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Abstract
Background Meningiomas are the most frequently occurring primary intracranial tumours in adults. Surgical removal can only
be curative by complete resection; however surgical access can be challenging due to anatomical localization and local invasion
of bone and soft tissues. Several intraoperative techniques have been tried to improve surgical resection, including intraoperative
fluorescence guided imaging; however, no meningioma-specific (fluorescent) targeting has been developed yet. Here, we aimed
to identify the most promising biomarkers for targeted intra-operative fluorescence guided meningioma surgery.
Methods One hundred forty-eight meningioma specimens representing all meningioma grades were analysed using immu-
nohistochemistry (IHC) on tissue microarrays (TMAs) to determine expression patterns of meningioma biomarkers epi-
thelial membrane antigen (EMA), platelet-derived growth factor β (PDGF-β), vascular endothelial growth factor α
(VEGF-α), and somatostatin receptor type 2 (SSTR-2). Subsequently, the most promising biomarker was selected based
on TArget Selection Criteria (TASC). Marker expression was examined by IHC in 3D cell culture models generated from
freshly resected tumour material.
Results TMA-IHC showed strongest staining for SSTR-2. All cases were positive, with 51.4% strong/diffuse, 30.4%
moderate/diffuse and only 18.2% focal/weak staining patterns. All tested biomarkers showed at least weak positivity in
all meningiomas, regardless of WHO grade. TASC analysis showed that SSTR-2 was the most promising target for
fluorescence guided imaging, with a total score of 21 (out of 22). SSTR-2 expression was determined on original patient
tumours and 3D cultures of three established cultures.
Conclusions SSTR-2 expression was highly sensitive and specific in all 148 meningiomas, regardless ofWHO grade. According
to TASC analysis, SSTR-2 is the most promising receptor for meningioma targeting. After establishing in vitro meningioma
models, SSTR-2 cell membrane expression was confirmed in two of three meningioma cultures as well. This indicates that
specific fluorescence in an experimental setting can be performed for the further development of targeted fluorescence guided

meningioma surgery and near-infrared fluorescent tracers
targeting SSTR-2.

Keywords Intracranial meningioma . Fluorescence guided
surgery . Intraoperative imaging . Somatostatin receptor
subtype 2 . Biomarker

Abbreviations
EMA Epithelial membrane antigen
IHC Immunohistochemistry
PDGFR-β Platelet-derived growth factor receptor beta
SSTR-2 Somatostatin receptor type 2
T/N Tumour-to-normal tissue ratio
TASC TArget Selection Criteria
TMA Tissue microarray
VEGF-α Vascular endothelial growth factor A
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Introduction

Meningiomas are the most frequently occurring intracranial
tumours in adults, accounting for approximately one third of
cases [37]. They are classified by the World Health
Organization (WHO) into three malignancy grades with 15
histologic subtypes [26]. Treatment is usually only curative
with complete surgical resection [6, 50] and aims for both
complete tumour removal and preservation of neurological
function [29, 55]. Although mostly benign and slow growing,
all meningiomas can pose surgical challenges due to anatom-
ical localization and local invasion of bone and soft tissues,
leading to residual tumour tissue. Incomplete resection is one
of the risk factors for recurrence [6].

One of the proposed techniques to facilitate resection is intra-
operative fluorescence-guided imaging. Several fluorescent dyes
(5-aminolevulinic acid, fluorescein, and indocyanine green) have
been tried [1, 10, 14, 25, 33]; however, evidence regarding the
benefit of applying these dyes is unavailable. Furthermore, fluo-
rescent dyes currently lack specificity. The concept of targeted
fluorescence is appealing, due to high sensitivity and specificity
rates. Identification of meningioma-specific biomarkers is a first
and essential step in this concept. Comparable targeted fluores-
cent techniques have been established in other tumour types, e.g.
in ovarian carcinoma [17, 53] and peritoneal metastases of colo-
rectal carcinomas [18] targeting αvβ3-integrin or folate receptor
α and VEGF-α, respectively. For the development of a similar
approach in meningioma surgery, various biomarkers have been
suggested, including epithelial membrane antigen (EMA),
platelet-derived growth factor beta (PDGF-β), vascular endothe-
lial growth factor A (VEGF-α), and somatostatin receptor type 2
(SSTR-2) [3, 5, 9, 11, 12, 16, 19, 21, 28, 30, 32, 38, 39, 43–45,
48, 52, 56]. However, the suitability of these markers for
fluorescence-guided imaging meningioma surgery has not yet
been investigated.

In this study, we aimed to make a step-wise approach: (1)
identifying meningioma-specific candidate biomarkers
(EMA, PDGF-β, VEGF-α and SSTR-2); (2) selecting the
most promising tumour-specific marker; and (3) confirming
its expression in in vitro cultures derived from fresh meningi-
oma specimens.

Methods and materials

Part 1: identifying meningioma-specific candidate
biomarkers

Specimens of previously untreated, primary intracranial me-
ningiomas resected between January 2006 and December
2010 were retrospectively analysed for the expression of four
potential biomarkers (i.e. EMA, PDGF-β, VEGF-α and
SSTR-2). A total number of 148 meningioma specimens were

available for analysis. All patient data were anonymized ac-
cording to the regulations of the Medical Ethical Research
Committee of the University Medical Center Groningen.

Meningioma samples were examined using tissue microar-
rays (TMAs). TMA sections were deparaffinised with xylene,
rehydrated in ethanol, and rinsed in distilled water. After anti-
gen retrieval with a Tris-EDTA or Tris-HCl buffer, endogenous
peroxidase was blocked for 30 min using a 0.1% H2O2 PBS
solution. Respective antibody staining was performed at room
temperature. The selected primary antibodies of interest were
anti-EMA (mouse monoclonal, Dako), anti-PDGFR-β (rabbit
polyclonal, Santa Cruz), anti-VEGF-α (rabbit polyclonal,
Santa Cruz) and anti-SSTR-2 (rabbit monoclonal, Epitomics).
We used normal cerebellar and anterior pituitary tissue as pos-
itive controls. Additionally, we omitted the primary antibody
and used IgG controls. Secondary and tertiary antibody staining
was performed for 30 min. All sections were subjected to a 3,3-
diaminobenzidine solution for 10 min and finally counter-
stained with haematoxylin for 2 min, dehydrated in ethanol,
cleared, mounted and cover slipped.

For immunohistochemical (IHC) evaluation, TMA sections
were scanned with an ultra-resolution digital scanner
ScanScope CS®, Aperio® with × 20 image magnification
and evaluated with Aperio ImageScope® software. Each tissue
core of the TMA section was scored using the following scor-
ing method: negative, (0); weak/focal staining, (1); moderate/
diffuse staining, (2); strong/diffuse staining, (3). Two authors
(AM and WFD) independently evaluated tissue cores and in
case of discrepant scores, consensus was reached by way of
discussion between both evaluators. Cores were regarded as
non-informative and consequently dismissed when > 50% tis-
sue was lost or presented inappropriate amounts of collagen
staining. Tumour specimens which were represented by less
than two complete cores were excluded. A mean score was
calculated for each specimen and specimens with an average
score of 1 were considered positive, whereas specimens with a
mean score of ≥ 2 were summarized as Bhigh score^.

Statistical analysis

All statistical analyses were performed using IBM® SPSS®
Statistics 20. Spearman rank-order correlation was used to
find correlation between targets and WHO classifications.
All reported P values were two sided and a value of P ≤ 0.05
was considered as statistically significant.

Part 2: selecting the most promising tumour-specific
marker

To investigate the usefulness of these markers for intra-
operative fluorescence-guided imaging, the TArget Selection
Criteria (TASC) [54] were utilized for the selection of the most
promising targets, as depicted in Table 1.
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Part 3: confirming expression in in vitro cultures

Meningioma 3D cell culture models were established to pro-
vide an accurate model for the disease [13, 24]. Surgical left-
over fresh tumour tissue was washed with ice-cold PBS and
mechanically dissociated. After adding 15 to 20 ml accutase,
tissue incubated for 30 min at room temperature. The suspen-
sion was passed through a 70-μm cell strainer to procure sin-
gle cells and pelleted. Cells were seeded in T75 flasks with
medium containing DMEM/F12 supplemented with 2% B27,
20 ng/ml EGF, 20 ng/ml bFGF [22], and 2% pen/strep.

For IHC analyses, 3D cultures were dissociated with
accutase and cytospun. Subsequently, cells were fixated with
4% formaldehyde, washed with PBS and underwent a
blocking step with 1% H2O2 in PBS for 10 min. Cells were
then incubated with anti-SSTR-2 (1:100; MAB4224, R&D
systems) for 1 h, followed by incubation of the corresponding
secondary and tertiary antibodies diluted at 1:50 in PBS with
1% BSA and 1% AB serum for 30 min. Lastly, cells were
incubated with 5% 3-amino-9-ethylcarbazole diluted in ace-
tate buffer with 0.1% hydrogen peroxide for 10 min, counter-
stained with haematoxylin for 2 min, and mounted with

Kaiser’s glycerin for microscopic examination using a Leica
DM 3000 microscope.

Results

Part 1: identifying meningioma-specific candidate
biomarkers

Patient characteristics

Patient and tumour characteristics are summarized in Table 2.
The age at surgery ranged from 4 to 79 years. Tumour spec-
imens were obtained from 52 male and 96 female patients.
Our study revealed 124 WHO I (83.8%), 22 WHO II
(14.9%) and 2 WHO III (1.4%) meningiomas. All tested bio-
markers showed at least weak positivity in all meningiomas,
regardless of WHO grade. No association was found between
WHO grade and the expression rates of the potential targets
using Spearman rank order correlation (Table 3).

Table 1 TASC scoring system
Criteria Characteristics Score

I Extracellular protein localization Bound to cell surface (receptor) 5

In close proximity of tumour cell 3

II Diffuse upregulation through tumour
tissue

4

III Tumour-to-normal ratio > 10 3

IV Percentage upregulation in patients > 90% 6

70–89% 5

50–69% 3

10–49% 0

V Previously successfully imaged in vivo 2

VI Enzymatic activity 1

VII Internalization 1

Maximum: 22

Potential target
≥ 18

Table 2 Patient and tumour specimen characteristics

Men Women

Percent (n (%)) 52 (35.1) 96 (64.9)

Age (years) (mean (range)) 47.2 (4.4–79.8) 52.4 (4.2–77.5)

Meningioma grade (n (%*))

WHO I 38 (25.7) 86 (58.1)

WHO II 12 (8.1) 10 (6.8)

WHO III 2 (1.4) 0 (0.0)

*Percentage of all meningiomas

Table 3 Correlation between target expression and WHO grades

Target Spearman correlation (p value)

EMA
.498

VEGF-α
.909

PDGFR-β
.255

SSTR-2
.647
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Target expression in TMA sections

Both cerebellar and anterior pituitary tissue showed SSTR-2-
positivity. Additionally, white matter in the cerebellar tissue
was SSTR-2 negative, as expected. Omission of the primary
antibody revealed no SSTR-2 staining and aspecific binding
with IgG was not observed.

TMA-IHC results are summarized in Table 4. Of all TMA
meningioma specimens (588), 99.8% was IHC-positive for
the investigated targets with at least two or more valid tissue
cores. The number of non-informative/invalid cores was low
for PDGFR-β (0.7%) and VEGF-α (2.0%) and all cores for
EMA and SSTR-2 were valid. The IHC staining score for
SSTR-2 was the most robust, resulting in positivity for
SSTR-2 in all specimen: moderate/diffuse or strong/diffuse
positivity in 81.8% (Bhigh score^) and focal/weak positivity
in only 18.2% of all cases. Representative examples illustrat-
ing SSTR-2 expression are shown in Fig. 1.

Part 2: selecting the most promising tumour-specific
marker

The selected markers were evaluated using TASC based on
IHC-TMA results (Table 5). Using these criteria, SSTR-2 is
the most promising target for intra-operative use with a total
TASC score of 21. In addition, EMA, PDGFR-β and

VEGF-α seem to be high potential targets with TASC scores
of 20, 20 and 18, respectively.

Part 3: confirming expression in in vitro cultures

Generating meningioma cultures

In vitro cultures were established to further explore the poten-
tial of SSTR-2 as a meningioma-specific marker in a transla-
tional model. After processing the freshly resected material,
11 of 22 cultures (50%) generated 3D cultures after 7 days
(Fig. 2, top panel). However, growth decreased after three to
four passages. A selection of three cultures named MgG24,
MgG26 and MgG27 was characterized in more detail. These
cultures originated from three female patients with a mean age
of 65.7 years (range 60–77; SD 9.8). All meningiomas were
WHO grade I, with one transitional and two meningothelial
meningiomas (Fig. 2, middle panel). Two meningiomas were
located at the convexity and one at the skull base (Fig. 2,
bottom panel).

SSTR-2 expression in in vitro meningioma cultures

SSTR-2 expression was determined on original patient tu-
mours and 3D cultures of the three established cultures. All
patient tumours were strongly positive for SSTR-2 at the cell

Table 4 Summary of IHC results
Target Valid

cores
Weak/focal
(%)

Moderate/ diffuse
(%)

Strong/diffuse
(%)

High score* (%)

EMA 148 16 (10.8) 113 (76.4) 19 (12.8) 132 (89.2)

VEGF-α 145 45 (31.0) 93 (64.1) 7 (4.8) 100 (69.0)

PDGFR-β 147 34 (23.1) 107 (72.8) 6 (4.1) 113 (76.9)

SSTR-2 148 27 (18.2) 45 (30.4) 76 (51.4) 121 (81.8)

Shown percentages are valid ratios for the respective target

*Defined as moderate/diffuse or strong/diffuse staining

Fig. 1 Representative images of SSTR-2 stained TMA-IHC cores and scoring approach. Shown are weak/focal (left), moderate/diffuse (middle), and
strong/diffuse (right) staining patterns
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membrane (Fig. 3, top panel). However, of the dissociated 3D
cultures, onlyMgG24 andMgG26 are SSTR-2 positive with a
cell membranous staining. It should be noted that not all cells

are (equally) positive in both cultures: some cells show no or
weak SSTR-2 positivity, whereas in other cells, the staining is
strongly positive (Fig. 3, bottom panel).

Table 5 Target selection by applying TASC

TASC
item

I
Localization

II
Expression
pattern* ≠

III
T/N
ratio

IV
Upregulation
in patients*
(%)

V
In vivo
imaging

VI
Enzymatic
activity

VII
Internalization

Score

Target

EMA Transmembrane Diffuse High 100 Yes [34, 49] ND ND 20

VEGF-α Secreted Diffuse High 100 Yes [35, 36, 47] ND ND 18

PDGFR-β Transmembrane Diffuse High 100 Yes [15] ND ND 20

SSTR-2 Transmembrane Diffuse High 100 Yes [21, 23, 52] Yes [46] ND 21

ND, not described; T/N ratio, tumour-to-normal tissue ratio

*Results based on this study
≠Expression patterns are considered Bdiffuse^, if moderate/diffuse or strong/diffuse staining is present in more than 66% of included cases

Fig. 2 Top panel shows micrographs of 3D meningioma cultures with ×
10 magnification. Middle panel depicts micrographs of H&E stained
original patient tumour at × 40 magnification. Bottom panel are
gadolinium-enhanced MRI scans. 3D cultures showed aggregated cell

formation into a sphere. H&E stained tumour samples confirmed the
diagnosis of meningioma in all three cases. MRI scans revealed
meningiomas at the convexity and skull base
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Discussion

The first aim of this study was to identify the expression pat-
tern of a series of preselected markers (EMA, PDGF-β,
VEGF-α and SSTR-2) in meningiomas using TMA-IHC,
which resulted in the analysis of a large collection of tested
meningioma samples. We confirmed previous findings re-
garding meningioma biomarkers [3, 5, 9, 11, 12, 16, 19, 21,
28, 30, 32, 38, 39, 43–45, 48, 52, 56]. All investigatedmarkers
tested positive in all meningiomas, regardless of WHO grade.
However, SSTR-2 expression was especially robust with a
Bhigh score^ in 81.8% of all cases. SSTR-2 was also highly
specific and sensitive. These findings are in line with previous
studies [12, 30, 48]. Subsequently we focused on the second
aim of this study, namely, identifying the most promising
tumour-specific marker for intraoperative application.
Applying TASC, SSTR-2 was found to be superior when
compared to the other three biomarkers. Although TASC
was initially developed for target selection in colorectal cancer
and has not yet been validated in other tumours, the principle
is also applicable to other tumour types as it is based on bio-
marker characteristics and not on a specific tumour type. This
tool (TASC) is the first structured method to determine the
suitability of a biomarker for intraoperative imaging. As a
major advantage, TASC provides an objective score by con-
sidering available evidence.

The potential of SSTR-2 was analysed in a translational
model using newly generated patient-derived 3Dmeningioma
cultures. In two of three tested cultures, SSTR-2 expression
was present at the cell membrane, emphasizing the possibility
of SSTR-2 as a potential target for fluorescence guided

imaging. One culture was SSTR-2 negative, which may be
due to a technical issue with reduced culture viability.
Indeed, the original patient tumour was SSTR-2 positive.
Further research is warranted to investigate this issue further.
As far as we know, this is the first time that the expression
SSTR-2 has been determined in in vitro meningioma cultures
using IHC. Several limitations became apparent when using
this model. The cultures could be subcultured for a limited
number of passages: cell growth decreased after three to four
passages, similar to a previous report [51]. Moreover, the gen-
erated in vitro models are all originating from WHO grade I
meningiomas. Although patients with high grade lesions may
benefit the most from intraoperative imaging, WHO I menin-
giomas are still a representable model as SSTR-2 is expressed
in all meningiomas, regardless the grade [30, 48].

The present study is an essential first step towards the de-
velopment of meningioma-specific intraoperative fluorescence-
guided imaging. Future steps should consist of binding studies
with fluorescent dyes (preferably near-infrared dyes, such as
IRDye 800CW) with SSTR-2 analogues (e.g. octreotate).
These have already been used in targeted therapy for recurrent
meningiomas [2, 8, 42] and their application in theranostics and
PET-scanning has been demonstrated [19, 21, 52]. IRDye 800
CW has undergone a microdosing study [27] and has been
applied in various clinical trials [57]. Further validation is need-
ed by testing a target-directed imaging tool in vitro for proof of
concept, and subsequently in in vivo animal models using xe-
nograft mouse models. Animal models have been successfully
applied previously, using fresh patient-derived material [20, 31,
41, 51] or immortalized meningioma cell lines [4, 7, 40, 41],
with higher grade meningiomas yielding a higher success rate.

Fig. 3 Top panel depicts micrographs from primary tumour stained for
SSTR2 at × 10 magnification. Bottom panel shows micrographs of
dissociated cells cultured as 3D and stained for SSTR2 at × 40

magnification. Patient material showed SSTR-2 membrane staining in
all tumours. Two of three dissociated 3D cultures revealed SSTR-2
positive membranous staining in a fraction of cells
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Such models are needed for translational research to assess
SSTR-2 guided intra-operative meningioma surgery.

Conclusions

The present results highlight the potential of SSTR-2 as a high
potential target for fluorescence-guided imaging. We identi-
fied SSTR-2 as the most suitable biomarker for targeted
fluorescence-guided meningioma surgery by applying TMA-
IHC and TASC. SSTR-2was highly sensitive and specific and
was expressed in all meningiomas in our large patient sample
cohort, regardless of WHO grade. Furthermore, we
established freshly generated in vitro meningioma models
closely reflecting the original patient tumour and confirmed
SSTR-2 expression in three meningioma cultures, which
marks the first and essential step towards future in vitro ex-
periments (tumour-cell imaging with fluorescently labelled
SSTR-2 receptor markers) and in vivo experiments (meningi-
oma identification in a mouse model). Further preclinical stud-
ies need to be performed to further develop the concept for
targeted fluorescence-guided meningioma surgery.
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