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Total luminescence spectroscopy combined with pattern recognition has been used to discriminate between four
different types of edible ails, extra virgin olive (EVO), non-virgin olive (NVO), sunflower (SF) and rapeseed (RS)
oils. Simplified fuzzy adaptive resonance theory mapping (SFAM), traditional back propagation (BP) and radial
basis function (RBF) neura networks provided 100% classification for 120 samples, SFAM was found to be the
most efficient. The investigation was extended to the adulteration of percentage v/v SF or RSin EVO at levels
from 5% to 90% creating a total of 480 samples. SFAM was found to be more accurate than RBF and BP for
classification of adulterant level. All misclassifications for SFAM occurred at the 5% v/v level resulting in a total
of 99.375% correctly classified oil samples. The percentage of adulteration may be described by either RBF
network (2.435% RMSE) or a simple Euclidean distance relationship of the principal component analysis (PCA)

scores (2.977% RMSE) for v/iv RSin EVO adulteration.

Introduction

Total luminescence spectroscopy (TLS), commonly used as
excitation—emission matrices (EEM), measures fluorescence
intensity as a function of both excitation and emission. The
excitation wavelength is varied in this method, producing more
spectral information than conventional fluorescence spectros-
copy. A specific compound, will have a unique matrix
(dependent upon external factors), therefore this intensity
matrix may be used like a fingerprint to identify fluorescent
compounds. Pattern recognition applied to these ‘fingerprints
alows for unknown samples to be identified with a specific
degree of confidence.

Olive oil adulteration detection has been reported using mass
spectrometry (MS),12 nuclear mass resonance (NMR),3 gas
chromatography (GC)# and high performance liquid chroma-
tography (HPLC).56 These methods require skilled operators
and (or) chemical modification of the samples.

In a previous investigation discrimination between fresh
edible oils using a piezoelectric quartz crystal sensor array was
possible.” However, this technique involved heating of the
samplesin order to generate sufficient headspace volatilesto be
evaluated. Fluorescence spectroscopy is an attractive technique
as it provides high dimensional information and is also non-
invasive.

TLS has been successfully utilised for many varied applica
tions. Shimoyama and co-workers® determined the plant
dyestuffs used in traditional Japanese woodblock prints by
means of TLS using a bifurcated quartz fibre optic cable to
focus and receive light onto and collect from the sample. In that
application the non-invasive nature of the technique was
important to avoid damage of the ancient coloured cloth.
Alexander et al.® successfully investigated discrimination of
different gasolines by fluorescence. Patra and Mishralo1t
carried out discrimination of petroleum fuels and the effect of
adulteration to the fuel samples. Baker2 monitored water
quality using TLS for the detection of farm wastes.
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Artificial neural networks (ANN) have been applied to
synchronous fluorescence spectra. Li et al.13 applied both BP
and RBF networks for spectrofluorimetry of multicomponent
mixtures. For their work they reduced the dimensionality of the
data by PCA, using the first seven components as input into a
BP network and concluded ANNs were a feasible strategy for
working with fluorescence data.

In this study TLS has been applied to the classification of
olive and other seed oails, including, rapeseed and sunflower.
PCA, BP, RBF and SFAM networks were used for pattern
recognition. It is shown that SFAM is an effective pattern
recognition algorithm for total luminescence data and that the
Euclidean distance of the PC scores may be used to accurately
quantify adulteration levels.

Computational analysis techniques
Principal component analysis

PCA is a commonly used multivariate technique which acts
unsupervised.14 PCA finds an dternative set of axes about
which a data set may be represented. It indicates along which
axis there is the most variation; axes are orthogonal to one
another. PCA is designed to provide the best possible view of
variability in the independent variables of a multivariate data
set. When the principal component scores are plotted they may
reveal natural patterns and clustering in the data samples.

Artificial neural networks

Artificial neural networks are becoming increasingly popular
dueto their capability in statistical analysis and datamodelling.
The three network types discussed here are all supervised, that
is, the input pattern is presented to the net and the response is
compared to the target output, corrective action on the network
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to enforce the correct output is taken if necessary. In this way
the network is trained to learn the information it is given. The
back propagation agorithm is the most common, the radial
basis function network isagood alternativein classification and
regression problems. The ART family of networks have been
shown to be very efficient for mapping multi-dimensional input
to output data.

Back propagation network

The back propagation agorithm is perhaps the most widely
used supervised training algorithm for multilayered feed
forward networks. In training an iterative gradient algorithm
designed to minimize the mean square error between the actual
output of a multilayer feed forward perceptron and the desired
output is used. A feed forward phase is first performed on an
input pattern to calculate the net error, then, the agorithm uses
this computed output error to change the weight values in the
backward direction. The error is slowly propagated backwards
through the hidden layers. The actual derivations for the
different formulae used in the back propagation algorithm come
from the generalized delta rule. The delta rule is based on the
idea of the error surface. The error surface represents cumu-
lative error over adata set as afunction of the network weights.
Each possible network weight configuration is represented by a
point on this error surface. The partial derivative of the network
error with respect to each weight gives information about the
direction the error of the network is moving. If the negative of
this derivative is taken (i.e. the rate change of the error as the
value of the weight increases) and then added to the weight, the
error will decrease until it reaches alocal minimum. The taking
of these partia derivativesand then applying them to each of the
weights takes place, starting from the output layer to hidden
layer weights, then, from the hidden layer to input layer weights,
backwards through the network.

Radial basis function network

Radial basis neural networks were popularised by Broomhead
and Lowel5 in the late 1980's, they are quick to train and
conceptually elegant. The standard back propagation networks
suffer from some serious drawbacks such as slow convergence
in the learning phase, the potential convergence to a local
minimum, common chaotic behaviour, and the inability to
detect over-fitting. Radial basis function networks are a
different type of multilayer network, the output units form a
linear combination of the basis functionsin the hidden or kernel
layer. The basis functions produce a localised response to the
input. A basis function may be viewed as an activation function
that produces a localised response to the input vector. RBF
networks may overcome some of the limitations of back
propagation by relying on a rapid training phase, avoiding
chaotic behaviour, having asimpler architecture whilst keeping
a complicated mapping capability. Such characteristics coupled
with an intrinsic simplicity make the RBF network an
interesting alternative for pattern recognition.

RBF networks are also well suited to function approximation.
Each hidden node is trained to contribute a Gaussian based
measurement that is then weighted with the others to produce
the output. It is possible to train the centre, width and weighting
of each Gaussian to smoothly cover the region of pattern space
populated by the training data. If small widths are used then it
may take a large number of nodes to adequately cover the
region, conversely if few nodes with large widths are used there
isarisk that not enough detail will be supplied in the structure
of the decision region. A balance of the number of nodes and the
accuracy of fit (without over fitting and losing the ability to
generalise) needs to be met.

Simplified fuzzy adaptive resonance theory mapping

Carpenter and Grossberg!6 developed the adaptive resonance
theory (ART) family of neural networks to solve some of the
problemsthat other neural networks suffer from. Theaimwasto
have a stable memory structure even with fast on-line learning
that was capable of adapting to new data input, even forming
totally new category distinctions. Fuzzy ARTMAP is a
specidisation of the general ART case, developed for su-
pervised slow learning, unlike parametric probability estimators
fuzzy ARTMAP does not depend on a priori assumptions about
the underlying data. Online computation is able to achieve
probability estimates and compression by partitioning the input
space into categories. Recognition categories large or small are
produced to output best predictions. The network has a small
number of parameters and does not require guesswork to
determine the initial configuration since the network is self-
organising. In a standard back propagation network used for
pattern classification an output nodeisassigned to every class of
object that the network is expected to learn. In fuzzy ARTMAP
the assignment of output nodes to categories is dynamically
assessed by the network. Unlike traditional back propagation
neural networks the architecture of fuzzy ARTMAP is self
organising, Carpenter and Grossberg refer to this phenomenon
as the plasticity—stability dilemma, how a network may retain
learned patterns (stable) while remaining able to learn new ones
(plastic). Kohonen's self-organising network uses a gradually
reducing learning rate; this however simply limits the plastic
period of the net, the Kohonen network acts unsupervised and is
more appropriate for exploratory data analysis and visual-
isation. A further problem in neural network computing is one
of generalisation; to fix the number of nodes required to
describe the pattern space. If alarge number of nodes are used
then afinely graded solution will be obtained but the possibility
of over-training will occur and computation timeswill increase,
too few nodes and the granularity will betoo coarseresultingin
imprecise calculation. In fuzzy ARTMAP the network is
allowed to organise itself in this respect so that the number of
nodes produced results in the appropriate accuracy required
according to the ‘vigilance parameter. Simplified fuzzy
adaptive resonance theory mapping is a simplified form of
fuzzy ARTMAP developed by Kasuba.l” A block diagram of
the SFAM network showing the main architecture is shown in
Fig. 1.

Input into SFAM

Input into the network must be normalised to a value from 0 to
1, hence a suitable normalisation value must be chosen so that
no input will fall outside of the valid range. A compliment coder
normalisestheinput and also providesthefuzzy compliment for
each value. This expanded input (1) is then passed to the input
layer. Weights (w) from each output node sample the input
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Fig. 1 Block diagram of SFAM network.
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layer, making the weighting top-down. The category layer
merely holds the names of the (m) categoriesthat the network is
expected to classify.

Vigilance

The vigilance parameter (p) is used in the learning phase of the
network; itsrangeis0to 1 and is used to control the granularity
of the output nodes. In general, higher vigilance valuesresult in
agreater number of output category nodesto form. The network
is able to self adjust its vigilance during learning from some
base value (user defined) in response to errors found in
classification. It is through this “match tracking” that the
network is able to adjust its own learning parameters to enable
the production of a new output node or to reshape the decision
regions. The vigilance should not be initialy set too high or the
network will not generalise, becoming overtrained, a large
number of output category nodes will be formed, in the worst
case one for each vector input, the network will simply become
alook-up table.

Compliment coding

Compliment coding ensures that the presence or lack of
presence of a particular feature in the input is visible. For a
given input vector a of d features the compliment vector a
represents the absence of each feature.

a=1-a D

The internal compliment coded input vector | is then of
dimension 2d.

I = (ad) = (a..-20:8...39) 2

The normalisation of a fuzzy vector is the sum of al of its
points, if afuzzy vector x contains n points, its norm |x| is

|x| = le €)

Output node activation

If anew category is detected then a new output node is created
with weights set to:

e = 4

When an SFAM network receives a compliment coded input
pattern |, al of the output nodes are activated to some extent. If
the activation level of anodeis T, then the activation of the jth
output node with weights w; is T;.

The function

|Iﬂw/|

a+lw)|

I,(1)= (5

where ¢ is a small number, typically 0.0000001.
The winning node is then the node that has the highest
activation value.

TWi n= maX(T]) (6)

If two or more output nodes share the winning value then the
node with the lowest index j is arbitrarily chosen to win. The
category associated to this node becomes the networks
classification for that input pattern.

A match function compares the compliment coded input
features and the weights in the winning, selected output node to
determine if learning should occur.
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[1Nw)|
M= 1] (7)

This equation may be simplified due to the fact that the norm
of any compliment-coded vector is equa to the dimension d of
the original input vector.

10w
M=t ®)

Resonance and mismatch

If M is greater or equal to the vigilance parameter p then the

selected jth output node is capable of encoding the input | (if

node j represents the same category C as the input vector 1) and

the network issaid to bein astate of resonance. The output node

may then update its weights. Only one output nodeis allowed to

alter its weights for any given training input vector.
Resonance if

|Iﬂw‘/|

T zP €)

If the output encodes a different category from the input
vector there is a ‘category mismatch’ condition. The node
activation is suppressed and the weights for that node are not
updated. If the match function value is less than the vigilance a
‘mismatch reset’ condition applies, the current output node does
not meet the granularity represented by the vigilance, its
activation is suppressed and its weights are not updated. This
prevents the category from becoming increasingly non-specific
(low vigilance). Thevigilance valueis set to match the value of
thewinning node plusasmall value (), egn. (10). A new output
node must be formed with its initial weights set to match the
input vector, egn. (4).

Prew = M+ (10)

The selected output node has its weight vector w; updated
according to the rule

W = BIMWPY + (L - fuido=B=1 (1)

Learning rate

The learning rate § may be set to 1 for ‘fast learning’. If thisis
the case then egn. (11) reduces to a simple fuzzy AND of the
input vector and the top-down weights of the selected output
node G;.

W = (1MwP) (12)

Classification

Once SFAM has been trained a ‘feed-forward’ pass through the
compliment-coder and into the input layer classifies an
unknown pattern. The output node activation function is
evaluated for each output node in the network. The category of
theinput vector isfound by assigning it the category of the most
highly activated node Tyin.

Experimental procedure
Apparatus

A Hitachi F-2000 spectrofluorimeter with a quartz cell (Merck,
UK) of 10 mm path length were used to make al total



luminescence measurements. The excitation and emission dlit
width was set a 10 nm and the PMT voltage 700 V. The
machine was operated remotely using F-3D software (Hitachi)
on a 486 33 MHz PC connected via an RS232 port.

Four different typesof edible oil were used in this study, extra
virgin olive ail, non virgin olive oil, sunflower oil and rapeseed
ail, all purchased from a loca retailer. Hexane and acetone
(Sigma-Aldrich, UK) were both of spectroscopic grade. The oil
sampleswere kept in acool dark cupboard, simulating akitchen
environment.

A plotting program for the total luminescence data was
written using Matlab 6.5 (Mathworks,UK) that allowed visual
analysis of fluorescence peaks in the EEM data. Customised
versions of PCA and SFAM were written using C++, specifi-
caly for the total luminescence data. Neuroshell 2 (Ward
Systems, Group Inc.,USA) was used to create, train and test
both BP and RBF networks. All analysis was carried out using
an Intel Celeron 433 MHz based PC.

Sampling procedure

Qil samples (3 mL) weredirectly pipetted from an oil bottleinto
a fluorescence cell and then placed in the fluorescence
spectrofluorimeter and an EEM cycle carried out. One cycle
reading consisted of asweep of the Aex from 350 to 450 nm with
10 nm intervas and the Aqm Set from 400 to 720 nm with 5 nm
intervals. A complete EEM was collected in 6 min and consisted
of 715 data points (11 X 65 matrix). There were 40 separate
readings taken for each oil class, the cell being cleaned by
rinsing in hexane followed by acetone before the next sample
reading was taken.
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Results and discussion
Excitation emission matrices of edible oils

The EEM spectra for the four unadulterated oils are shown in
Fig. 2, the distinct shapes could be visualy analysed for
discrimination. However, with small amounts of adulteration,
the changes areless obvious. Therefore analytical methods must
be used for discrimination.

Principal component analysis

Fig. 3 shows a PCA scores plot, the four unadulterated oil
groups occupy four separate regions within the variance space.
RS ail isfound in the bottom left (—2.25, —0.75) NV O central
left (—1.5, 0.1), EVO central right (1.0, —0.1) and SF ail thetop
left (—1.25, 1.25). The adulteration shows clusters that move
towards the adulterant, specific to the concentration added. At
low adulteration levels there is difficulty in distinguishing
between samples, therefore visua discrimination is only useful
between different unadulterated oils, or oils that have been
adulterated to a level above 10% vi/v.

Back propagation network

Training the BP network. Training of a back propagation
network involves feeding the chosen training samples as input
vectors through the neural network, calculating the error of the
output layer, and then adjusting the weights of the network to
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Fig. 2 EEM of the respective edible oils (a) RS, (b) SF, (c) EVO, (d) NVO.
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minimize the error. Each “training epoch” involves one
exposure of the network to a training sample from the training
set, and adjustment of each of the weights of the network once,
layer by layer. Selection of training samples from the training
set may be random, or selection may simply involve going
through each training sample in order.

One method of stopping training is when the network error
dipsbelow aparticular error threshold. However, it isfound that
excessive training can have damaging results in such problems
as pattern recognition. The network may become too adapted in
learning the samples from the training set, and thus may be
unable to accurately classify samples outside of the training set.
When this happens samples from outside the original training
set are either included in arevised training set and the network
retrained, or amore lenient error threshold is set, or training is
stopped after a pre-determined number of epochs after a
minimum is detected. The error on atest set will typically start
to increase so training is stopped when a sufficient number of
training epochs have elapsed after a minimum to ensure that it
isaglobal and not a local minimum.

BP resultsfor total luminescence data. It is not feasible to
set a back propagation network to have 715 input nodes as the
complexity of the network would require alarge amount of data
and the training times would increase to an unacceptable level;
therefore the data was pre-processed using PCA. The 715
dimension data was reduced to 3 dimensions, (the first three
principal components, covering 97.56% of the total variance).
The back propagation network was set with an architecture of 3
input, 35 hidden and 16 output nodes; the data was randomly
split into 336 training points and 144 test points. The network
was set to train for a maximum of 20000 epochs after the best
test set configuration to avoid training to alocal minimum, this
took approximately 1 h 30 min to accomplish. When tested with
the entire data set after training the BP network performed
100% discrimination between the unadulterated edible oils.
However it did not perform well with low levels of adulteration.
Therewere atotal of tenincorrect classifications giving 97.27%
correct. Eight incorrect classificationswere dueto 5% v/v RSin
EVO, samples were classified as either 5% v/iv SFin EVO or
10% v/v SFin EVO. Oneincorrect classification was due to 5%
vlv SFin EVO being classified as 5% v/v RSin EVO, and one
incorrect classification was due to 10% v/v SF in EVO being
classified as 5% v/v SF in EVO.

Radial basis function network

RBF results for fluorescence data. The RBF network
architecture was set to 3 input, 48 hidden and 16 output nodes;
the same PCA pre-processed data as the back propagation
network was used. The network was set to train for a maximum
of 20000 epochs after the best test set configuration to avoid
training to alocal minimum, thistook approximately 1 h 20 min
to accomplish. The relatively long training time was due to the
larger number of hidden nodes compared to the back propaga-
tion network.

The RBF network was applied to the entire data set after
training had taken place. The RBF network performed 100%
discrimination between the unadulterated edible oils. It aso
outperformed the BP network in classifications of adulterated
samples, only making four incorrect predictions. There were
three incorrect predictions for 5% v/v RS in EVO and one
incorrect prediction 10% v/v RS in EVO groups, predicted as
5% v/v SFin EVO and 33% v/v SFin EVO respectively, giving
99.17% correct.

Simplified fuzzy adaptive resonance theory mapping

SFAM suitability for total luminescence data. Fuzzy
ARTMAP has aready proven itself as a supervised incremental
learning system for pattern recognition with M to N dimen-
sional mappings. SFAM reduces the computational overhead
and architectural reduncancy of fuzzy ARTMAP with no loss of
pattern recognition capability. The ART,, and mapping modules
of fuzzy ARTMAP are replaced with a category layer, the
output category layer forming simple links to the appropriate
category node. The output for the fluorescence data is a one
dimensional vector of labels—the oil and its adulteration level.
The complex mapping capabilities of fuzzy ARTMAP is not
needed, SFAM with its vector of nodes, known as the output
category layer isideal for thisdata. SFAM isa so easily capable
of accepting an input vector of 715 data points, normalising and
compliment coding it. Theinput vector then simply becomesthe
input layer from which the output category layer nodes are
updated. So long as the length of the input vector remains
constant SFAM will easily copewith that input vector, whatever
the length may be.

SFAM results for total luminescence data. No pre-
processing of the datawas used so each sample consisted of 715
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Fig. 3 PCA scores plot for total luminescence of edible oils including adulteration.
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data points, resulting in 343200 pieces of datain total. The data
was split into 320 readings for training and 160 for testing, a
total of 480 samples. The network was set with a vigilance of
0.5 and took approximately 8 s to train, forming 30 output
nodes. The network when tested on the entire data set after
training had taken place performed 100% discrimination
between the unadulterated edible oils. High discrimination rates
for the adulterated edible oils were obtained; only misclassify-
ing three 5% v/v SF in EVO as 5% v/v RS in EVO giving
99.375% successful classifications. Table 1 shows a summary
of the neural network classification results. A limitation of the
SFAM technique is that it cannot predict unknown concentra-
tions, it is a mapping technique; it can only match data to
predetermined groups. It is possible to sample data at small
intervals and train on these, nonetheless SFAM is a discrete
technique. For a continuous measurement on the adulteration
level another method must be used. SFAM has however proved
to be a both fast and useful technique for the validity of
unadulterated oils when dealing with TLS data.

Calculation of adulteration

NVO was the only oil to be classified by the third principal
component (5.7% of the total variation) of the PCA scores,
therefore, for the adulteration of oils, neither NVO nor PC3
were used. EVO was adulterated by either SFO or RS ails. All
three of these qils lie on the same PC1-PC2 plane and detecting
the adulteration level of EVO with these qils is therefore the
strictest test available.

RBF network curve fit. RBF networks were trained to
calculate the adulteration level of both types of adulterant of
EVO using the first two principal components as inputs. The
architecture was set at two input nodes, 18 hidden nodesand one
output node.

Principal component distance measure. The PCA scores
plot in Fig. 3 shows that increasing the adulteration level of an
oil follows a trend line. The adulteration percentage plotted

Tablel Network classifications of adulterated oils

BP RBF SFAM
Correct 470 476 a77
Incorrect 10 4 3
Percentage correct 97.92 99.17 99.38
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against distance along these trend lines shows that alogarithmic
relationship exists. All data was fitted using the Matlab Curve
Fitting Toolbox (Mathworks, UK)

Adult% = a(l — e™) (13

where a and b are constants, x is the Euclidean distance of an
adulterated sample from the unadulterated sample cluster
centre.

Fig. 4a and b show the Euclidean distance between the PC
scores (based on cluster centres calculated using the Fuzzy c-
means agorithm of Bezdek18) against the actual concentration
of adulteration for RSin EVO and SFin EVO. Fig. 5athe actua
data set for RS in EVO, Fig. 5b shows a RBF calculated
adulteration level fitted. Fig. 5¢ showsthe actual data set for SF
in EVO and Fig. 5d shows a RBF calculated adulteration level
fitted. Table 2 showsthe cal cul ated coefficientsand degree of fit
for both adulterants for the RBF cal culated adulteration and the
actual adulteration level.

Table 2 showsthat SFin EVO using cluster centres produced
a RMSE of 4.61. The RBF network was able to fit the data
accurately for SFin EVO using al the data points. A RM SE of
11.19 was obtained. The simple exponential based equation
performed almost as well. For SF in EVO, using al the data
points a RMSE of 11.4 was obtained. Both of these methods
need PCA scores values for input so the equation produces
results more rapidly.

Speed of analysis

It was found that for classification training BP and RBF
networks were time consuming in comparison with SFAM.
Both BP and RBF networks require pre-processing of the data
to alow a reasonable network architecture to be achieved.
SFAM is capable of using the complete data set and is both
more accurate in classification and quicker in training when
used with total luminescence data.

Conclusions

SFAM is a technique that is both quick and easy to train and
produceswell formed predictionson TL S datafor unadulterated
or adulterated edible oils. A mathematical relationship between
the Euclidean distances of an adulterated oil to its unadulterated
base PCA score is both a quick and accurate method to
determine the level of adulteration of the oil. RBF networks
were found to be dightly more accurate in fitting the data but
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Fig. 4 Adulteration vs. Euclidean distance of cluster centres (a) RSin EVO, (b) SFin EVO.
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Fig. 5 RSin EVO (a) Actua data, (b) RBF fit SFin EVO, (c) Actual data, (d) RBF fit.

Table 2 Fit and coefficients for adulterated oil level calculation

Fit a b R2 SSE RMSE
SFin EVO cluster 100.9 1.338 0.9879 1275 461
SFin EVO actua 105.0 1.118 0.902 31070 11.4
SFin EVO RBF 105.0 1112 0.9058 29950 11.19
RS in EVO cluster 127.9 0.4513 0.9975 26.73 2111
RSin EVO actual 127.1 0.4563 0.9933 2118 2977
RSin EVO RBF 1255 0.4656 0.9955 1417 2435

are, however, more time consuming to train. A combination of
SFAM and PCA score curve fitting could be used to make both
qualitative and quantitative determinations of unknown adulter-
ated and unadulterated fresh edible oils. SFAM will quickly
determine if the oil is adulterated and to the approximate level.
The Euclidean distance equation may then be used to calculate
the level of adulteration.
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