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SUMMARY

Ovarian clear cell carcinoma (OCCC) 
is the second most common subtype of 
epithelial ovarian cancer (EOC). EOC has 
historically been considered one entity, 
and therefore all subtypes are uniformly 
treated with optimal cytoreductive surgery 
and platinum-based chemotherapy (1, 

compared to stage matched high-grade 
serous ovarian carcinoma, which is 
explained by low response rates towards 
platinum-based chemotherapy (3-8). 

responses have focused on combining 
platinum with other chemotherapeutic 
agents or targeted therapies, but have 
unfortunately not led to higher survival 
rates (9-11). Accordingly, there is an 
urgent need to identify novel therapeutic 
targets and chemotherapy combinations 
to improve survival of OCCC patients. 

complexes are important regulators 
of chromatin structure and gene 

are genetically altered in cancer. The 
ARID1A 

is frequently mutated with the highest 
mutation frequency found in OCCC (12, 
13). 

The research presented in this thesis 
aimed to identify new therapeutic targets 
for the treatment of OCCC. To this 

vulnerabilities in OCCC with and without 
deleterious mutations in ARID1A.

The high prevalence of ARID1A 
deleterious mutations in OCCC (40-
57%) provides an excellent opportunity 
for synthetic lethal approaches in this 
ovarian cancer subtype. Synthetic 
lethality describes a relation between 
two genes where cells are still viable 
after loss of one gene but a lethal 

both genes. In chapter 2, we reviewed 
recent studies that performed synthetic 
lethality screens in an ARID1A mutant 
background in OCCC and other cancers. 
Advantages and drawbacks of these 
studies and the clinical relevance of the 

focused on synthetic lethal strategies in 
ARID1A mutant OCCC and, in addition, 
evaluated targets with synthetic lethal 

ARID1A mutant cancers 
for their applicability to OCCC. Inhibition 
of the epigenetic regulators EZH2, 
HDAC2, HDAC6 and BRD2 was found to 

ARID1A mutant 
OCCC and may be exploited clinically. 
The DNA repair proteins PARP and 

ARID1A mutant cancers and drugs 
targeting these proteins are currently 
being investigated in various clinical 
trials. However, PARP and ATR remain 
to be assessed as synthetic lethal targets 
in ARID1A mutant OCCC.
 Since ARID1A mutations are found 
in around 50% of OCCCs, we pursued 

OCCC cell lines with ARID1A mutations. 
Therefore, in chapter 3, shRNA based 
synthetic lethality screens were performed 
in a large panel of ARID1A wild-type and 
mutant OCCC cell lines (n=14). Given 
that over half of the human kinases 
(kinome) are chemically druggable, 

centered lethality screens to maximize 
the chance to identify therapeutically 
actionable targets (14). Knockdown of 
the epigenetic reader BRD2 proved to be 
predominantly lethal in ARID1A mutant 
OCCC cells. Importantly, small molecule 
inhibitors of the BET bromodomain 
protein family, to which BRD2 belongs, 

ARID1A mutant OCCC cell lines, both 
in vitro and in xenografts, and in patient-
derived xenografts (PDX) of OCCC. 
BET inhibition reduced the expression 
of ARID1A’s mutual exclusive partner 
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presenting causal evidence for the 
observed lethal interaction with ARID1A 
mutated OCCC. Our data indicate that 
BET inhibition may represent a novel 
treatment strategy for a subset of 
ARID1A mutated OCCC.
 In chapter 4, we aimed to identify 
new kinase mutations and copy number 
alterations (CNAs) in tumors from a large 
set of OCCC patients (n=124) and cell 
lines (n=17) and we subsequently tested 

pathways in vitro and in PDX models 
of OCCC. The human kinome (518 
kinases) and additional cancer related 
genes were sequenced and CNAs were 
determined by SNP array analysis. 
Several putative low-frequency driver 
mutations in kinases not previously 

pathway or ERBB family of receptor 

all tumors and the DNA repair pathway 
in 82% of all tumors, as determined 
from combined mutation and CNA data. 
Strong p-S6 staining in OCCC patients 

a key regulator that acts downstream of 

pathway and ERBB family of receptor 
tyrosine kinases. The majority of OCCC 
cell lines were exceptionally sensitive 

whereas drugs targeting ERBB family of 
receptor tyrosine kinases or DNA repair 

our three unique OCCC PDX models. 
These preclinical data strongly indicate 

treatment strategy, which should be 
further explored clinically in OCCC.
 Sequencing studies by ourselves and 
other groups presented a heterogeneous 

activation. Accordingly, in chapter 5, 

inhibitors in low-dose concentrations 
to simultaneously target key kinases 
in OCCC. Small molecule inhibitors of 

combined at monotherapy IC20 doses in 
a panel of genetically diverse OCCC cell 
lines (n=7) to determine an optimal low-
dose combination. IC20 combinations of 
AZD8055, GDC0941 and selumetinib 

seven cell lines. This triple combination 

mTOR and MAPK pathways, prevented 
single inhibitor induced feedback 
mechanisms and inhibited short and 
long-term proliferation. Furthermore, 
this low-dose triple drug combination 

growth in two genetically characterized 
OCCC patient-derived xenograft (PDX) 
models without resulting in weight loss 

tolerability of this combined therapy 
in PDX models also warrants clinical 
exploration of this treatment strategy for 
OCCC.
 In chapter 3, 4 and 5 we have used 
PDX models that may help to improve 
the predictive value of in vivo testing 
of novel treatment strategies. These 
models are thought to better represent 
patient characteristics compared to cell 
line based xenografts. In chapter 6, we 
describe the establishment of seven 
OCCC PDX models and compared 
histopathology, mutation status, and 

patient and PDX OCCC tumors to 
determine the level of similarity. 
Successful engraftment of OCCC patient 
tumors was obtained for seven patients 
(50%). Primary implantation (F1) showed 
a higher engraftment with fresh patient 

implanted tumor pieces in F2 was higher 
than those in F1. In addition, latency time 
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was 50% shorter and, in agreement with 
Ki67 staining results, tumor growth rate 
was faster in F2. Mutations in the OCCC-
related genes ARID1A, PIK3CA, PTEN, 
ATM and BRCA1 were retained during 
engraftment. Morphological features 
and tumor copy number alterations were 
also comparable between paired tumor 
and F2 PDXs. Furthermore, several 
proliferative pathways were enriched 
both in paired tumors and F2 PDXs. 
Accordingly, these PDXs may serve as 
relevant preclinical models for future 
translational research in OCCC.

DISCUSSION AND FUTURE
CONSIDERATIONS

and validation

In this thesis we aimed to discover 
druggable proteins in OCCC by 1) kinome 
directed synthetic lethality screening 
and 2) by kinome sequencing and copy 

implemented in chapter 3, was designed 
to uncover druggable genes that are 
synthetic lethal with ARID1A mutations 
in OCCC. Accordingly, we screened 
a library of shRNAs in ARID1A mutant 
versus wild-type OCCC cell lines that 

Approximately half of the kinome is 
chemically druggable and many kinase 
targeting compounds are in clinical 
development (14). The enrichment of 
druggable kinases compared to the 
amount of druggable genes in the whole 
genome would increase the probability 

kinases. The kinome screening strategy 
appeared to be successful with the 

druggable hit BRD2. BRD2 was a hit in 
ARID1A mutant cell lines 

in our shRNA kinome synthetic lethality 
screen. Re-validation of two BRD2 
shRNAs showed substantial but not full 

knockdown of BRD2 expression (chapter 
3, Fig. S3A). Recently, CRISPR-Cas9 
knockout screening became available 
by uncovering a higher number of genes 
essential for survival across all and 
subgroups of cancer cell lines tested. 
CRISPR-Cas9 based screens introduce 
gene knockouts that assure total 
abolishment of protein function and are 
therefore a robust alternative to shRNA 
synthetic lethality screens, especially for 
genes where full loss of protein function 
is required to identify a synthetic lethal 
hit (15-17). Notably, CRISPR-CAS9 
mediated knockout of BRD2 was lethal 
in most OCCC cell lines, including 
ARID1A wild-type and mutant cell 
lines (data not shown). This indicates 
that, although BRD2 expression level 
dependency is higher in ARID1A mutant 
OCCC cell lines, some expression 
is essential for cell survival of both 
ARID1A wild-type and mutant OCCC 
cells. Downregulation of expression to a 
minimum activity threshold by shRNAs 
or chemical inhibition of protein function 
may therefore be a superior method 

such as BRD2, for which a minimum 
expression level is essential in all cells. 
Still, it will be interesting to perform 
genome-wide CRISPR-Cas9 knockout 

lethal hits in ARID1A mutant OCCC cell 
lines and in OCCC cell lines with other 
frequently mutated genes in OCCC, 
such as PIK3CA, KRAS and TP53.

inhibition in ARID1A mutant OCCC cells 
can be   mechanistically explained by the 
transcriptional regulatory role of BRD2 on 
ARID1B
complex members, as demonstrated with 
chromatin immunoprecipitation (ChIP) 

a previous report, which demonstrated 
that ARID1B is essential for survival of 
ARID1A mutant cells (19). However, 
because BRD2 is a broad transcriptional 
regulator, it is possible that it regulates 
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the transcription of additional essential 
factors in an ARID1A mutant context. 
These factors can be explored by a 
genome-wide comparison of already 
available BRD2 ChIP-sequencing data 
of ARID1A mutant (HAC2) versus wild-

importantly in future ChIP-sequencing 
experiments using isogenic ARID1A 
mutant cell line pairs.
 In the second approach to discover 
druggable genes in OCCC, as described 
in chapter 4, we performed sequencing 
and copy number analysis of the kinome 

mutated kinases and kinase regulatory 
components in OCCC including AKT1, 
PIK3R1, ERBB3 and ATM. These novel 
mutations and CNAs in combination 
with other re-validated high and low-
frequency alterations in OCCC led us 
to screen for vulnerabilities towards 

pathway, DNA repair pathway and ERBB 
family of receptor tyrosine kinases which 

kinases and kinase regulatory 
components we obtained accurate 
sequencing results (i.e. high read 
coverage) and simultaneously increased 

druggable targets.

other cancer related genes included in 
kinome sequencing. This list consisted 

deleted kinases (4.2%), leaving a large 
number of copy number altered genes 
to be further studied. For example, the 

factor GLI2
tumors (37%). GLI2 is described to act 
as an oncogenic transcription factor 
activated downstream of sonic hedgehog 

family and could be a prominent target 
in OCCC (20). Besides, GLI2 can be 

that the GLI2 targeting agent GANT61 
recently demonstrated in vitro and in vivo 

 Our data set can be expanded by 
whole-genome sequencing that is 

equally robust to targeted sequencing. 
This may reveal additional OCCC 
mutations and signatures of nucleotide 
substitutions in OCCC (23). In contrast 
to targeted sequencing, whole-genome 
sequencing can uncover tumor 
mutational load and thereby predict the 
frequency of neoepitopes and putative 
responsiveness of OCCC towards 
immune checkpoint therapy (24). If 

analysis of mRNA expression and the 
proteome will add valuable information 
to sequencing and copy number 
analysis of the OCCC genome-wide. 

will be uncovered by mRNA expression. 

reverse phase protein array may 
point out kinases that are truly over-
activated in OCCC and will allow a more 
powerful prediction of which genetically 

targets in OCCC.

by low-dose inhibitor combinations, as 
described in chapter 5. In this respect, 

inhibitor AZD8055 and PI3K inhibitor 
GDC0941 and) and a MAPK pathway 

cells irrespective of mutation status. The 

were selected because mutations and 
CNAs in PIK3CA, PIK3R1, AKT, KRAS, 
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NRAS and BRAF were ubiquitously 
found in OCCC. Both pathways promote 

activate each other, which provided 

of combined suboptimal inhibition of 
these signaling pathway nodes (25). 
An alternative and unbiased strategy 
would be to screen inhibitor libraries 
in combination with AZD8055, the 

OCCC cell lines. Such a ‘chemical 
synthetic lethality’ screen could identify 

inhibitor combinations with AZD8055 and 
reveal druggable pathway interactions in 
OCCC. Small molecule inhibitor libraries 
have been successfully used on cancer 
cell lines, but are expensive and require 
careful titration and robotic plate handling 
(26).
 In chapter 6 we established and 
characterized seven OCCC PDX models. 
Three PDX models (an ARID1A mutant, 
a PIK3CA mutant and a PIK3CA and 
ARID1A
most frequent mutations in OCCC, were 
used for preclinical drug testing along 
chapters 3, 4 and 5. Still, expansion of 
our PDX panel will be crucial to obtain 
a better coverage of the broad spectrum 
of mutations and CNAs in OCCC. To 
that end, it will be important to freshly 
implant OCCC patient tumors given 
that fresh implantation provides higher 
take rates compared to implantation 

models is time consuming and costly 
and should therefore be considered as 

primary cultures and organoids could 
bridge the gap between cell line based 
analysis and in vivo analysis in OCCC 
PDX models. Compared to cancer 
cell lines, tumor primary cultures and 
organoids are thought to more closely 
resemble the patient tumor and they can 
faster be implemented in drug screens 
compared to PDXs (27, 28). High-grade 

serous ovarian carcinoma (HGSOC) 
organoids have been established 
from primary cultures (29). However, 
organoids of OCCC are unfortunately 
lacking and OCCC primary cultures 
have only been described in small 
numbers. The establishment of OCCC 
organoids from PDX models of OCCC 
could be an alternative approach, but 

conditions (growth factors) compared to 

the importance to invest in research to 

primary cultures and organoids, besides 
OCCC PDX models, that can be used for 
preclinical evaluation of drugs (30, 31).
 
Challenges to improve mechanistic 
understanding and treatment of OCCC

Mutations in ARID1A are mutual 
exclusive with TP53 mutations in OCCC, 
as shown by us and others (32, 33). 
The TP53 mutant OCCC tumors were 
enriched for high FIGO stage, suggesting 
that mutations in this gene most likely 
are not early onset alterations in the 
development of OCCC. Surprisingly, nine 
of the 13 TP53 mutant tumors did not have 
additional mutations in the genes we had 
analyzed (chapter 4, Fig. 3). HGSOC, 
besides being TP53 mutant, generally 
has a low percentage of mutations. Even 
though the morphology of these TP53 
mutant-ARID1A wild-type OCCC tumors 
was not associated with HGSOC, it can 
be of interest to investigate if these nine 
tumors are a subclass of OCCC that 
approximates HGSOC. Alternatively, 
the high percentage of TP53 wild-type 
tumors (80-95%) provides an opportunity 
to re-activate p53 protein in TP53 wild-
type OCCC, ultimately resulting in p53-
mediated apoptosis. An extensively 
studied approach to induce p53 activity 
is by preventing the interaction of 
MDM2 with p53, thereby preventing 
proteasomal degradation of p53 via 
MDM2 (34). Inhibitors of the MDM2-p53 
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interaction, such as nutlin-3a and more 
recently idasanutlin (RG7388), showed 
synergistic activity in combination with 
cisplatin in TP53 wild-type ovarian cancer 
cell lines (OCCC was not included) (35, 
36). Nutlin-3a upregulated p53 levels in 
OCCC but the combination with cisplatin 
remains to be tested (37). In a study by 
Bitler et. al.  p53-mediated apoptosis 
(through p53-lysine120 acetylation) was 

ARID1A mutant 
OCCC cells after treatment with the 
HDAC6 inhibitor ACY1215, as discussed 
in chapter 2 (30). Future research 
in OCCC may focus on combining 
ACY1215 with cisplatin to activate p53 
and on combinations of ACY1215 with 
inhibitors of the MDM2-p53 interaction. 
Additionally, targeting of other DNA 
repair genes is of interest in light of our 
data as presented in chapter 4, in which 
we described mutations and CNAs in 
DNA repair proteins in 82% of OCCC 
tumors. Although DNA repair alterations 
(including BRCA1 mutations) were 
also prominent in OCCC cell lines, low 

was observed in these cell lines (n=17). 

PARP trapping agent talazoparib in 
OCCC cell lines (38). Here, OCCC cell 
lines with a low IC50 for talazoparib more 
often lacked homologous recombination 
(HR) capacity, suggesting a rationale 

trapping inhibitors. The frequency of HR 

compared to HGSOC, indicating that 
only a small subset of OCCC patients 

The broad spectrum of mutations in the 
DNA repair pathway in OCCC suggests 
that other DNA repair proteins (e.g. ATM 
or ATR) or regulators of the cell cycle 

TP53 
mutant OCCC) are putative targets to 
respectively abolish DNA repair or force 
detrimental mitosis in the presence of 
DNA damage.
 The pervasive overexpression 

of , a transcription factor that 
promotes glycogen metabolism, aerobic 
glycolysis and lactate production, is 
frequently found in OCCC (40, 41). 

 overexpressing OCCC cells 
highly express genes typically involved 

HK1 
and LDHA (42). Although the exact 
mechanisms through which 
stimulates these processes remain 
elusive, the therapeutic targeted. Till now, 
only a limited number of studies have 

druggability has been evaluated in 
OCCC. Buthionine sulphoxamine, 
an inhibitor that acts downstream of 

carboplatin (43). Another study found 

Na+ +-ATPase modulating subunit 
FXYD2. Digoxin and digitoxin, two 
cardiac glycosides that inhibit Na+ +-

(44). Altogether, these studies indirectly 

using calcineurin inhibitors but requires 
evaluation in OCCC models (45). 
 In chapter 3, we showed that inhibition 
of the BET bromodomain protein BRD2 
is synthetic lethal with ARID1A mutations 
in OCCC. Other established ARID1A 
mutant OCCC synthetic lethal targets 
are the epigenetic regulators EZH2, 
HDAC2 and HDAC6 and the SRC family 
protein YES1 that were discussed in 
chapter 2. Combined targeting of these 
proteins, known to be synthetic lethal in 
ARID1A mutant OCCC, can be used to 

inhibition of these targets at suboptimal 
dose, in a large panel of OCCC cell 
lines to resemble the heterogeneous 
spectrum of mutations in OCCC, similar 
to the approach described in chapter 5, 
might be useful to generate synergistic 
lethality in ARID1A mutant OCCC and 
concurrently prevent systemic toxicity.
 OCCC shares a number of 
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pathological characteristics and 
genomic alterations with clear cell 
renal cell carcinoma (CCRC) and 
endometrial clear cell carcinoma 
(ECCC), albeit mutation frequencies 
vary. TP53 mutations are found at a 
lower frequency in CCRC (2.2%) and 
at a higher frequency in ECCC (46%) 
compared to OCCC (11%) (46, 47). In 
all three cancer subtypes the majority 
of tumors have high  expression 
(48, 49). ARID1A mutations are less 
frequently found in CCRC (4.6%) and 
ECCC (21%) compared to 46% in OCCC 
(47, 50). Moreover, overlap with OCCC 

is found in CCRC (PTEN, 11%) and 
ECCC (PIK3CA, 36%; FBXW7, 25% and 
PIK3R1, 18%) (47, 50). The transcription 
factor GLI2
is also frequently overexpressed in 
CCRC. High expression levels of GLI2 
correlated with worse overall survival in 
CCRC patients, which may guide studies 
in OCCC patients (21). Considering 
these commonalities, future research 
in OCCC could take advantage from 
studies performed in CCRC and ECCC.

Improvements in therapy options for 
OCCC patients

The results presented in chapter 3, 4 and 
5 aim towards clinical evaluation of BET 

inhibition and combined low-dose 

in OCCC, respectively.
 BET bromodomain inhibition is 
extensively being studied in the clinic. 
There are 17 compounds in ongoing trials 
(chapter 2, Table 1) from which iBET-762 
(GSK525762) is currently tested in a 
phase II combination trial with fulvestrant 
in ER+ breast cancer (NCT02964507). 
BET bromodomain inhibition and the ER 
degrader fulvestrant acted synergistic 
in preclinical ER+ breast cancer models 
(51). Intermediate results from a phase 

leukemia described two dose limiting 
toxicities on a total of 46 patients. 
The authors conclude that iBET-762 
treatment related adverse events in 
AML subjects were manageable and 
reversible (52). These preliminary clinical 
data further support the evaluation of 
BRD2 inhibition by iBET-762 in ARID1A 
mutant OCCC patients in a future phase 
II trial.

inhibitors AZD8055 and OSI-027 

maximum tolerated dose, resulting in 
discontinuation of these two drugs in 
patients (53, 54). Phase II evaluation 
of MLN0128 (sapanisertib), a novel 

CCRC and endometrial cancer 
(NCT02724020 and NCT02725268). 

alone remains to be performed in 
OCCC patients. Interestingly, a new 
phase II trial combining MLN0128 with 
standard of care paclitaxel is scheduled 
in epithelial ovarian cancer, including 
all subtypes (NCT03648489). Probably, 
some OCCC patients will be included, 
which may demonstrate the added value 
of MLN0128 combined with paclitaxel in 
this ovarian cancer subtype.
 A low-dose combination of 

could be assessed with MLN0128 and 

inhibitors. No clinical trials have been 
performed combining three kinase 
inhibitors. Accordingly, a careful dose-

this strategy while minimizing systemic 
toxicity.
 The molecular distinction between 
OCCC and other ovarian cancer subtypes 
and the genetic heterogeneity between 
OCCC patients, as demonstrated in 
this thesis, indicate that future targeted 
therapy clinical trials in ovarian cancer 
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the infrequency of OCCC multicenter 
(international) trials will be necessary to 
obtain adequate numbers of patients in 
OCCC directed clinical trials. Currently 
ongoing multicenter trials that focus 
on OCCC are directed against the 
immune modulatory receptors TIM1 
(NCT02837991), PD-1 (NCT03355976) 
and CTLA4 and PD-L1 combined with 
chemotherapy (NCT03405454). For 
clinical evaluation of BRD2 inhibition 
in ARID1A mutant OCCC, a basket 
trial can be performed in order to 

this approach ARID1A mutant OCCC 

would be included together with ARID1A 

example ARID1A mutant CCRC and 

needs to be proven preclinically.

CONCLUSION

In this thesis, new therapeutic targets in 

dose treatment strategy was preclinically 
tested in unique OCCC models. These 
results may advance the treatment of 
OCCC.
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