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Abstract: Current genomic models in diffuse large B-cell lymphoma (DLBCL) are based on single
tumor biopsies, which might underestimate heterogeneity. Data on mutational evolution largely
remains unknown. An exploratory study using whole exome sequencing on paired (primary and
relapse) formalin fixed paraffin embedded DLBCL biopsies (n = 14) of 6 patients was performed to
globally assess the mutational evolution and to identify gene mutations specific for relapse samples
from patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone.
A minority of the mutations detected in the primary sample (median 7.6%, range 4.8–66.2%) could
not be detected in the matching relapse sample. Relapsed DLBCL samples showed a mild increase of
mutations (median 12.5%, range 9.4–87.6%) as compared to primary tumor biopsies. We identified
264 genes possibly related to therapy resistance, including tyrosine kinases (n = 18), (transmembrane)
glycoproteins (n = 73), and genes involved in the JAK-STAT pathway (n = 7). Among the potentially
resistance related genes were PIM1, SOCS1, and MYC, which have been reported to convey a risk
for treatment failure. In conclusion, we show modest temporal heterogeneity between paired
tumor samples with the acquisition of new mutations and identification of genes possibly related to
therapy resistance. The mutational evolution could have implications for treatment decisions and
development of novel targeted drugs.

Keywords: diffuse large B-cell lymphoma; relapse; mutations; heterogeneity; evolution; fresh frozen
paraffin embedded

1. Introduction

Diffuse large B-cell lymphoma (DLBCL) accounts for 25–35% of all non-Hodgkin lymphomas
(NHL) [1]. For more than 15 years, immuno-chemotherapy with rituximab, cyclophosphamide,
doxorubicin, vincristine, and prednisolone (R-CHOP) has been the standard of care [2]. Although the
prognosis for patients with low-risk disease is excellent, the 3-years overall survival (OS) for high-risk
patients is less than 65% [3]. Patients with primary refractory disease or those who relapse within
a year after treatment have an especially poor response to salvage chemotherapy [4,5].
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DLBCL is a genetically heterogeneous disease. Based on gene expression profiling (GEP),
DLBCL can be subdivided into activated B-cell (ABC-type), germinal center B-cell (GCB-type),
and unclassified-type. The first two subtypes reflect the B-cell developmental stages from which
DLBCL arises [6]. The prognostic impact of this so-called cell-of-origin (COO) classification based
on gene expression profiles (GEP) has been established in multiple studies [6,7]. Several trials
are currently investigating the efficacy of adding compounds targeting the putative mutations or
deregulated molecular pathways associated with a specific COO class; for example, adding ibrutinib
or lenalidomide to R-CHOP therapy in patients with ABC subtype DLBCL [6–8].

Over the last decade, a large number of studies have been published on the mutational landscape
of DLBCL, including over 2000 DLBCL cases [9–21]. These studies identified non-synonymous
mutations in 30 to 100 genes per case (median 3.3 to 6.6 mutations per megabase) [21]. In total,
over 1000 individual mutated genes have been described. The mutational landscape differs between
ABC-type and GCB-type, with mutations in MYD88 and CD79B being more common in the ABC-type,
and mutations in EZH2 and GNA13 being more common in GCB-type [9–21]. Based on the mutational
landscapes, DLBCL can be divided into subgroups characterized by genetic alterations in the proximal
B-cell receptor, NF-kB signaling, PI3-kinase signaling, anti-apoptotic proteins, DNA damage repair,
and immune evasion [20,21].

One of the main challenges for most genomic profiles is to implement them into clinical practice.
Due to the high inter-patient heterogeneity of mutations, it has been estimated that for the development
of a prognostic model, the mutational landscape of 900 patients would have to be correlated with
clinical outcomes [22]. Earlier trials had been underpowered to properly address this question [16,18].
More recently, larger studies have reported on the prognostic impact of genomic risk models [19–21].
Apart from being prognostic, these genomic models can form the basis for biomarker driven treatment
strategies [23].

Most of the currently published papers do not take into account genomic evolution of tumors
with presence of subclones at different anatomical sites (spatial), evolution over time (temporal),
and dynamics caused by treatment [24]. At this point, data on the clonal evolution of DLBCL is largely
absent. Data on sequential biopsies in DLBCL is available for less than 20 patients [15,18].

Thus, despite the large number of DLBCL samples analyzed, the impact of clonal and mutational
evolution remains largely unknown. To broaden this knowledge we performed an exploratory study
on paired biopsies (primary versus relapse) to globally assess the mutational evolution, and to identify
gene mutations enriched or exclusively present in relapsing patients.

2. Materials and Methods

2.1. Patient Selection

All patients diagnosed with a relapsed or refractory (R/R) DLBCL between 2004 and 2014 at the
University Medical Center Groningen (UMCG) or affiliated hospitals were retrieved from the electronic
database of the UMCG. Only patients that received 6 to 8 cycles of R-CHOP as first line therapy
were included. Patients with post-transplant lymphoproliferative disease, human immunodeficiency
virus (HIV) related lymphoma, primary central nervous system lymphoma (CNS), primary testicular
lymphoma, primary mediastinal large B-cell lymphoma, or transformed indolent lymphoma were
excluded. Of the 61 patients with R/R DLBCL, a histological confirmation of relapse was available for
31 patients. CNS relapse was confirmed by flow cytometry on spinal fluid samples in 7 patients.
In the remaining 23 patients, progression was established through imaging modalities. Of the
31 patients with a histological proven relapse, 16 had an excision biopsy sufficient for further analyses
(Figure S1). The remainder of the patients had core or bone marrow biopsies insufficient for analysis.
Where applicable, archival samples of non-tumor tissue were retrieved for isolation of germ line DNA.
Approval for this non interventional study was obtained from the Medical Ethics Review Committee
from the University Medical Center Groningen (October 2014). Informed consent was waived in



Cancers 2018, 10, 459 3 of 14

accordance with Dutch regulations The study utilized rest material from patients, the use of which is
regulated under the code for good clinical practice in the Netherlands and does not require informed
consent in accordance with Dutch regulations.

2.2. Pathology Review

Pathology review was performed according to the 2017 “WHO classification of tumors of
haematopoietic and lymphoid tissues” on formalin fixed paraffin embedded (FFPE) biopsies by an
experienced hemato-pathologist (AD) [1]. For COO classification, raw counts obtained by nanostring gene
expression analysis were uploaded at the Lymphoma/Leukemia Molecular Profiling Project (LLMPP)
website for COO categorization (https://llmpp.nih.gov/LSO/LYMPHCX/lymphcx_predict.cgi) [7].

2.3. Fluorescence in Situ Hybridization

MYC rearrangements were assessed on interphase nuclei on 3 µm thick whole tissue sections
of the primary tumor as previously described, with Vysis break apart probes (Abbot Technologies,
Santa Clara, CA, USA) using fluorescence in situ hybridization (FISH) [25]. All cases with a MYC
break were also analyzed for BCL2 and BCL6 breaks using Vysis break apart probe assays (Abbot
Technologies, Santa Clara, CA, USA).

2.4. DNA Isolation

In total, 67 FFPE tissue blocks were obtained from 16 DLBCL patients. For whole exome
sequencing (WES) we selected tumor samples with at least 50% tumor cells. To yield at least 500 µg
DNA, a minimum area of 0.5 cm2 of tumor cells was obtained from 10 µm thick slides. DNA from
FFPE tumor and non-tumor biopsies was isolated using the QIAamp DNA FFPE tissue kit (Qiagen,
Hilden, Germany), following the protocol of the manufacturer. A standard salt-chloroform protocol
was used to isolate DNA from stem cells collected for hematopoietic stem cell transplantation (CD34+
purified cells) from one patient. DNA concentrations were measured by NanoDrop (Thermo Fisher
Scientific Inc., Waltham, MA, USA), and DNA quality was evaluated on a 1% agarose gel. After quality
control, 59 samples from 15 patients were sent for WES (Figure S1).

2.5. Whole Exome Sequencing

Library preparation and whole exome sequencing was carried out by Novogene
(Novogene Bioinformatics Technology Co., Ltd, Beijing, China). Library preparation was done using
the Agilent SureSelect All Exon V6 kit (Agilent Technologies, Santa Clara, CA, USA), starting from
0.5–1.5 µg genomic DNA of tumor and non-tumor samples. Paired-end sequencing with a read length
of 2 × 100 nucleotide was performed on Illumina HiSeq2000 (Illumina, Inc., San Diego, CA, USA).

2.6. Bioinformatics Approach

The bioinformatics pipeline of the UMCG genome facility was used for data analysis, as described
previously [26,27]. Briefly, reads were aligned to the human 1000 genomes reference based on the
GRCh37 build using BWA 5.9rc. [28]. Picard tools were used for format conversion and marking
duplicate reads. The Genome Analysis Toolkit (GATK1) was used for realignment of insertions
and deletions (Indels), and Molgenis Compute 4 for base score quality recalibration (BSQR) [29,30].
Custom scripts in the VCF tools library were used to generate VCF files, variant calling was
performed using the GATK unified genotype, and variant annotation using snpeff/snpsift 3.5 with the
ensemble release 74 gene annotations (http://www.ensembl.org/index.html), dbNSFP2.3, and GATK
with annotations from the Database of Single Nucleotide Polymorphisms (dbSNP) Bethesda (MD),
National Center for Biotechnology Information, National Library of Medicine (dbSNP Build ID: 137),
and CosmicCodingMuts_v62. [31–34].

https://llmpp.nih.gov/LSO/LYMPHCX/lymphcx_predict.cgi
http://www.ensembl.org/index.html
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To identify reliable somatic mutations, variants with total reads <20× in either the normal, primary,
or resistant samples were excluded. In addition, we excluded all variants with ≥2 mutant reads in
the normal sample, as these might represent personal variants. The remaining variants were aligned
against the Exome Aggregation Consortium (ExAC) database (Broad Institute, Cambridge, MA; URL:
http://exac.broadinstitute.org) to screen for any remaining known single nucleotide polymorphisms.
In addition, we removed variants that (1) were present in the Caucasian based 1000-Genome with
an allele frequency larger than 0.2%, (2) map in noncoding regions, (3) were synonymous, (4) have
a quality score <20, or (5) have a mapping quality <20. Only variants with ≥2 mutant reads were taken
into account.

2.7. Genes Possibly Related to Therapy Resistance

Variants specific for the R/R, and variants with mutant read frequencies (MAFs) in the resistant
samples ≥20% and with a MAF at least two times higher compared to the MAF in the paired primary
sample, were indicated as “possibly related to therapy resistance”, provided the tumor cell percentage in
primary and relapse samples was similar.

3. Results

3.1. Patient Characteristics

Of the 59 samples originating from 15 patients sent for WES, library preparation failed in all
6 samples of a single patient. The average sequencing coverage of the remaining patients was
insufficient (<20×) in either the primary sample (6 patients), the relapse sample (1 patient), or both
samples (1 patient) (Figure S1). In total, WES data of sufficient quality from sequential biopsies was
obtained for six patients. For two of the six patients with relapse biopsies from different anatomical
sites, both biopsies were taken at the same time for one patient and at different time points for the
other patient. Patient and clinicopathological characteristics are summarized in Table 1. A MYC and
a BCL6 rearrangement were observed in the primary tumor sample of patient 5. In 5 patients, relapses
occurred within 24 months from diagnosis, and one patient had a relapse at 55 months. The five
patients that died were all due to lymphoma progression.

http://exac.broadinstitute.org
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Table 1. Patient and clinicopathological characteristics of the six patients evaluable for mutational analysis.

Patient Characteristics Clinicopathological Characteristics Outcome

ID M/F Age Stage IPI Morphology COO Aberrant
IHC FISH Primary

Biopsy Relapse Biopsy 1 Relapse Biopsy 2 End-of-Treatment PFS
(Months)

OS
(Months)

1 F 53 4 3 DLBCL GCB n.a. Inconclusive Jejunum Lymph node - CR 7 101

2 M 45 2 2 DLBCL ABC n.a. MYC– Lymph
node Lymph node - CR 17 56 †

3 M 65 3 2 DLBCL GCB n.a. MYC– Soft tissue Soft tissue - PR 7 14 †

4 F 57 3 1 DLBCL ABC CD20– MYC– Lymph
node Lymph node - PD 5 8 †

5 F 57 4 4 HGBCL
MYC+/BCL6+ # Unclassified CD5+ MYC+

BCL6+
Lymph
node A Lymph node B * Lymph node C * n.a. 14 36 †

6 M 79 1 2 DLBCL GCB n.a. MYC– Soft palate Skin site A ** Skin site B ** CR 55 55 †

Abbreviations: ABC, activated B-cell; COO, cell-of-origin as determined by the nCounter Lymph2Cx assay; CR, complete remission; DLBCL, diffuse large B-cell lymphoma; FISH,
fluorescence in situ hybridization; GCB, germinal center B-cell; IHC, immunohistochemistry; IPI, international prognostic index; n.a., not applicable; OS, overall survival; PFS, progression
free survival; PR, partial remission. # According to the WHO 2017 classification the case is classified as a High grade B-cell lymphoma with MYC and BCL6 rearrangement; * biopsies taken
at the different time points; ** biopsies taken at the same time points; † patient deceased.
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3.2. Quality Control

The median read depth of the WES data of the 14 tumor samples was 85× (range 29–203×)
(Figure S2). The median number of non-synonymous coding single nucleotide variants (SNVs) and
Indels per genome was 568 (range 77–949), affecting 1896 genes in total. An estimation of the admixture
of normal cells based on the mean mutant allele frequency (MAF) of all somatic mutations in the
25–75% interquartile range, as previously described [26], revealed tumor cell percentages ranging
from 78 to 92% (median 90%), and is in concordance with the pathologist’s (AD) estimation (data not
shown). No significant differences were observed between tumor cell percentages in the primary and
relapse samples (Figure S3). The mean read depth of genes frequently mutated in DLBCL was 285×
(range 59–1010×) (Table S1). For a few exons, the depth was insufficient to reliably assess the presence
of mutations. In particular, this was the case for exon 3 of FOXO1, with no reads in any of the samples.

3.3. Commonly Mutated Genes

Fourteen of the 20 genes most frequently mutated in DLBCL according to the Cosmic database
(version 86) were mutated in one or more of the cases in our study (Figure 1). We identified 28 genes
with mutations in at least 3 patients (Table S2). Functional annotation of these genes showed enrichment
for genes involved in antigen presentation, including the human leukocyte antigen (HLA) molecules
and immunoglobulin light chains. Mutations in Suppressor of Cytokine Signaling 1 (SOCS1) and
Pim-1 Proto-Oncogene (PIM1) were observed in 5 out of 6 patients (Figure S4). The patient with a MYC
rearrangement had 3 missense mutations in exon 2 of the MYC gene. Furthermore, four additional
MYC mutations were found in two patients without a MYC rearrangement (Figure S4).
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Figure 1. Frequency of mutations in the top-20 most commonly mutated genes in diffuse large B-cell
lymphoma according to the Cosmic database version 86, and as observed in the 14 tumor samples
analyzed in this study. Fourteen of the 20 genes were mutated in at least one of the 14 samples.
SOC1 and PIM1 mutations were observed in 5 of 6 patients.

3.4. Mutational Evolution

With the exception of one patient, the vast majority of the mutations were shared between the
primary and R/R samples. The median percentage of mutations detected in the primary and not in the
matching relapse sample was 7.6% (range 4.8–66.2%) (Figure 2, Table S3). The loss of mutations was
particularly high in the patient with a late relapse, where 66% of mutations detected in the primary
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sample could not be detected in the relapse sample. The mean MAF of the mutations only detected
in primary samples was 0.15, which is in the lower quartile of the distribution, indicating genomic
heterogeneity in the tumor cells.
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Figure 2. Venn diagrams showing for each individual patient (P1–6) the overlap in mutations between
primary and paired relapse tumor samples. Left panels are Venn diagrams for all mutations (all),
and right panels are Venn diagrams for mutations with a mutant allele frequency (MAF) ≥0.2. The total
numbers of mutations per patient are depicted below each diagram. The size of the relapse diagram
is proportional to the primary sample. In the patients with two biopsies at relapse (P5 and P6),
the concordance between the novel mutations in the relapse samples was 45.3% and 89.2%, indicative
of spatial heterogeneity.

Relapsed DLBCL samples showed a median increase of non-synonymous mutations of 12.5%
(range 9.4–87.6%) as compared to primary tumor biopsies (Figure 2, Table S3). In the two patients with
multiple biopsies at relapse, there was a 45.3% and 89.2% concordance for mutations detected only in
the relapse samples (Figure 2). There was no significant correlation between the loss or increase in
mutations and time until relapse (ρ 0.32; p, 0.71) (Figure S5). Mutations were randomly distributed
across the genome (Figure S6).

Of the 354 relapse specific mutations (in 303 genes), 195 (55%) had a MAF <0.2 and were probably
subclonal. The remaining 159 (45%) mutations had MAF ≥0.2 and are probably major clone mutations,
and thus possibly related to therapy resistance (Supplementary Table S3). In addition, we identified
215 mutations that showed at least a two-fold increase in MAF in the relapse biopsy compared to
the primary sample, indicating a possible relation with therapy. The combined set of 374 mutations
possibly related to therapy resistance encompassed 264 genes (Figure S7). Functional annotation of
these genes revealed 18 tyrosine kinases, 73 (transmembrane) glycoproteins, and 7 genes that are
related to the JAK-STAT pathway (Table S4).

Several of the genes with relapse specific mutations are known to be targets for somatic
hypermutation, including BCL2, BIRC3, BTG2, IRF4, MYC, PIM1, SGK1, and SOCS1 [21,35]. The most
frequently observed base substitution among the relapse specific mutations (C:G > T:A) is a known
cyclophosphamide-induced base substitution, and to a lesser extent a canonical Activation-Induced
Deaminase (AID) activity dependent substitution (Figure S8) [35,36].
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The evolution of the resistance-associated and other mutations in SOCS1, PIM1, and MYC showed
different patterns (Figure 3). The MAF of mutations in SOCS1 showed moderate increases in relapse
samples. Mutations in PIM1 showed at least two-fold increased MAF in two out of five patients.
In the patients with two relapse biopsies, the MAF of SOCS1 and PIM1 were similar across the relapse
samples (Figure 3A,B). Even in this small cohort, the dynamics of MYC mutations showed clear
heterogeneity with loss of mutations (n = 3), increase of MAF (n = 1), and gain of mutations (n = 3) in
relapse samples (Figure 3C).
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4. Discussion

Mutational analysis has expanded the knowledge on the pathogenesis of DLBCL with genomic
risk models that can aid future biomarker driven treatment strategies [19–21]. However, mutational
analysis from single tumor biopsies will underestimate the true genomic landscape of tumors due
to the presence of inter- and intra-tumor heterogeneity, natural clonal evolution, and therapy related
changes [24,37]. Through targeted sequencing of the variable, diversity and joining (VDJ)-segments
of the immunoglobulin heavy chain, two DLBCL relapse models have been observed: A late (linear)
model and early (divergent) model [15]. Data on mutational evolution in DLBCL remains largely
unknown due to the lack of tumor biopsies [18]. In the current study, mutation profiles in relapsed
DLBCL were analyzed by pair-wise comparison of primary tumor and relapse samples. Despite the
limited number of patients with informative WES data, several compelling observations were made.

First, a median of 12.5% of mutations detected in relapse samples was not detected in the primary
samples. Our findings are in line with a previous study showing >80% concordance of mutations in
6 out 7 paired R/R samples [38]. However, in 2 of 6 cases we observed a gain >20% in mutations in the
relapse sample. These might be truly relapse specific, or failed detections in the primary sample due
to heterogeneity. Based on phylogenetic trees by somatic hypermutation and mutational analysis, an
increased number of mutations was proposed to be the result of an early divergent relapse clone [15].
The change in mutational load of relapses might be bigger in the presence of spatial heterogeneity,
as exemplified by the divergence in acquired mutations between multiple relapse samples in the
two cases from the current study. Nevertheless, the observed temporal heterogeneity in DLBCL is
relatively low compared to other lymphoproliferative diseases (LPD). In chronic lymphocytic leukemia
(CLL) [39,40], follicular lymphoma (FL) [41,42], and mantle cell lymphoma (MCL) [43], relatively
large temporal and spatial heterogeneity was observed. In contrast, mutational analysis of circulating
cell free tumor DNA in classical Hodgkin lymphoma (HL) indicates a relatively constant mutation
profile [44].

Secondly, mutations in several known targets of somatic hypermutation were detected as private
mutations in relapse samples [35]. Although the most frequent base pair substitution (C:G > T:A)
can arise as a consequence of canonical AID activity, it is also the most frequently observed base
pair change caused by cyclophosphamide [21,36]. The type and impact of clonal evolution varies
depending on the LPD, type of therapy, and involved genes and pathways. For example, CLL patients
who relapse after ibrutinib acquire mutations in Bruton Tyrosine Kinase (BTK) or phospholipase C-γ2
(PLCγ2) [45], whereas ibrutinib refractory MCL patients acquire mutations within several pathways,
including genes of the NF-kB pathway, the mTOR pathway, and epigenetic modifiers [46].

Third, a minority of mutations detected in the primary samples could not be detected in the
relapse samples. The low MAF of these mutations is suggestive of sub clonal passenger mutations,
a phenomenon that has also been observed in CLL [39]. This data is in line with the study by
Morin et al., in which loss of mutations was observed infrequently in cases with VAF < 0.2 [18].
Retention of the vast majority of mutations identified in the primary tumor samples is important
for reliable assessment of minimal residual disease (MRD) in free circulating tumor DNA (ctDNA)
using targeted approaches [38,47,48]. Focusing on sub clonal passenger mutations might lead to false
negative MRD results. Using broad panel based strategies reduces this potential risk and has revealed
a success rate of 80–85%. Another main advantage of a broad-panel based ctDNA analysis is that it also
allows detection of mutations not observed in the primary biopsy, thus at least partially overcoming
the spatial heterogeneity of the tumor sample [38]. Interestingly, ctDNA based analysis of BTK revealed
emerging mutations in two of three DLBCL patients receiving ibrutinib [38].

Fourth, through pathway analysis we observed enrichment for mutations in genes related to
antigen presentation (HLA class I and II molecules (HLA locus), B2M, CALR) in relapse samples.
Although the HLA locus is a highly polymorphic region and somatic mutation calling is prone to errors,
the high frequency of mutations in antigen-presentation related genes observed is consistent with
previous studies [49]. Approximately 75% of DLBCL exhibit a genetic basis for immune escape [21].
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Recently, this type of immune editing has been linked with mutations in MYD88 and CD79B [20].
In DLBCL, mutations in genes involved in immune escape (e.g., B2M and CD58) were associated
with increased risk of relapse by selective pressure analysis [12]. Analysis of paired DLBCL samples
showed somatic mutations, Indels, or chromosomal deletions targeting CD58 and B2M in five out
of seven cases [18]. Mutations in these genes have been postulated as relapse-associated events [15].
Loss of HLA-molecules is frequently observed in DLBCL, and this might have implications for
immunotherapy [50].

Fifth, we observed mutations in SOCS1 (5/6), PIM1 (5/6), and MYC (3/6) in multiple patients,
with part of the mutations being relapse specific or enriched. Compared to the reported mutation
frequencies in these genes in newly diagnosed DLBCL [51], the frequency seems to be enriched in R/R
DLBCL in this study. Based on a mathematical approach, SOCS1 and PIM1 mutations were amongst
the genes with the highest selective pressure estimates [12]. PIM1 mutations have been reported in
38% of R/R DLBCL ABC-type cases, and MYC mutations in 11% of R/R DLBCL cases [18]. In addition,
an enrichment for SOCS1 and PIM1 mutations in matched tumor samples was not only observed
in R/R DLBCL (4 out of 7 patients), but also in transformed FL (4 out of 7 patients), as well as in
relapsed FL (2 out of 7 patients), further supporting the role of mutations in these genes in relation to
relapse [38]. In the genomic model of Reddy et al., PIM1 and MYC mutations, but not SOCS1, were
significantly correlated with decreased survival [19]. This is in line with our observation, which shows
a relatively constant MAF for SOCS1 and an increased MAF for PIM1 mutations in two of five patients.
The dynamics of PIM1 mutations should be taken into account when treating patients with BTK
inhibition, since PIM1-stabilizing mutations affect upstream regulators and downstream targets of the
NF-kB pathway, decreasing sensitivity of ABC-type DLBCL to BTK inhibition [52].

Finally, through pathway analysis we observed enrichment for possible therapy related genes
related to trans membrane receptor tyrosine kinases (RTK) and genes involved in the JAK/STAT
pathway. Gains of mutations in RTKs was previously observed in matched R/R DLBCL samples [15].
Both SOCS1 and PIM1 converge at the JAK/STAT signaling pathway. While SOCS1 inhibits JAK/STAT
signaling, PIM1 expression is correlated with activation of STAT [51,53]. In addition to our observations,
loss of the Interleukin 9 receptor (IL9R) locus was previously observed in three out of seven relapsed
DLBCL cases [15], and STAT6 mutations were reported in 36% of R/R GCB-type DLBCL [18],
both further implicating a role for the JAK-STAT pathway in relapse.

This study has several limitations. It clearly shows the challenge of obtaining relapse biopsies
and good quality genomic DNA from FFPE tissues for WES. Of the 61 initially identified patients,
we obtained reliable WES data of representative sequential tumor biopsies for only 6 patients (10%).
In half of the relapse cases in our series a biopsy was omitted, and when available, again in half of the
cases the biopsy was not sufficient for this type of analysis. Although histological confirmation of R/R
DLBCL is advocated, it is often omitted for various reasons. In primary R-CHOP refractory patients
hardly any re-biopsies are performed. This is reflected in the current study, in which only half of the
patients had histological confirmation. In an attempt to maximize the number of patients in this study,
WES was performed on all but one excision biopsy, despite suboptimal DNA quantity and quality.
Unfortunately, either primary or R/R samples of 8 out of 14 eligible cases failed library preparation,
resulting in sufficient quality data for only 6 patients. Degradation of DNA during fixation and storage
might lead to sequencing artifacts, including false positive C:G > T:A substitutions [54]. More than
90% of mutations detected by our pipeline in the primary samples could also be detected in the relapse
sample, indicating that our filtering criteria successfully eliminated sequencing artifacts. To avoid such
artifacts, it would be better to use fresh frozen samples. However, FFPE is the main mode of storing
tissue samples [15,18]. We cannot completely rule out the presence of mutations in genes with low
coverage in WES, as exemplified by FOXO1 [18].

An alternative approach to avoid fixation artifacts applied in more recent studies is the analysis
of ctDNA. Initial studies showed the potential of using ctDNA to evaluate clonal evolution in
LPDs [42,46,47]. Larger studies using ctDNA analysis could provide a comprehensive view on the
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mutational evolution of R/R DLBCL. Nonetheless, current ctDNA analysis encompasses preselected
lists of target genes, while WES offers the best chance of discovering novel resistance-promoting
mutations, especially when moving to more targeted therapy. Implementation of ctDNA analysis in
clinical practice requires further standardization for purification and detection of mutations to achieve
high sensitivity, especially for detection of MRD. Finally, our study is not powered to address the
impact of individual mutations. Nevertheless, recurrent mutations with variable MAF were observed
in three genes that all have been implicated with therapy resistance [18,19].

5. Conclusions

We show modest temporal heterogeneity between paired tumor samples with the acquisition of
new mutations and enrichment of possible therapy resistant related genes. These mutational dynamics
should be taken into account when setting up and analyzing biomarker-driven treatment strategies.
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