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Abstract: This paper proposes new synthesis conditions to designH∞ static output-feedback controllers
for discrete-time linear systems affected by time-varyingparameters and time-varying delays. The design
conditions are provided in terms of sufficient parameter-dependent linear matrix inequalities with a
scalar parameter, being capable of synthesizing either robust or gain-scheduled controllers. The main
motivations to deal with such problem are that many real-world plants can be modeled in terms of
discrete-time linear parameter-varying (LPV) time-delaymodels and the lack of methods to deal with
such systems considering an output-feedback based approach. The technique presented in this paper is
quite generalist, allowing an arbitrary structure for the measured output matrix. Numerical examples are
provided to illustrate the effectiveness of the synthesis conditions, tractable in terms of LMI relaxations,
for robust or gain-scheduledH∞ output-feedback for LPV time-delayed systems.

Keywords:LPV systems, Time-delay systems, Discrete-time systems,H∞ control, Output-feedback,
Gain-scheduling.

1. INTRODUCTION

Several real-world control applications deal with dynamics af-
fected by an aftereffect phenomenon, also calledtime-delay.
Physical processes found in biology, chemistry, epidemiology
and engineering sciences, such as networked control systems
and mechanical applications, can be described in terms of mod-
els with delayed structures (Richard, 2003). The presence of
delays can be harmful to stability and performance of such
systems, occasionally leading to unexpected oscillations, per-
formance degradation and, in the worst case scenario, insta-
bility. Additionally, there are different classes of delays, each
one influencing the behavior of the system in a different way.
For instance, between time-varying and constant delays, the
former is considered more prejudicial to the system stability
than the latter. Moreover, even though there are transformations
to cast discrete-time systems with constant delays into delay-
free systems, those approaches cannot be directly applied to
systems affected by time-varying delays, making these systems
difficult to treat (Hu and Yuan, 2009). Another issue to take
into account when dealing with time-delay systems is the rate
of variation of the delay. As shown in Verriest (2010), the faster
the delay varies, the greater is the damage to the system, which
can lead, e.g., to the loss of causality.

Conventional techniques to handle the problems of stability
analysis and stabilization of time-delay systems are, in general,
based on the use of Lyapunov-Krasovskii functionals (Fridman,
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and FAPESP (Grants 2014/22881-1, 2017/01771-1 and 2017/18785-5) and the
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2014; Briat, 2015), providing conservative analysis and synthe-
sis conditions based on linear matrix inequalities (LMIs).An
alternative that stands out in this context, and considering time-
varying delays, is lifting the time-delay system into a switched
delay-free system. It has been demonstrated in Hetel et al.
(2008) that there is an equivalence between Lyapunov function-
als used to certificate the stability of switched discrete-time sys-
tems and general delay-dependent Lyapunov-Krasovskii func-
tionals used to assert the stability of discrete time-delaysys-
tems. Regarding performance criterion, it is demonstratedthat
the transformation proposed in Hu and Yuan (2009) is also valid
in the context of determiningH∞ guaranteed costs for discrete
time-delay systems.

As an additional difficulty, dynamical systems may also have
parameters that vary in time. If the underlying system is lin-
ear, it is commonly referred as alinear parameter-varying
(LPV) system. One can also describe non-linear structures in
terms of an LPV representation by linearizing the system on
several points of interest (Rugh and Shamma, 2000). The com-
bination of LPV and time-delay systems can potentially be
applied to many practical applications, for instance, milling
processes, robust fueling strategies for a spark ignition engine
and open flow canals (Zhang et al., 2002; Zope et al., 2010;
Blesa et al., 2010). There are methods in the literature to handle
the design of filters, state-feedback controllers, dynamicoutput-
feedback controllers or anti-windup compensators for discrete
LPV time-delay systems (Han et al., 2014; Wu et al., 2006;
Zope et al., 2012; Souza et al., 2017). However, to the best
of authors’ knowledge, the problem of designing static output-



feedback controllers for this class of systems has not been
investigated so far.

Based on the aforementioned discussion, this paper proposes
new synthesis conditions in terms of parameter-dependent
LMIs with a scalar parameter to treat the problem ofH∞ static
output-feedback control of discrete LPV time-delay systems.
The proposed design method has a generalist nature regard-
ing its application, being able to provide robust and mode-
dependent gain-scheduled controllers considering eitherthe
output- or state-feedback problems. Additionally, differently
from the techniques in the literature, the method also allows the
treatment of measured-output and feed-forward matrices with
arbitrary structures (uncertain or time-varying). Numerical ex-
amples are given to illustrate the effectiveness of the proposed
method.

Notation: The set of natural numbers is denoted byN, the set of
real vectors (matrices) of ordern (n×m) is represented byRn

(Rn×m), and the set of symmetric positive definite real matrices
of ordern is given bySn+. For matrices or vectors, the symbol′

denotes the transpose, the expression He(X) := X+X ′ is used
to shorten formulas, the symbol⋆ represents transposed blocks
in a symmetric matrix. To state that a symmetric matrixP is
positive (negative) definite, it is usedP > 0 (P < 0). The space
of discrete functions that are square-summable is defined byℓ2.

2. PROBLEM STATEMENT

Consider the following linear discrete-time system affected by
time-varying parameters and time-varying delays

x(k + 1) = A(α(k))x(k) +Ad(α(k))x(k − τ(k))

+B(α(k))u(k) + E(α(k))w(k)

z(k) = Cz(α(k))x(k) + Czd(α(k))x(k − τ(k))

+Dz(α(k))u(k) + Ez(α(k))w(k)

y(k) = Cy(α(k))x(k) + Cyd(α(k))x(k − τ(k))

+ Ey(α(k))w(k)

x(k) = φ(k), ∀k ∈ [−τ, 0]

(1)

where x(k) ∈ R
nx represents the state vector at the time

k ∈ N, τ(k) ∈ [τ, τ ] is a positive integer representing the
time-varying delay,u(k) ∈ Rnu is the control input,w(k) ∈
Rnw is the exogenous input,z(k) ∈ Rnz is the controlled
output,y(k) ∈ Rny is the measured output,φ(k) is an initial
condition sequence andα(k) = [α1(k), . . . , αN (k)] is a vector
of bounded time-varying parameters, which lies in the unit
simplex given by

Λ :=

{

ζ ∈ R
N :

N
∑

i=1

ζi = 1, ζi ≥ 0, i = 1, . . . , N

}

,

for all k ≥ 0. The state-space matrices of system (1) can
be written as a convex combination ofN known vertices as
M(α(k)) =

∑N

i=1 αi(k)Mi, α(k) ∈ Λ.

Following the approach given in Hetel et al. (2008), consider
the augmented state vector given by

x̄(k) = [x′(k) x′(k − 1) · · · x′(k − τ )]
′
.

Hence, system (1) can be reformulated as the following delay-
free switched LPV system
x̄(k + 1) = Āκ(α(k))x̄(k) + B̄κ(α(k))u(k) + Ēκ(α(k))w(k)

z(k) = C̄κ
z (α(k))x̄(k) +Dz(α(k))u(k) + Ez(α(k))w(k)

y(k) = C̄κ
y (α(k))x̄(k) + Ey(α(k))w(k)

(2)

whereκ ∈ Ω := {τ, τ+1, . . . , τ̄} is a switching rule associated
with the delayτ(k). MatricesĀκ(α(k)) ∈ R

n̄x×n̄x , n̄x = (1+
τ )nx, κ ∈ Ω, are given by

Āκ(α(k)) =

[

A(α(k)) Aκ
d(α(k))

Φ1 Φ2

]

with Φ1 = diag(I, I, · · · , I) ∈ Rτnx×τnx , Φ2 = [0 0 · · · 0]′ ∈
Rτnx×nx and

Aκ
d(α(k)) =

[

0nx×(τ(k)−1)nx
Ad(α(k)) 0nx×(τ−τ(k))nx

]

.

MatricesB̄κ(α(k)), Ēκ
z (α(k)), C̄

κ
z (α(k)), C̄

κ
y (α(k)), κ ∈ Ω,

are given by
[

B̄κ(α(k)) Ēκ(α(k))
]

=

[

B(α(k)) E(α(k))
0 0

]

,

C̄κ
z (α(k)) = [Cz(α(k)) Cκ

z (α(k))]
C̄κ

y (α(k)) =
[

Cy(α(k)) Cκ
y (α(k))

]

where matricesCκ
z (α(k)) andCκ

y (α(k)) are constructed simi-
larly to matrixĀκ(α(k)).

The purpose of this paper is to design a stabilizing mode-
dependent (or delay-dependent) gain-scheduled static output-
feedback control law given byu(k) = Θκ(α(k))y(k), where
Θκ(α(k)) ∈ Rnu×ny , assuring anH∞ guaranteed cost
bounded byµ. Applying the proposed control law in system (1),
one obtains the closed-loop system given by

H :=

{

x̄(k + 1) = Aκ
cl(α(k))x̄(k) +Bκ

cl(α(k))w(k)

z(k) = Cκ
cl(α(k))x̄(k) +Dκ

cl(α(k))w(k)
(3)

whose matrices are given by
[

Aκ
cl(α(k)) Bκ

cl(α(k))
Cκ

cl(α(k)) Dκ
cl(α(k))

]

=

[

Āκ(α(k)) Ēκ(α(k))
C̄κ

z (α(k)) Ez(α(k))

]

+

[

B̄κ(α(k))
Dz(α(k))

]

Θ(α(k))
[

C̄κ
y (α(k)) Ey(α(k))

]

.

(4)

The H∞ norm is used to represent an optimization criterion
associated to disturbance rejection and its upper boundµ can
be computed, for instance, by taking the definition presented in
De Caigny et al. (2010); Hu and Yuan (2009), which assures
that, for any inputw(k) ∈ ℓ2, the output of the systemz(k)
satisfies

||z(k)||2 < µ||w(k)||2, µ > 0, ∀α(k) ∈ Λ, k ≥ 0, ∀κ ∈ Ω.

3. MAIN RESULTS

This section presents sufficient parameter-dependent LMI con-
ditions for the synthesis ofH∞ static output-feedback gain-
scheduled controllers for system (1), which is the main con-
tribution of this paper.

Theorem 1.For a given scalarγ 6= 0 and a matrixQκ(α(k)),
if there exist matricesP κ(α(k)) ∈ S

n̄x

+ , Gκ(α(k)) ∈ Rn̄x×n̄x ,
Lκ(α(k)) ∈ Rnu×ny andSκ(α(k)) ∈ Rny×ny , and a scalar
µ > 0 such that inequality1 (5) holds for all(α(k), α(k +
1)) ∈ Λ×Λ, andκ, ι ∈ Ω, then the stabilizing mode-dependent
static output-feedback gain-scheduled controller given by

Θκ(α(k)) = Lκ(α(k))Sκ(α(k))−1

assures the closed-loop asymptotic stability and also thatµ is
anH∞ guaranteed cost for system (3).

1 For ease of notation, the dependence onα(k) is omitted in this inequality and
in the proof of Theorem 1. Furthermore,P ι

+
is used to representP ι(α(k+1)).













−P ι
+ ⋆ ⋆ ⋆ ⋆

(ĀκGκ + B̄κLκQκ)′ −Gκ −Gκ′ + P κ ⋆ ⋆ ⋆
0 C̄κ

zG
κ +DzL

κQκ −µ2I ⋆ ⋆
(Ēκ + B̄κLκEy)

′ 0 (Ez +DzL
κEy)

′ −I ⋆
(B̄κLκ)′ γ(SκQκ − C̄κ

yG
κ) (DzL

κ)′ γ(SκEy − Ey) γ(Sκ + Sκ′)











< 0 (5)

Proof. First note that the feasibility of (5) guarantees that
γ(Sκ +Sκ′) < 0, implying that theSκ−1

exists. Pre- and post-
multiplying (5), respectively, by

B⊥′

=









I 0 0 0 0
0 I 0 0 (Sκ−1C̄κ

yG
κ −Qκ)′

0 0 I 0 0
0 0 0 I (Sκ−1Eκ

y − Eκ
y )

′









andB⊥, yields






−P ι
+ ⋆ ⋆ ⋆

0 P κ ⋆ ⋆
0 0 −µ2I ⋆

Bκ
cl

′ 0 Dκ
cl

′ −I






+ He















Aκ
cl

−I
Cκ

cl

0













0
Gκ′

0
0







′








< 0, (6)

with Aκ
cl, B

κ
cl, C

κ
cl, andDκ

cl as given in (4). The next step is to
pre- and post-multiply (6) respectively by

R′ =

[

I Aκ
cl 0 0

0 Cκ
cl I 0

0 0 0 I

]

,

andR, resulting in




Aκ
clP

κAκ
cl
′ − P ι

+ ⋆ ⋆

Cκ
clPAκ

cl
′ −µ2I + Cκ

clP̂
κCκ

cl

′

⋆
Bκ

cl
′ Dκ

cl
′ −I



 < 0,

which can be recognized as the Bounded Real Lemma (de
Souza et al., 2006, Lemma 3) applied to the switched LPV
system (3), which guarantees the asymptotic stability and that
µ is an upper bound for theH∞ norm of system (3).

Remark 1.Note that the technique employed to derive the
conditions of Theorem 1 has some similarities with the one used
in the so calledtwo-stages approach(Peaucelle and Arzelier,
2001; Mehdi et al., 2004; Agulhari et al., 2010), where a
stabilizing state-feedback gain must be computed in the first
step. Both methods use the elimination lemma but Theorem 1
is solved in only one step.

The following corollary presents an adaptation of Theorem 1
to handle the stabilization of system (3) free of exogenous
inputs (w(k) = 0).

Corollary 1. For a given scalarγ 6= 0 and a matrixQκ(α(k)),
if there exist matricesP κ(α(k)) ∈ S

n̄x

+ , Gκ(α(k)) ∈ Rn̄x×n̄x ,
Lκ(α(k)) ∈ Rnu×ny and Sκ(α(k)) ∈ Rny×ny such that
inequality (5) without third and fourth rows and columns holds
for all (α(k), α(k + 1)) ∈ Λ × Λ andκ, ι ∈ Ω, then the sta-
bilizing mode-dependentstatic output-feedback gain-scheduled
controller given byΘκ(α(k)) = Lκ(α(k))Sκ(α(k))−1 assures
that system (3) withw(k) = 0 is asymptotically stable.

Next remark shows some possibilities regarding the structure
and requirements of the controllers provided by Theorem 1 and
Corollary 1.

Remark 2.Note that the control gains provided by Theorem 1
and Corollary 1 are mode-dependent gain-scheduled. When the
values of the time-delay or of the scheduling parameters are
not available in real-time for feedback purposes (or there is

no interest in using these information), some other particular
structures can be obtained by setting the matricesSκ(α(k)) and
Lκ(α(k)) as follows:

Mode-dependent: Sκ(α(k)) = Sκ, Lκ(α(k)) = Lκ.
Gain-scheduled: Sκ(α(k)) = S(α(k)), Lκ(α(k)) = L(α(k)).
Robust: Sκ(α(k)) = S, Lκ(α(k)) = L.

The last structure tends to provide the most conservative results
but, on the other hand, requires the simplest and cheapest
implementation.

MatricesQκ(α(k)) are introduced in Theorem 1 in order to lin-
earize the inequalities associated to the output-feedbackprob-
lem (otherwise it would be necessary to deal with bilinear ma-
trix inequalities – BMIs). Since the dimensions imposed to the
matrixQκ(α(k)) are equal to the dimensions of the measured
output matrixC̄κ

y (α(k)) from the augmented switched system,
an intuitive choice is settingQκ(α(k)) = C̄κ

y (α(k)). Another
possible choice is given by

Qκ =
[

0ny×σQ
Iny

0ny×(n̄x−σQ−ny)

]

, (7)
where a new input parameter,0 ≤ σQ ≤ n̄x−ny, is introduced
to define the position of the identity matrix in (7).

One particularity of the proposed technique is the possibility of
performing searches on the scalarγ. This parameter needs to be
chosen beforehand, otherwise (5) would be a BMI. Results with
different levels of conservativeness are obtained by varying the
values of this scalar. Further details about this subject are given
in Section 4.

Theorem 1 and Corollary 1 can be straightforwardly extended
to deal with other classes of dynamical systems besides discrete
LPV time-delay systems. The first extension is the problem
of state-feedback control, which can be achieved by replacing
C̄κ

y (α(k)) andEy(α(k)) by I and 0, respectively, in system (2).
To treat linear time-invariant (LTI) systems, consider matrices
of system (1) and the decision variables of Theorem 1 and
Corollary 1 depending on time-invariant parameters (α(k) =
α, ∀k ∈ N), and setP ι(α(k + 1)) = P ι(α(k)) = P ι(α).

The proposed method can also be employed to handle systems
whose time-varying delays have bounded rates of variation.
This case can be found, for instance, in physical processes
where it is not reasonable to assume the delay varying from
the minimum to the maximum value in only one instant of
time. In discrete-time context, there are only a few methodsin
the literature that considers this approach, such as Silva et al.
(2016); Souza et al. (2017). One can consider the variation of
the delay in consecutive samples to be limited by|τ(k + 1) −
τ(k)| ≤ ∆τmax < τ. Therefore, Theorem 1 and Corollary 1
can be rewritten consideringκ = τ , . . . , τ andι = max(τ , τ −
∆τmax), . . . ,min(τ , τ +∆τmax).

Another appealing feature of the proposed technique is the
possibility of dealing with any output matrixCy(α(k)) without
imposing special structures or constraints on the optimization
variables, since for most of the methods found in the literature,
this matrix is required to be constant, parameter-independent



and constrained to the formCy(α(k)) = [I 0], or even to
undergo similarity transformations (Peres et al., 1994; Dong
and Yang, 2013).

4. FINITE DIMENSIONAL TESTS

This section presents a few considerations necessary to perform
numerical tests using the proposed method. The first issue is
the variation of parameterα(k) and two scenarios are possible
in this context: bounded rate of variation (α(k + 1) depends
on α(k)) and arbitrarily fast variation (both parameters are
independent) (Oliveira and Peres, 2009). In this paper, thelatter
case is adopted in the numerical experiments and the following
change of variables is used:α(k + 1) = β(k) ∈ Λ. Even
after these considerations, the proposed conditions are not in
a programmable form yet since they are given as parameter-
dependent (robust) LMIs. To overcome this issue, it is em-
ployed the strategy proposed in Oliveira and Peres (2007), basi-
cally imposing polynomial structures to the decision variables
and applying a relaxation, for instance, the Pólya’s relaxation
(Hardy et al., 1952), to check the positivity of the resulting
polynomial matrix inequalities. The MATLAB parser ROLMIP
(Robust LMI Parser) (Agulhari et al., 2012) may be used to
automate this procedure. This parser is able to extract a finite
set of LMIs from polynomial positivity tests after imposinga
fixed degree for the decision variables.

The optimization variables can depend polynomially on the pa-
rameters with different degrees. The structure of the controller
is defined by the variablesLκ(α(k)) andSκ(α(k)), and if the
desired controller is robust, then both matrices must have zero
degree. A gain-scheduled controller is obtained if, at least, one
of the degrees associated to eitherLκ(α(k)) or Sκ(α(k)) is
different than zero. In this case, the vectorα(k) must be avail-
able on-line (measured or estimated). The other optimization
variables can also depend on the parameters and the chosen
degrees only affect the conservativeness of the solutions.As a
general rule, higher degrees may produce improved solutions
at the price of a larger computational effort. To perform the
numerical examples of this paper, these variables are kept with
degree equal to one.

As mentioned before, the proposed conditions require the pa-
rameterγ to be givena priori. In this paper it is not investigated
how to perform the search in this scalar. Instead, a set of values
given by

γ ∈ {−1,−10−1,−10−2,−10−3,−10−4} (8)

is used in the numerical experiments of Section 5. Testing
more values or performing a search based on some optimization
method could improve the results at the price of a larger
computational burden.

5. NUMERICAL EXAMPLES

All the conditions proposed in this paper were programmed
using the software MATLAB (R2014a) with the aid of the
parsers ROLMIP (Agulhari et al., 2012) and Yalmip (Löfberg,
2004) and of the solver Mosek (ApS, 2015).

Regarding the choices for matricesQκ(α(k)), tests were made
using Qκ(α(k)) = C̄κ

y (α(k)) and also combining it with
the structure outlined in (7). The performance obtained with
the second choice is, however, slightly more conservative than
the first. Therefore, all numerical results presented in this

paper were obtaining using matricesQκ(α(k)) equals to the
measured-output matrix.

Example 1 The system investigated in this example is given
in Zhang et al. (2007), where the dynamic matrices originally
represent a switched system with two second order subsystems
besides a delayed dynamic matrixAd. In this example the
subsystems are considered as the vertices of an LPV system,
that is, the system can vary inside the polytope formed by the
two subsystems instead of only switching between them. Two
scenarios are investigated. In the first one, the variation of the
delay is considered to be arbitrary, while, in the second, itis
considered that this rate is limited by∆τmax = 1. The value of
the delay is not available in real-time and, in this case, mode-
independent controllers are the only choice.

Table 1 shows theH∞ guaranteed costs associated to the ro-
bust and the gain-scheduled static output-feedback controllers
designed by Theorem 1, assuming different delay ranges for
both approaches. The reported results correspond to the value
of γ that provided the best (less conservative) upper bound to
theH∞ norm of the closed-loop system (3), among the values
given in (8). Note that, as expected, the gain-scheduled con-

Table 1.H∞ guaranteed costs associated to the
static output-feedback controllers designed by

Theorem 1 for Example 1.

Robust Gain-scheduled
τ τ µ γ µ γ

A
rb

itr
ar

y 2 4 0.3437 -0.1 0.3213 -0.1
2 5 0.3675 -0.1 0.3439 -0.1
2 6 0.3948 -0.1 0.3722 -0.1
2 7 0.4185 -0.01 0.4078 -0.1

L
im

ite
d 2 4 0.3437 -0.1 0.3213 -0.1

2 5 0.3588 -0.1 0.3345 -0.1
2 6 0.3674 -0.001 0.3470 -0.1
2 7 0.3613 -0.1 0.3377 -0.1

trollers provided improved performance when compared to the
robust ones in both scenarios of delay variation. Additionally,
observe that, as the range of delays increases, theH∞ guaran-
teed costs also increase, which is expected since the synthesis
conditions must hold for a larger delay range. Furthermore,one
may verify that when the delay variation is limited, both robust
and gain-scheduled controllers provide betterH∞ guaranteed
costs than in the case of arbitrary variation.

Example 2This example considers a non-linear system repre-
sented as a two-rule Takagi-Sugeno fuzzy model given in Dong
et al. (2010). The system is affected by multiple communica-
tion delays and has multiple missing measurements. Similar
to the procedure adopted in Example 1, the dynamic matri-
ces of the fuzzy system are taken as the vertices of an LPV
system, enabling the application of Theorem 1 to synthesize
H∞ stabilizing static output-feedback controllers considering
τ ∈ [2, 6] and∆τmax = 1. The value of the delay as well as the
scheduling parameters are not available in real-time, posing the
most challenging design scenario, that is, the controller must be
mode-independent and robust. Applying the conditions of The-
orem 1, the following robust mode-independent gain (truncated
with 4 decimal digits)

K = LS−1 =

[

−0.0139 0.0256
−0.0073 −0.0074

]

(9)



is obtained (γ = −1, µ = 0.2022). To show that the designed
controller is stabilizing, time simulations were performed con-
sidering null initial conditions and considering the particular
case where the uncertain parameterα(k) = (α1(k), α2(k)) is
given byα1(k) = (sin(4.56k) cos(9.12k)+ 1)/2 andα2(k) =
1 − α1(k), and the exogenous inputs are given byw(k) =
10e−0.1(τ(k)−τ) sin(5(τ(k) − τ ) + w̃k, wherew̃k is a white
Gaussian noise with null mean and covarianceσ2 = 0.2.

Fig. 1 presents a time-response of the controlled outputz(k) of
the open-loop system, from which it is noticeable that the sys-
tem has an unstable behavior. Fig. 2 presents the time-response
of the controlled outputz(k) of the closed-loop system using
the output-feedback controller (9) synthesized by Theorem1.
As expected, the performed simulations show that the output
trajectories converge to zero (stable closed-loop system).
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Fig. 1. Trajectories of the controlled output of the open-loop
system of Example 2 withτ ∈ [2, 6] and the variation of
the delay is∆τmax = 1.
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Fig. 2. Trajectories of the controlled output of the closed-loop
system of Example 2 considering controllers (9) synthe-
sized by Theorem 1 withτ ∈ [2, 6] and the variation of
the delay is∆τmax = 1.

Example 3 This example investigates the two-vertices uncer-
tain time-invariant system presented in Caldeira et al. (2011)
whose matrices of the first vertex are given by

A =

[

−0.5 1
0 0.2

]

, Ad =

[

−0.05 0.1
0 0.02

]

, B =

[

0.1
0.5

]

,

E = [1 0.3]
′
, Cz = [1 3] , Czd = [0 0] , Dz = 1, Ez = 0

and the matrices of the second vertex are obtained by multi-
plying the first ones by a scalarβ. The matrices associated to
the measured output are constantCy = [1 3], Cyd = [0 0] and
Ey = 0 (not affected byβ).

The aim of this example is to compare theH∞ performance
of the closed-loop LTI system considering robust static mode-
independent (the value of the delay is not available) output-
feedback controllers obtained by Theorem 1 and a condition
adapted from Theorem 4 of Leite et al. (2011). Note that, in
order to compute static output-feedback controllers usingthe
technique from Leite et al. (2011), it is required that the output
matrix Cy is constant and that a similarity transformation be
applied to system (1) to ensure thatCy = [I 0]. The trans-
formation used isT−1 = [C′

y(CyC
′
y)

−1 C⊥
y ]. It is important to

mention that, even though the technique from Leite et al. (2011)
requires a small computational effort (in terms of scalar deci-
sion variables and number of LMI rows) because it is based on a
particular Lyapunov-Krasovskii function (and not based onthe
switched-system approach), the method proposed in this paper
leads to less conservative results in terms ofH∞ guaranteed
costs. To illustrate the behavior of the methods, Fig. 3 presents
theH∞ guaranteed costs obtained by the method from Leite
et al. (2011) and Theorem 1 supposing an arbitrarily varying
time-delay in the interval[1, τ ], τ = {2, 3, 4}, and considering
the parameterβ ∈ [1 1.1]. From the figure, it is possible to note
that Theorem 1 provides less conservative performance thanthe
technique from Leite et al. (2011).
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Fig. 3. H∞ guaranteed costs provided by Theorem 1 and
Theorem 4 from Leite et al. (2011) for different ranges
of delay for Example 3

6. CONCLUSION

This paper proposed new parameter-dependent LMI conditions
for the synthesis ofH∞ static output-feedback controllers for
discrete LPV time-delay systems. One advantage of the pro-
posed method is its versatility, being capable of designingstatic
output- or state-feedback controllers for either time-delay or



delay-free LPV and LTI systems. A second important advan-
tage is the possibility of considering a time-varying output
matrixCy(α(k)) while other techniques in the literature require
this matrix to be parameter-independent or to have a partic-
ular structure. This flexibility in the measured matrix can be
useful, for example, to deal with networked systems in which
this matrix is often uncertain. Numerical experiments based
on LPV models borrowed from the literature demonstrated the
applicability and flexibility of the approach, that can be less
conservative for the design of controllers than some existing
methods in terms of improvedH∞ guaranteed costs. The next
step of the research is to consider that not only the states but
also the time-varying parameters are affected by delays.

REFERENCES

Agulhari, C.M., Oliveira, R.C.L.F., and Peres, P.L.D. (2010).
Static output feedback control of polytopic systems using
polynomial Lyapunov functions. InProc. 49th IEEE Conf.
Decision Control, 6894–6901. Atlanta, GA, USA.

Agulhari, C.M., Oliveira, R.C.L.F., and Peres, P.L.D. (2012).
Robust LMI parser: A computational package to construct
LMI conditions for uncertain systems. InXIX CBA, 2298–
2305. Campina Grande, PB, Brasil.http://rolmip.
github.io/

ApS, M. (2015). The MOSEK optimization software. http:
//www.mosek.com.

Blesa, J., Puig, V., and Bolea, Y. (2010). Fault detection using
interval LPV models in an open-flow canal.Control Eng.
Pract., 18(5), 460–470.

Briat, C. (2015). Linear Parameter-Varying and Time-Delay
Systems — Analysis, Observation, Filtering and Control,
volume 3 ofAdvances in Delays and Dynamics. Springer-
Verlag, Berlin Heidelberg.

Caldeira, A.F., Leite, V.J., Miranda, M.F., Castro, M.F., and
Gonçalves, E.N. (2011). Convex robustH∞ control design
to discrete-time systems with time-varying delay.IFAC
Proceedings Volumes, 44(1), 10150–10155.

De Caigny, J., Camino, J.F., Oliveira, R.C.L.F., Peres, P.L.D.,
and Swevers, J. (2010). Gain-scheduledH2 andH∞ control
of discrete-time polytopic time-varying systems.IET Control
Theory & Appl., 4(3), 362–380.

de Souza, C.E., Barbosa, K.A., and Trofino, A. (2006). Robust
H∞ filtering for discrete-time linear systems with uncer-
tain time-varying parameters.IEEE Trans. Signal Process.,
54(6), 2110–2118.

Dong, H., Wang, Z., Ho, D.W., and Gao, H. (2010). RobustH∞

fuzzy output-feedback control with multiple probabilistic
delays and multiple missing measurements.IEEE Trans.
Fuzzy Syst., 18(4), 712–725.

Dong, J. and Yang, G.H. (2013). Robust static output feedback
control synthesis for linear continuous systems with poly-
topic uncertainties.Automatica, 49(6), 1821–1829.

Fridman, E. (2014). Introduction to Time-Delay Systems:
Analysis and Control. Birkhäuser Basel, Switzerland.

Han, C., Zhang, F., Liu, L., Bi, S., and Sun, D. (2014). Adap-
tive robustH∞ control for uncertain discrete-time systems
with time-varying state and input delays. InProc. of 2014
Guidance, Navigation and Control Conf., 2236–2239. Yan-
tai, China.

Hardy, G.H., Littlewood, J.E., and Pólya, G. (1952).Inequali-
ties. Cambridge University Press, Cambridge, UK, 2 edition.

Hetel, L., Daafouz, J., and Iung, C. (2008). Equivalence
between the Lyapunov–Krasovskii functionals approach for
discrete delay systems and that of the stability conditionsfor
switched systems.Nonlinear Analysis: Hybrid Systems, 2(3),
697–705.

Hu, K. and Yuan, J. (2009). Delay-dependentH∞ control
of linear discrete-time systems with time-varying delay via
switched system approach.Int. J. Adapt. Control Signal
Process., 23(12), 1104–1112.

Leite, V.J.S., Castro, M.F., Caldeira, A.F., Miranda, M.F., and
Gonçalves, E.N. (2011). Uncertain discrete-time systems
with delayed state: robust stabilization with performance
specification via LMI formulations. In M.A. Jordán (ed.),
Discrete Time Systems, chapter 17, 295–326. InTech.

Löfberg, J. (2004). YALMIP: A toolbox for modeling and
optimization in MATLAB. InProc. 2004 IEEE Int. Symp. on
Comput. Aided Control Syst. Des., 284–289. Taipei, Taiwan.

Mehdi, D., Boukas, E.K., and Bachelier, O. (2004). Static
output feedback design for uncertain linear discrete time
systems.IMA J. Math. Control Inform., 21(1), 1–13.

Oliveira, R.C.L.F. and Peres, P.L.D. (2007). Parameter-
dependent LMIs in robust analysis: Characterization of ho-
mogeneous polynomially parameter-dependent solutions via
LMI relaxations.IEEE Trans. Autom. Control, 52(7), 1334–
1340.

Oliveira, R.C.L.F. and Peres, P.L.D. (2009). Time-varying
discrete-time linear systems with bounded rates of variation:
Stability analysis and control design.Automatica, 45(11),
2620–2626.

Peaucelle, D. and Arzelier, D. (2001). Robust performance
analysis with LMI-based methods for real parametric uncer-
tainty via parameter-dependent Lyapunov functions.IEEE
Trans. Autom. Control, 46(4), 624–630.

Peres, P.L.D., Geromel, J.C., and Souza, S.R. (1994).H2 output
feedback control for discrete-time systems. InProc. 1994
Amer. Control Conf., volume 3, 2429–2433. Baltimore, USA.

Richard, J.P. (2003). Time-delay systems: an overview of some
recent advances and open problems.Automatica, 39(10),
1667–1694.

Rugh, W.J. and Shamma, J.S. (2000). Research on gain
scheduling.Automatica, 36(10), 1401–1425.

Silva, J.V.V., Leite, V.J.S., and Silva, L.F.P. (2016). Controle
de sistemas discretos no tempo com saturação de atuadores e
atraso nos estados. InXXI CBA. Vitória, ES, Brazil.

Souza, C., Leite, V.J.S., Silva, L.F.P., and Rubio Scola, I.E.J.
(2017). Projeto de compensador anti-windup para sistemas
sujeitos a atrasos nos estados com taxa de variação limitada.
In XIII SBAI, 882–887. Porto Alegre, RS, Brazil.

Verriest, E. (2010). Well-posedness of problems involving
time-varying delays. InProc. of the 2010 Int. Symp. on the
Mathematical Theory of Networks and Systems. Budapest,
Hungary.

Wu, L., Shi, P., Wang, C., and Gao, H. (2006). Delay-dependent
robustH∞ and L2-to-L∞ filtering for LPV systems with
both discrete and distributed delays.IEE Proc. — Control
Theory & Appl., 153(4), 483–492.

Zhang, L., Shi, P., and Boukas, E.K. (2007).H∞ output-
feedback control for switched linear discrete-time systems
with time-varying delays.Int. J. Control, 80(8), 1354–1365.

Zhang, X., Tsiotras, P., and Knospe, C. (2002). Stability
analysis of LPV time-delayed systems.Int. J. Control, 75(7),
538–558.

Zope, R., Mohammadpour, J., Grigoriadis, K., and Franchek,
M. (2012). Delay-dependent output feedback control of
time-delay LPV systems. In J. Mohammadpour and C.W.
Scherer (eds.),Control of Linear Parameter Varying Systems
with Applications, 279–299. Springer, New York.

Zope, R., Mohammadpour, J., Grigoriadis, K., and Franchek,
M. (2010). Robust fueling strategy for an SI engine modeled
as an linear parameter varying time-delayed system. In
Proc. 2010 Amer. Control Conf., 4634–4639. Baltimore, MD,
USA.


