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Abstract

The development of more efficient and reliable absorption/adsorption refrigeration for air 

conditioners (ACs) and chillers is of great interest due to the increasing demand of these cooling 

devices in homes and offices. Presently, majority of the ACs incorporate aqueous lithium salts as 

both refrigerate and desiccant, which are corrosive and lead to corrosion of the mechanical 

components. This increases maintenance costs and decreases the cooling system’s lifespan. Herein, 

an encapsulation method is proposed to encompass the aqueous lithium bromide solution with silica 

as the shell to protect the surrounding mechanical components. Moreover, a coating of citrate 

stabilised Au nanoparticles via an electroless method involving intermolecular electrostatic 

interactions is introduced to improve the robustness of the capsule wall. The success of the different 

coatings is evident from the change of zeta potential and mechanical properties. The coating with Au 

nanoparticles improves the mechanical strength of the capsules significantly, increasing rupture 

force from 0.25 ± 0.02 mN to 0.45 ± 0.04 mN. The coated and uncoated capsules were shown to be 

thermally stable over 10 repeated cycles between temperature ranges -10 to 150 oC, hence, 

withstand the thermal demands in ACs. Furthermore, adsorption and desorption cycles were 

performed on the capsules, which showed promising stable and repeatable performances.  

Keywords. Microencapsulation, Lithium bromide, Electroless coating, Multilayer capsules, Rupture 

force.

Page 2 of 30

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://cn.bing.com/dict/clientsearch?mkt=zh-CN&setLang=zh&form=BDVEHC&ClientVer=BDDTV3.5.0.4311&q=%E5%90%B8%E9%99%84%E5%BC%8F%E5%88%B6%E5%86%B7


2

1.0 Introduction

Lithium halides (bromide and chloride) have been widely used in variety of applications which 

include medicinal1-3 and organic synthesis.4-7 In medicine, lithium halides especially lithium bromide 

(LiBr) have previously been used in clinical psychopharmacology as a hypnotic drug in the late 

nineteenth and early twentieth century.1-3 In addition, LiBr was one of the first compounds regularly 

employed as an antianxiety agent.3 Whereas, in organic synthesis, lithium halides have been often 

employed as a catalyst4 or as a lewis acid5 or as a source of bromine in nucleophilic substitution6 and 

addition reactions.7 Recently, LiCl and LiBr as the consequences of their highly hydroscopic 

properties8,9  have  been increasingly used as desiccants for absorption cooling systems such as air 

conditioners (ACs) for the utilisation and conversion of low grade waste heat and renewable 

energy.10-12

In a typical adsorption AC, water is often used as the refrigerant and lithium salt (either chloride or 

bromide) as the desiccant.10-12 The system operates via two loops: one containing the refrigerant and 

the other desiccant. In simple terms, the gaseous water vapours are introduced to contact the 

concentrated lithium salt solution; when the two come in contact, the water vapour is absorbed by 

the salt solution, which was hence diluted. The original concentrated lithium salt solution is then 

regenerated through the evaporation of the water and the cycle repeats itself. One of the major 

benefits of such system in respect to the more commonly used vapour compression cooling energy 

system is that the process is less energy intensive and hence, can be run by lower-grade energy such 

as waste energy or solar power.10-12 Furthermore, the system is less noisy, more reliable, requires 

low maintenance and there is no environmentally harmful chemical used as the refrigerant. 

However, there is a major drawback restricting the usage and lifespan for such systems, which is a 

direct consequence of the corrosive properties of the lithium salts. Hence, there is a risk of parts 

corroding via exposure to the salts which subsequently leads to hazardous leaks. Moreover, there is 

also a risk of lithium salt crystallizing from the solution leading to the system becoming less 

efficient.13 It is apparent that to improve the lifespan and efficiency of such systems the lithium salt 

solutions need to be concealed from the surrounding mechanical components. A possible approach 

could be to encapsulate the lithium salts in such a way that water can be absorbed and released 

selectively without the lithium salt being released. Furthermore, in recent studies it has been 

demonstrated that microencapsulated sorbents exhibit an order-of-magnitude higher sorption rate 

relative to neat sorbents of equivalent mass,14 hence this may provide further additional benefit for 

encapsulating lithium salt solution. 
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Encapsulation is a process which involves the entrapment of tiny particles or droplets within a 

coating of polymer15-17 or inorganic material,18 which is commonly used in medicine, textile, 

veterinary, chemical industry, biotech, food and electronics.15-17 The list is growing, as different 

industries try to reap the ample benefits of encapsulation which include increasing shelf life, 

enhanced properties, improving stability, slow release, delay release, masking taste and odours.15-17 

Moreover, by tuning the chemical and physical parameters of the capsules. They can be adapted to 

meet different requirements of the applications such as controlled release rate19 and encapsulation 

of phase change material for long-term use.20,21

To develop capsules which encapsulate aqueous lithium bromide solution and possess the desired 

properties such as having robust and semi-permeable walls so that the water vapour molecules can 

exit and enter back into the capsules without the capsules rupturing due to the changes in pressure 

and temperature. Moreover and most importantly the capsules should eliminate/minimise the loss 

of LiBr from the core during the thermal cycles, otherwise the system will become less efficient and 

water ingress is likely to happen to replace the loss of LiBr, leading to changes in the physical 

environment within the capsules such as internal pressure. Hence, a ‘hybrid’ approach will be used 

which incorporates both polymer and metallic materials to form the capsule wall so that the 

capsules can benefit from the properties associated with both coating materials.10,22-24 The polymer 

material will hopefully provide the required semi-permeability properties to enable the water 

vapours to escape and re-enter the capsules,22,23 whereas the metallic material will enhance the 

robustness and thermal properties of the capsule wall.21,24 Herein, LiBr will be used as the adsorbent 

instead of LiCl as previous studies have shown that although LiCl  has stronger affinity to water 

compared to  LiBr, it has shorter life span than LiBr.25 Additionally, it has been shown that the more 

concentrated the LiBr solution the more effective it is as an absorbent.26 Hence, as the solubility of 

LiBr at 25 °C is 62 % (w/w) in water, the saturated aqueous solution of LiBr will be used. Silica will be 

used as the main coating material, not only because it will provide a robust and semi-permeable 

wall,21 it will also most importantly, provide a surface which can be further chemically manipulated 

to fine tune the surface properties.27-30

Scheme 1 shows the strategy proposed for the incorporation of both polymer and metallic material 

in the capsule wall. The strategy involves firstly encapsulation of aqueous solution of lithium 

bromide (LiBr) via in-situ polymerisation method using silica as coating material followed by 

functionalisation of the capsule wall with amine via reacting the surface with 3-
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aminotrimethoxysilane (APTMS) to enable attachment of Au (as a model of metallic material to 

prove the feasibility) nanoparticles onto the polymer coating through physical interaction.  It is well 

documented that the amine functionalised surface has affinity to negative charged particles such as 

citrate stabilised Au nanoparticles and optimum binding between these Au nanoparticles and amine 

functionalised surfaces are observed in the range pH 4.5-5.29,30 Finally, the capsules will be coated 

with organic polymer to ensure the nanoparticles remain bound to the shell. Furthermore, to 

evaluate the suitability of the capsules for the intended application as composite materials for 

cooling systems, the mechanical and thermal stabilities of the formed capsules will be investigated 

prior to and after exposure to repeated thermal cycles over the temperature range -10 oC to 150 oC 

for each coating as well as the encapsulation efficiency (EE) and active load will be determined to 

investigate the efficiency of the formulation process. 

Scheme 1. Schematic representation of strategy for encapsulation of LiBr aqueous solution; (a) formation 

capsule through use of polymer material as primary capsule wall, (b) functionalisation of the capsule wall, in 

this case with amine moieties via reaction with APTMS, (c) Depositing of Au nanoparticles onto the primary 

shell wall and (d) second polymer wall to covalently bind the Au nanoparticles onto the capsule wall.

2.0 Results and discussion

2.1 Preparation of microcapsules 

Encapsulation via in-situ polymerisation was performed under acidic conditions at elevated 

temperature (Scheme 1) using precondensate formed from a mixture of tetraethoxysilane (TEOS) 

and methyl trimethoxysilane (MMTS). The MMTS was added to prevent the agglomeration of the 

capsules via hindering the intermolecular hydrogen bonding between the hydroxyl moieties on 

adjacent capsules. Further functionalisation of the capsule wall was carried out under inert 

atmosphere and ambient temperature in the presence of the monomer 3-

aminopropyltrimetoxysilane (APTMS). Citrate functionalised Au nanoparticles (see Figure S1 in 
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Electronic Supplementary Information (ESI) for characterisation of the Au nanoparticles) were 

deposited onto the capsule walls under mild acidic conditions (pH 4.5) to ensure optimal condition 

for electrostatic binding between the positive charged protonated amine (-RNH3
+) and negative 

charged carboxylates (-RCOO-) as previously reported.29,30 Finally, a coating of polymer formed from 

APTMS was deposited onto the Au layer under inert atmosphere and ambient temperature.

2.2 Capsule characterisation

The capsules were characterised using Dynamic Light Scatter (DLS), Scanning Electron Microscopy 

(SEM) and Flame Photometer. First and foremost the sizes of the microcapsules were measured 

using DLS and capsule morphology was observed via SEM and optical microscope.

From SEM images (Figure 1a) the capsules formed are shown to be quasi spherical particles. The 

surface morphology after the APTMS coating remains similar to prior the coating as evident in Figure 

1b. However, after the coating of Au nanoparticles it seems there are white lumps of particulates on 

the capsule surface (Figure 1c), they are obviously too large to be individual nanoparticles, hence 

these are likely to be Au nanoparticle aggregates which have settled on the surface. Finally, 

compared to SiNH2-Au capsules (1c), the outermost coating of the APTMS shows no immediate 

change in the surface morphology (1d). The white Au particle lumps are still clearly present (Figure 

1d) and a close-up SEM image of the SiNH2-Au-NH2 microcapsules surface clearly shows the presence 

of Au-nanoparticles (Figure 2b). Figure 2 shows zoom-in SEM images of SiNH2-Au and SiNH2-Au-NH2 

microcapsule surface, and indicate the nanoparticles are well distributed on the surface and most 

importantly, not completely covering the surface so that there may be minimal effect on the semi-

permeable properties of the capsules. The Au nanoparticle surface coverage on the capsules is 

calculated as 28 ± 3 % which equals 381,680 particles on each capsule (see ESI for more details on 

how the au nanoparticle surface coverage was determined). 
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Figure 1. SEM images of (a) Silica, (b) SiNH2 (c) SiNH2-Au and (d) SiNH2-Au-NH2 

microcapsules.

Figure 2. SEM zoom in image of (a) SiNH2-Au capsule and (b) SiNH2-Au-NH2 

capsule showing the distribution of the particles.

The size distribution of the capsules in all the samples is large between 2-50 µm (see ESI, Figure S2). 

The average silica capsule size observed via DLS was shown to be 8.3 µm with coefficient variance 

(CV) of 0.5 (see Table 1 and Figure S3 in ESI for the size distribution). Both the average size and CV 

increase with each coating with final size observed for Si-NH2-Au-NH2 capsules as 9.2 µm with CV of 

0.7. An increase in mean size of 0.9 µm is observed between the initial silica capsules and final 

coating of polymer. This observed increase in capsule size suggests that there is a growth on the 

(a) (b)

(a)
(b

)

(c)

(a)

(d)

(a) (b)

(c)
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capsule walls after each coating. Furthermore, an increase in mean shell thickness is observed after 

each coating of the capsules from 1.1 ± 0.2 to 1.5 ± 0.4 µm. 

2.3 Encapsulation efficiency and active load

The encapsulation efficiency (EE) and active load were determined by crushing known mass of 

capsules followed by determining the amount of Li+ ions released using a flame photometer. 

Equation 1 and 2 were used to determine the EE and active load, respectively.

                                                   (1)𝐸E = Amount of LiBr encapsulated
Total amount LiBr used  × 100

                          (2)Active load (AL) =  Amount of LiBr encapsulated
Total mass of capsules  for analysing   × 100

The EE and active load (AL) calculated for each capsule sample formed are enclosed in Table 1. The 

EE determined for the subsequent coatings is relative to the total amount of LiBr used in the 

formulation (silica capsules). There are several interesting points to note from the findings. The EE 

determined for the encapsulation of aqueous solution of LiBr to form silica capsules was very 

encouragingly 59 ± 3 %. However, there is a decrease in the EE determined after the following 

coatings and drops to 30 ± 2 % after the final polymer coating to form Si-NH2-Au-NH2 capsules. This 

loss in EE is most likely due to diffusion of LiBr through the capsule walls rather than weak capsules 

rupturing during the coating process as explained below.

Most interestingly, significant loss (24 %) in EE is observed after coating of the Au nanoparticles 

whereas, during the first polymer coating up to only 5 % is lost. Although all the capsules were 

exposed to similar physical and mechanical conditions such as stirring and temperature during each 

coating, approximately 5 times greater loss of EE is observed during the Au-nanoparticle coating 

compared to the APTMS coating, hence the most likely loss of LiBr is through diffusion and water 

ingress is most likely due to replace the loss LiBr, especially as the Au-nanoparticles coating was 

performed in aqueous media whereas the APTMS coating was carried out in PhMe. The solubility of 

LiBr in PhMe is poor and water is immiscible in PhMe. Therefore, diffusion into PhMe will be much 

slower compared to water. To evaluate whether this is the case, a release study of LiBr from the 

capsules over time in water was carried out over 2 h under the same conditions used for the Au 

nanoparticle coating. Figure 3 shows the release profile of LiBr from SiNH2 capsules at room 

temperature. There is a burst of release from 0 to 1 h followed by slow release thereafter and at 2 h 

release of ∼75 % is observed. Significant release of ∼45 % is observed at 30 min immersion time, 
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which corresponds to the duration used for the Au nanoparticle coating. Even after 5 min of 

immersion time a release of ∼15 % is observed. 

 Similarly to the EE, AL is the highest for the silica capsules which is observed as 15 ± 3 %, and it 

reduces subsequently after each step to 9 ± 3 % after the final polymer coating. 

Table 1. Capsule size, shell thickness, EE and active load for the microcapsules.

 Note: the errors represent the standard errors associated with the measurement.

Figure 3. Cumulative LiBr release from Si-NH2 over 2 h after immersion in 

water. The error bars represent the standard error associated with the 

measurement.

2.4 The success of the coating determined via zeta potential

The coating of the APTMS and citrate stabilised Au nanoparticles on the capsules alter the surface 

charge of the capsules, for instance, the silica coated capsules due to the presence of hydroxyl 

groups will be negatively charged whereas the presence of amine moieties from the successful 

coating of APTMS should lead to the surface becoming positively charged. Moreover, depending on 

the pH, the coating of the citrate stabilised Au nanoparticles should lead to negatively charged 

Capsules Microcapsule size (µm) Mean Shell EE (%) Active load (%)

Size Range Average CV Thickness (µm) EE 

Range

EE 

Average

AL 

Range

AL 

Average

Silica 2.4-40.4 8.3 0.6 1.1 ± 0.2 55-61 59 ± 3 10-18 15 ± 3

SiNH2 3.5-45.3 8.4 0.6 1.2 ± 0.2 53-57 54 ± 2 11-17 14 ± 3

SiNH2-Au 3.0-46.8 9.0 0.7 1.5 ± 0.3 27-35 30 ± 4 5-12 10 ± 2

SiNH2-Au-NH2 3.1-45.2 9.2 0.7 1.5 ± 0.4 26-30 30 ± 2 5-12 9 ± 3
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capsules.29,30 Hence, by measuring the zeta potential of the capsules, it should be possible to 

determine whether the coating of the multiple shells has been successful. However, the charge of 

the surfaces will be sensitive to the pH of medium as the pKa of the functional groups present (-CO2H 

or -NH2) will determine whether the groups are protonated or deprotonated and thus whether the 

surface is charged (-CO2
- or -+NH3) or neutral (-CO2H or -NH2).29-31 The reported pKa of aliphatic 

carboxylic acids is 4-532,33 and aliphatic secondary amine is 11 in free aqueous solution.34,35 However, 

it is well documented that the pKa of aliphatic acids and amine which are bound to a surface such as 

Au and silica substrate to form a self-assembled monolayer are different to what is observed in free 

solution.36-43 It is postulated this is due to the combination of the potential of the surface influencing 

the pKa and the closed packing of the molecules on the surface as the creation of charge on adjacent 

molecules which are in close proximity in the monolayer will culminate to unwanted repulsive forces 

being developed. Numerous studies have reported the pKa of acid terminated monolayer to be 

higher than in free solution between 5-836-42 whereas for aliphatic amine it has been observed to be 

lower at 8.43 As a consequence of the pH influencing the charge of the functional groups, zeta 

potential was measured over a pH range 3-10. The zeta potential measurements reported were 

taken at 25 oC at a concentration of 2 mg mL-1. Each potential shown in Figure 4 is an average of 

three measurements taken on newly prepared sample at each pH, whose pH was modified via 

addition of 0.01 M NaOH and HCl aqueous solution. From Figure 4 it is evident that there is a change 

in the surface charge after each coating. As expected the surface on the silica coated capsules is 

negatively charged and the charge increases from -14 to 35 mV between pH range 3.5 to 5 and levels 

out with potential. It is envisaged to result from deprotonation of the -OH between 3.5 and 5 and 

saturation was reached after pH 5.

Interestingly, after the APTMS coating the charge on the capsule’s changes to positive between pH 

3.5-6 and then inverts to negative after pH 6.5, followed by a decrease in charge to -20 mV at pH 7 

and remains relative constant thereafter. The presence of the positive charge between pH 3.5-6 

suggests the presence of positive charge moieties on the surface of the capsules, and hence shows 

that there are amine moieties present on the capsule surface at high concentrations as they are 

having a greater influence on the surface charge than the -OH moieties. Moreover, there is a sudden 

change in zeta potential at pH 6.5, as the pKa for amine functionalised self-assembled monolayer 

(SAM) is approached. It is postulated that the change of charge is a cause of the -OH groups 

dominating the charge of the capsules over the amine which will be mostly present as -NH2.   
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In the case of the Au-nanoparticle coating there are several intriguingly points to note.  The most 

evident observation from the plot is the surfaces are negatively charged over the pH range 3.5-10, 

which is in stark contrast to the APTMS coated capsules, hence this suggests that the negatively 

charged Au nanoparticles have successfully been deposited on the surface. Most interestingly there 

are two trends observed, one between pH 3.5-4.5 and the other trend after pH 4.5, which is unique 

for this coating in comparison to the other coatings. Initially from pH 3.5 to 4.5 the zeta potential 

decreases and reaches a minimum value of -32.7 ± 1.6 mV at pH 4.5. Thereafter, an increase is 

observed between pH 4.5-10 from -32.7 ± 1.6 mV to 12.5 ± 2.9 mV and interestingly, after pH 8 the 

zeta potentials are very similar to those observed for Si-NH2 capsules. The trend observed is very 

interesting. As discussed earlier the reported pKa of aliphatic -COOH and aliphatic secondary -NH2 is 

4-532,33 and 11,34,35 respectively, hence it would be expected that the negative charge on the Au 

nanoparticles would increase with increasing pH due to the presence of -COOH moieties which will 

become more deprotonated with increasing pH and the underlying -NH2 moieties will become less 

protonated as the pH increases. Therefore it would be envisaged that the zeta potential would 

decrease with increasing pH. Thus, the real mechanism of the observed increase in zeta potential 

after pH 4.5 needs to be further investigated in the future. Furthermore, interestingly, the pH at 

which the lowest zeta potential was observed (pH 4.5) is similar to the pH previously reported for 

optimum binding between the citrate stabilised Au nanoparticles and amine functionalised 

surface.29.30

The final coating of APTMS leads to positively charged surface in pH range of 3.5-6.0 followed by 

negative surface after pH 6.5 similarly to what was observed for the first coating of APTMS, although 

the magnitude of charge is smaller than what was observed after the initial coating of APTMS, which 

could be due to incomplete coverage. Overall this suggests the coating has been successful.  

-
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-

 

Figure 4. Zeta potential for the capsules as a function of pH.

2.5 Capsule DSC Thermograms

To evaluate the thermal stability of the capsules, as well as to observe any changes in the -

temperature cycles indicative of the presence of the Au-nanoparticles on its surface, DSC 

thermograms were acquired for the SiNH2-Au and the SiNH2 capsules (Figure 5). To ensure the DSC 

thermograms were repeatable and hence show the capsules were chemically stable via the heating 

and cooling cycles, the capsules were continuously cycled 10 times from 25 to 150 oC and 150 to 25 

oC and these are superimposed onto each other in Figure 5. First and foremost, it is evident from 

both curves that the first cycle is disparate to the follow up 9 isotherm curves, which are similar to 

each other. The first thermogram for SiNH2 capsules has a broad peak within the temperature range 

80 to 130 oC which is likely due to the water being removed from the capsules and any other 

contaminate which may have accumulated onto the capsules overtime. Interestingly, for Si-NH2-Au 

capsules the peak is more sharply centred at 85 oC and is not as significant as observed for the Si-NH2 

capsules. Overall, the DSC thermal cycles show there is no evidence of chemical change over the 10 

cycles apart from the removal of water and contaminates from the capsules in the first cycle and 

hence, which suggests the capsules are thermally stable over the temperature range (25 to 150 oC 

and vice versa). Furthermore, it is clearly evident that the Si-NH2-Au capsules have a larger 

discrepancy between the heating and cooling curves in the DSC cycles i.e. larger area entrapped 

between the heating and cooling cycle; this is a result of the heat flow being more rapid in the initial 

stages of the heating and cooling curves, which suggests after Au nanoparticle coating, there was 

Si

Si-NH2

SiNH2-Au

SiNH2-Au-SiNH2
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change in physical properties of the tested material. This further provides evidence that there has 

been a chemical change in the material after the immersion of the capsules in colloidal suspension. 

 

Figure 5. DSC thermograms for 10 continuous cycles for (a) SiNH2 and (b) SiNH2-Au capsules.

2.6 Mechanical properties before exposure to 10 thermal cycles

The mechanical properties of the capsules were tested using a micromanipulation technique,44 

where a glass capillary tube with small diameter of ∼30 μm was used to crush the capsules with an 

aid of a force transducer (Max. scale 5mN, Model 403A, Aurora Scientific Inc., Canada). Table 2 

shows the mechanical properties of the capsules prior and after exposing the capsules to 10 cycles 

of heating and cooling between temperatures -10 to 150 oC and vice versa. 

Prior to heating, silica capsules have mean rupture force of 0.25 ± 0.02 mN, which is higher than 

what has been previously reported for similar silica capsules.44 The rupture force does not increase 

significantly, after the coating with APTMS. However, after the coating with Au-nanoparticles the 

capsules become stronger with rupture force increasing by ∼80 % to 0.45 ± 0.04 mN and 

deformation at rupture reduced by ∼13 %. Hence, the capsules become stronger and more brittle 

with the Au nanoparticle coating. It was envisaged with significant coating of Au-nanoparticles, the 

surface would lose some of its underlying silica polymer’s elastic properties but would be 

compensated with the increase in compressive strength, and therefore it seems the enhancement 

properties expected via the introduction of the Au nanoparticles has been accomplished. Again after 

the final APTMS coating there is no significant change in both deformation at rupture and rupture 

force by taking the standard error of the mean into consideration.

Heating

Cooling

First heating 

cycle

(b)

Cooling

Heating
(a)

First heating 

cycle
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Table 2. Mechanical properties for capsules prior and after 10 repeated thermal cycles 
(-10 to 150 oC). 

Note: the error shown is the standard error associated with the measurement. 

2.7 Capsules properties after exposure to 10 thermal cycles

To evaluate the capsules’ suitability for the intended application as an alternative composite 

material to be used in cooling systems, the thermal stability of the capsules over the temperature 

range (-10 oC to 150 oC) which the capsules will be likely exposed to for the intended application 

needs to be investigated. Thus, the capsules were heated and cooled between the temperatures of -

10 and 150°C in 10 repeated cycles, followed by characterisation using SEM, micromanipulation and 

flame photometry to determine changes in surface morphology, mechanical strength and LiBr 

retention. The characterisation was taken as soon as possible within 24 h to ensure the changes 

observed was due to the thermal cycles and not as a result of degradation overtime. Figure 6 shows 

the SEM images of the capsules after 10 thermal cycles. From the images there is no evidence of any 

changes in the capsules after the process. Most of the capsules remain intact without any 

degradation or rupture evident. The surface morphology remains similar without any clear change to 

the capsule surface, which suggests the capsules are stable. This is further supported by the EE and 

active load data calculated for the capsules after the process (Table 3). The discrepancy in EE and 

active load (Table 1) prior to and after the thermal cycles (Table 3) for all the capsules is insignificant. 

This suggests that the overwhelming majority of the silica coated capsules are stable to meet the 

thermal demands of the application. Moreover, there is no significant loss of LiBr from the capsules, 

hence virtually no water ingress has taken place due to no loss of LiBr. However, the determined 

average size for both the silica and coated silica capsules (NH2, NH2-Au and NH2-Au-NH2) after the 

exposure to the thermal cycles show a marginal decrease. Moreover, the CV for all the capsules after 

Capsules Displacement 

at Rupture (µm)

Rupture Force

 (mN)

Deformation at 

Rupture (%) 

Nominal Rupture 

Stress (MPa)

Silica 2.9 ± 0.4 0.25 ± 0.02 35 ± 3 4.6 ± 0.5

SiNH2 3.2 ± 0.5 0.27 ± 0.03 37 ± 4 4.6 ± 0.6

SiNH2-Au 1.9 ± 0.3 0.45 ± 0.04 22 ± 4 7.0 ± 0.7

SiNH2-Au-NH2 1.8 ± 0.2 0.47 ± 0.03 20 ± 2 7.0 ± 0.9

After Cycles

Silica

SiNH2

SiNH2-Au

SiNH2-Au-NH2

2.4 ± 0.5

2.5 ± 0.5

1.6 ± 0.4

1.4 ± 0.3

0.20 ± 0.05

0.20 ± 0.06

0.32 ± 0.05

0.35 ± 0.04

29 ± 4

30 ± 4

18 ± 4

15 ± 3

3.7 ± 0.6

3.6 ± 0.6

5.0 ± 0.7

5.3 ± 0.9
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the cycles is slightly lower than prior to heating, in fact the CVs are ∼12-14 % lower than before the 

thermal cycles and it seems that the larger capsules have disappeared as the upper range in the size 

distribution is lower. For example for the silica capsules the size distribution prior to the cycles is 2.4-

40.4 µm with CV 0.6 whereas after the size distribution is 2.5-30.4 µm with CV of 0.5. Thus, this 

suggests that the larger capsules may have ruptured during the thermal cycles. A little caution has to 

be taken on this finding as the variation may just be due to the larger capsules not being observed 

when calculating the size distribution after the thermal cycles. However, as the pattern is observed 

for all four capsules it is likely that this finding is a true reflection of the size distribution.

Figure 6. SEM images of the capsules after thermal exposure; (a) Silica, (b) SiNH2 (c) SiNH2-Au and (d) SiNH2-

Au-NH2 microcapsules, insects show capsules with higher magnification.

(c)

(a) (b)

(d)
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Table 3. The capsule sizes, EE and active load for microcapsules after exposure to 10 repeated heating and 

cooling cycles between -10 to 150 oC.

 Note: the error shown is the standard error associated with the measurement.

2.7.1 Mechanical properties after exposure to 10 thermal cycles

 After exposing the capsules to 10 repeated cycles of -10 to 150 oC, all the capsules have become 

more brittle with a 10-15% decrease in nominal deformation at rupture than prior to the cycles and 

this has led to a significant decrease in rupture force (20-30 %) for all the capsules (Table 2). To gain 

further understanding on whether the reduction in rupture force is continuously decreasing after 

each cycle, the rupture force was determined after exposing SINH2-Au-NH2 capsules to 2, 4, 6, 8 and 

10 cycles. From Figure 7a, it can be observed that the rupture force decreases from 0.47 ± 0.07 mN 

to 0.35 ± 0.07 mN after cycle 6, and further decrease is not seen from cycle 6-10. Similar thread is 

observed in the displacement at rupture which decreases between cycles 0-6  from 1.8 ± 0.2 µm to 

1.4 ± 0.3 µm and remains stable thereafter (Figure 7b). Furthermore, the nominal stress reduced 

from 7.0 ± 0.9 to 5.3 ± 0.9 MPa (Figure 7c). Hence, the capsules were mechanically weakened in the 

first 6 cycles and stabilised thereafter. The reduction in the mechanical properties of the capsules 

suggests that the capsule wall undergo degradation during the first 6 cycles which leads to 

weakening of the capsule walls. A plausible explanation for this finding could be related to the walls 

losing their elasticity during the first 6 cycles as the capsule walls expand and reform during the 

heating and cooling cycles, respectively. During the swelling the capsule walls become thinner and 

thus weaker and during the cooling cycle they should return to the original geometry. However, in 

this case it is postulated at the alleviated temperatures further polymerisation takes place between 

the remaining silanol moieties within the capsule walls which is catalysed by the H2O from the 

capsule core leading to the walls becoming gradually more brittle and losing their elasticity and 

hence do not return to their original geometry when cooled to room temperature. So the capsule 

walls will be thinner than prior to heating and hence weaker, leading to lower rupture forces 

required. Furthermore, the increase in crossing linking between the silica moieties as a result of the 

polymerisation has led to the capsules becoming more brittle as shown by the decrease in 

displacement at rupture (Figure 7b). After 6 cycles it seems the polymerisation is fully saturated in 

Capsules Microcapsule size (µm) Encapsulation efficiency (%) Active load (%)

Range Average CV Range Average Range Average

Silica 2.5-30.4 8.2 0.5 53-55 54 ± 1 8-17 13 ± 2

SiNH2 3.6-39.3 8.3 0.5 50-53 51 ± 2 10-16 11 ± 3

SiNH2-Au 3.0-35.8 9.0 0.6 29-35 30 ± 5 6-11 8 ± 2

SiNH2-Au-NH2 3.0-35.9 9.2 0.7 26-28 27 ± 1 4-11 8 ± 3
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the capsule wall and thus, there is no further weakening of the capsule wall. Moreover, the further 

polymerisation during the heating cycles also explains the appearance of small amounts of 

agglomeration seen between the capsules, which were not observed prior to the cycles. This would 

suggest polymerisation is not only occurring within the capsule wall but also between the capsules, 

although at a smaller scale. Another plausible explanation for the observed decrease in the capsule 

wall’s mechanical properties is related to the moisture content in the wall. If the moisture content in 

the capsule becomes less after each cycle until it reaches a plateau after cycle 6, this will lead to the 

internal pressure reducing after each cycle and the capsules becoming fewer firms which will 

subsequently lead to smaller rupture force required to break the capsule wall.

Figure 7. Change of capsule rupture force, displacement at rupture and nominal rupture 

stress as a function of number of thermal cycle. 

To further explore the thermal effect on the capsule walls as well as investigate the plausibility of 

further polymerisation between the silanol moieties taking place, a study was performed to 

investigate the effect that the maximum temperature of the cycle has on the rupture force and 

displacement at rupture. If both parameters are temperature dependent this would further support 

a chemical reaction taking place within the capsule wall. Therefore, continuous 10 repeated cycles 

were performed from -10 oC to the maximum temperatures shown in Figure 8, followed by cooling 

to -10 oC. From Figure 8a and 8b, a reduction is observed in both parameters with increasing 

(a) (b)

(c)
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temperature from -10 to 150 oC, suggesting the capsules are becoming more brittle and weaker 

which correlates with the earlier findings. The plots suggest a linear relationship between the 

capsule rupture force and displacement at rupture versus temperature, which suggests that a 

chemical reaction is taking place within the capsule walls. Interestingly, as expected increasing the 

temperature accelerates the polymerisation within the capsule wall leading to weaker and more 

brittle walls. 

Figure 8. The change of (a) rupture force and (b) displacement at rupture as a function of 

temperature after 10 thermal cycles.

2.8 Adsorption-Desorption Cycles

To preliminarily evaluate the adsorption and desorption of water from the capsules, a purpose built 

rig was constructed (see ESI, Figure S5), which contained a jacketed casing comprised of two co-axial 

tubes. The rig was packed with the capsules and repeatedly heated and cooled continuously 

between the temperatures -14 to 150 oC for 10 cycles. Figure 9 shows the changes in the pressure 

during the desorption (heating, pressure increase) and adsorption (cooling, pressure decrease) 

cycles observed for the capsules. There are several interesting findings from the plot: first and 

foremost, the adsorption and desorption cycles are similar and repeatable over the 10 cycles. The 

pressure constantly rises to ∼450000 Nm-2 during the desorption, which is repeatable from cycles 5-

10.  This suggests that the water vapour is successfully adsorbed and desorbed over the 10 cycles 

and hence no water loss. Most importantly as each cycle is relatively identical in terms of shape, this 

suggests the capsules are stable and have not undergone any chemical or physical change during the 

thermal heating and cooling process. This observation is further supported by the SEM images of the 

capsules after exposure to the thermal cycles in the rig (Figure 10a). The capsules maintain their 

quasi-spherical shape and the surface morphology is similar to prior to the cycles (Figure 1d). 

Moreover, there is no evidence of capsules rupturing, however there is slight evidence of minimal 

(a) (b)
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coalescence between the capsules similar to what was previously observed after the thermal cycles 

in DSC (Figure 10b), which was not evident prior to the cycles. It is envisaged this is likely as a result 

of cross chain polymerization of unreacted silane during the thermal cycles between the capsules.    

Interestingly, it is clearly evident that the maximum pressure is not obtained after the first cycle but 

on the fifth cycle and remains relatively similar thereafter indicating the optimum water release 

from the capsules has been reached. This suggests the water is strongly held within the capsules and 

takes several cycles for the water to be released as a consequence of the presence of high 

concentration of LiBr in the capsules. The efficiency in releasing water could be improved via 

maintaining the temperature at 150 oC for longer time. In fact, it is evident from Figure 10, when the 

temperature is maintained at or slightly increases around 150 oC for 10 min, an obvious increase in 

pressure is observed in all of the 10 cycles. This could be attributed to the resistance of capsule shell 

to the water vapor; it takes a while for the gas to penetrate the capsule wall. Moreover, lower 

concentration of LiBr could be used, this should lead to the water being released more efficiently 

however this will compensate the water adsorption ability of the capsules. Overall, the preliminary 

adsorption and desorption cycles show the capsules are efficient towards adsorbing and desorbing 

water, although further work needs to be undertaken to optimize the system.

Figure 9. Continuous 10 adsorption and desorption cycles performed on the capsules in a 

custom made rig.
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Figure 10. SEM images of capsules after 10 adsorption and desorption 

cycles in the rig.

3.0 Experimental

3.1 Material and methods

Commercially available chemicals were purchased from Sigma Aldrich and solvents from Fisher 

Scientific or VWR and used as received. 

3.1.1 Preparation of silica coated capsules via in-situ polymerisation. First and foremost the silica 

precondensate was synthesised. A mixture of teraetoxysilane (TEOS), methyltrimethoxysilane 

(MTMS) and water (1:1:1.3 eq) was heated to 100 oC and kept for 4.5 h to form precondensate 

followed by stirring at room temperature for 16 h. The MTMS was added to introduce 

hydrophobicity on the capsule surface so to prevent agglomeration from happening between the 

capsules during and after the preparation of the capsules.

A 62 % (w/w) solution of lithium bromide in 0.1 HCl(aq)(1 g) was added dropwise to a stirred mixture 

of mineral oil (75 g), silica precondensate (6.4 g) and silica nanoparticles (18 nm, 0.1 g) using an IKA 

turbine Mixer homogeniser. The resultant emulsion was stirred for 15 minutes at room temperature 

followed by further stirring at 50 oC for 1 h. After 1 h, MTMS (3 g) was added dropwise (to ensure 

capsule shell completion and to prevent capsule agglomeration) and the resulted mixture stirred for 

a further 1 h at 50 oC. The reaction mixture was then allowed to cool to room temperature (22 ± 1 

oC) and the microcapsules were collected by suction filtration and washed thoroughly with hexane to 

obtain a white powder (2.15 g).

3.1.2 Amine functionalisation of silica coated LiBr capsules. Silica capsules (300 mg) were added to 

anhydrous toluene (25 mL). The resulted suspension was stirred for 10 min at room temperature 

Page 20 of 30

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



20

under N2(g) atmosphere to ensure the removal of aggregates of microcapsules followed by addition 

of APTMS (3 ml) dissolved in PhMe and the reaction mixture was stirred overnight at room 

temperature under N2(g) atmosphere. The microcapsules were collected by suction filtration and 

washed thoroughly with PhMe (3 x 25 ml) to obtain white capsules (300 mg).

3.1.3 Synthesis of citrate stabilised Au nanoparticles. A solution of HAuCl4.3H2O (40 mg) in Ultra 

High Quality (UHQ) H2O (49 mL) was heated under reflux for 10 min followed by addition of a 

solution of sodium citrate (80 mg) in UHQ H2O (1 mL). The resultant solution was heated under 

reflux until colour change was observed from yellow to red wine at which point the solution was 

further refluxed for 5 min to ensure complete reduction of the gold salt. The colloidal suspension 

was cooled to room temperature. The cooled colloidal suspension was centrifuged at 3500 rpm with 

a centrifugal force equivalent to 235 N for 10 min and the supernatant was collected. The 

centrifugation was repeated twice to remove any gold aggregates. Finally, the pH of the colloidal 

suspension was adjusted to 4.5 by addition of 0.06 M HCl.

3.1.4 Formation of Au nanoparticle bilayer on amine functionalised silica capsules. Amine 

functionalised silica capsules (100 mg) were added to citrate stabilised Au colloidal suspension (5 

mL) followed by sonication for 3 min. The resulted suspension was further stirred at room 

temperature for 27 min. The capsules were collected by suction filtration and washed with UHQ H2O 

to give purplish white powder (80 mg).

3.1.5 Formation of silica coated layer on Au nanoparticle coated capsules. Similar procedure was 

followed as described for amine functionalisation of the silica capsules in section 3.1.2. 

Au nanoparticle coated capsules (50 mg) were added to anhydrous PhMe (5 mL). The resulted 

suspension was stirred for 10 min at room temperature under N2(g) atmosphere to ensure the 

removal of aggregates of microcapsules followed by addition of APTMS (7.5 µL) and the reaction 

mixture was stirred overnight at room temperature under N2(g) atmosphere. The microcapsules were 

collected by suction filtration and washed thoroughly with PhMe to obtain purplish white powder 

(40 mg).

3.2 Capsule characterisation 

3.2.1 Encapsulation efficiency (EE) and active Load. To determine the EE for the capsules, the 

respective capsules (50 mg) were ground in UHQ H2O (2.5 ml) using a mortal and pistol for 1 min and 

left standing for 1 h with periodical thorough grinding every 15 min over the 1 h. The ground 
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mixtures were filtered (0.45 µm) and the samples were further diluted tenfold with UHQ H2O to 

produce 10 mL samples. LiBr content was then analysed using a Corning 400 flame photometer by 

determining the Li+ ions concentration in the prepared solutions with calibration curve of known Li+ 

ion concentration solutions. Triplicate experiments were undertaken for each capsule and the errors 

given for each measurement is the standard error.

3.2.2 Capsule shell thickness. Liquid nitrogen was poured onto the capsules followed by crushing 

the capsules using pistol and mortar for 1 min. SEM samples were prepared as described in section 

3.2.7. 

3.2.3 UV-vis spectroscopy. The UV/Vis spectra were obtained using a Varian Cary 50 UV0902M053 

UV-Visible spectrophotometer and samples were analysed using a 1 cm length of quartz cuvette.

3.2.4 Dynamic Light Scattering (DLS). The microcapsule sizes were determined using a Particle 

Analyzer (DelsaTM Nano Submicron Particle Size and Zeta Potential) equipped with a laser He-Ne 

(3.0 mW, 633 nm) and photodiode detector. The results were analysed using DelsaTM Nano UI 

software version 3.73. All the measurements were performed in H2O in a 1 cm path length quartz 

cell at 25 oC. The temperature was controlled by a thermo-electric Peltier heater/cooler element. A 

time lapse of 1 min was set between the sample being placed in the DLS chamber and the 

measurement being performed to ensure the samples equilibrated to 25 oC prior to the 

measurement being taken. Average measurements reported were taken from 10 measurement 

cycles for each type of microcapsules and the error given is the standard error. 

3.2.5 Zeta potentiometry. As described for the DLS measurements, microcapsules (20 mg) were 

dispersed in the UHQ H2O (2 ml), the resultant suspension was sonicated for 5 min. The pH was 

adjusted to the required pH with aliquot addition (10 µl) of 0.05 M HCl(aq) and 0.05 M NaOH(aq). The 

resultant suspension was further sonicated for 5 min prior to the measurement being performed. 

The process was repeated two more times for each pH and capsule coating.

3.2.6 Differential Scanning Calorimetry (DSC). DSC was performed on a DSC7 Perkin-Elmer 

machine using Al crucibles. The temperature was increased with a heating rate of 10 oC min-1 

from 25 to 150 oC, then consolidated at 150 oC for 5 min, followed by decrease in temperature 

from 150 to 25 oC at a rate of 10 oC min-1, and then consolidation at 25 oC for 5 min. This cycle 

was further repeated 9 times for each microcapsule sample. 

3.2.7 Scanning Electron Microscopy (SEM). Microcapsules were distributed evenly on a SEM stub 

which was sputtered coated with 5 nm thick Au or carbon film (to visualise the Au nanoparticles). 

The samples were imaged using either benchtop Hitachi TM3030 SEM or XL series Philips XL30 FEG 
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ESEM with electrical voltage 15 kV.

3.2.8 Transmission Electron Microscopy (TEM). The images of the citrate stabilised Au 

nanoparticles were observed using a JEOL JEM-1200EX and a JEOL JEM-2100 electron microscope 

fitted with a Gatan camera. Two samples of TEM Formvar/carbon film-coated Cu-grids with 200 

mesh (Ager Scientific) were prepared by applying one drop (10 µL) of the particle suspension on 

each grid and they were left to be dried in air for 24 h.

3.2.9 Flame Photometry. A Corning 400 flame photometer with max pressure 0.21 kg cm-2 was used 

to determine the Li+ ions concentration in the prepared solutions. A calibration curve was prepared 

using known Li+ ion concentration solutions; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60, 80, 90 and 

100 ppm. Depending on the strength of the Li+ ion concentration in the samples either standard 10 

or 100 ppm Li+ ion solution was used as the upper limit on the Flame photometer i.e. for a solution 

with a weaker Li+ ion concentration than 10 ppm the Flame photometer upper limit was set at 10 

ppm and 100 ppm if greater than 10 ppm. H2O was used as the blank. Each sample was run three 

times to ensure same readings were obtained each time. 

3.2.10 Micromanipulation. Droplets from a diluted suspension of the capsules in hexane (1 mg/mL) 

were placed on glass slides and left to air dry for 2 h. In the case of the capsules which underwent 

thermal cycles, the capsules were cooled before being dispersed in hexane. The glass slide was 

placed on the stage of a micromanipulation rig to perform the compressions. Single microcapsules 

were compressed between two flat surfaces. Force transducer (Model 403A Aurora Scientific, Inc., 

Canada) was used with a glass mounted probe with diameter of 20 µm and 80 µm to compress the 

microcapsules of 4-40 µm in diameter, at a compression speed of 2 µm s-1. 25 capsules were 

analysed for each data set in order to generate statistically representative results and the error 

stated is the calculated standard error. A typical force versus displacement curve for compression of 

single microcapsules to rupture is shown in ESI (Figure S3) with definitions of the rupture force, 

displacement at rupture, nominal deformation at rupture and nominal rupture stress. 

3.2.11 Adsorption-Desorption Cycles. The Adsorption-Desorption cycles were performed on a 

purpose built column containing a test jacketed casing which consists of two coaxial tubes: one has 1 

inch OD and another has ¾ inch OD.  A refrigerated/heating circulator was equipped for duo purpose 

of heating/cooling the thermal liquid as well as pumping it upwards through the jacket to heat/cool 

the inner tube and the tested capsules which were packed in the inner tube. As the temperature 

changes, the capsules adsorb or desorb the water accordingly which subsequently leads to variation 

of the pressure inside the tube. The pre-weighed capsules were charged into the inner tube with the 
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assistance of tapping the tube to remove any voids and to obtain an even packed bed. After closing 

both the inlet and outlet valves, the refrigerated/heating circulator and the pump were switched on 

to enable the cold thermal liquid to pass through the annular space of the jacket until the lowest set 

temperature was reached (-14 oC). The system was maintained at this temperature for 10 min prior 

to initiating the vacuuming of the system. The outlet valve was opened after starting the vacuum 

pump. When the pressure was stable and further reduction was not observed over 5 min, the outlet 

valve was closed.  The system was then isolated and ready for testing. Initially, the system was 

heated at the full power of the heater at a rate of 7 °C/min to 150 oC via the refrigerated/heating 

circulator. The temperature was maintained at the highest temperature for 10 min. After which the 

system was cooled to -14 oC at a rate of 2 oC min-1 and maintained at -14 oC for further 10 min, 

followed by repetition of the heating and cooling cycles for further 9 cycles. During all these cycles 

the temperature and pressure were recorded periodically i.e. 3-5 readings were taken during the 

heating and cooling cycles as well as during the periods when constant temperature was maintained.

4.0 Conclusions

This work successfully demonstrated the encapsulation of aqueous LiBr solution, forming capsules 

with average size less than 10 µm, good encapsulation efficiency and active load. Further 

functionalization of the capsules via coating with APTMS followed by coating with Au nanoparticles 

and finally APTMS coating have shown to be successful via data obtained from zeta potential, SEM 

and mechanical properties. The coating of Au nanoparticles has enhanced the mechanical properties 

of the capsules. However, a significant amount of LiBr salt was lost during the coating with the Au 

nanoparticles. Further work needs to be performed to improve the encapsulation efficiency.

Moreover, the capsules were shown to be thermally stable after exposing them to heating and 

cooling cycles from -10 to 150 oC and vice versa and there was no significant change in the 

encapsulation efficiency and active load. However, the mechanical properties of all the capsules 

were affected leading to weaker and more brittle capsule walls. The structural morphology of the 

capsule remains intact, although there is evidence of minimal amount of agglomeration between the 

capsules. Most importantly, preliminary adsorption and desorption cycles on the capsules are 

encouraging and show the pressure output remains constant over the 10 cycles.
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TOC Graphic

Capsule surface coated 

with Au nanoparticles.
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