during intimal hyperplasia
and early lesion formation and might pose an interesting
target for antiatherosclerosis therapy.

Atherosclerosis is characterized by systemic risk
factors, and antiatherosclerosis therapies are focused
on maintaining these systemic contributors within
clinically acceptable ranges (e.g. antihypertensives,
anti-inflammatory agents, and lipid-lowering drugs)
[25–27]. Yet, it is becoming increasingly clear that
focal risk factors, such as fluid shear stress levels,
play a major role in the pathogenesis of atheroscle-
rosis. Indeed, endothelial MAPK7 signaling has been
identified as a major contributor to the initiation and
severity of atherosclerosis [5,12]. The atheroprotec-
tive effects of MAPK7 include anti-inflammatory
effects, the reduction of oxidative stress, and the
increased biosynthesis of nitric oxide [28–30],
which decrease smooth muscle cell proliferation
and inflammatory cell infiltration into the atheroscle-
rotic neointima. We recently uncovered that endothelial
MAPK7 signaling additionally confers atheroprotec-
tive effects through the inhibition of EndMT [5], a
process increasingly recognized in the initial phases
of intimal hyperplasia and early lesion formation
[5–7,31]. Indeed, the inhibition of MAPK7 activity by
SUMOylation increases atherosclerosis [32,33], and
endothelial-specific deletion of MAPK7 aggravates
atherosclerosis development and progression [12].
MAPK7 activity culminates in the increased expression
of SMAD7 [34,35], a repressor of canonical TGFβ
signaling, which might explain the inhibitory effects
on EndMT by MAPK7 expression (see supplementary
material, Figure S8).

Here, we have used two models of early lesion forma-
tion, where biomechanics play a major role. First, the
porcine trifurcation model of early lesion formation is a
well-established preclinical model where pigs on a nor-
mal diet develop naturally occurring early lesions that
closely resemble early lesions in humans [21]. In these
lesions, there is abundant lipid [22], and smooth muscle
cell accumulation is evident at an early age. If the choles-
terol diet of the animals is raised for a number of months,
these early lesions progress into elastic–hyperplastic
lesions and then to lesions that contain a necrotic
core [22,23]. We recently identified a high number
of EndMT-derived fibroproliferative cells in the early
lesions of porcine trifurcations coexpressing markers of
the endothelium and mesenchymal lineage [5]. Second,
the murine model of thoracic aortic constriction for the
induction of cardiac failure was previously described
by us to induce robust EndMT just adjacent to the aor-
tic constriction [5]. In the current study, we corroborate
these findings by the identification of cells coexpressing
the endothelial cell marker ESM-1 (porcine model) or
CD31 (murine model) and the mesenchymal cell marker
SM22α. We extend these observations by showing a

loss of MAPK7 expression at these atheroprone sites in
both models.

Although EndMT is evident in both the porcine and
murine model of early lesion formation, we did not
investigate whether TGFβ signaling is increased in
these lesions. EndMT can be induced by a variety of
stimuli, such as TGFβ signaling, hypoxia, inflammatory
signaling, changes in endothelial cell metabolism, or
the loss of FGF2 signaling [36,37]. Here, we show that
altered biomechanical signaling, potentially through
MAPK7 signaling, is associated with the induction
of EndMT. Interestingly, disturbed endothelial shear
stress has been implicated in the activation of TGFβ and
inflammatory signaling [38,39], the reduction of FGF2
signaling [6], and the repression of cell metabolism [40]
in endothelial cells.

MicroRNAs are involved in atherosclerosis devel-
opment and progression [41], and microRNA-based
therapies that target endothelial dysfunction reduce
atherosclerosis development in mice [42–44]. MicroR-
NAs regulate gene expression by imperfect base-pairing
with the 3′-UTR region of their gene target, caus-
ing translational repression [45]. This imperfect
base-pairing allows for gene target multiplicity, where
one microRNA targets multiple genes with a spe-
cific signaling cascade [14]. Hence, we questioned if
MAPK7 signaling would be regulated by a specific
microRNAs and if such microRNA would be differ-
entially expressed at atheroprone and atheroprotected
sites. We found that miR-374b expression is elevated at
atheroprone areas in the vessel wall and is associated
with decreased MAPK7 expression.

A role for miR-374b in atherosclerosis has not been
described before, yet elevated levels of miR-374b have
been reported in the plasma of acute coronary syndrome
patients [46] and in stenosis of the arteriovenous fis-
tulae of dialysis patients [47]; however, its relevance
in these pathologies remains elusive. Here, we show
that miR-374b is a shear stress-sensitive microRNA
that targets MAPK7 signaling at multiple levels rang-
ing from its upstream activating kinase (i.e. MAP3K3)
to its downstream transcription factor (i.e. KLF4). The
loss of MAPK7 signaling culminates in the induction
of EndMT (see supplementary material, Figure S8) in
the absence of exogenous triggers, which contributes to
intimal hyperplasia and early lesion formation. More-
over, we show that restoration of MAPK7 signaling
in endothelial cells that express miR-374b abolishes
EndMT. From a clinical perspective, our data imply
that targeting miR-374b in atherosclerosis might restore
endothelial MAPK7 expression and limit lesion forma-
tion through the inhibition of EndMT.

Interestingly, it has been suggested recently
that cardiac fibroblasts might transition into
endothelial cells upon ischemic stress [48]. This
mesenchymal–endothelial transition (MEndT) yields
cells coexpressing endothelial and mesenchymal cell
markers, similar to the cells we describe here. Hence, it
is conceivable that a decreased expression of miR-374b
in fibroblasts might facilitate MEndT, culminating in
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cell expressing both lineage markers. Although we
cannot exclude the presence of MEndT by the data
presented here, EndMT-like cells were only found in
the subendothelial layer and not in the adventitial layer
where the vascular fibroblasts reside, nor did we find
a difference in miR-374b expression in the medial or
adventitial cell layers. Moreover, lineage-tracing studies
in atherosclerosis favor the presence of EndMT over
MEndT [6]. Although these observations would argue
against MEndT in atherosclerosis development, further
lineage-tracing experiments should be performed to
make a definite conclusion.

In conclusion, here, we have shown that miR-374b
expression is elevated in coronary artery stenosis
and early lesion formation and abolishes endothe-
lial MAPK7 expression, culminating in EndMT. The
restoration of endothelial MAPK7 expression surmounts
the induction of EndMT by miR-374b.
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