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Abstract 

The Selective Attention for Identification model (SAIM) is an established model of selective visual 

attention. SAIM is based on translation-invariant object recognition, in scenes with multiple objects, 

using the Parallel distributed processing (PDP) paradigm. Here, we show that SAIM can be formulated 

as Bayesian inference. Crucially, SAIM uses excitatory feedback to combine top-down information (i.e., 

object knowledge) with bottom-up sensory information. In contrast, predictive coding implementations 

of Bayesian inference use inhibitory feedback. By formulating SAIM as a predictive coding scheme, we 

created a new version of SAIM that uses inhibitory feedback. Simulation studies showed that both types 

of architectures can reproduce response the time costs induced by multiple objects – as found in visual 

search experiments. However, due to the different nature of the feedback, the two SAIM schemes make 

distinct predictions about the motifs of microcircuits mediating the effects of top-down afferents. We 

discuss empirical (neuroimaging) methods to test the predictions of the two inference architectures. 
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Introduction 

In 2003 Heinke and Humphreys introduced the Selective Attention for Identification model (SAIM) 

(Heinke & Humphreys, 2003) to model translation-invariant object identification in multiple object 

scenes.  A foundational assumption of SAIM is that the brain implements a soft constraint satisfaction as 

implemented by the Parallel distributed processing (PDP) paradigm (Rumelhart & McClelland, 1988). 

This led to a neural network architecture with feedback loops that enable an interaction between top-

down information (i.e., knowledge about objects stored in an object identification stage) and bottom-up 

information (i.e., sensory information).  Heinke and Humphreys demonstrated that SAIM could explain 

a broad range of empirical phenomena typically associated with selective visual attention, such as the 

effects of spatial cuing, object-based selection and the response time costs of recognising multiple 

objects. Furthermore, SAIM could account for deficits in selective visual attention, such as visual neglect, 

visual extinction and the influence of knowledge on visual neglect.  

In short, SAIM suggests that many “attentional” phenomena can be explained as an emergent property 

of object identification (i.e., perceptual inference) in multiple object scenes. As far as we know, this level 

of success remains unrivalled by any other model. Subsequent work by Heinke and colleagues 

demonstrated that extensions of SAIM could reproduce findings from visual search experiments (Heinke 

& Backhaus, 2011; Mavritsaki, Heinke, Allen, Deco & Humphreys, 2011; Narbutas, Lin, Kristan, & Heinke, 

2017), deal with natural colour images (Heinke et al., 2007) and perceptual grouping (Heinke, et al., 

2004). Finally, by modifying the constraints to reflect action possibilities (i.e., affordances) it was 

possible to incorporate affordances in multiple object scenes (Böhme & Heinke, 2009). It is also worth 

noting that SAIM’s mechanisms are based on nonlinear dynamics that are formally similar to  those used 

in dynamic neural fields (e.g,  Zibner, Faubel, Iossifidis, & Schoner; 2011; Sandamirskaya, Zibner, 

Schneegans, & Schöner, 2013; Straus, Woodgate, Sami, & Heinke, 2015; Faubel, & Schöner, 2008; Faubel, 

& Schöner, 2009). The latter reference is particularly relevant in the current context, because it 

considers the use of lateral interactions to engineer neurodynamic architectures for one shot learning 

of visual objects using bottom-up recognition under top-down predictions. The common theme here is 

a dynamical implementation of a universal prior in object recognition; namely, that only one object (i.e., 

the winning or selected hypothesis) can cause sensory input at any one time. This fundamental prior is 

generally mediated by lateral interactions in neuronal schemes. The Winner-Take-All interactions – 

implicit in SAIM – play the same role as lateral connections in neural field formulations. 

The aim of this paper is to relate SAIM to a predictive processing framework for modelling action and 

perception; namely, the free-energy principle of Friston and collaborators (e.g., Friston et al., 2007; 

Friston et al., 2006; Friston, 2008; Friston, 2006; Friston, 2010; see Clark, 2013 and Hohwy, J., 2013).  A 

prima-facie inspection suggests that Bayesian principles advocate a similar computational architecture 

to that employed by SAIM: both architectures are hierarchical, and both contain feedback loops. This 

paper offers a mathematical analysis of how these two architectures are related. In brief, we show that 

SAIM can be derived from first principles (i.e., the free-energy principle). However, SAIM assumes a 

different ‘generative model’ compared to those typically used in schemes like predictive coding. A 

crucial consequence of this difference is that SAIM’s feedback loops are excitatory, while predictive 

coding schemes lead to inhibitory feedback loops (i.e., subtracting predictions from sensory input to 

form prediction errors). To facilitate a direct comparison between these two architectures, we derived 

a new version of SAIM – Error Prediction (EP)-SAIM – which uses the generative model usually adopted 

in predictive coding. We then present stimulation studies comparing the two models and produce 

(quantitative) predictions for future (EEG or fMRI) studies. In short, this work develops a formalism to 

address an important and long-standing systems neuroscience question: does the brain combine 

sensory information with prior knowledge using excitatory or inhibitory feedback? 
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To clarify the arguments, especially for those unfamiliar with SAIM, we first present a slightly revised 

version of SAIM. To highlight the contrasting assumptions about the feedback loops, we will call this 

version excitatory matching EM-SAIM. We then replicate a key finding from the foundational paper that 

introduced SAIM. Using simulations, we illustrate EM-SAIM’s ability to perform object identification in 

multiple object scenes. Moreover, these simulations show that EM-SAIM reproduces the well-known 

multiple object cost; i.e., the increased time it takes to detect a target object with increasing numbers of 

non-target objects. This ubiquitous empirical finding is an emergent property of SAIM’s Winner-Take-

All (WTA) mechanism. The evidence for multiple object cost comes from visual search experiments (e.g. 

Lin, Heinke, & Humphreys, 2015; see Eckstein, 2011; for a review). Here, we reproduce these results 

using the EM version of SAIM. Having established the validity of this EM scheme, we then reformulated 

the soft constraints in SAIM as free energy minimisation – to produce a Prediction Error PE-SAIM. We 

then repeated the simulation studies using the same (synthetic) stimuli to establish its construct 

validity, in relation to EM-SAIM. Finally, we compare and contrast the simulation results to identify key 

aspects of belief updating that may enable the two versions to be disambiguated, using empirical 

measures of neuronal evidence accumulation (e.g., EEG or fMRI). The MatLab code for the simulation 

studies reported in this paper can be found in the Github-repository https://github.com/SAIM-

models/EMvPE. 

This paper does not aim to advance our understanding of selective visual attention per se; e.g., by 

comparing predictive coding and SAIM formulations of attention (e.g., Feldman & Friston, 2010; Kanai, 

Komura, Shipp, Friston, 2015). Rather, we hope to lay the foundations for empirical work that will 

disambiguate between these convergent formulations (see General discussion). Finally, we have tried 

to keep the mathematics accessible for readers without a mathematical background. 

 

The EM (Excitatory Matching)-SAIM 

Before presenting the mathematical derivation of EM-SAIM, we provide an overview of the EM-SAIM 

architecture (see Figure 1; for an illustration). After considering the mathematical details, we then 

highlight how an excitatory matching EM-SAIM differs from the original SAIM. We conclude this section 

by demonstrating that EM-SAIM can reproduce multiple object costs. 
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Figure 1 EM-SAIM’s architecture. The three networks, Knowledge Network, Contents Network and 

Selection Network, have different functions: the Knowledge Network identifies the contents of the FOA by 

activating the best-matching template unit. The Contents Network maps a section of the input image into 

the FOA. The Selection Network determines the location of this section (see details in the main text). The 

arrows between the modules indicate the direction of message passing between the networks.  

 

Overview 

EM-SAIM selects an object by mapping a region in the input image into a “focus of attention” (FOA) (see 

Fig. 1). The mapping is implemented through the Contents Network and is translation invariant. This 

means that no matter where an object appears in the input scene, it can be mapped into the FOA. The 

Selection Network determines which region in the input image is mapped into the FOA. The Selection 

Network identifies this region by activating units in a layer that corresponds to locations in the input 

image (see Fig. 1). The output of the Contents Network is passed onto the Knowledge Network.  The 

Knowledge Network is equipped with template units that store templates of known (i.e., recognisable) 

objects. This network compares the templates and the input from the Contents Network with a simple 

template matching. Given the results of this template matching, the Knowledge Network activates the 

best matching template unit. This reflects the identity of the selected object – the object in the Contents 

Network.   

In addition to these bottom-up pathways, EM-SAIM also possesses top-down pathways. Note these top-

down pathways are mandated by the soft constraint satisfaction approach described below.  The top-

down pathway from the Knowledge Network to the Contents Network adds a weighted sum of the 

templates to the activation in the FOA (excitatory feedback). The weighting is determined by the 

activation of the template units. In other words, the feedback directs the FOA to focus on the content of 

the Contents network. The top-down connections from the Contents Network to the Selection Network 

underwrite a correlation of the Contents Network with the input image. The result of the correlation is 

feed into the Selection Network. Again – as with the feedback from Knowledge Network to Contents 

Input

Image

Contents Network

Focus of Attention 

(FOA)

Knowledge Network

Template

Units

Selection Network

Top down
pathway

Bottom-up
pathway

Top down

pathway

Bottom-up
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Network – this correlation rests on excitatory feedback. Since the Selection Network implements a WTA 

mechanism, this input directs the Selection Network’s attention to the location in the input image that 

best matches the content of the Contents Network.  

It is important to note that EM-SAIM does not achieve object identification instantaneously. Rather, 

object identification evolves over time. Initially (if we assume that there is no foreknowledge about the 

objects in the scene), the template units have same activation; the Contents Network is set to an equally 

weighted summation of template units and the Selection Network has equal activation across all image 

locations (i.e. no spatial bias). Subsequently, EM-SAIM begins the selection process and identification 

process in parallel, eventually converging to a point attractor, in which no unit changes its activation. At 

that point EM-SAIM is said to have selected and identified an object.  

 

Mathematical derivation 

Our implementation of EM-SAIM is based on the energy function minimisation scheme introduced by 

Hopfield and Tank (1986). In this scheme, the desired outputs of a network are expressed in terms of 

constraints; e.g. template matching as a constraint on the object identification in the knowledge 

network. Network dynamics can then be expressed as a gradient descent on an energy function (𝐸(𝒚)) 

of the output activity 𝒚  of the neurons. The energy function comprises a mixture of distinct energy 

functions, where the minimum of each component satisfies a particular constraint. This ensures the 

network dynamics implement a form of soft constraint satisfaction. The general form of EM-SAIM uses 

the gradient descent described by Hopfield and Tank (1986):   

𝜏�̇�𝑖 = −
𝜕𝐸(𝒚)

𝜕𝑦𝑖
  (1) 

Here, 𝑥𝑖 is the transmembrane potential of the i-th neuron (or neural population), 𝑦𝑖  is their firing rate 

activation and   is the membrane time constant. The activation and depolarisation are linked through a 

well-known sigmoid (activation) function:  𝑦𝑖 = 𝑓(𝑥𝑖) =  
1

1+𝑒−𝑚(𝑥𝑖−𝑠) 

To ensure a level of biological plausibility SAIM’s energy function includes an energy component for 

every neuron or unit: 

𝐸𝑚𝑒𝑚(𝒚) =
1

𝜏
∑ ∫ 𝑓−1(𝑧𝑖) 𝑑𝑧𝑖

𝑦𝑖

0

𝑁

𝑖

  (2) 

The gradient descent on this term leads to neuronal dynamics that emulate a leaky postsynaptic 

membrane1. Another energy component, that is central to SAIM, is the Winner-Take-All (WTA) energy 

function: 

𝐸𝑊𝑇𝐴(𝒚) =
𝑎

2
((∑ 𝑦𝑖

𝑁

𝑖

) − 1)

2

− 𝑏 ∑(𝑦𝑖  𝐼𝑖)  (3)

𝑖

 

                                                           
1 An intuitive explanation of this component is that its partial derivative “removes” the integral leaving only 

the term −f −1(yi). The ensuing link between x and y turns this term into a leak term: (−xi). 
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Here, 𝐼𝑖 are the inputs to the i-th neuron or neuronal population. This WTA energy function produces 

competition among neurons, in which the neuron with the largest input become activated – to nearly 

one (i.e., the winning unit), while all remaining neurons tend to zero. The first term corresponds to the 

constraint that the sum of all neuronal activities is equal to one; while the second term (i.e., input term) 

implies the constraint that the response of the neuron with the greatest input is maximal. The addition 

of the two ensures a WTA behaviour, where 𝑎  and 𝑏  weight the two constraints; allowing either 

constraint to dominate. The ensuing WTA behaviour is a nice illustration of soft constraint satisfaction.  

This energy function is important for the Knowledge Network, where the best matching template is 

indicated by the highest input – and for Selection Network, as we will see later. It is also important to 

note that a change of the sign of the input term turns the WTA into a Loser-Take-All where the neuron 

with the smallest input wins the competition. This mechanism is important for PE-SAIM. 

To ensure that EM-SAIM satisfies all constraints imposed by its constituent networks, the energy 

functions for each network are combined to provide an objective function for the entire network: 

𝐸𝑡𝑜𝑡𝑎𝑙(𝐘𝑆𝑁, 𝐗𝐶𝑁, 𝒚𝐾𝑁) = 𝐸𝑚𝑒𝑚(𝐘𝑆𝑁, 𝐗𝐶𝑁, 𝒚𝐾𝑁) +  𝐸𝑆𝑁(𝐘𝑆𝑁) +  𝐸𝐶𝑁(𝐗𝐶𝑁, 𝐘𝑆𝑁) +  𝐸𝐾𝑁(𝒚𝐾𝑁)  (4) 

In other words, each network implements a constraint that is specified in terms of its unique energy 

function, while every neuron tries to minimise the total energy function: 𝐸𝑡𝑜𝑡𝑎𝑙. Here, 𝐸𝑆𝑁is the energy 

function for the Selection Network; 𝐸𝐶𝑁 is the energy function for the Contents Network and 𝐸𝐾𝑁 is the 

energy function for the Knowledge Network (i.e., superscripts SN, CN and KN stand for Selection Network, 

Contents Network and Knowledge Network respectively).  

The arguments of the energy functions,  𝐘𝑆𝑁 and 𝒚𝐾𝑁 are the outputs of the Selection Network and the 

Knowledge Network respectively and 𝐗𝐶𝑁  is the output of the Contents Network. The use of 𝐗  here 

indicates that – in contrast to the Knowledge Network and the Selection Network – we drop the sigmoid 

function in the Contents Network. This follows because the Contents Network represents continuous 

valued sensory signals. Also note the use of matrix notation for the Contents Network and the Selection 

Network outputs, which are two-dimensional matrices. In contrast, the Knowledge Network output is a 

one-dimensional vector. In the following, we will consider each individual energy function and the 

constraints it satisfies in detail. 

 

Knowledge Network 

The Knowledge Network implements template-based object identification. The template-based object 

identification is implemented through a scalar product implementing a simple template matching: 

𝑥𝑘
𝑡𝑒𝑚𝑝

= ∑ 𝑥𝑖𝑗
𝐶𝑁 𝑤𝑖𝑗

𝑘

𝑀,𝑀

𝑖,𝑗

                   (5) 

Here, M is the size of the FOA and 𝑤𝑖𝑗
𝑘  is the template of the k-th template neuron or unit. The size of each 

template is the same as the size of the FOA. Examples of various templates can be found in the 

simulations below (see Figure 2). The Knowledge Network constraint ensures that the best-matching 

template unit is activated, while the remaining units are suppressed. The WTA energy function 

implements this constraint:  
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𝐸𝐾𝑁(𝒚𝐾𝑁) =
𝑎𝐾𝑁

2
((∑ 𝑦𝑘

𝐾𝑁

𝐾

𝑘

) − 1)

2

− 𝑏𝐾𝑁 ∑ 𝑦𝑘
𝐾𝑁𝑥𝑘

𝑡𝑒𝑚𝑝
             (6)

𝐾

𝑘

 

 

Contents Network 

The Contents Network receives an input from Sigma-pi units (i.e., modulatory synaptic interactions) 

which combine the activation in the selection network and the visual field to realize a translation-

invariant mapping: 

𝐼𝑚𝑛
𝐶𝑁 = ∑ 𝑦𝑖+𝑚,𝑗+𝑛

𝑆𝑁

𝑁,𝑁

𝑖𝑗

 𝑦𝑖𝑗
𝑉𝐹    (7) 

Here, N is the size of the input image and 𝑦𝑘𝑙
𝑉𝐹is the input image. Contents Network constraints ensure 

that the output units of the Contents Network reflect the output of the Sigma-pi units: 

 

 𝐸𝐶𝑁(𝐗𝐶𝑁, 𝐘𝑆𝑁) = −𝑏𝐶𝑁  ∑  𝑥𝑖𝑗
𝐶𝑁 𝐼𝑖𝑗

𝐶𝑁    (8)

𝑀,𝑀

𝑖𝑗

 

 

Selection Network 

The Selection Network implements one constraint, which ensures that only one location is selected. 

Here, we used the first term of the WTA energy function: 

𝐸𝑆𝑁(𝐘𝑆𝑁) =
𝑎𝑆𝑁

2
((∑ 𝑦𝑙𝑚

𝑆𝑁𝑁,𝑁
𝑙𝑚 ) − 1)

2
(9) 

This concludes our description of the network specific energy components that constitute the total 

energy.  

To simulate the processing of visual input, the total energy is minimised using a gradient descent scheme 

with the form of Equation 1. In detail, we used an Euler approximation, with the addition of biological 

noise, of the sort implied by drift diffusion models (e.g., Ratcliff & McKoon, 2008). 

𝑥𝑖(𝑡) = 𝑥𝑖(𝑡 − 1) −
𝜕𝐸𝑡𝑜𝑡𝑎𝑙(𝐘(t − 1))

𝜕𝑦𝑖
+ 𝜉𝑖  ;    𝜉𝑖 = 𝑁(0, 𝜎)      (10) 

Here, 𝜉𝑖  is the noise term with variance 𝜎. The resulting energy gradients for each network can then be 

expressed as follows (using direct calculation): 

 

Selection Network: 
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𝜕𝐸𝑡𝑜𝑡𝑎𝑙(𝐘𝑆𝑁, 𝐗𝐶𝑁, 𝒚𝐾𝑁)

𝜕𝑦𝑛𝑚
𝑆𝑁  = 𝑥𝑛𝑚

𝑆𝑁 + 𝑎𝑆𝑁 . ((∑ 𝑦𝑖𝑗
𝑆𝑁

𝑁,𝑁

𝑖,𝑗

) − 1) − 𝑏𝐶𝑁. ∑ 𝒙𝒊𝒋 
𝑪𝑵. 𝒚𝒏−𝒊,𝒎−𝒋

𝑽𝑭

𝑴,𝑴

𝒊𝒋

              (11) 

Contents Network: 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙(𝐘𝑆𝑁, 𝐗𝐶𝑁, 𝒚𝐾𝑁)

𝜕𝑥𝑛𝑚
𝐶𝑁  = 𝑥𝑛𝑚

𝐶𝑁  − 𝑏𝐶𝑁. ∑ 𝑦𝑖+𝑛,𝑗+𝑚
𝑆𝑁

𝑁,𝑁

𝑖,𝑗

 𝑦𝑖𝑗
𝑉𝐹 − 𝑏𝐾𝑁. ∑ 𝒚𝒌

𝑲𝑵. 𝒘𝒏𝒎
𝒌

𝑲

𝒌

          (12) 

            

Knowledge Network: 

 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙(𝐘𝑆𝑁, 𝐗𝐶𝑁, 𝒚𝐾𝑁)

𝜕𝑦𝑘
𝐾𝑁  = 𝑥𝑘

𝐾𝑁 + 𝑎𝐾𝑁 . ((∑ 𝑦𝑖
𝐾𝑁

𝐾

𝑖

) − 1) − 𝑏𝐾𝑁. ∑ 𝑥𝑖𝑗
𝐶𝑁. 𝑤𝑖𝑗

𝑘

𝑀,𝑀

𝑗,𝑖

           (13)                              

 

The terms in bold font (i.e., input terms in Eq. 3) represent feedback from higher networks to lower 

networks; i.e., from the Knowledge Network to the Contents Network and from Contents Network to 

Selection Network. These terms follow from the gradient descent and show that feedback connections 

are required for soft constraint satisfaction. Crucially, these feedback connections constitute a positive 

(i.e., excitatory) feedback (see Table 1 for the circuit diagram of the implicit message passing and 

connections). For example, responses in the Content Network 𝑥𝑚𝑛
𝐶𝑁  will descend the gradient in equation 

(12), and will therefore increase with the activity of units in the higher Knowledge Network 

𝑦𝑘
𝐾𝑁 . Similarly, unit responses in the selection network 𝑦𝑛𝑚

𝑆𝑁  increase with the source of descending 

projections from the content network 𝑥𝑛𝑚 
𝐶𝑁 .  

 

 

Figure 2 Input images and templates. The simulations used three input images and two templates in the 

knowledge network. The three input images were two single object images (+ and 2) and one two object image 

(+/2). The two templates perfectly matched the two objects.  
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Comparing EM-SAIM with the original SAIM 

EM-SAIM incorporates two changes that lend it a greater biological plausibility than the original 

implementation. The first is the inclusion of Brownian noise. This not only makes EM-SAIM more 

biological plausible but enables it to simulate variations in response time commonly found in 

behavioural experiments. The second change concerns the feedback connections. In the original SAIM, 

the feedback from the Knowledge Network was conveyed directly to the Selection Network. In EM-SAIM 

the Knowledge Network now projects to the Contents Network and the Contents Network projects to the 

Selection Network. This change creates a more plausible architecture; given that feedback tends to target 

input brain region (e.g., Lamme, Supèr, & Spekreijse, 1998).  

This revised feedback architecture retains the top-down modulation of the selection process; albeit in a 

more indirect way. To fully understand neurobiological premise of this argument, it is worth noting that 

SAIM’s networks can be related to the what-pathway and the where-pathway (see Heinke and 

Humphreys, 2003; for a more detailed discussion). According to this interpretation, the Knowledge 

Network and the Contents Network correspond to brain regions in the what-pathway (ventral pathway), 

while the Selection Network corresponds to areas in the where-pathway (dorsal pathway), the posterior 

parietal cortex. Hence, if the Knowledge Network and the Contents Network are in the ventral pathway, 

feedback connections between these two networks better reflect known anatomical connections (as 

opposed to feedback connections to the Selection Network as in the original SAIM). 

 

 

Simulation results for EM-SAIM 

We first performed validation simulations to ensure EM-SAIM can replicate the simulations of multiple 

object cost in terms of reaction times, as reported in Study 2 in Heinke and Humphrey’s (2003). As in 

the original study, we used two objects, 2 and + (cross) (see Fig. 2). These objects also formed the 

templates in the Knowledge Network. The reaction times were simulated by measuring the number of 

time steps it takes for a template unit to pass a threshold (see Appendix for parameters). The multiple 

object cost was simulated by contrasting the reaction times for input images with one object (+ or 2) 

with input images with two objects, + and 2. In empirical experiments, such as visual search tasks, 

multiple object costs are demonstrated with more objects (e.g., Lin et al. 2015; see Heinke and Backhaus, 

2011 for a simulation study). However, for the purpose of this work, a simple set-up is sufficient to 

establish that EM-SAIM reproduces SAIM’s cardinal behaviour.  Figure 3 shows an example of a typical 

simulation for three input images, + / 2, single 2 and single +.  
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Figure 3. Three exemplar simulation results for multiple object costs with EM-SAIM. The graphs show the 

time course of the activation for the focus of attention (FOA) and the two template units in the Knowledge 

Network. The reaction times were measured by determining the number of iterations it takes for a template 

unit to pass a threshold (0.9). As expected, the results show that EM-SAIM’s reaction times were slower for 

the two objects image (1013 iterations) than for the two single object images, +  (687 iterations) and 2 

(777 iterations). 



11 
 

Figure 4. Results for 20 simulation runs for each input image. There was significant difference between +/2 

and single +; and between +/2 and single 2. Hence, EM-SAIM can replicate the findings with the original 

SAIM (see main text for details). 

 

These examples show that EM-SAIM can reproduce the multiple object cost. Also, as in the original SAIM, 

EM-SAIM exhibits a top-down bias towards the +, as the combined templates match better with the + 

than the 2. We also conducted a study with 20 simulations for each input image, to establish there was 

statically significant difference between the three conditions (see Fig. 4). We applied a t-test to the 

simulation results and found a significant difference between +/2  and single + (t(38)=11.40; p < 0.001) 

and  between +/2 and single 2 (t(38)=5.34; p < 0.001) (and between 2 and single +  (t(38)=-7.85; p < 

0.001)). Crucially, the reaction time for +/2 was slower than for single + and single 2.  

In summary, these simulation results suggest that EM-SAIM reproduces the key result from the original 

SAIM simulations. In addition to the original SAIM simulations, the new (EM) version can also reproduce 

the natural variation of reaction times found in experiments with humans. Also, despite the addition of 

neuronal noise, none of the 40 single stimuli simulations showed an error and the +/2-simulations 

always identified the cross. Note that the exact numerical outcome of the simulations, such as the 

variation of reaction times, depends on the parameter settings. Nevertheless, a broad range of 

parameter settings produce the findings present here. We will return to the issue of numerical 

evaluation of the model in the discussion section of PE-SAIM.      

 

Interpreting SAIM within the active inference framework 

In this section, we consider the links between the above formulation of visual processing within the PDP 

framework and current formulations based upon predictive coding and the Bayesian brain. In brief, we 

will see that both SAIM and approximate Bayesian inference can be described in terms of minimising an 

energy function. The particular energy function used in Bayesian formulations corresponds to 

variational free energy (also known as an ‘evidence bound’ in machine learning). Variational free energy 

is a function of data and a generative model (i.e., a probabilistic model of how data are generated from 

causes, such as visual objects). In what follows, we show that the energy function used by SAIM can be 

interpreted as a variational free energy under a particular generative model. This means, SAIM can be 

formulated in terms of Bayesian inference under a particular model of how visual data were generated. 

Furthermore, it means the computational architecture described in the previous section can be 

compared in a formal way to the architectures used in Bayesian schemes.  
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Casting SAIM in terms of variational free energy minimisation is much simpler than one might suppose. 

The free-energy principle considers how the Bayesian brain hypothesis (see Knill & Pouget, 2004; for a 

review) may be implemented in the brain. According to the free energy principle (and in line with the 

Bayesian brain hypothesis), the brain is thought to use a generative model to infer the hidden (i.e., 

latent) causes of sensory signals. These models are characterized as ‘generative’ in the sense that they 

describe how the latent causes generate signals. In the course of the inference process, the brain is 

assumed to update representations (as encoded by a posterior probability density) of the latent causes 

via a minimisation of “free energy”.  This belief updating, evidence accumulation or inference process 

can be illustrated using SAIM’s object identification.  

Let us assume the generative model of object identification comprised the templates used in SAIM. 

Hence, for each physical object (e.g., two, crosses, etc.) the templates represent the latent causes of 

sensory signals in the input image. Given these sensory signals, the minimisation of the free energy 

produces a posterior probability density for each template – reflecting the probability that the sensory 

signals are caused by the corresponding object. On this view, the templates correspond to prior beliefs 

about the latent causes of sensory signals that are recovered from sensory data through Bayesian belief 

updating. This belief updating can be expressed as a gradient descent on variational free energy. 

An important point to note here is that the free energy minimized during inference is a single quantity 

(i.e., a functional of the posterior probability density and sensory input) that is specified by the 

generative model. In other words, the free energy is a global objective function analogous to SAIM’s total 

energy function – and in both approaches, the energy has to be minimized. Hence, SAIM is, in effect, an 

instantiation of the free energy principle. Moreover, a gradient descent on the free energy functional 

implements the inference by optimising the posterior distribution (e.g., Friston, 2008). In short, SAIM’s 

gradient descent is formally consistent with the free energy principle. In addition, one can regard SAIM’s 

soft constraint satisfaction as equivalent to probabilistic inference under certain prior beliefs (i.e. 

constraints on the way visual data are generated).  

Note that SAIM’s inference process does not yield a representation of uncertainty, but simply a point 

estimate of the posterior. In Bayesian terms, this corresponds to a maximum a posteriori estimate.  In 

terms of the free energy principle, SAIM inverts a hierarchical Bayesian model, where the Contents 

Network, Selection Network and Knowledge Network encode the posterior expectations and hierarchical 

(a.k.a. empirical) priors. Interestingly, the WTA constraints in SAIM can be regarded as implementing 

the prior belief that only one object can be in one place at a time. 

Having noted a formal equivalence between SAIM’s energy minimisation approach and the free energy 

principle, one can now ask: what is SAIM’s underlying generative model? In the free energy approach, 

the probabilistic generative model is linked and energy through a Gibbs measure: 

ln p(𝐘𝑉𝐹, μ|m) = −E(𝐘𝑉𝐹 , μ|m) (14) 

where 𝒀𝑉𝐹  denotes sensory signals and  𝜇 are the expected causes of sensory signals under a generative 

model m. To reverse engineer the probabilistic representation in EM-SAIM, consider the energy function 

of EM-SAIM:  

ln p(𝐘𝑉𝐹 , 𝐘𝑆𝑁, 𝐗𝐶𝑁, 𝒚𝐾𝑁)  = −𝐸𝑆𝑁(𝐘𝑆𝑁) − 𝐸𝐶𝑁(𝐗𝐶𝑁, 𝐘𝑆𝑁) −  𝐸𝐾𝑁(𝒚𝐾𝑁) (15) 
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This equation can be separated into network-specific components, which correspond to the empirical 

and full priors of the generative model2: 

p(𝐘𝑉𝐹, 𝐘𝑆𝑁 , 𝐗𝐶𝑁, 𝒚𝐾𝑁) = p(𝐘𝑉𝐹 , |𝐘𝑆𝑁, 𝐗𝐶𝑁)p(𝐗𝐶𝑁|𝒚𝐾𝑁)𝑝(𝒀𝑆𝑁)p( 𝒚𝐾𝑁) (16) 

with the likelihood and prior from the Selection Network becoming: 

𝑙𝑛 𝑝(𝒀𝑉𝐹 , |𝑿𝐶𝑁, 𝒀𝑆𝑁) =  𝑏𝐶𝑁  ∑ 𝑥𝑚𝑛
𝐶𝑁

𝑀,𝑀

𝑚𝑛

 ∑ 𝑦𝑖+𝑚,𝑗+𝑛
𝑆𝑁

𝑁,𝑁

𝑖𝑗

 𝑦𝑖𝑗
𝑉𝐹   (17) 

𝑙𝑛 𝑝(𝒀𝑆𝑁) = −
𝑎𝑆𝑁

2
((∑ 𝑦𝑖𝑗

𝑆𝑁𝑁,𝑁
𝑖𝑗 ) − 1)

2
(18) 

 

and the empirical prior from the Content Network becoming: 

ln p(𝐗𝐶𝑁|𝒚𝐾𝑁) = 𝑏𝐾𝑁 ∑ 𝑦𝑘
𝐾𝑁 ∑ 𝑥𝑖𝑗

𝐶𝑁 𝑤𝑖𝑗  
𝑘    (19)

𝑀,𝑀

𝑖𝑗

𝐾

𝑘

 

      

 ln p(𝒚𝐾𝑁) = −
𝑎𝐾𝑁

2
((∑ 𝑦𝑘

𝐾𝑁

𝐾

𝑘

) − 1)

2

  (20) 

 

Where the prior from the Knowledge Network  p( 𝒚𝐾𝑁) is a full prior. 

These equations show that SAIM’s generative model is formally distinct from those used in predictive 

coding, which uses Gaussian priors to ensure the priors are conjugate with the approximate (Gaussian) 

posterior (this is known as the Laplace assumption in Bayesian statistics). Under Gaussian assumptions, 

the likelihood and empirical priors above would have quadratic forms. However, it is immediately 

evident that the generative model implicit in SAIM has a much richer form. For example, the full priors 

in Equations 18 and 20 shows that EM-SAIM’s model assumes a sparse probability density over the 

causes in the Selection and Knowledge Networks. This follows because these prior energies are 

minimised when one of the latent (nonnegative) causes are one and the rest are zero. This sort of non-

Gaussian prior is commonly employed in LASSO (least absolute shrinkage and selection operator) 

regression analyses (see discussion). We will now look more closely at this form and elaborate a variant 

of SAIM whose empirical priors can be expressed in terms of squared prediction errors. 

                                                           
2 Empirical priors are priors that are themselves parameterised by random variables. Empirical priors are part of any 

hierarchical generative model, with full priors at the highest level. 
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Figure 5. Three exemplar simulation results for the multiple object costs with PE-SAIM. The graphs show 

the time course of the activation for the focus of attention (FOA) and the two template units in the 

knowledge network. The reaction times were measured by determining the number of iterations it takes 

for a template unit to pass a set threshold (0.56). As expected the results show that PE-SAIM’s reaction 

times were slower for the two objects image (1159 iterations) than for the two single object images. + (271 

iterations) and 2 (267 iterations). 
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Prediction error (PE) – SAIM 

In the previous section, we formulated SAIM in terms of free energy minimisation under a particular 

generative model that entails non-Gaussian empirical priors, in contrast to predictive coding models 

that usually assume Gaussian forms. In this section, we modify EM-SAIM by adopting Gaussian 

assumptions in the generative model (called PE-SAIM) and examine whether this new version can 

replicate the multiple object cost findings above. Under Gaussian assumptions, the free energy 

components can be expressed as squared prediction errors. In SAIM this applies to two levels: the 

Contents Network, which predicts the activation in the input image modulated by the Selection Network 

via Sigma-pi units: 

ln 𝑝(𝐘𝑉𝐹|𝐗𝐶𝑁, 𝐘𝑆𝑁) = −
𝑏𝐶𝑁

2
∑(𝜖𝑛𝑚

𝐶𝑁 )2 (21)

𝑀,𝑀

𝑛𝑚

 

𝜖𝑛𝑚
𝐶𝑁 = ∑(𝑦𝑖𝑗

𝑉𝐹𝑦𝑖+𝑛,𝑗+𝑚
𝑆𝑁 )

𝑁,𝑁

𝑖𝑗

−  𝑥𝑛𝑚
𝐶𝑁  

and the Knowledge Network which predicts the content of the FOA: 

ln 𝑝(𝐗𝐶𝑁|𝒚𝐾𝑁) = −
𝑏𝐾𝑁

2
∑ (𝜖𝑘𝑖𝑗

𝐾𝑁)
2

𝐾,𝑀,𝑀

𝑘𝑖𝑗

 (22) 

𝜖𝑘𝑖𝑗
𝐾𝑁 =  𝑥𝑖𝑗

𝐶𝑁 −  𝑦𝑘
𝐾𝑁𝑤𝑖𝑗

𝑘  

 

As noted earlier, the use of 𝑥𝑖𝑗
𝐶𝑁  (rather than 𝑦𝑖𝑗

𝐶𝑁  ) reflects the fact that the Contents Network uses a 

linear output function. Finally, note that in PE-SAIM the two Winner-take-All priors (i.e., softmax) 

becomes a Loser-Take-All (i.e., softmin) – as the Selection Network and Knowledge Network need to 

select the best predictors; i.e., minimise prediction error. To minimise free energy, we again used an 

Euler scheme for gradient descent; retaining biological noise as in EM-SAIM. The requisite gradients for 

each network or hierarchical level can be derived by direct calculation from the above expressions: 

Selection Network : 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙(𝐘𝑉𝐹 , 𝐘𝑆𝑁 , 𝐗𝐶𝑁, 𝒚𝐾𝑁)

𝜕𝑦𝑛𝑚
𝑆𝑁  = 𝑥𝑛𝑚

𝑆𝑁 +  𝑎𝑆𝑁 ((∑ 𝑦𝑖𝑗
𝑆𝑁

𝑁,𝑁

𝑖𝑗

) − 1) + 𝑏𝐶𝑁 ∑ 𝝐𝒊𝒋
𝑪𝑵 𝒚𝒏−𝒊 𝒎−𝒋

𝑽𝑭

𝑀,𝑀

𝑖𝑗

            (23)  

 

 

Contents Network: 

𝜕𝐸𝑡𝑜𝑡𝑎𝑙(𝐘𝑉𝐹, 𝐘𝑆𝑁, 𝐗𝐶𝑁, 𝒚𝐾𝑁)

𝜕𝑥𝑛𝑚
𝐶𝑁  = 𝑥𝑛𝑚

𝐶𝑁  − 𝑏𝐶𝑁 𝜖𝑛𝑚
𝐶𝑁 + 𝑏𝐾𝑁 ∑ 𝝐𝒌𝒏𝒎

𝑲𝑵

𝐾

𝑘

            (24) 
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Knowledge Network: 

 
𝜕𝐸𝑡𝑜𝑡𝑎𝑙(𝐘𝑉𝐹 , 𝐘𝑆𝑁, 𝐗𝐶𝑁, 𝒚𝐾𝑁)

𝜕𝑦𝑘
𝐾𝑁  = 𝑥𝑘

𝐾𝑁 +  𝑎𝐾𝑁 ((∑ 𝑦𝑖
𝐾𝑁

𝑖

) − 1) +   𝑏𝐾𝑁  ∑(𝜖𝑘𝑖𝑗
𝐾𝑁)

𝑁,𝑁

𝑖𝑗

 𝑤𝑖𝑗
𝑘        (25)                     

These equations map onto a neural architecture as illustrated in Table 1. The summaries of neuronal 

message passing in Table 1 illustrate why EM-SAIM can be seen as being mediated by excitatory 

feedback while PE-SAIM uses inhibitory feedback to implement a disinhibition via prediction error 

units. For example, the influence of 𝑥𝑛𝑚
𝐶𝑁  on  𝑦𝑛𝑚

𝑆𝑁   is mediated by two inhibitory connections (via 𝜖𝑛𝑚
𝐶𝑁 ); 

namely, an inhibition of inhibition. As in the equations for EM-SAIM we used bold to indicate the 

feedback terms between networks. However, in contrast to EM-SAIM the feedback terms are mediated 

by prediction errors (i.e., the 𝜖 terms in Equation 21 and 22) that implement an inhibitory (i.e., negative) 

influence of higher levels on the low levels. This inhibitory feedback is mandated by the formation of 

prediction errors. For example, the gradient descent implied by equation (24) means that units in the 

content network 𝑥𝑛𝑚
𝐶𝑁  increase when prediction errors 𝜖𝑘𝑛𝑚

𝐾𝑁  decrease. In short, by introducing 

prediction errors we effectively reverse the sign of the coupling between successive levels in the 

hierarchy. 

This architecture is consistent with generic predictive coding schemes, in which the prediction errors 

at any level in a predictive coding hierarchy are formed by subtracting predictions to create a prediction 

error or mismatch. Before considering the implications for neuronal message passing in the brain, we 

need to first establish the construct validity of the PE-SAIM in relation to the multiple object cost. 
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Table 1 Graphical illustration of feedback connections. These circuit diagrams illustrate how the equations 
(11) and (12) for EM-SAIM and equation (23) and (24) for PE-SAIM map onto neural message passing and 
circuitry. Circles denote hypothetical neuronal populations, while the arrows correspond to connections. 
Excitatory connections are shown in black and inhibitory connections are shown in red. The small blue 
(crossed) circles denote a modulatory synaptic interaction (Sigma-pi units). These graphical illustrations 
illustrate why EM-SAIM can be seen as being mediated by excitatory feedback while PE-SAIM uses 
inhibitory feedback to implement a disinhibition via prediction error units.    
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Figure 6. Simulation results for PE-SAIM from 20 runs for stimulus. There was significant difference 

between +/2 and single +; and between +/2 and single 2. Hence, PE-SAIM can produce the same results as 

EM-SAIM (see main text for details). 

 

  

 

Simulation results for PE-SAIM 

Figure 5 and 6 show simulation results that demonstrate PE-SAIM can also replicate the two-object cost. 

The t-test confirmed a significant difference between +/2  and single + (t(38)=17.09; p < 0.001) and  

between +/2 and single 2 (t(38)=16.52; p < 0.001) (and between 2 and single +  (t(38)=-4.00; p < 0.001). 

Furthermore, none of the 40 single stimuli simulations showed an error and the +/2-simulations always 

selected the cross. Hence, both variants of SAIM can reproduce the qualitative multiple object costs. This 

is pleasing in the sense that it establishes a construct validity of the two schemes. In other words, both 

EM and PE-SAIM can reproduce the finer (psychophysical) details of perceptual synthesis in recognising 

multiple objects in visual scenes in a biologically plausible fashion. However, this presents an interesting 

challenge if we wanted to establish which offers the best account of neuronal message passing in real 

visual hierarchies. Recall from above that a key architectural difference between the two schemes is the 

use of top-down predictions to select the most likely explanation for sensory input in fundamentally 

different ways. The EM scheme uses excitatory feedback to ensure top-down constraints are satisfied in 

lower levels, while the PE scheme employs top-down predictions to form prediction errors using 

inhibitory feedback. 

It is important to note that these particular simulation results depend on our particular choice of 

parameters3. For both networks, the parameters were chosen to ensure significant reaction time cost 

effects in the absence of recognition errors. On the other hand, it would have been possible to generate 

simulation results where reaction costs are paired with recognition errors. Even though this observation 

is not crucial to make the point that, in principle, both models can replicate the two-object cost, it 

suggests the choice of parameters can modify the performance of object recognition in a measurable 

way. In turn, this affords the opportunity to compare the ability of the two schemes to explain empirical 

                                                           
3 This is also true for the fact that EM-SAIM exhibits lower levels of noise than PE-SAIM. 
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(e.g., psychophysical) data. This sort of comparison usually uses Bayesian model comparison. Bayesian 

model comparison been used to disambiguate different models of choice behaviour and generally rests 

upon computing Bayes factors that score the evidence for one model over another, given the same data 

(Kass, and Raftery, 1995; see Bishop, 2006; for a review). In brief, the Bayes factor assesses which model 

is better at generating a given data set, considering all plausible parameter settings (under some 

generally uninformative prior over the parameters).      

For the purpose of evaluating the two implementations of SAIM, Bayesian model comparison could 

leverage trade-offs between recognition accuracy and reaction time costs (similar to the effects 

observed in our simulations) by varying the number of objects and the discriminability of the stimuli. In 

this setting, it might be possible to use the two models to fit behavioural accuracy and response times, 

by optimising model parameters. In principle, it would then be possible to compare the evidence for 

both schemes in empirical response data.  

The simulations also illustrate an interesting point about the representation of the selected object in 

FOA. Despite the fact that there are no perfect representations of the selected object, both SAIMs can 

make correct decisions. This is the case because the ‘two’ can be easily discriminated from the ‘cross’.  

Note a perfect representation is not necessary as the task does not require it. Moreover, EM-SAIM’s 

representation is less accurate than PE-SAIM’s representation. This difference has the potential to 

distinguish between the two models. For instance, in an empirical study participants could be required 

not only to find a certain object, but also to identify specific features of that object. Our simulations 

predict that inference under EM-SAIM would produce more errors than PE-SAIM. However, as noted 

above, this may depend the parameter settings, which would have to be optimised for any given choice 

behaviour; thereby enabling Bayesian model comparison to ascertain which model is the best account 

of empirical data. 

 

 

EM-SAIM PE-SAIM 

Figure 7.  Sum of input and output activation. These results show that the two models predict a 

qualitatively different time course of neuronal activation (see main text for details).  

 



20 
 

Apart from these behavioural assessments, PE-SAIM and EM-SAIM can also generate neuronal 

responses of the sort measured by EEG or fMRI. Most current methods of measuring neuronal activity 

are indirect and depend on which physiological process (e.g., dendrite depolarisation, axonal firing, 

haemodynamics, etc.) the respective method (EEG, fMRI, etc.) can measure. To simulate neuronal 

responses, we omitted the Contents Network – as its activation depends on ‘pixilated inputs’. We 

summed the output activation and the input activation (as defined by Eqs. 11, 13, 23 and 25) for the 

Selection Network and the Knowledge Network. We excluded the activation from the softmax/softmin 

equations in these calculations. The resulting neuronal response reflects activation in dendritic trees 

and axons, while ignoring activation of inhibitory interneurons.   

Figure 7 shows the resulting time courses of activations for both models. They suggest that it may be 

possible to distinguish between the two models: For EM-SAIM, the results suggest a reduction of activity 

in both areas, while for PE-SAIM they evince an increase. These results may come as a surprise for some 

readers: Given that PE-SAIM tries to minimize prediction error, a reduction in activity might have been 

expected; while for EM-SAIM the opposite effect might have been expected. The counterintuitive results 

with EM-SAIM can be explained relatively easily. The initial state of EM-SAIM uses a weighted 

combination of templates in the Knowledge and Contents Network. This combined template matches 

with the two objects in the input image (but the match is better for ‘cross’ than for ‘two’). As the selection 

process proceeds, this match declines as only the ‘cross’ in the input is matched – and the ‘two’ template 

in the Knowledge Network ceases to match.  The increase of activation in PE-SAIM needs some more 

detailed unpacking. Initially, the combined template produces a top-down prediction that generates a 

better match for the ‘cross’ than the ‘two’. The Selection Network starts to bias the FOA towards the 

‘cross’. Subsequently, this bias leads to a mismatch with the top-down prediction leading to an increased 

activation (i.e., prediction error). As the Knowledge Network starts generating the improved prediction 

– by selecting the cross –the increase of the prediction error declines in the input of the Knowledge 

Network. However, as the ‘two’ templates produces a non-matching prediction the overall error does 

not fall back to zero. A similar effect can be observed for the Selection Network. Even though the FOA 

generates a prediction matching the ‘cross’ in the input, the mismatch with the ‘two’ leads to higher 

activation. These results highlight the complicated nature of evoked responses when both prediction 

error and attentional selection are in play (see Kok et al., 2012a; Kok et al., 2012b and Auksztulewicz 

and Friston, 2015) for empirical examples in fMRI and EEG respectively. 

Other neuroimaging methods to exploit these sorts of simulations empirically could focus on 

disambiguating between excitatory and disinhibitory responses to top-down afferents. There are a 

number of candidates that one could consider. First, one could use the laminar specificity of forward 

and backward (bottom-up and top-down) connections in conjunction with laminar specific fMRI to 

make predictions about the neuronal correlates of attentional effects (Lawrence et al., 2017). Another 

approach would be to use frequency tagging to measure attentional effects on steady-state 

electrophysiological responses; (see  for example Colon et al., 2014). There are also several examples in 

the literature that use dynamic causal modelling to disambiguate between inhibitory and excitatory 

connections in cortical hierarchies (Bastos et al. 2015, Boly et al 2011, Brown & Friston 2012a, Brown 

& Friston 2012b, Fogelson et al. 2014, Moran et al. 2015, Pinotsis et al. 2014).  In brief, dynamic causal 

modelling entails fitting empirical (usually EEG – but see Friston et al. 2011 for example using fMRI) 

data – in the form of evoked responses – using a neural mass model with lamina specific coupling (Bastos 

et al. 2015, Bastos et al. 2012). One can then evaluate the evidence for competing architectures by 

specifying different patterns of connectivity within and between the neural masses that constitute 

electromagnetic sources (i.e., equivalent current dipoles). After the models have been fitted, the model 

evidence (i.e., the probability of the empirical data under each model) can be evaluated and used to 

adjudicate among different architectures. In principle, one could use exactly the same technology to test 
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models that had different time constants – as well and different inhibitory or excitatory effects; e.g. 

(Bastos et al 2015). This would involve comparing equivalent models with different priors over the 

synaptic time constants or effective connectivity in question (i.e., the influence of descending or 

feedback afferents to a primary visual source). In this setting, DCM will also have to consider that PE-

SAIM assumes not only feedback loops between regions but also within layers (see the error terms in 

Equation 24 and 25). Recent invasive data, addressing the alternative architectures for predictive coding 

also offer the intriguing possibility of testing the alternative predictions about the nature of feedback 

(see Schwiedrzik and Freiwald, 2017 for an example). 

 

General discussion 

The aim of the paper was to examine how SAIM’s soft constraint satisfaction – using energy 

minimisation – relates to the free-energy minimisation of approximate Bayesian inference. To facilitate 

this comparison, we first created a new version of SAIM: EM-SAIM includes slightly more biologically 

plausible features than the original SAIM but crucially, for the purpose of this paper, is based on the 

same architecture and a formally similar energy function. We then ensured that EM-SAIM can reproduce 

the multiple object cost. Subsequently, we showed that SAIM’s energy minimisation can be interpreted 

in terms of Bayesian inference to a point estimator (i.e., maximum a posteriori estimate). We also noted 

that the ensuing probabilistic inference implements a soft constraint satisfaction, whereby empirical 

and full priors furnish the requisite constraints. By reverse engineering EM-SAIM’s energy function, we 

showed that EM-SAIM’s generative model uses a sparse prior of the sort commonly found in sparse 

regression models. It is worth noting that this type of prior is employed in methods such as the LASSO 

regression (e.g., Tibshirani, 1996) and independent component analysis (ICA; e.g., Bell & Sejnowski, 

1995). The upshot of using this sort of prior is that it favours sparse representations of data. 

Furthermore, in EM-SAIM the WTA forces the representation to become a local representation. 

Crucially, this generative model differs from the generative models used in predictive coding and related 

Bayesian filtering formulations of visual processing. These formulations normally employ a generative 

model based on Gaussian assumptions.  Therefore, we replaced the empirical priors in EM-SAIM’s 

architecture with a Gaussian form (i.e., log probabilities that proportional to squared prediction errors) 

to show that PE-SAIM (Prediction Error-SAIM) can also able to simulate the multiple object cost.  

Our simulations suggest that EM-SAIM and PE-SAIM are quantitatively indistinguishable, in terms of 

their predictions of behavioural (psychophysical) responses. However, with suitable experimental 

designs, the two models can be used to model empirical data quantitatively. If this is feasible, Bayesian 

model comparison should be able to disambiguate the two schemes using recognition accuracy and 

reaction times (e.g., Kass & Raftery, 1995; Bishop, 2006).  We further observed that EM-SAIM and PE-

SAIM make quite different predictions about neuronal responses in terms of belief updating. EM-SAIM 

suggests that excitatory feedback loops mediate the behavioural effects we have illustrated, while PE-

SAIM implies inhibitory feedback loops. Hence, these models seem to make distinct predictions about 

the physiology of feedback connections.  

At first glance, EM-SAIM appears to be more consistent with the well-known physiology of excitatory 

(glutamatergic) feedback connections in the cortex (e.g., Sherman & Guillery, 1998). However, these 

feedback connections target inhibitory interneurons. Hence, it is possible that feedback connections can 

also mediate the construction of prediction error (see Friston, 2008; Bastos et al., 2012; Shipp, 2016; 

Shipp et al., 2013; for detailed arguments). Therefore, our current knowledge of physiology does not 

definitively disambiguate the two architectures. On the other hand – and as discussed above – it may be 
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possible to distinguish between the two architectures empirically; leveraging the fact that the two 

models make different predictions for excitatory or inhibitory nature of top-down afferents. The two 

types of feedback motifs may generate different dynamics (with different time constants). It is therefore 

conceivable that laminar specific fMRI, dynamic causal modelling or frequency-tagged EEG, in 

conjunction with Bayesian model comparison, might allow us to disambiguate the two architectures 

using non-invasive techniques in humans (see Keller and Mrsic-Flogel, 2018 for a contemporary 

discussion of empirical predictions for invasive studies). Finally, it is worth noting that both models 

make different predictions in terms of their preference for familiar vs. novel stimuli4. EM-SAIM would 

prefer familiar stimuli while PE-SAIM would prefer novel stimuli (that elicit greater prediction errors). 

Interestingly, a recent study by Park, Shimojo and Shimojo (2010) found a category-specific (i.e., faces 

vs. natural scenes) preference that could provide an interesting paradigm within which to test the two 

models.  

The microcircuits for predictive coding motifs in Table 1 speak to disinhibition as the physiological 

mechanism for the effect of descending or backward connections (indicated by the double red lines in 

Table 1). There is growing interest and evidence for disinhibitory mechanisms of this sort (reviewed in 

Auksztulewicz and Friston, 2015; Keller and Mrsic-Flogel, 2018; Shipp, 2016). This evidence comes in 

part from recent invasive studies using optogenetic characterisations of inhibitory interneurons. 

Microcircuit motifs that use disinhibition have been found in several cortical regions (Letzkus et al., 

2015): in brief, vasoactive intestinal peptide positive (VIP+) interneurons are thought to provide 

disinhibitory control, by targeting parvalbumin positive (PV+) and somatostatin positive (SOM+) 

interneurons that otherwise inhibit target excitatory neurons (Pi et al., 2013).  This synaptic 

architecture is supported by evidence from rodent studies, showing that optogenetic inhibition of SOM+ 

and PV+ interneurons reduces the inhibitory effect of descending projections to V1 from cingulate 

cortex. Conversely, optogenetic inhibition of VIP+ interneurons enhances the effect of projections from 

cingulate cortex (Zhang et al., 2014). In humans, disinhibitory effects can be observed when neocortical 

GABA is reduced using brain stimulation, both physiologically and functionally (Koolschijn et al., 2019). 

In short, the balance of empirical evidence points to the disinhibitory motifs that implied by a PE-SAIM 

like architecture. 

 

The dialectic between excitatory and inhibitory feedback is has been discussed in the literature at length 

(see Petro and Muckli, 2017; Kersten et al., 2004; Kogo and Trengove, 2015). For example, Kersten et al. 

(2004) has formulated the dichotomy in terms of the “shut up” versus “stop gossiping” interpretations 

of Bayesian object perception. Intuitively, the shut up version corresponds to inhibitory top-down 

influences that "explain away" any representations at lower levels to reduce the level of prediction error 

activity. Conversely, the suppression of activity in lower levels when something can be predicted may 

be better explained by top-down augmentation of the best representation that suppresses all competing 

expectations. Sometimes, the dichotomy is motivated by contrasting predictive coding with Grossberg 

and colleagues adaptive resonance theory (ART) (e.g., Grossberg, 2013; see also Kay and Phillips’s 

(2011) coherence INFOMAX for a similar point; or Howard, Filetti, Wyble, and Olivers’ (2013) salience 

detector). According to ART the excitatory feedback loop is particularly important in the induction of 

strong “resonance” to foster learning. Hence, the ART resembles EM-SAIM’s architecture in terms of 

excitatory feedback.  

Having established how SAIM is related to hierarchical Bayesian inference under the free energy 

principle, it is worth returning SAIM’s domain of enquiry, modelling phenomena typically associated 

with selective visual attention. Predictive coding like formulations of attention introduce an additional 

                                                           
4 We would like to thank the second reviewer for this idea. 
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variable that has to be optimised; namely, the amplitude of random fluctuations in sensory input – or its 

inverse called ‘precision’. This is a key quantity in engineering formulations of predictive coding (for 

example Kalman filtering). In this context, precision corresponds to the Kalman gain; namely the gain 

or weight afforded prediction errors during belief updating. Crucially, the precision itself can be 

predicted. According to Feldman and Friston (2010) and Kanai et al. (2015), attention is realized as 

optimising precision. In brief, top-down predictions of precision can select which prediction errors are 

effectively boosted, such that they have a greater influence on belief updating at higher levels of the 

hierarchy. This is thought to be the computational homologue of attention in predictive coding. Crucially, 

the top-down predictions of precision have an excitatory effect – in contrast with the inhibitory top-

down feedback used to form prediction errors per se. When one considers predictions of precision, in 

the context of predictive coding formulations of attention, one has to consider both excitatory and 

inhibitory top-down feedback. Crucially, the influence of the excitatory top-down influences that 

mediate precision are modulatory or nonlinear in nature – in virtue of the fact that they modulate 

prediction errors. Interestingly, this speaks to the nonlinearities inherent in PE-SAIM.  

In conclusion, attention is intricately linked with perceptual inference. Interestingly, this assumption is 

strikingly similar to the influence of SAIM’s Selection Network using Sigma-pi units. Hence, it should be 

relatively straightforward to modify PE-SAIM and let the Selection Network modulate prediction error 

rather than the sensory information. We cannot foresee any problems in terms of functionality of this 

new PE-SAIM and anticipate it should behave in a similar way to the PE-SAIM described above. We will 

consider the formal relationship between precision and the role of the Selection Network in SAIM in a 

subsequent paper – and pursue the implications for the functional anatomy of visual attention. 
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Appendix: Parameter values 

 

EM-SAIM 

Network Parameter name Value 

 Threshold for reaction time 0.7 

Maximal duration of simulation 1500 

Knowledge Network τKN 1000 

aKN 10 

bKN 0.1 

sKN 3.0 

mKN 30 

σKN 6e-4 

Contents Network τCN 600 

bCN 0.5 

σCN 8e-04 

Selection Network τSN 200 

aSN 15 

sSN 0 

mSN 5 

σSN 0.0014 

 

PE-SAIM 

Network Parameter name Value 

 Threshold for reaction time 0.56 

Maximal duration of simulation 2300 

Knowledge Network τKN 2000 

aKN 20 



30 
 

bKN 1.5 

sKN 8 

mKN 50 

σKN 7e-4 

Contents Network τCN 500 

bCN 4 

σCN 5e-4 

Selection Network τSN 5000 

aSN 100 

sSN 5 

𝑚SN 100 

σSN 2.86e-4 

 

 

 


