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Myelocytomatosis viral oncogene homolog (MYC) plays an important role

in the regulation of many cellular processes, and its expression is tightly

regulated at the level of transcription, translation, protein stability, and

activity. Despite this tight regulation, MYC is overexpressed in many can-

cers and contributes to multiple hallmarks of cancer. In recent years, it has

become clear that noncoding RNAs add a crucial additional layer to the

regulation of MYC and its downstream effects. So far, twenty-five micro-

RNAs and eighteen long noncoding RNAs that regulate MYC have been

identified. Thirty-three miRNAs and nineteen lncRNAs are downstream

effectors of MYC that contribute to the broad oncogenic role of MYC,

including its effects on diverse hallmarks of cancer. In this review, we give

an overview of this extensive, multilayered noncoding RNA network that

exists around MYC. Current data clearly show explicit roles of crosstalk

between MYC and ncRNAs to allow tumorigenesis.

1. Introduction

The MYC gene family consist of three members, that

is, c-MYC, n-MYC, and l-MYC. c-MYC forms a

central hub in all cells by regulating many cellular pro-

cesses, while n-MYC and l-MYC are more tissue-speci-

fic regulators. MYC proteins are overexpressed in

more than half of all human cancers, including lung,

breast, and colon cancers (Albihn et al., 2010). This

overexpression is caused by diverse mechanisms

including amplifications, translocations, and epigenetic

alterations (Kalkat et al., 2017). In this review, we will

focus on c-MYC, hereafter referred to as MYC.

MYC belongs to the basic helix–loop–helix superfam-

ily and functions as a transcription factor. Upon dimer-

ization with its binding partner MAX, the MYC-MAX

dimer binds to E-box sequences in the promoter region

of its targets genes, thereby activating transcription of

these genes (Tu et al., 2015). In addition to interacting

with MAX, MYC can also interact with other tran-

scription factors, histone-modifying enzymes, and DNA

methyltransferases to repress transcription. MYC regu-

lates the transcription of many different genes, which

include protein-coding as well as noncoding genes

(Dang, 2012; Hart et al., 2014; Winkle et al., 2015).

These noncoding genes can include various RNA mole-

cules, for example, miRNAs and lncRNAs.

miRNAs are noncoding, regulatory RNA molecules

of about 22 nucleotides in length. A miRNA is tran-

scribed as a longer primary transcript, which is pro-

cessed in two steps into a mature single-stranded

miRNA and subsequently incorporated into the RISC.

The miRNA guides the RISC complex to its target

mRNA by recognition of a complementary sequence,

most often in the 30 UTR. Usually, conserved Wat-

son–Crick pairing with nucleotides 2–7 of the miRNA,
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the so-called seed region, is essential for target recogni-

tion (Bartel, 2009). Binding to the target mRNA will

subsequently result in mRNA cleavage by AGO2 in

case the miRNA has high complementarity with the

binding site region on the mRNA. In case of a low

level of complementarity, binding will lead to transla-

tional repression.

LncRNAs are defined as noncoding RNA molecules

of more than 200 nucleotides in length. Their expression

is often tissue specific or cell type specific, and their tran-

scripts can have subcellular compartment-specific local-

izations. Together, this restricts their function to specific

cell types and locations. LncRNAs can regulate gene

expression at the transcriptional and post-transcrip-

tional level, as well as by modulating protein stability,

localization, and functionality via diverse mechanisms.

In the nucleus, lncRNAs can regulate transcription of

nearby genes in cis or of more distant genes in trans, for

example, by recruiting transcription factors, chromatin-

modifying complexes, or heterogeneous nuclear ribonu-

cleoprotein (hnRNP) complexes. LncRNAs residing in

the cytoplasm can modulate mRNA stability, transla-

tion efficiency, or protein stability, localization, or

activity. Cytoplasmic lncRNAs can act as decoys to

sequester RNA binding proteins or miRNAs (sponges

or ceRNAs) or interfere with post-translational modifier

proteins (Chen, 2016; Schmitt and Chang, 2016).

Over the last decades, it has become clear that MYC

is not only regulated by and regulates many protein-

coding genes, but this extensive network also includes

the family of ncRNAs. The overall aim of this review

was to present an overview of the intricate crosstalk

between ncRNAs and MYC. We first focus on

ncRNAs acting upstream of MYC by regulating its

transcription, translation, and activity. In addition, we

focus on ncRNAs acting downstream of MYC and pin-

point their contributions to crucial hallmarks of cancer.

2. ncRNAs regulating MYC

2.1. miRNAs regulating MYC

In total, twenty-five miRNAs belonging to twenty dif-

ferent seed families have been described to directly reg-

ulate MYC (Fig. 1). Most of the miRNAs bind to the

MYC transcript in a canonical fashion, that is, with
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so-called seed-containing binding sites in the 30UTR.

Binding of let-7b/c-5p is enhanced by adjacent binding

of the RNA-binding protein HuR, which makes the

miRNA binding site accessible (Kim et al., 2009). One

of the two miR-24-3p binding sites is seed-containing,

while the other less-efficient site is ‘seedless’ and has

extensive complementarity at the 30-end of the miRNA

(Lal et al., 2009). MiR-17-5p was shown to bind to

the 50 UTR of the MYC mRNA (Liu et al., 2016),

while miR-184-3p (Zhen et al., 2013), miR-185-3p

(Liao and Liu, 2011), miR-320b-3p (Wang et al.,

2015), and miR-744-5p (Lin et al., 2014) bind to the

MYC ORF.

Next to regulating MYC in a direct fashion, miR-

24-3p can also influence MYC protein levels indirectly

by targeting OGT. OGT can O-GlcNAcylate the

MYC protein and thereby increase its stability (Liu

et al., 2017). A second miRNA that can act indirectly

on MYC is miR-375-3p, which targets CIP2A. CIP2A

prevents phosphorylation of Ser62 on MYC by PP2A

and thereby prevents degradation of MYC (Jung

et al., 2013). So, miR-24-3p and miR-375-3p can

downregulate MYC protein levels indirectly by target-

ing OGT and CIP2A, respectively.

Many of the miRNAs that can directly downregu-

late MYC by binding to the MYC mRNA, show

reduced levels in cancer. The decreased expression of

these miRNAs can thus contribute to the high levels

of MYC as commonly observed in cancer. Examples

are the let-7-5p family, miR-148a-5p, miR-331-3p, and

miR-363-3p, which are downregulated in Burkitt lym-

phoma compared to normal lymph nodes (Bueno

et al., 2011). A well-known exception is miR-17-5p,

which is part of the oncogenic miR-17~92 cluster that

is often upregulated in MYC-driven cancers. As too

high MYC levels are potentially dangerous for cancer

cells, targeting of MYC by miR-17-5p may be a means

to maintain optimal MYC levels and sustain continu-

ous tumor growth (Liu et al., 2016).

2.2. lncRNAs regulating MYC

Expression of MYC is controlled at the level of tran-

scription, translation, and protein stability. Several

lncRNAs have been demonstrated to play a role in

these regulatory processes. Here, we describe the

lncRNAs with a well-characterized role in MYC regu-

lation (Fig. 2).

2.2.1. LncRNAs regulating MYC transcription in cis

Besides the MYC gene, the 8q24 region harbors sev-

eral noncoding genes that can regulate MYC transcrip-

tion. CCAT1-L transcript variant of the CCAT1 gene

and CCAT2 are specifically expressed in colorectal

cancer (Ling et al., 2013; Xiang et al., 2014). CCAT1-

L is a nuclear lncRNA that accumulates in distinct

nuclear foci near its site of transcription. Knockdown

of CCAT1-L reduced, while overexpression enhanced

transcription of MYC in cis. This regulatory effect on

MYC was attributed to the spatial proximity of the

CCAT1-L locus with the MYC promoter. Indeed,

reduced chromatin loop formation between the

CCAT1-L and MYC loci was observed upon knock-

down of CCAT1-L transcription. The loop formation

was dependent on interaction of CCAT1-L with

CTCF, which enhanced binding of CTCF to the MYC

locus (Xiang et al., 2014). CCAT2 regulates MYC by

500 nt

AAAAA -3’5’- m7G

m
iR

-1
7-

5p

m
iR

-3
20

-3
p

m
iR

-7
44

-5
p

m
iR

-1
85

-3
p

m
iR

-1
84

-3
p

m
iR

-3
31

-3
p

m
iR

-4
51

-5
p

m
iR

-3
63

-3
p

m
iR

-4
94

-3
p

m
iR

-3
3-

5p

m
iR

-1
29

4-
5p

m
iR

-1
35

-5
p

m
iR

- 4
49

-5
p

m
iR

-3
4-

5p
le

t-7
-5

p
m

iR
-1

45
-5

p

m
iR

-4
94

-3
p

m
iR

-2
4-

3p

m
iR

-2
4-

3p

MYC

m
iR

-1
82

-5
p

m
iR

-1
48

-5
p

Fig. 1. miRNA-binding sites on the MYC mRNA. Schematic representation of the MYC mRNA with the binding sites of the MYC-regulating

miRNAs indicated. Only miRNAs for which binding to the mRNA was proven at least by reporter assay have been implemented in the

figure. The miRNAs let-7a/b/c/e/f-5p and miR-98-5p of the let-7 family (Bueno et al., 2011; Kim et al., 2009), miR-24-3p (Lal et al., 2009),

miR-33b-5p (Takwi et al., 2012), miR-34a/c-5p (Christoffersen et al., 2010; Kong et al., 2008), miR-145-5p (Sachdeva et al., 2009), miR-135b-

5p (Liu et al., 2014), miR-148a-5p (Han et al., 2013), miR-182a-5p (Huang et al., 2017), miR-331-3p (Bueno et al., 2011), miR-363-3p (Bueno

et al., 2011), miR-449c-5p (Miao et al., 2013), miR-451-5p (Li et al., 2011), miR-494-3p (Zhang et al., 2012b), and miR-1294-5p (Liu et al.,

2015a) target the MYC mRNA by binding to its 30 UTR, while miR-17-5p binds to the 50 UTR (Liu et al., 2016) and miR-184-3p (Zhen et al.,

2013), miR-185-3p (Liao and Liu, 2011), miR-320b-3p (Wang et al., 2015), and miR-744-5p (Lin et al., 2014) bind to the MYC ORF.
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enhancing the activity of TCF7L2, a transcription fac-

tor for MYC (Ling et al., 2013). Thus, both CCAT1-L

and CCAT2 positively regulate MYC transcription.

Interaction between an enhancer region down-

stream the first transcriptional start site of PVT1 and

the PVT1 promoter itself has tumor suppressor activ-

ity by reducing MYC transcription (Cho et al., 2018).

Silencing of the PVT1 promoter increased MYC

expression independent of the PVT1 transcript itself.

The underlying mechanism has been identified as a

competition between the PVT1 promoter and the

MYC promoter for interaction with the intragenic

enhancer region in the PVT1 locus. Under normal

conditions, these enhancers preferentially bind to the

PVT1 promoter. Silencing of the PVT1 promoter

allowed interaction of enhancers with the MYC pro-

moter, leading to increased MYC transcription.

Importantly, this effect is restricted to cells where

MYC forms chromatin loops with PVT1, for exam-

ple, breast cancer, as opposed to colorectal cancer or

MYC
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Fig. 2. lncRNAs regulating MYC at the DNA, mRNA, or protein levels. LncRNAs and their interaction partners involved in regulation of MYC

transcription, translation, stability, and functionality at protein level are indicated. The genomic region around MYC and the MYC mRNA

(central thick and curved gray line) are not drawn to scale. LncRNAs are indicated by curved lines and proteins by ellipses. LncRNAs

highlighted in blue indicate that they stimulate and lncRNA highlighted in yellow indicate that they repress MYC transcription, translation,

stability, or functionality, and the arrows indicate stimulating or repressing effects on MYC.
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cervical carcinoma cells where MYC loops to the

CCAT1 enhancer.

The levels of three partially overlapping lncRNA

transcripts antisense to the 30 distal region of MYC,

NAT6531, NAT6538, and NAT7281, are regulated

by histone H3 acetylation in prostate cancer cells.

Under normal conditions, NAT6531 is expressed and

processed by DICER into several short RNAs,

which have a repressive effect on MYC transcrip-

tion, possibly by binding to the MYC promoter and

intron 1 through partial sequence complementarity.

Partial inhibition of histone deacetylation shifts tran-

scription from NAT6531 to NAT6538, and this

releases the block on MYC transcription. Strong

inhibition of histone deacetylation results in tran-

scription of the longer NAT7281, which strongly

represses MYC transcription (Napoli et al., 2017).

2.2.2. LncRNAs controlling MYC mRNA stability and

translation

IGF2BPs enhance mRNA stability and promote trans-

lation by binding to the MYC mRNA (Huang et al.,

2018). A number of cell type-specific lncRNAs have

been identified that modulate this interaction. Interac-

tion of IGF2BP1 with lncRNA GHET1 in gastric can-

cer and THOR in renal and skin cancer increased

MYC mRNA and protein levels (Liu et al., 2018;

Yang et al., 2014; Ye et al., 2018). In contrast, binding

of the skeletal muscle-specific lncRNA lncMyoD to

IGF2BP2 decreased MYC mRNA levels by preventing

binding of IGF2BP2 to MYC mRNA (Gong et al.,

2015).

Binding of AUF1 to an ARE site in the 30UTR of

the MYC transcript can both positively and negatively

affect MYC levels, depending on the cell-type. In nor-

mal kidney cells, FILNC1 acts as a decoy for AUF1

preventing binding of AUF1 to the MYC mRNA,

thereby resulting in low MYC protein levels. In renal

cancer, FILNC1 is downregulated, resulting in an

AUF1-dependent increase in MYC protein levels

(Xiao et al., 2017). In breast and colon cancers, bind-

ing of linc-RoR to AUF1 inhibits binding of AUF1 to

MYC mRNA and thereby increases MYC levels

(Huang et al., 2015). It is currently unclear why

sequestering of AUF1 has opposite effects on MYC

levels in these different cell types. In addition, linc-

RoR facilitates binding of RNA binding protein

hnRNP-I to MYC mRNA and this also enhances

MYC protein levels.

MYC can be translated using an IRES in case the

regular cap-dependent translation is compromised.

This requires binding of the IRES trans-acting factors

PSF and p54nrb (Cobbold et al., 2008). These factors

are sequestered by lncRNA NEAT1 to the paraspeck-

les. In HeLa cells, depletion of NEAT1 during nucleo-

lar stress released PSF and p54nrb from paraspeckles

and allowed IRES-dependent translation of MYC

(Shen et al., 2017).

LncRNAs can also stimulate MYC mRNA transla-

tion by competing with MYC-regulating miRNAs.

This has been shown for PCAT-1, which competes

with miR-34a-5p for interaction with its binding site in

the 30 UTR of the MYC mRNA (Prensner et al.,

2011, 2014). The effect of PCAT-1 can be antagonized

by miR-3667-3p, which targets PCAT-1.

2.2.3. LncRNAs affecting MYC protein stability and

activity

The stability of MYC protein can be increased by two

lncRNAs that both prevent its degradation, but via

distinct mechanisms. In contrast to the tumor-suppres-

sive role of the PVT1 promoter, the PVT1 transcript

can act as an oncogene. PVT1 stabilizes the MYC pro-

tein by preventing phosphorylation of threonine 58,

which is a signal for its degradation (Tseng et al.,

2014). LINC01638 prevents MYC protein degradation

by preventing binding of E3 ubiquitin ligase adapter

SPOP to MYC (Luo et al., 2018).

Three lncRNAs modulate interaction of MYC with

(subsets of) its target genes by directly binding to

MYC. PCGEM1 is a prostate-specific lncRNA, which

together with MYC co-occupies the promoter regions

of several metabolic genes documented to be MYC

targets. Knockdown of PCGEM1 reduced recruitment

of MYC to the promoters of these PCGEM1-depen-

dent metabolic genes without affecting MYC protein

levels (Hung et al., 2014). Thus, PCGEM1 affects the

metabolic state of cancer cells by enhancing MYC

occupancy at the promoters of several metabolic genes.

LncRNA PDIA3P regulates the metabolic state of

multiple myeloma cells via induction of G6PD, an

enzyme crucial for promoting the PPP flux (Yang

et al., 2018). This effect is achieved by interaction of

PDIA3P with MYC and promoting MYC binding to

the G6PD promoter. Together with MYC, lncRNA

EPIC1 co-occupies the promoters of > 97% of EPIC1-

regulated genes involved in cell cycle progression, and

thereby regulates transcriptional activity of these genes

in breast cancer cells (Wang et al., 2018).

From the studies presented here, lncRNAs emerge

as important regulators of MYC expression and activ-

ity, either directly or indirectly by interacting with pro-

teins. Often, these lncRNAs are deregulated in cancer

and promote high MYC levels and activity. Since
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expression of lncRNAs is highly cell type specific,

many of the lncRNA-MYC interactions are restricted

to certain tissues. Future studies will likely broaden

the repertoire of lncRNAs regulating MYC and

improve the understanding of the underlying mecha-

nisms in normal and cancer cells.

2.3. Feedback loops on MYC

Next to the more straightforward regulation of MYC

by ncRNAs as described above, more complex feed-

back loops between MYC and MYC-regulating

ncRNAs have been identified. These include feedback

loops that involve MYC-regulated miRNAs, as well as

MYC-regulated lncRNAs that act as sponges for

MYC-regulating miRNAs.

2.3.1. Feedback loops involving MYC-regulated

miRNAs

Several miRNAs that regulate MYC can be induced

or repressed by MYC as well, resulting in the forma-

tion of feedback loops. Examples of this are the feed-

back loops between MYC and MYC-induced miR-7-

5p (Capizzi et al., 2017; Chou et al., 2010), miR-17-5p

(Liu et al., 2016), and miR-185-3p (Liao and Liu,

2011). For miR-7-5p, a positive feedback loop is

formed via the miR-7-5p target AMBRA1, which pro-

motes dephosphorylation of Ser62 on MYC upon

binding to PP2A. This leads to stimulation of proteo-

somal degradation of MYC (Capizzi et al., 2017; Cian-

fanelli et al., 2015). In this way, miR-7-5p indirectly

enhances MYC protein stability and promotes its own

MYC-mediated transcription. MiR-17-5p and miR-

185-3p were shown to directly target MYC mRNA

resulting in a negative feedback loop (Liao and Liu,

2011; Liu et al., 2016).

Positive feedback loops that result in sustaining high

MYC expression also involve MYC-repressed miR-

NAs. Let-7a-5p, miR-34a-5p, miR-148a-5p, miR-363-

3p, and miR-451-5p are examples of MYC-repressed

miRNAs that can directly repress MYC translation

(Bommer et al., 2007; Bueno et al., 2011; Christof-

fersen et al., 2010; Ding et al., 2018; Han et al., 2013;

Sampson et al., 2007). Besides MYC, miR-363-3p also

targets USP28, a de-ubiquitinase involved in MYC sta-

bilization (Han et al., 2013). MiR-22 forms a feedback

loop with MYC by targeting the MYCBP transcript,

which encodes a positive regulator of MYC transcrip-

tional activity (Xiong et al., 2010). In hepatocellular

carcinoma, repression of liver-specific miR-122-5p

results in derepression of the miR-122 targets E2F1

and its interaction partner TFDP2 (Wang et al., 2014).

Both targets are involved in the induction of MYC

transcription, creating another feedback loop. MiR-

200b-3p participates in a feedback loop that involves

MYC protein stability by targeting Akt2 mRNA (Lv

et al., 2017). Akt2 represses the activity of GSK3b, an
enzyme that destabilizes the MYC protein by phos-

phorylation of threonine residue 58. Thus, by repress-

ing miR-200b-3p, MYC ensures inhibition of GSK3b,
thereby stimulating its own stability. In contrast,

MYC-repressed miR-30a-5p is involved in a negative

feedback loop by targeting UBE3C mRNA, a protein

that can ubiquitinate MYC for proteosomal degrada-

tion (Chang et al., 2008; Xiong et al., 2016).

2.3.2. Feedback loops involving MYC-regulated

lncRNAs acting as miRNA sponges

The functions of several MYC-regulating miRNAs can

be antagonized by MYC-regulated lncRNAs, which

act as sponges. By sequestering those miRNAs, the

following MYC-induced lncRNAs ensure high MYC

levels and create a positive feedback loop on MYC:

CCAT1-S, the short isoform of CCAT1-L (let-7a/b/c/

e-5p) (Deng et al., 2015), DANCR (miR-33b-5p) (Ma

et al., 2018), H19 (let-7a/b-5p) (Peng et al., 2017; Zhou

et al., 2017), linc00176 (miR-185-5p) (Tran et al.,

2017), and SNHG3 (miR-182a-5p) (Huang et al.,

2017). Another lncRNA that ensures high MYC levels

by sequestering miRNAs of the let-7-5p family without

being regulated by MYC is lincRNA CCR492 (Mal-

dotti et al., 2016). In contrast, the MYC-induced

lncRNA-MIF reduces MYC levels and creates a nega-

tive feedback loop by sequestering miR-586 (Zhang

et al., 2016a). This miRNA targets the mRNA encod-

ing E3 ubiquitin ligase Fbxw7, which stimulates MYC

degradation. Although this does not seem beneficial

for cancer cells, it might be that with the overall broad

effects of MYC, lncRNA-MIF is an additional factor

in fine-tuning the most optimal MYC levels.

3. MYC-regulated ncRNAs involved in
five important hallmarks of cancer

The C13ORF25 RNA also known as the primary tran-

script of the oncogenic miR-17~92 cluster was identi-

fied as being MYC-induced in 2005 (He et al., 2005;

O’Donnell et al., 2005). The induction of this cluster is

achieved by binding of MYC together with E2F1-3

transcription factors to its promoter (Sylvestre et al.,

2007; Woods et al., 2007). The miR-17~92 cluster has

two paralogs: the miR-106a~363 cluster and the miR-

106b~25 cluster (Tanzer and Stadler, 2004). The miR-

106b~25 cluster is also regulated by E2F1 in
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combination with MYC (Petrocca et al., 2008). In

2008, multiple MYC-repressed miRNAs were identi-

fied using a human and a mouse B-cell lymphoma

model (Chang et al., 2008). MYC represses expression

of specific pri-miRNAs by binding to their promoter

regions and recruitment of HDAC3 (miR-15a/16 clus-

ter) (Zhang et al., 2012a), HDAC3 and EZH2 (miR-

26a, miR-19, and miR-129) (Han et al., 2016; Zhang

et al., 2012b; Zhao et al., 2013), or DNMT3a (miR-

34a) (Craig et al., 2011). Repression of the members of

the let-7 family by MYC is regulated post-transcrip-

tionally by the MYC-induced RNA binding protein

Lin28B (Chang et al., 2009).

One of the first identified MYC-regulated lncRNAs

is CCAT1. While the CCAT1-L transcript variant is

specifically overexpressed in colorectal cancer, the

CCAT1-S variant is upregulated in many other can-

cers, including gastric carcinoma and colon cancer (He

et al., 2014; Yang et al., 2013a). By binding to the

E-box element in the promoter region of CCAT1,

MYC induces expression of CCAT1-S. As the short

transcript variant is most likely formed by 30 process-
ing of the long variant, MYC probably induces

expression of CCAT1-L, but this has not been proven.

Besides CCAT1 and CCAT2, six other colorectal can-

cer-associated MYC-regulated lncRNAs (MYCLos/

CCAT3-8) have been identified (Kim et al., 2015a,b).

Three of them are MYC-induced, and the other three

are MYC-repressed. In the last five years, many more

MYC-regulated lncRNAs have been identified

although for many their function has not yet been

identified (Hart et al., 2014; Winkle et al., 2015).

Below, we describe in more detail the MYC-regu-

lated miRNAs (Table 1 and Fig. 3) and lncRNAs

(Table 2 and Fig. 4) with a clear role in five main hall-

marks of cancer, that is, cell cycle progression, apopto-

sis, metabolism, angiogenesis, and metastasis.

3.1. Cell cycle progression

Nineteen MYC-induced ncRNAs have a role in cell

cycle progression. LncRNA-assisted stabilization of

transcripts (LAST) stimulates CCND1 expression by

stabilizing CCND1 mRNA together with CNBP (Cao

et al., 2017). MiR-378a-3p ensures CCND1 expression

by targeting mRNA encoding TOB2, which is a

repressor of CCND1 expression (Feng et al., 2011).

CASC11 (CARLo-7) promotes CCND1 transcription

by stabilizing the hnRNP-K mRNA, which leads to

an hnRNP-K-dependent enhanced nuclear accumula-

tion of b-catenin (Zhang et al., 2016b). This leads to

activation of WNT/b-catenin signaling, and the

subsequent induction of CCND1 transcription. The

MYC-induced lncRNA MY (VSP9D1-AS1) associates

with hnRNP-K and stimulates CDK6 mRNA transla-

tion by competing with miR-16-5p for binding to

CDK6 mRNA (Kawasaki et al., 2016). CDKN2B

transcription is repressed by lncRNA CCAT-6 upon

binding of this lncRNA to hnRNP-K (Kim et al.,

2015b). All three lncRNAs interacting with hnRNP-K

(CASC11, MYU, and CCAT-6) have been shown to

stimulate cell cycle progression in colon cancer. The

four lncRNAs HOTAIR, MYCLo-1, CCAT1-S, and

DANCR all repress CDKN1A transcription (Kim

et al., 2014, 2015b; Liu et al., 2013; Lu et al., 2018;

Ma et al., 2014). HOTAIR represses CDKN1A tran-

scription by recruiting EZH2 and inducing epigenetic

changes, while MYCLo-1 is assisted by HuR to

repress the transcription of CDKN1A. The mecha-

nisms by which CCAT1-S and DANCR repress

CDKN1A transcription are not yet known. Members

of the miR-17-5p seed family have been strongly impli-

cated in stimulation of cell cycle progression by target-

ing CDKN1A (Ivanovska et al., 2008; Kim et al.,

2009; Trompeter et al., 2011). Conversely, the same

seed family represses cell cycle progression by targeting

CCND1/2 transcripts (Trompeter et al., 2011; Yu

et al., 2008) and E2F1-3 transcripts (He et al., 2005;

Luan et al., 2018; O’Donnell et al., 2005; Trompeter

et al., 2011). This is consistent with the cell type-speci-

fic roles as oncomiR as well as tumor suppressor miR

that have been observed for individual members of the

miR-17-5p seed family (He et al., 2005; O’Donnell

et al., 2005). The MYC-induced lncRNA CONCR

plays a role during S-phase and is required for cell

division by regulating the activity of helicase DDX11,

which is involved in DNA replication and sister chro-

matid cohesion (Marchese et al., 2016). The MYC-

induced lncRNA MINCR promotes MYC-mediated

transcription of a selected set of cell cycle genes

(Doose et al., 2015), although there is some debate

about whether this lncRNA is a direct MYC-induced

lncRNA or not (Doose et al., 2015, 2016; Hart et al.,

2016). Besides, MINCR functions as a sponge for

miR-26a-5p to stimulate cell cycle progression (Wang

et al., 2016).

Eleven MYC-repressed ncRNAs inhibit cell cycle

progression, while one MYC-repressed miRNA stim-

ulates cell cycle progression. The CCND1-3 and

CCNE1-2 transcripts are targeted by let-7b-5p (John-

son et al., 2007), the miR-15-5p seed family (Bonci

et al., 2008; Wang et al., 2009; Xu et al., 2009),

miR-26a/b-5p (Kota et al., 2009; Zhu et al., 2012),

and miR-34a-5p (He et al., 2007; Pok et al., 2013;

Sun et al., 2008). In addition, these miRNAs and

miR-29a-c-3p target CDK4/6 transcripts (He et al.,
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2007; Johnson et al., 2007; Kawasaki et al., 2016;

Sun et al., 2008; Xu et al., 2009; Zhao et al., 2010;

Zhu et al., 2012). The RB1 transcript is targeted by

miR-26a-5p (L�opez-Urrutia et al., 2017), and the

E2F3 transcript is targeted by miR-195-5p, a mem-

ber of the miR-15-5p seed family (Xu et al., 2009).

Let-7b-5p targets the CDC25 transcript, which

results in reactivation of CDKs to enable cell cycle

progression (Hoffmann, 2000). Let-7b-5p also targets

CDC34, which is an ubiquitin-conjugating enzyme

that is involved in the degradation of Wee1, an inhi-

bitor of CDK1 (Legesse-Miller et al., 2009). The

miR-15-5p seed family members target TFAP4,

which results in repression of CDKN1A and

CDKN2A transcription and reduced p21 and p16

levels (Jackstadt et al., 2013a). MiR-200b-3p targets

the CDKN1B transcript, leading to reduced p27

levels and stimulation of cell cycle progression (Fu

et al., 2014). So, it seems not beneficial for cancer

cells that MYC represses miR-200b-3p. MYCLo-4

and MYCLo-6 both block G2 to M phase progres-

sion by stimulating growth arrest and GADD45A

expression, a critical regulator of G2 arrest (Kim

et al., 2015a). MYCLo-5 is involved in controlling S

to G2 phase progression, but the exact mechanism is

not yet known.

3.2. Apoptosis

Seven MYC-induced and eight MYC-repressed

ncRNAs influence the balance between pro- and anti-

apoptotic factors. The MYC-induced miR-19a/b-3p,

miR-20a-5p, miR-25-3p, and miR-92a-3p prevent

apoptosis by targeting the BIM transcript (Mogilyan-

sky and Rigoutsos, 2013; Petrocca et al., 2008; Xiao

et al., 2008). In addition, miR-19a/b-3p target tran-

scripts of the PTEN, PP2A, and AMPK genes, result-

ing in decreased levels of the downstream pro-

apoptotic proteins BAD, Puma, and Noxa (Mavrakis

et al., 2010; Mu et al., 2009; Olive et al., 2009).

CCAT1-S was shown to upregulate the expression of

Livin, which is a member of the inhibitor of apoptosis

protein family that can interact with caspases to pre-

vent apoptosis (Chen et al., 2017).

Many of the MYC-repressed miRNAs directly tar-

get anti-apoptotic factors; for example, miR-15a/16-5p

and miR-34a-5p target the BCL2 transcript (Bommer

et al., 2007; Bonci et al., 2008; Cimmino et al., 2005),

miR-122-5p targets the BCL2L2 transcript (Lin et al.,

2008; Wang et al., 2014), and miR-26b-5p and miR-

29b-3p target the MCL1 transcript (Jiang et al., 2015;

Mott et al., 2007). Moreover, by targeting the IL-6

transcript, miR-26a-5p represses STAT3 signaling,

Table 1. MYC-regulated miRNAs with a function related to important hallmarks of cancer.

Proven target gene(s)a Cellular processesb

MYC-induced

miR-9-5p CDH1, LIFR, SOCS5 Angiogenesis, metastasis

miR-17-5p BIM, CCND1/2, E2F1-3, CDKN1A, PTEN, TGFBR, VEGF Cell cycle progression, angiogenesis,

apoptosis, metastasis

miR-18-5p CTGF, SMAD4 Angiogenesis, metastasis

miR-19-3p AMPK, BIM, PP2A, PTEN, THBS1 Apoptosis, angiogenesis, metabolism

miR-25-3p BIM, USP28 Cell cycle progression

miR-378-3p TOB2 Cell cycle progression

miR-378a-5p SUFU, TUSC1 Angiogenesis

MYC-repressed

let-7-5p CCND2, CDC25, CDC34, CDK6, HMGA2 Cell cycle progression, metastasis

miR-15-5p AP4, BCL2, CCND1/E1, CDK6, E2F3, GLUT3, SMAD3, VEGF Cell cycle progression, apoptosis,

metabolism, angiogenesis

miR-23-3p GLS, LDHA/B, SMAD3-5 Metabolism, metastasis

miR-26-5p CCND2/E1-2, CDK6, E2F3, EZH2, IL-6, MCL1, PDHX, PTEN, RB1 Cell cycle progression, apoptosis, metabolism,

metastasis

miR-29-3p AKT3, CDK6, MCL1, MMPP2, VASH2, VEGF Cell cycle progression, apoptosis,

angiogenesis, metastasis

miR-30-5p LDHA, UBE3C Metabolism, MYC regulation

miR-34-5p BCL2, CCND1/E2, CDK4, CDK6, SNAI1, ZNF281 Cell cycle progression, apoptosis, metastasis

miR-122-5p BCL2L2, E2F1, TFDP2 Apoptosis

miR-129-5p PDK4 Metabolism

miR-200-3p AKT2, CDKN1B, CTNNB1, GIT2, ROCK2, VEGF, ZEB-1, ZEB-2 Cell cycle progression, angiogenesis, metastasis

aNot all members of the seed families target the proven target genes. bNot all target genes mentioned in column two are involved in the

cellular processes mentioned here.
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Fig. 3. MYC-regulated miRNAs involved in five important hallmarks of cancer. For each hallmark, the MYC-regulated miRNAs and their

protein targets involved in stimulation (green) or repression (red) of the respective hallmark are indicated.
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which results in reduced Bcl2 and Mcl1 expression

levels (Yang et al., 2013b). The effects of miR-26a-5p

can be antagonized by MYC-induced MINCR, which

functions as a sponge for this miRNA and prevent

apoptosis (Wang et al., 2016).

3.3. Metabolism

Three MYC-induced and eight MYC-repressed

ncRNAs are involved in the regulation of aerobic gly-

colysis, a feature of cancer cells. By targeting PTEN

and PP2K transcripts, miR-19a/b-3p enhances PI3K

activity (Mavrakis et al., 2010; Mu et al., 2009; Olive

et al., 2009). This results in phosphorylation of Akt by

PDK1, which stimulates glycolysis through multiple

mechanisms, such as increased expression of several

glucose transporters, activation of PFK1/2 (important

regulatory enzymes of glycolysis), and mTOR. To fur-

ther ensure high mTOR activity, miR-19a/b-3p also

targets AMPK, an inhibitor of mTOR activity (Bolster

et al., 2002; Mavrakis et al., 2010). MiR-106a-5p tar-

gets the E2F3 transcript, which results in repression of

the glucose metabolism (Luan et al., 2018). This is

antagonized by H19, which has been proposed to pro-

mote glucose metabolism by acting as a sponge for

miR-106a-5p. MIF influences the glycolytic activity by

sequestering miR-586, thereby preventing expression of

MYC target genes involved in glycolysis, that is,

GLUT1, LDHA, PKM2, and HK2 (Zhang et al.,

2016a).

miRNAs repressed by MYC typically inhibit high

metabolic activity. The initial uptake of glucose is reg-

ulated by miR-195-5p, which targets GLUT3 (Fei

et al., 2012). MiR-23a/b-3p targets the mRNA

Table 2. MYC-regulated lncRNAs with a function related to

important hallmarks of cancer.

Proven target gene(s) Cellular processesa

MYC-induced

BCYRN1 ↑ MMP2/9/13, VEGF Angiogenesis, metastasis

CASC11 ↑ HNRNPK Cell cycle progression

↓ WIF1 Metastasis

CCAT1-S ↑ BIRC7 Apoptosis

↓ CDKN1A, l

et-7a/b/c/e-5p,

miR-148a-3p

Cell cycle progression,

metastasis

CCAT6 ↓ CDKN2B Cell cycle progression

CONCR ↑ DDX11 Cell cycle progression

DANCR ↓ CDKN1A, miR-33b-5p Cell cycle progression

H19 ↓ CDH1, let-7a/b-5p,

miR-29a-3p,

miR-106a-5p,

miR-200a-c-3p

Cell cycle progression,

metabolism,

angiogenesis,

metastasis

HOTAIR ↓ CDKN1A, WIF1,

miR-34a-5p

Cell cycle progression,

metastasis,

LAST ↑ CCND1 Cell cycle progression

Linc00176 ↓ miR-9-5p, miR-185-5p Cell cycle progression

LncRNA-MIF ↓ miR-586-5p Metabolism

MINCR ↓ miR-26a-5p Cell cycle progression,

apoptosis, metastasis

MYCLo-1 ↓ CDKN1A Cell cycle progression

MYU ↑ CDK6 Cell cycle progression

SINGH12 ↑ MMP13 Metastasis

MYC-repressed

IDH1-AS1 ↑ IDH1 Metabolism

MYCLo-4 ↑ GADD45A Cell cycle progression

MYCLo-5 Unknown Cell cycle progression

MYCLo-6 ↑ GADD45A Cell cycle progression

↑ indicates induced/stabilized/activated by the lncRNA, and ↓ indi-

cates being repressed by the lncRNA. aNot all proven target genes

mentioned in column two are involved in the cellular processes

mentioned here.
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Fig. 4. MYC-regulated lncRNAs involved in five important hallmarks of cancer. For each hallmark, the lncRNAs that are promoting or

inhibiting are indicated. Cell survival represents the opposite of apoptosis in this figure. LncRNAs highlighted in blue are MYC-induced,

lncRNAs highlighted in yellow are MYC-repressed, and lncRNAs in italic function as sponges for miRNAs.
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encoding GLS, which converts glutamine to glutamate

and thereby contributes to production of ATP (Gao

et al., 2009). In addition, miR-23a-3p targets LDH

subunits A and B (LDHA/LDHB), which convert the

glycolytic end product pyruvate to lactate (Poyyakkara

et al., 2018). Moreover, LDHA is also targeted by

miR-30a-5p (Chang et al., 2008; Li et al., 2017a).

MiR-26a-5p inhibits PDH activity by targeting PDHX

and therefore inhibits the conversion of pyruvate to

coenzyme A, an important component of the TCA

cycle (Chen et al., 2014a). Instead, pyruvate is con-

verted to lactate, showing an oncogenic role for miR-

26a-5p in metabolism. In contrast, miR-129 targets

PDK4 mRNA, thereby stimulating PDH activity (Han

et al., 2016). MYC-repressed lncRNA IDH1-AS1 stim-

ulates homodimerization of IDH1 by forming a tern-

ary structure with the enzyme, thereby enhancing its

activity (Xiang et al., 2018). IDH1 converts isocitrate

to a-ketoglutarate, which is an intermediate in the

TCA cycle and can inhibit glycolysis via degradation

of HIF1a under normoxic condition (MacKenzie

et al., 2007). By repressing IDH1-AS1, MYC downreg-

ulates IDH1 activity and ensures glycolysis.

3.4. Angiogenesis

Stimulation of angiogenesis by different mechanisms

has been reported for eight MYC-induced ncRNAs,

while five MYC-induced and four MYC-repressed

miRNAs inhibit angiogenesis by targeting pro-angioge-

netic factors. Angiogenesis is enhanced by repression

of the TGF-b signaling pathway. MiR-17-5p and miR-

20a-5p target the TGFBR2 transcript, while miR-18a-

5p targets the downstream effector SMAD4 (Dews

et al., 2010). Besides, several inhibitors of angiogenesis

are targeted; miR-19a-3p targets THBS1 (Dews et al.,

2010), miR-18a-5p targets CTGF (Ernst et al., 2010;

Fox et al., 2013), and miR-378-5p targets TUSC2 and

SUFU (Lee et al., 2007). VEGF expression is stimu-

lated directly by lncRNA BCYRN1 (Hu and Lu,

2015; Peng et al., 2018) and indirectly by miR-20a-5p

(Wang et al., 2017a). MiR-20a-5p targets PTEN,

which leads to increased VEGF levels via activation of

the PI3K/Akt pathway. In contrast, VEGF is inhibited

by miR-16-5p, miR-17-5p, miR-20a/b-5p, miR-29a-3p,

miR-106a/b-5p, and miR-200b-3p (Chen et al., 2014b;

Choi et al., 2011; Hua et al., 2006). In this context,

miR-200b-3p acts a tumor suppressor in contrast to its

oncogenic role in cell cycle regulation. MiR-29b-5p

indirectly lowers VEGF levels by targeting the Akt3

transcript (Li et al., 2017b). In melanoma cells, the

effect of miR-106a-5p on VEGF expression can be

counteracted by H19, which acts as a sponge for this

miRNA (Luan et al., 2018). At first sight, it seems

conflictive that both MYC-induced and MYC-

repressed miRNAs target VEGF mRNA. However, as

angiogenesis is crucial for a wide variety of physiologi-

cal and pathological processes, VEGF expression has

to be tightly regulated. This can be achieved by a com-

bination of several regulatory factors including MYC-

induced and MYC-repressed miRNAs, as well as other

ncRNAs ensuring optimal VEGF levels under various

conditions. MiR-29a-3p also targets the mRNA encod-

ing a second pro-angiogenetic factor, VASH2 (Jia

et al., 2016). VASH2 inhibition by miR-29a-3p can

also be antagonized by H19, which acts as a sponge

for miR-29a-3p in glioma microvessels and epithelial

cells (Jia et al., 2016).

3.5. Metastasis

Ten MYC-induced ncRNAs target metastasis-asso-

ciated genes. H19 promotes metastasis by recruitment

of EZH2 and the subsequent epigenetic suppression of

E-cadherin expression (Luo et al., 2013). Loss of E-

cadherin allows EMT, an early step in metastasis.

MiR-9-5p promotes metastasis by targeting E-cad-

herin, LIFR, and SOCS5 (Chen et al., 2012; Ma et al.,

2010; Zhuang et al., 2012). LIFR inhibits metastasis

through the Hippo/YAP pathway, and SOCS5 inhibits

endothelial cell migration by inhibiting the JAK/STAT

pathway. By interacting with EZH2, CASC11 and

HOTAIR epigenetically suppress Wif1 expression and

ensure stimulation of metastasis by the Wnt/b-catenin
pathway (Ge et al., 2013; Zhang et al., 2016b). As

described in the paragraph above, three members of

the miR-17-5p seed family target genes involved in the

TGFb signaling pathway, a crucial pathway also for

the induction of metastasis. BCYRN1 stimulates

metastasis by inducing the expression of MMP2,

MMP9, and MMP13 (Hu and Lu, 2015; Peng et al.,

2018). SNHG12 is a second lncRNA that induces the

expression of MMP13 (Wang et al., 2017b). In con-

trast to BCYRN1 that induces MMP13 transcription,

SNHG12 enhances MMP13 expression at the post-

transcriptional level.

Ten MYC-repressed miRNAs prevent metastasis,

while one MYC-repressed miRNA can both induce

and prevent metastasis, depending on the cell type.

The transcription factors SNAI1/2, ZEB1/2, Twist,

and AP4 all repress E-cadherin expression at the tran-

scriptional level (Tania et al., 2014). MiR-34a-5p tar-

gets the SNAI1 transcript directly and indirectly by

targeting the Kr€uppel-type transcription factor

ZNF281 transcript (Hahn et al., 2013). In addition to

being repressed by MYC, miR-34a is also repressed by
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HOTAIR upon interaction with EZH2, thereby pro-

moting metastasis in gastric cancer cells (Liu et al.,

2015b). Let-7a/b/e-5p repress SNAI1 and SNAI2

expression indirectly by targeting the chromatin

remodeling HMGA2 transcript (Lee and Dutta, 2007;

Mayr et al., 2007). This is counteracted by CCAT1-S

functioning as a sponge for let-7 family members let-

7a/b/c/e-5p (Deng et al., 2015). CCAT1-S can also

sequester miR-148a-3p in osteosarcoma cells, thereby

stimulating invasion and migration via unknown

mechanisms (Zhao and Cheng, 2017). ZEB1/2 tran-

scripts are targeted by miR-200a-c-3p (Korpal et al.,

2008; Park et al., 2008). The miR-15a-5p seed family

targets mRNA encoding AP4, which induces SNAI1

expression (Jackstadt et al., 2013b). The role of miR-

26a-5p with respect to metastasis seems to be contra-

dictory. By targeting PTEN mRNA, miR-26a-5p stim-

ulates the Akt/NFjB pathway and thereby induces

expression of Twist, b-catenin, and MMP2 in lung

cancer (Liu et al., 2012). Increased levels of b-catenin
will initiate Wnt signaling, which stimulates metastasis.

MMP2 is an essential protease involved in adhesion,

invasion, and migration by proteolytic degradation of

type IV collagen. In contrast, by targeting IL-6 in hep-

atocellular carcinoma, miR-26a-5p represses STAT3

signaling and this results in lower MMP2 levels (Yang

et al., 2013b). Furthermore, MMP2 is also targeted by

miR-29b-3p (Fang et al., 2011). miRNAs that repress

metastasis by repressing the downstream SMAD pro-

teins of the TGFb signaling pathway are miR-23b-3p

(SMAD3-5) (Rogler et al., 2009) and miR-195-5p

(SMAD3) (Zhou et al., 2016). MiR-200a-3p targets

the mRNA encoding b-catenin in colorectal cancer,

thereby repressing metastasis (Yang et al., 2017).

Another pathway involved in metastasis by influencing

cell motility is the Rho/ROCK signaling pathway,

which is repressed by targeting of ROCK2 and GIT2

transcripts by miR-200b/c-3p (Peng et al., 2013; Wong

et al., 2015; Zhou et al., 2017). All repressing effects

of the miR-200 seed family can be antagonized by

H19, which functions as a sponge for these miRNAs

(Li et al., 2016; Liang et al., 2015; Yang et al., 2017;

Zhou et al., 2017). Besides, MINCR stimulates metas-

tasis by sequestering miR-26a-5p (Wang et al., 2016).

4. Discussion

It is evident that an extensive, multilayered ncRNA

network exists around MYC with critical roles for

multiple lncRNAs and miRNAs in crucial cellular pro-

cesses and in tumorigenesis. The picture that we pre-

sent here is most likely still far from complete, as

functions of most of the MYC-regulated ncRNAs are

not known yet (Hart et al., 2014; Robertus et al.,

2010; Winkle et al., 2015). It is clear that many miR-

NAs and lncRNAs regulate MYC and that they can

do this via diverse mechanisms at the level of tran-

scription, translation, protein stability, and functional-

ity. This suggests that redundancy is important to

ensure optimal MYC levels and thereby cell viability

under various conditions, as well as in different cell

types. As MYC is involved in many cellular processes

in redundant ways, it is remarkable that repression or

reintroduction of a single MYC-regulated ncRNA can

already show strong effects on MYC-associated phe-

notypes, as has been shown for many ncRNAs

described in this review.

Expression of lncRNAs was shown to be more cell

type specific than that of protein-coding genes (Derrien

et al., 2012). Also compared to miRNAs, lncRNAs

appear to be more cell type-specific. However, this

might be biased as there are many more lncRNAs

than miRNAs, which increases the chance to find cell

type-specific lncRNAs. Based on current knowledge, it

seems that the cell type-specific expression of certain

lncRNAs can influence the output of MYC in two

ways. First, cell type-specific lncRNAs can influence

important cellular processes downstream of MYC

(Fig. 4). Second, other cell type-specific lncRNAs, like

PCGEM1 and PDIA3P, can modulate binding effi-

ciency of MYC to promoters of a specific set of genes.

So, these lncRNAs may direct the cell type-specific tar-

get gene repertoire of MYC, rather than MYC acting

as a general amplifier of expression. Altogether, a pic-

ture is emerging that lncRNAs guide cell type-specific

effects of MYC.

Although MYC has a central role in tumorigenesis,

no effective MYC-specific drugs are being employed in

the clinic to date. Given the crucial functions of multiple

lncRNAs and miRNAs in the oncogenic MYC network,

it is tempting to speculate that targeting of ncRNAs

within the MYC network might be an alternative to

explore novel anticancer therapies. These ncRNAs can

have profound impacts on MYC levels and activity and

can also act downstream of MYC enabling cancer cells

to gain the crucial hallmarks of cancer. To allow selec-

tion of the most optimal ncRNA targets, a more system-

atic analysis of their functional networks in normal cells

as well as in cancer cells needs to be performed to over-

see the consequences of targeting them.

Currently, more and more institutes and companies

investigate how to specifically target miRNAs and

lncRNAs, using both antisense and small molecule-

based strategies (Chakraborty et al., 2017; Warner

et al., 2018). Inhibitors for miR-92 and miR-122, as

well as mimics of miR-16, miR-29 and miR-34, have
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been developed and tested or are currently tested in

clinical trials (NIH U.S. National Library of Medicine,

https://clinicaltrails.gov/ (accessed 06.08.2018)). As

miR-34a-5p has tumor suppressor activity by both tar-

geting MYC and stimulating apoptosis, while repress-

ing cell cycle progression and metastasis, it is an

attractive target for novel anticancer therapies. MiR-

16-5p and miR-29-3p too have tumor-suppressive roles

in four of the five hallmarks discussed and form

attractive targets as well. The cell type-specific expres-

sion of lncRNAs adds to their attractiveness as targets

for therapy (Derrien et al., 2012). The choice for an

attractive target will therefore depend on the type of

cancer. For example, CCAT1-L and CCAT2 form

attractive targets to specifically inhibit MYC transcrip-

tion in colorectal cancer. A drug against CCAT1-L,

which will also target CCAT1-S, would be very inter-

esting as it will inhibit cell cycle progression and

metastasis, while promoting apoptosis. However, a

main problem for testing effectivity of lncRNA-based

drugs is the limited conservation for many of the

lncRNAs, which prevents pre-clinical experiments in

relevant mouse models. Patient-derived xenotransplan-

tation models or organoid cultures might represent an

alternative approach to test effectiveness of targeting

human-specific lncRNAs.

Thus, although MYC is described as one of the

most important oncogenes, it is important to realize

that there is an extensive, multilayered ncRNA net-

work around MYC, in which intricate crosstalk con-

tributes to hallmarks of cancer.
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