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Total luminescence spectroscopy combined with pattern recognition has been used to discriminate between four
different types of edible oils, extra virgin olive (EVO), non-virgin olive (NVO), sunflower (SF) and rapeseed (RS)
oils. Simplified fuzzy adaptive resonance theory mapping (SFAM), traditional back propagation (BP) and radial
basis function (RBF) neural networks provided 100% classification for 120 samples, SFAM was found to be the
most efficient. The investigation was extended to the adulteration of percentage v/v SF or RS in EVO at levels
from 5% to 90% creating a total of 480 samples. SFAM was found to be more accurate than RBF and BP for
classification of adulterant level. All misclassifications for SFAM occurred at the 5% v/v level resulting in a total
of 99.375% correctly classified oil samples. The percentage of adulteration may be described by either RBF
network (2.435% RMSE) or a simple Euclidean distance relationship of the principal component analysis (PCA)
scores (2.977% RMSE) for v/v RS in EVO adulteration.

Introduction

Total luminescence spectroscopy (TLS), commonly used as
excitation–emission matrices (EEM), measures fluorescence
intensity as a function of both excitation and emission. The
excitation wavelength is varied in this method, producing more
spectral information than conventional fluorescence spectros-
copy. A specific compound, will have a unique matrix
(dependent upon external factors), therefore this intensity
matrix may be used like a fingerprint to identify fluorescent
compounds. Pattern recognition applied to these ‘fingerprints’
allows for unknown samples to be identified with a specific
degree of confidence.

Olive oil adulteration detection has been reported using mass
spectrometry (MS),1,2 nuclear mass resonance (NMR),3 gas
chromatography (GC)4 and high performance liquid chroma-
tography (HPLC).5,6 These methods require skilled operators
and (or) chemical modification of the samples.

In a previous investigation discrimination between fresh
edible oils using a piezoelectric quartz crystal sensor array was
possible.7 However, this technique involved heating of the
samples in order to generate sufficient headspace volatiles to be
evaluated. Fluorescence spectroscopy is an attractive technique
as it provides high dimensional information and is also non-
invasive.

TLS has been successfully utilised for many varied applica-
tions. Shimoyama and co-workers8 determined the plant
dyestuffs used in traditional Japanese woodblock prints by
means of TLS using a bifurcated quartz fibre optic cable to
focus and receive light onto and collect from the sample. In that
application the non-invasive nature of the technique was
important to avoid damage of the ancient coloured cloth.
Alexander et al.9 successfully investigated discrimination of
different gasolines by fluorescence. Patra and Mishra10,11

carried out discrimination of petroleum fuels and the effect of
adulteration to the fuel samples. Baker12 monitored water
quality using TLS for the detection of farm wastes.

Artificial neural networks (ANN) have been applied to
synchronous fluorescence spectra. Li et al.13 applied both BP
and RBF networks for spectrofluorimetry of multicomponent
mixtures. For their work they reduced the dimensionality of the
data by PCA, using the first seven components as input into a
BP network and concluded ANNs were a feasible strategy for
working with fluorescence data.

In this study TLS has been applied to the classification of
olive and other seed oils, including, rapeseed and sunflower.
PCA, BP, RBF and SFAM networks were used for pattern
recognition. It is shown that SFAM is an effective pattern
recognition algorithm for total luminescence data and that the
Euclidean distance of the PC scores may be used to accurately
quantify adulteration levels.

Computational analysis techniques

Principal component analysis

PCA is a commonly used multivariate technique which acts
unsupervised.14 PCA finds an alternative set of axes about
which a data set may be represented. It indicates along which
axis there is the most variation; axes are orthogonal to one
another. PCA is designed to provide the best possible view of
variability in the independent variables of a multivariate data
set. When the principal component scores are plotted they may
reveal natural patterns and clustering in the data samples.

Artificial neural networks

Artificial neural networks are becoming increasingly popular
due to their capability in statistical analysis and data modelling.
The three network types discussed here are all supervised, that
is, the input pattern is presented to the net and the response is
compared to the target output, corrective action on the network
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to enforce the correct output is taken if necessary. In this way
the network is trained to learn the information it is given. The
back propagation algorithm is the most common, the radial
basis function network is a good alternative in classification and
regression problems. The ART family of networks have been
shown to be very efficient for mapping multi-dimensional input
to output data.

Back propagation network

The back propagation algorithm is perhaps the most widely
used supervised training algorithm for multilayered feed
forward networks. In training an iterative gradient algorithm
designed to minimize the mean square error between the actual
output of a multilayer feed forward perceptron and the desired
output is used. A feed forward phase is first performed on an
input pattern to calculate the net error, then, the algorithm uses
this computed output error to change the weight values in the
backward direction. The error is slowly propagated backwards
through the hidden layers. The actual derivations for the
different formulae used in the back propagation algorithm come
from the generalized delta rule. The delta rule is based on the
idea of the error surface. The error surface represents cumu-
lative error over a data set as a function of the network weights.
Each possible network weight configuration is represented by a
point on this error surface. The partial derivative of the network
error with respect to each weight gives information about the
direction the error of the network is moving. If the negative of
this derivative is taken (i.e. the rate change of the error as the
value of the weight increases) and then added to the weight, the
error will decrease until it reaches a local minimum. The taking
of these partial derivatives and then applying them to each of the
weights takes place, starting from the output layer to hidden
layer weights, then, from the hidden layer to input layer weights,
backwards through the network.

Radial basis function network

Radial basis neural networks were popularised by Broomhead
and Lowe15 in the late 1980’s, they are quick to train and
conceptually elegant. The standard back propagation networks
suffer from some serious drawbacks such as slow convergence
in the learning phase, the potential convergence to a local
minimum, common chaotic behaviour, and the inability to
detect over-fitting. Radial basis function networks are a
different type of multilayer network, the output units form a
linear combination of the basis functions in the hidden or kernel
layer. The basis functions produce a localised response to the
input. A basis function may be viewed as an activation function
that produces a localised response to the input vector. RBF
networks may overcome some of the limitations of back
propagation by relying on a rapid training phase, avoiding
chaotic behaviour, having a simpler architecture whilst keeping
a complicated mapping capability. Such characteristics coupled
with an intrinsic simplicity make the RBF network an
interesting alternative for pattern recognition.

RBF networks are also well suited to function approximation.
Each hidden node is trained to contribute a Gaussian based
measurement that is then weighted with the others to produce
the output. It is possible to train the centre, width and weighting
of each Gaussian to smoothly cover the region of pattern space
populated by the training data. If small widths are used then it
may take a large number of nodes to adequately cover the
region, conversely if few nodes with large widths are used there
is a risk that not enough detail will be supplied in the structure
of the decision region. A balance of the number of nodes and the
accuracy of fit (without over fitting and losing the ability to
generalise) needs to be met.

Simplified fuzzy adaptive resonance theory mapping

Carpenter and Grossberg16 developed the adaptive resonance
theory (ART) family of neural networks to solve some of the
problems that other neural networks suffer from. The aim was to
have a stable memory structure even with fast on-line learning
that was capable of adapting to new data input, even forming
totally new category distinctions. Fuzzy ARTMAP is a
specialisation of the general ART case, developed for su-
pervised slow learning, unlike parametric probability estimators
fuzzy ARTMAP does not depend on a priori assumptions about
the underlying data. Online computation is able to achieve
probability estimates and compression by partitioning the input
space into categories. Recognition categories large or small are
produced to output best predictions. The network has a small
number of parameters and does not require guesswork to
determine the initial configuration since the network is self-
organising. In a standard back propagation network used for
pattern classification an output node is assigned to every class of
object that the network is expected to learn. In fuzzy ARTMAP
the assignment of output nodes to categories is dynamically
assessed by the network. Unlike traditional back propagation
neural networks the architecture of fuzzy ARTMAP is self
organising, Carpenter and Grossberg refer to this phenomenon
as the plasticity–stability dilemma, how a network may retain
learned patterns (stable) while remaining able to learn new ones
(plastic). Kohonen’s self-organising network uses a gradually
reducing learning rate; this however simply limits the plastic
period of the net, the Kohonen network acts unsupervised and is
more appropriate for exploratory data analysis and visual-
isation. A further problem in neural network computing is one
of generalisation; to fix the number of nodes required to
describe the pattern space. If a large number of nodes are used
then a finely graded solution will be obtained but the possibility
of over-training will occur and computation times will increase,
too few nodes and the granularity will be too coarse resulting in
imprecise calculation. In fuzzy ARTMAP the network is
allowed to organise itself in this respect so that the number of
nodes produced results in the appropriate accuracy required
according to the ‘vigilance’ parameter. Simplified fuzzy
adaptive resonance theory mapping is a simplified form of
fuzzy ARTMAP developed by Kasuba.17 A block diagram of
the SFAM network showing the main architecture is shown in
Fig. 1.

Input into SFAM

Input into the network must be normalised to a value from 0 to
1, hence a suitable normalisation value must be chosen so that
no input will fall outside of the valid range. A compliment coder
normalises the input and also provides the fuzzy compliment for
each value. This expanded input (I) is then passed to the input
layer. Weights (w) from each output node sample the input

Fig. 1 Block diagram of SFAM network.

Analyst, 2003, 128, 966–973 967



layer, making the weighting top-down. The category layer
merely holds the names of the (m) categories that the network is
expected to classify.

Vigilance

The vigilance parameter (r) is used in the learning phase of the
network; its range is 0 to 1 and is used to control the granularity
of the output nodes. In general, higher vigilance values result in
a greater number of output category nodes to form. The network
is able to self adjust its vigilance during learning from some
base value (user defined) in response to errors found in
classification. It is through this “match tracking” that the
network is able to adjust its own learning parameters to enable
the production of a new output node or to reshape the decision
regions. The vigilance should not be initially set too high or the
network will not generalise, becoming overtrained, a large
number of output category nodes will be formed, in the worst
case one for each vector input, the network will simply become
a look-up table.

Compliment coding

Compliment coding ensures that the presence or lack of
presence of a particular feature in the input is visible. For a
given input vector a of d features the compliment vector ā
represents the absence of each feature.

āi = 1 2 āi (1)

The internal compliment coded input vector I is then of
dimension 2d.

I = (a,ā) = (ā1,…ad,āi…ād) (2)

The normalisation of a fuzzy vector is the sum of all of its
points, if a fuzzy vector x contains n points, its norm ¡x¡ is

(3)

Output node activation

If a new category is detected then a new output node is created
with weights set to:

wnew
j = I (4)

When an SFAM network receives a compliment coded input
pattern I, all of the output nodes are activated to some extent. If
the activation level of a node is T, then the activation of the jth
output node with weights wj is Tj.

The function

(5)

where a is a small number, typically 0.0000001.
The winning node is then the node that has the highest

activation value.

Twin = max(Tj) (6)

If two or more output nodes share the winning value then the
node with the lowest index j is arbitrarily chosen to win. The
category associated to this node becomes the networks
classification for that input pattern.

A match function compares the compliment coded input
features and the weights in the winning, selected output node to
determine if learning should occur.

(7)

This equation may be simplified due to the fact that the norm
of any compliment-coded vector is equal to the dimension d of
the original input vector.

(8)

Resonance and mismatch

If M is greater or equal to the vigilance parameter r then the
selected jth output node is capable of encoding the input I (if
node j represents the same category C as the input vector I) and
the network is said to be in a state of resonance. The output node
may then update its weights. Only one output node is allowed to
alter its weights for any given training input vector.

Resonance if

(9)

If the output encodes a different category from the input
vector there is a ‘category mismatch’ condition. The node
activation is suppressed and the weights for that node are not
updated. If the match function value is less than the vigilance a
‘mismatch reset’ condition applies, the current output node does
not meet the granularity represented by the vigilance, its
activation is suppressed and its weights are not updated. This
prevents the category from becoming increasingly non-specific
(low vigilance). The vigilance value is set to match the value of
the winning node plus a small value (a), eqn. (10). A new output
node must be formed with its initial weights set to match the
input vector, eqn. (4).

rnew = M + a (10)

The selected output node has its weight vector wj updated
according to the rule

wnew
j = b(I.wold

j ) + (1 2 b)wold
j 0 5 b 5 1 (11)

Learning rate

The learning rate b may be set to 1 for ‘fast learning’. If this is
the case then eqn. (11) reduces to a simple fuzzy AND of the
input vector and the top-down weights of the selected output
node Oj.

wnew
j = (I.wold

j ) (12)

Classification

Once SFAM has been trained a ‘feed-forward’ pass through the
compliment-coder and into the input layer classifies an
unknown pattern. The output node activation function is
evaluated for each output node in the network. The category of
the input vector is found by assigning it the category of the most
highly activated node Twin.

Experimental procedure

Apparatus

A Hitachi F-2000 spectrofluorimeter with a quartz cell (Merck,
UK) of 10 mm path length were used to make all total
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luminescence measurements. The excitation and emission slit
width was set at 10 nm and the PMT voltage 700 V. The
machine was operated remotely using F-3D software (Hitachi)
on a 486 33 MHz PC connected via an RS232 port.

Four different types of edible oil were used in this study, extra
virgin olive oil, non virgin olive oil, sunflower oil and rapeseed
oil, all purchased from a local retailer. Hexane and acetone
(Sigma-Aldrich, UK) were both of spectroscopic grade. The oil
samples were kept in a cool dark cupboard, simulating a kitchen
environment.

A plotting program for the total luminescence data was
written using Matlab 6.5 (Mathworks,UK) that allowed visual
analysis of fluorescence peaks in the EEM data. Customised
versions of PCA and SFAM were written using C++, specifi-
cally for the total luminescence data. Neuroshell 2 (Ward
Systems, Group Inc.,USA) was used to create, train and test
both BP and RBF networks. All analysis was carried out using
an Intel Celeron 433 MHz based PC.

Sampling procedure

Oil samples (3 mL) were directly pipetted from an oil bottle into
a fluorescence cell and then placed in the fluorescence
spectrofluorimeter and an EEM cycle carried out. One cycle
reading consisted of a sweep of the lex from 350 to 450 nm with
10 nm intervals and the lem set from 400 to 720 nm with 5 nm
intervals. A complete EEM was collected in 6 min and consisted
of 715 data points (11 3 65 matrix). There were 40 separate
readings taken for each oil class, the cell being cleaned by
rinsing in hexane followed by acetone before the next sample
reading was taken.

Results and discussion

Excitation emission matrices of edible oils

The EEM spectra for the four unadulterated oils are shown in
Fig. 2, the distinct shapes could be visually analysed for
discrimination. However, with small amounts of adulteration,
the changes are less obvious. Therefore analytical methods must
be used for discrimination.

Principal component analysis

Fig. 3 shows a PCA scores plot, the four unadulterated oil
groups occupy four separate regions within the variance space.
RS oil is found in the bottom left (22.25, 20.75) NVO central
left (21.5, 0.1), EVO central right (1.0, 20.1) and SF oil the top
left (21.25, 1.25). The adulteration shows clusters that move
towards the adulterant, specific to the concentration added. At
low adulteration levels there is difficulty in distinguishing
between samples, therefore visual discrimination is only useful
between different unadulterated oils, or oils that have been
adulterated to a level above 10% v/v.

Back propagation network

Training the BP network. Training of a back propagation
network involves feeding the chosen training samples as input
vectors through the neural network, calculating the error of the
output layer, and then adjusting the weights of the network to

Fig. 2 EEM of the respective edible oils (a) RS, (b) SF, (c) EVO, (d) NVO.
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minimize the error. Each “training epoch” involves one
exposure of the network to a training sample from the training
set, and adjustment of each of the weights of the network once,
layer by layer. Selection of training samples from the training
set may be random, or selection may simply involve going
through each training sample in order.

One method of stopping training is when the network error
dips below a particular error threshold. However, it is found that
excessive training can have damaging results in such problems
as pattern recognition. The network may become too adapted in
learning the samples from the training set, and thus may be
unable to accurately classify samples outside of the training set.
When this happens samples from outside the original training
set are either included in a revised training set and the network
retrained, or a more lenient error threshold is set, or training is
stopped after a pre-determined number of epochs after a
minimum is detected. The error on a test set will typically start
to increase so training is stopped when a sufficient number of
training epochs have elapsed after a minimum to ensure that it
is a global and not a local minimum.

BP results for total luminescence data. It is not feasible to
set a back propagation network to have 715 input nodes as the
complexity of the network would require a large amount of data
and the training times would increase to an unacceptable level;
therefore the data was pre-processed using PCA. The 715
dimension data was reduced to 3 dimensions, (the first three
principal components, covering 97.56% of the total variance).
The back propagation network was set with an architecture of 3
input, 35 hidden and 16 output nodes; the data was randomly
split into 336 training points and 144 test points. The network
was set to train for a maximum of 20000 epochs after the best
test set configuration to avoid training to a local minimum, this
took approximately 1 h 30 min to accomplish. When tested with
the entire data set after training the BP network performed
100% discrimination between the unadulterated edible oils.
However it did not perform well with low levels of adulteration.
There were a total of ten incorrect classifications giving 97.27%
correct. Eight incorrect classifications were due to 5% v/v RS in
EVO, samples were classified as either 5% v/v SF in EVO or
10% v/v SF in EVO. One incorrect classification was due to 5%
v/v SF in EVO being classified as 5% v/v RS in EVO, and one
incorrect classification was due to 10% v/v SF in EVO being
classified as 5% v/v SF in EVO.

Radial basis function network

RBF results for fluorescence data. The RBF network
architecture was set to 3 input, 48 hidden and 16 output nodes;
the same PCA pre-processed data as the back propagation
network was used. The network was set to train for a maximum
of 20000 epochs after the best test set configuration to avoid
training to a local minimum, this took approximately 1 h 20 min
to accomplish. The relatively long training time was due to the
larger number of hidden nodes compared to the back propaga-
tion network.

The RBF network was applied to the entire data set after
training had taken place. The RBF network performed 100%
discrimination between the unadulterated edible oils. It also
outperformed the BP network in classifications of adulterated
samples, only making four incorrect predictions. There were
three incorrect predictions for 5% v/v RS in EVO and one
incorrect prediction 10% v/v RS in EVO groups, predicted as
5% v/v SF in EVO and 33% v/v SF in EVO respectively, giving
99.17% correct.

Simplified fuzzy adaptive resonance theory mapping

SFAM suitability for total luminescence data. Fuzzy
ARTMAP has already proven itself as a supervised incremental
learning system for pattern recognition with M to N dimen-
sional mappings. SFAM reduces the computational overhead
and architectural reduncancy of fuzzy ARTMAP with no loss of
pattern recognition capability. The ARTb and mapping modules
of fuzzy ARTMAP are replaced with a category layer, the
output category layer forming simple links to the appropriate
category node. The output for the fluorescence data is a one
dimensional vector of labels—the oil and its adulteration level.
The complex mapping capabilities of fuzzy ARTMAP is not
needed, SFAM with its vector of nodes, known as the output
category layer is ideal for this data. SFAM is also easily capable
of accepting an input vector of 715 data points, normalising and
compliment coding it. The input vector then simply becomes the
input layer from which the output category layer nodes are
updated. So long as the length of the input vector remains
constant SFAM will easily cope with that input vector, whatever
the length may be.

SFAM results for total luminescence data. No pre-
processing of the data was used so each sample consisted of 715

Fig. 3 PCA scores plot for total luminescence of edible oils including adulteration.
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data points, resulting in 343200 pieces of data in total. The data
was split into 320 readings for training and 160 for testing, a
total of 480 samples. The network was set with a vigilance of
0.5 and took approximately 8 s to train, forming 30 output
nodes. The network when tested on the entire data set after
training had taken place performed 100% discrimination
between the unadulterated edible oils. High discrimination rates
for the adulterated edible oils were obtained; only misclassify-
ing three 5% v/v SF in EVO as 5% v/v RS in EVO giving
99.375% successful classifications. Table 1 shows a summary
of the neural network classification results. A limitation of the
SFAM technique is that it cannot predict unknown concentra-
tions, it is a mapping technique; it can only match data to
predetermined groups. It is possible to sample data at small
intervals and train on these, nonetheless SFAM is a discrete
technique. For a continuous measurement on the adulteration
level another method must be used. SFAM has however proved
to be a both fast and useful technique for the validity of
unadulterated oils when dealing with TLS data.

Calculation of adulteration

NVO was the only oil to be classified by the third principal
component (5.7% of the total variation) of the PCA scores,
therefore, for the adulteration of oils, neither NVO nor PC3
were used. EVO was adulterated by either SFO or RS oils. All
three of these oils lie on the same PC1-PC2 plane and detecting
the adulteration level of EVO with these oils is therefore the
strictest test available.

RBF network curve fit. RBF networks were trained to
calculate the adulteration level of both types of adulterant of
EVO using the first two principal components as inputs. The
architecture was set at two input nodes, 18 hidden nodes and one
output node.

Principal component distance measure. The PCA scores
plot in Fig. 3 shows that increasing the adulteration level of an
oil follows a trend line. The adulteration percentage plotted

against distance along these trend lines shows that a logarithmic
relationship exists. All data was fitted using the Matlab Curve
Fitting Toolbox (Mathworks, UK)

Adult% = a(1 2 e2bx) (13)

where a and b are constants, x is the Euclidean distance of an
adulterated sample from the unadulterated sample cluster
centre.

Fig. 4a and b show the Euclidean distance between the PC
scores (based on cluster centres calculated using the Fuzzy c-
means algorithm of Bezdek18) against the actual concentration
of adulteration for RS in EVO and SF in EVO. Fig. 5a the actual
data set for RS in EVO, Fig. 5b shows a RBF calculated
adulteration level fitted. Fig. 5c shows the actual data set for SF
in EVO and Fig. 5d shows a RBF calculated adulteration level
fitted. Table 2 shows the calculated coefficients and degree of fit
for both adulterants for the RBF calculated adulteration and the
actual adulteration level.

Table 2 shows that SF in EVO using cluster centres produced
a RMSE of 4.61. The RBF network was able to fit the data
accurately for SF in EVO using all the data points. A RMSE of
11.19 was obtained. The simple exponential based equation
performed almost as well. For SF in EVO, using all the data
points a RMSE of 11.4 was obtained. Both of these methods
need PCA scores values for input so the equation produces
results more rapidly.

Speed of analysis

It was found that for classification training BP and RBF
networks were time consuming in comparison with SFAM.
Both BP and RBF networks require pre-processing of the data
to allow a reasonable network architecture to be achieved.
SFAM is capable of using the complete data set and is both
more accurate in classification and quicker in training when
used with total luminescence data.

Conclusions

SFAM is a technique that is both quick and easy to train and
produces well formed predictions on TLS data for unadulterated
or adulterated edible oils. A mathematical relationship between
the Euclidean distances of an adulterated oil to its unadulterated
base PCA score is both a quick and accurate method to
determine the level of adulteration of the oil. RBF networks
were found to be slightly more accurate in fitting the data but

Table 1 Network classifications of adulterated oils

BP RBF SFAM

Correct 470 476 477
Incorrect 10 4 3
Percentage correct 97.92 99.17 99.38

Fig. 4 Adulteration vs. Euclidean distance of cluster centres (a) RS in EVO, (b) SF in EVO.
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are, however, more time consuming to train. A combination of
SFAM and PCA score curve fitting could be used to make both
qualitative and quantitative determinations of unknown adulter-
ated and unadulterated fresh edible oils. SFAM will quickly
determine if the oil is adulterated and to the approximate level.
The Euclidean distance equation may then be used to calculate
the level of adulteration.
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