UNIVERSITYOF **BIRMINGHAM**

Research at Birmingham

The environmental value of sustainable transport infrastructure

Kalyviotis, Nikolaos; Rogers, Christopher; Tight, Miles; Hewings, Geoffrey J. D.; Doloi,

License:

None: All rights reserved

Document Version

Publisher's PDF, also known as Version of record

Citation for published version (Harvard):

Kalyviotis, N, Rogers, C, Tight, M, Hewings, GJD & Doloi, H 2018, 'The environmental value of sustainable transport infrastructure' 11th Annual Midwest Graduate Student Summit in Applied Economics, Urban and Regional Studies (AERUS), United States, 7/04/18 - 8/04/18, .

Link to publication on Research at Birmingham portal

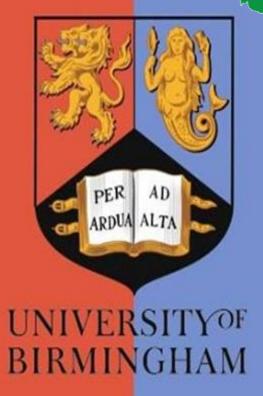
General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

- Users may freely distribute the URL that is used to identify this publication.
 Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
- Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.


Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 29. Apr. 2019

The Environmental Value of Sustainable Transport Infrastructure

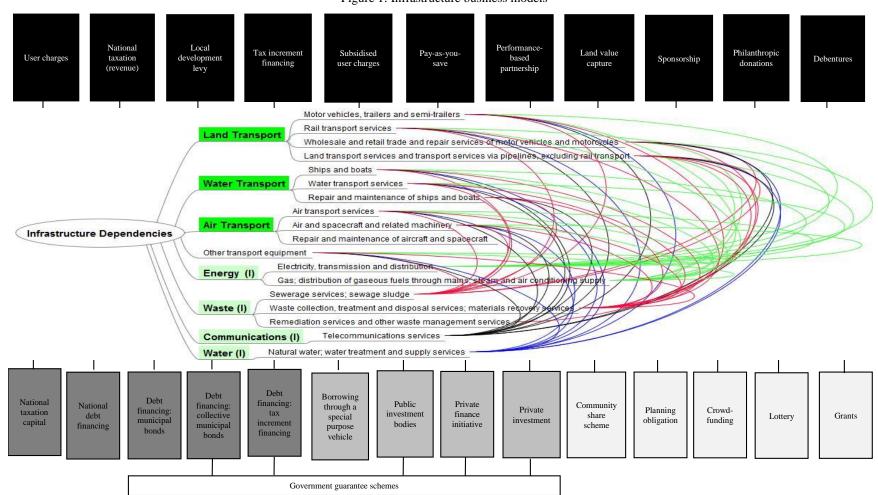
Nikos Kalyviotis Ph.D.(cand) Civil Engineering

There is an ongoing debate on infrastructure investment priorities related to: Energy, Water, Transport, Waste, Communication

(Hall et al., 2016; iBUILD, 2015; Liveable Cities, 2015; National Infrastructure Plan, 2013)

Aims and Objectives (aligning with iBUILD & Liveable Cities projects)

- Understand the Environmental Value Interdependencies of Transport Infrastructure
- Devise a new Transport Business Model that takes account on these interdependencies



Briefly Target Explanation

Environmental interdependencies

Figure 1: Infrastructure business models

From ancient times until now:

 Use of the natural resources to cover human needs

What the environment offers:

- Raw materials
- Receiving the waste of human activities
- Life
- Recreation

Environment <u>affects us all</u> but.... <u>not everyone is</u> concerned about it

Causes of the environmental crisis:

- Natural Resource Scarcity
- Environmental Ethics
- Institutional Framework of Environmental Impact
- Economic value
- Unsaturated human needs (social value)

Theoretical Methodology

Sustainable Development Definition (1987):

"...is development that meets the needs of the present without compromising the ability of future generations to meet their own needs"

Key- concepts:

- "...needs..."
- "...without compromising the ability of..." (limitation)

Theoretical Frame of Reference

Environmental Value

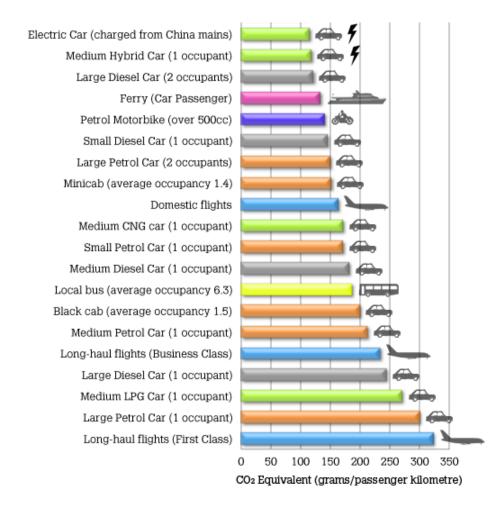
- Environmental value may be defined by the natural and anthropogenic factors and elements which interact and influence the ecosystem, the quality of life, human well-being and human health (Riffat et al, 2016; Khatri & Tyagi, 2015; Summers et al, 2012).
- Environmental damaging actions may be considered or expressed with the followings: environmental pollution, environmental degradation, environmental contamination extraction of natural resources which causes depletion of natural resources etc. (FAO, 2017)

Theoretical Frame of Reference

Research proposition: Environmental Value

 Emissions are the wide accepted way to "calculate" the environmental damaging actions. Emission addresses the production of pollutants and the waste placement into the environment (FAO, 2017).

Methodology:


- Correlate data of Input –Output tables EXIOBASE 3 (Stadler et al., 2018)
- Why is it difficult to use primary data?

Long-haul flights

Buenos Aires to London

(Source: http://www.beagleybrown.com)

Primary data Methodology

Questionnaire:

300 individuals

1													Evalu	ation									
Postcode	Age	Ethnic	Gend.	Indiv.		Income (x1000)			Percent	Goods	Main	Walking	Cycling	Rail	Bus	Car	Taxi		Travel Time			Confort & Conven.	,
911	0-					(()	Walking		х			2,58					Walking	2	5	5	4	4
B15								Cycling				Bus 4 -1		-1 3	3	5	5	Cycling	0	4	1	-3	-3
am	ည်း 20-29 White	\A/hi+a	F	2	0	0-10	7	Rail			Bus		-1					Rail	3	3	2	4	3
gh		VVIIICE		-	, "			Bus	80	bus	7	-1	3 3	3	3)	Bus	3	4	4	-1	-1	
mir								Car										Car	3	5	-1	4	4
Bir								Taxi	5									Taxi	4	5	-2	4	4
Adjust	to socie	ty:	Yes	Main r	eason:	Tin	ne		Trips	Distan													
No	Never cross the street if there is no zebra line				Air	1	311	General		Air			Water		Air	5	-1	0	4	4			
INE	ever cros	s the st	reetii	there i	S 110 ZE	ibra iirie		Water	4	186	General		4			4		Water	3	2	2	3	5

- The distance is not accurate
- We do not have data enough data for the car types
- Missing data from other transport modes too
- Worst case scenario assumption

Primary data Methodology

Automobile emissions in the UK

Type of Vehicles	Emissions
Small motorbike/moped/scooter up to	10.19 tonnes of CO2e
125cc: 100000 km	
Medium motorbike over 125cc up to	12.41 tonnes of CO2e
500cc:	
Large motorbike over 500cc: 100000 km	16.28 tonnes of CO2e
Average petrol car (half full average car)	18.57 tonnes of CO2e
Average petrol hybrid car	11.79 tonnes of CO2e

Primary data Methodology

This study		Worst case scenario	(£ 12.90 incl. 20% VAT per tonne)	
Walking	Walking: 100000 km	0 tonnes of CO2e	£0	
Cycling	Cycling: 100000 km	0 tonnes of CO2e	£0	
Rail	Tube / Subway: 100000 km	7.52 tonnes of CO2e	£ 97.01	
	Tram: 100000 km			
	International rail: 100000 km			
	National rail: 100000 km			
Bus	Coach: 100000 km	10.26 tonnes of CO2e	£ 132.35	
	Bus: 100000 km			
Car	Average petrol car	18.57 tonnes of CO2e	£ 239.56	
Car (Hybrid)	Average petrol hybrid car	11.79 tonnes of CO2e	£ 152.09	
Taxi	Taxi: 100000 km	15.62 tonnes of CO2e	£ 201.5	
Air	Short-haul flight	28.54 tonnes of CO2e	£ 368.17	
	Long-haul flight			
	Domestic flights			
Water		0.61 tonnes of CO2e	£ 7.89	

Primary data Methodology

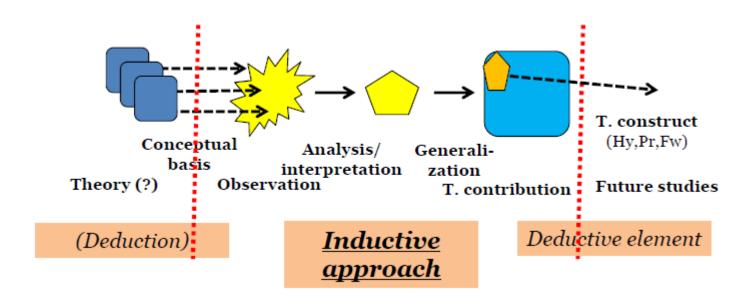
Survey	Day (Km)	Year (Km)/300	Year (%)	Cost (£) /10⁵Km	Year (Km) Metropolitan areas	Cost (£) Metropolitan areas/Year
Walking	489.7	178740.5	5.27%	0	0	0
Cycling	357.9	137791.5	4.05%	0	0	0
Rail	1273.1	464681.5	13.69%	97.01	50426240412.65	48918495.82
Bus	810.9	295978.5	8.72%	132.35	32118952439.42	42509433.55
Car	4392.1	1603116.5	47.23%	239.56	?	?
Hybrid	?	?	?	152.09	?	?
Taxi	79.3	28944.5	0.85%	201.5	3140995102.29	6329105.13
Air	-	676412	19.93%	368.17	73402780463.61	270247016.8
Water	-	8658	0.26%	7.89	939547603.02	74130.31
Total	7403	3394323	100%	-		?

Methodology

EXIOBASE 3 (Stadler et al., 2018):

- 85 types of emissions (air & water) per demand in euros
- 44 countries (28 EU member plus 16 major economies)
- Same year 2007 (2018 under issue):

48 counties/areas x 85 emission



Methodology

Inductive approach:

 Based on the observation only 29 emission are produced by the industries of interest

Environmental Value

	T	TC
	IN	

Transport		GB	GB	GB	GB	GB	GB
Transport		GB	l Ob		GD.		
Combustion	/M.EUR	Transport via railways	Other land transport	Transport via pipelines	Sea and coastal water transport	Inland water transport	Air transport
CO2	kg	111343.9	75817.3	71681.49	1108655.203	1.83E+07	1862350.55
CH4	kg	6.238257	4.54647	4.298415	78.72147886	1256.948296	14.3246283
N2O	kg	42.21357	28.65806	27.09408	73.19358565	4603.169686	53.2051471
SOx	kg	17.04783	1.969464	1.861975	17143.43579	152268.3867	568.83487
NOx	kg	1811.144	519.2538	490.9285	25327.8992	408003.4647	6118.75415
NH3	kg	0.270514	1.05822	1.000488	0.05264327	0.047646388	0.17962125
CO	kg	371.9159	178.2455	168.5243	2609.062487	41939.39313	11860.3205
Benzo(a)-	1,0	371.3133	170.2133	100.32 13	2003.002.107	11333133313	11000.5205
pyrene	kg	0.001062	0.00117	0.001106	6.13E-05	5.55E-05	0.0020887
Benzo(b)-	1,0	0.001002	0.00117	0.001100	0.132 03	3.332 03	0.0020007
fluoranthene	kg	0.001836	0.004233	0.004003	0.007221654	0.113501983	0.00240859
Benzo(k)-	NS .	0.001030	0.004233	0.004003	0.007221034	0.115501505	0.00240033
fluoranthen	kg	9.78E-04	6.61E-04	6.25E-04	2.80E-05	2.54E-05	1.22E-04
Indeno(1,2,3-	NS .	3.70E 04	0.012 04	0.231 04	2.002 03	2.542 05	1.222 04
cd)pyrene	kg	6.25E-04	4.27E-04	4.04E-04	0.003532855	0.056681484	6.18E-05
PCDD F	kg I-TEQ	2.70E-09	2.46E-09	2.33E-09	1.13E-10	1.02E-10	4.57E-10
NMVOC	kg	160.2165	28.55117	26.99358	844.7898495	13600.89201	435.243209
PM10	kg	50.23377	30.27385	28.62203	2122.43322	18402.08881	12.4706341
PM2.5	kg	47.76662	27.92559	26.40159	2122.333157	18402.00751	57.8458301
TSP	kg	53.38177	44.33343	41.91496	2123.055043	18402.64132	14.1566342
As	kg	0	0	0	154.8712546	1086.557878	0
Cd	kg	3.51E-04	2.74E-04	2.59E-04	9.292351941	65.21871018	9.31E-05
Cr	kg	0.001817	0.003572	0.003377	0.063771562	0.574430091	7.68E-04
Cu	kg	0.06095	0.092727	0.087669	154.87521	1086.561458	0.02219303
Hg	kg	0	0	0	6.197080476	43.62924232	0
Ni	kg	0.002449	0.001726	0.001632	9.294917712	65.42838692	6.47E-04
Pb	kg	0.009344	0.006423	0.006072	0.066397099	0.784160389	0.00138649
Se	kg	3.51E-04	3.02E-04	2.85E-04	0.132253666	1.567866517	9.63E-05
Zn	kg	0.035647	0.047423	0.044836	0.301652597	3.70419127	0.01178429
NMVOC (non							
combustion)	kg	94.03963	117.3346	1.142945	11.18485141	22.71792767	44.9018179

Environmental Interdependencies

Correlation using SPSS software:

Transport

Waste

Water

Energy

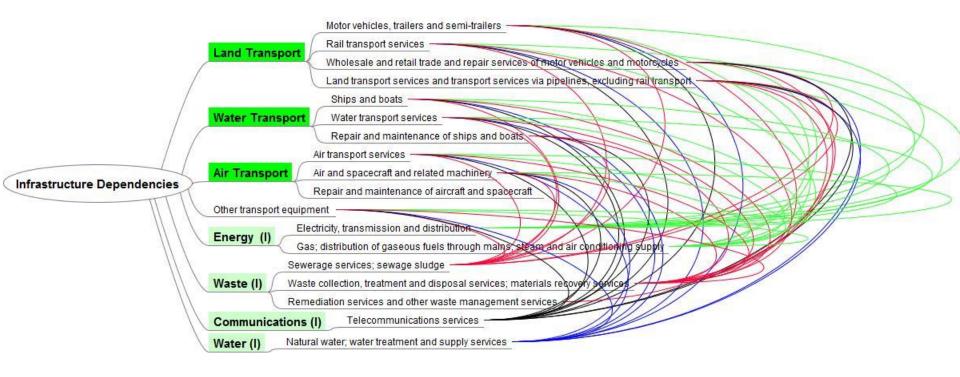
and Communication

Next steps:

- Exclude zeros and missing values
- Exclude same type of input

WLPaper - WLWood	0.888	W-W
WIOil - WLMetal	0.887	W-W
WIFood - WIPaper	0.874	W-W
WLTextile - WLWood	0.872	W-W
EnergyCoal - EnergyDistrib	0.846	E-E
EnergyTransm - NWaterDistrib	0.841	E-N
EnergyCoal - EnergyTransm	0.828	E-E
WWFood - WWOther	0.816	W-W
TManufMotor - TPipelines	0.803	T-T
EnergyNuclear - EnergyWind	0.767	E-E
EnergyDistrib - NWaterDistrib	0.761	E-N
WLPaper - WLPlastic	0.753	W-W
WLFood - WLPlastic	0.750	W-W
EnergyOcean - WCPaper	0.731	E-W
TSaleFuel - Communic	0.725	T-C
WLPlastic - WLTextile	0.715	W-W
EnergyCoal - NWaterDistrib	0.707	E-N
TRail – Communic	0.617	T-C
EnergyPetrol - TAir	0.598	T-E
WWFood - WLFood	0.591	W-W
TSea - WIPlastic	0.591	T-W
TSea - WITextile	0.591	T-W
EnergyGeoth - TPipelines	0.589	E-T
WWFood - WLPaper	0.579	W-W

Environmental Interdependencies


Emission	Transport Dependency	Other Dependency
		Energy-Water; Water-
	Energy-Transport; Communication-	Waste; Energy-
	Transport (Pipelines, Rail); Water-	Communication; Energy-
CO2	Transport; Waste-Transport	Waste
	Energy-Transport; Communication-	Energy-Water; Energy-
CH4	Transport (Manufacture)	Communication
	Energy-Transport; Communication-	Energy-Water; Water-
N2O	Transport	Waste
	Energy-Transport; Communication-	
	Transport (Pipelines); Water-	
SOx	Transport (Sales); Waste-Transport	Energy-Waste
	Waste-Transport (Sales; Transport	
NOx	through Water with Wastewater)	
	Communication-Transport; Energy-	Energy-Water; Water-
NH3	Transport; Waste-Transport	Waste;
etc	(The rest 23 are calculated now)	


Next step

Create a model of the interdependencies

Liveable Cities

UNIVERSITY OF BIRMINGHAM

Infrastructure Management:

Devise of a Business Model for Transport Infrastructure Interdependencies Management

Nikos Kalyviotis Ph.D.(cand) Civil Engineering

