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Abstract

Interactive partially observable Markov decision processes
(I-POMDP) provide a formal framework for planning for a
self-interested agent in multiagent settings. An agent oper-
ating in a multiagent environment must deliberate about the
actions that other agents may take and the effect these actions
have on the environment and the rewards it receives. Tradi-
tional I-POMDPs model this dependence on the actions of
other agents using joint action and model spaces. Therefore,
the solution complexity grows exponentially with the num-
ber of agents thereby complicating scalability. In this paper,
we model and extend anonymity and context-specific indepen-
dence – problem structures often present in agent populations
– for computational gain. We empirically demonstrate the effi-
ciency from exploiting these problem structures by solving a
new multiagent problem involving more than 1,000 agents.

Introduction
We focus on the decision-making problem of an individual
agent operating in the presence of other self-interested agents
whose actions may affect the state of the environment and
the subject agent’s rewards. In stochastic and partially ob-
servable environments, this problem is formalized by the
interactive POMDP (I-POMDP) (Gmytrasiewicz and Doshi
2005). I-POMDPs cover an important portion of the multia-
gent planning problem space (Seuken and Zilberstein 2008;
Doshi 2012), and applications in diverse areas such as
security (Ng et al. 2010; Seymour and Peterson 2009),
robotics (Wang 2013; Woodward and Wood 2012), ad hoc
teams (Chandrasekaran et al. 2014) and human behavior mod-
eling (Doshi et al. 2010; Wunder et al. 2011) testify to its
wide appeal while critically motivating better scalability.

Previous I-POMDP solution approximations such as in-
teractive particle filtering (Doshi and Gmytrasiewicz 2009),
point-based value iteration (Doshi and Perez 2008) and in-
teractive bounded policy iteration (I-BPI) (Sonu and Doshi
2014) scale I-POMDP solutions to larger physical state, ob-
servation and model spaces. Hoang and Low (2013) intro-
duced the specialized I-POMDP Lite framework that pro-
motes efficiency by modeling other agents as nested MDPs.
However, to the best of our knowledge no effort specifically

scales I-POMDPs to many interacting agents – say, a popu-
lation of more than a thousand – sharing the environment.

For illustration, consider the decision-making problem of
the police when faced with a large protest. The degree of the
police response is often decided by how many protestors of
which type (disruptive or not) are participating. The individ-
ual identity of the protestor within each type seldom matters.
This key observation of frame-action anonymity motivates us
in how we model the agent population in the planning pro-
cess. Furthermore, the planned degree of response at a protest
site is influenced, in part, by how many disruptive protestors
are predicted to converge at the site and much less by some
other actions of protestors such as movement between other
distant sites. Therefore, police actions depend on just a few
actions of note for each type of agent.

The example above illustrates two known and power-
ful types of problem structure in domains involving many
agents: action anonymity (Roughgarden and Tardos 2002)
and context-specific independence (Boutilier et al. 1996). Ac-
tion anonymity allows the exponentially large joint action
space to be substituted with a much more compact space
of action configurations where a configuration is a tuple
representing the number of agents performing each action.
Context-specific independence (wherein given a context such
as the state and agent’s own action, not all actions performed
by other agents are relevant) permits the space of configura-
tions to be compressed by projecting counts over a limited
set of others’ actions. We extend both action anonymity and
context-specific independence to allow considerations of an
agent’s frame as well. 1 We list the specific contributions of
this paper below:
1. I-POMDPs are severely challenged by large numbers of

agents sharing the environment, which cause an expo-
nential growth in the space of joint models and actions.
Exploiting problem structure in the form of frame-action
anonymity and context-specific independence, we present
a new method for considerably scaling the solution of
I-POMDPs to an unprecedented number of agents.

2. We present a systematic way of modeling the prob-
lem structure in transition, observation and reward func-

1I-POMDPs distinguish between an agent’s frame and type with
the latter including beliefs as well. Frames are similar in semantics
to the colloquial use of types.
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tions, and integrating it in a simple method for solving
I-POMDPs that models other agents using finite-state
machines and builds reachability trees given an initial
belief.

3. We prove that the Bellman equation modified to include
action configurations and frame-action independences
continues to remain optimal given the I-POMDP with
explicated problem structure.

4. Finally, we theoretically verify the improved savings in
computational time and memory, and empirically demon-
strate it on a new problem of policing protest with over a
thousand protestors.
The above problem structure allows us to emphatically

mitigate the curse of dimensionality whose acute impact on
I-POMDPs is well known. However, it does not lessen the
impact of the curse of history. In this context, an additional
step of sparse sampling of observations while generating
the reachability tree allows sophisticated planning with a
population of 1,000+ agents using about six hours.

Related Work
Building on graphical games (Kearns, Littman, and Singh
2001), action graph games (AGG) (Jiang, Leyton-Brown,
and Bhat 2011) utilize problem structures such as action
anonymity and context-specific independence to concisely
represent single shot complete-information games involving
multiple agents and to scalably solve for Nash equilibrium.
The independence is modeled using a directed action graph
whose nodes are actions and an edge between two nodes
indicates that the reward of an agent performing an action
indicated by one node is affected by other agents performing
action of the other node. Lack of edges between nodes en-
codes the context-specific independence where the context is
the action. Action anonymity is useful when the action sets
of agents overlap substantially. Subsequently, the vector of
counts over the set of distinct actions, called a configuration,
is much smaller than the space of action profiles.

We substantially build on AGGs in this paper by extend-
ing anonymity and context-specific independence to include
agent frames, and generalizing their use to a partially observ-
able stochastic game solved using decision-theoretic planning
as formalized by I-POMDPs. Indeed, Bayesian AGGs (Jiang
and Leyton-Brown 2010) extend the original formulation
to include agent types. These result in type-specific action
sets with the benefit that the action graph structure does
not change although the number of nodes grows with types:
|Θ̂||A| nodes for agents with |Θ̂| types each having same
|A| actions. If two actions from different type-action sets
share a node, then these actions are interchangeable. A key
difference in our representation is that we explicitly model
frames in the graphs due to which context-specific indepen-
dence is modeled using frame-action hypergraphs. Benefits
are that we naturally maintain the distinction between two
similar actions but performed by agents of different frames,
and we add less additional nodes: |Θ̂| + |A|. However, a
hypergraph is a more complex data structure for operation.
Temporal AGGs (Jiang, Leyton-Brown, and Pfeffer 2009)
extend AGGs to a repeated game setting and allow decisions

to condition on chance nodes. These nodes may represent the
action counts from previous step (similar to observing the
actions in the previous game). Temporal AGGs come closest
to multiagent influence diagrams (Koller and Milch 2001)
although they can additionally model the anonymity and in-
dependence structure. Overall, I-POMDPs with frame-action
anonymity and context-specific independence significantly
augment the combination of Bayesian and temporal AGGs
by utilizing the structures in a partially observable stochastic
game setting with agent types.

Varakantham et al. (2014) building on previous
work (Varakantham et al. 2012) recently introduced a de-
centralized MDP that models a simple form of anonymous
interactions: rewards and transition probabilities specific to a
state-action pair are affected by the number of other agents
regardless of their identities. The interaction influence is not
further detailed into which actions of other agents are rele-
vant (as in action anonymity) and thus configurations and
hypergraphs are not used. Furthermore, agent types are not
considered. Finally, the interaction hypergraphs in networked-
distributed POMDPs (Nair et al. 2005) model complete re-
ward independence between agents – analogous to graphical
games – which differs from the hypergraphs in this paper (and
action graphs) that model independence in reward (and tran-
sition, observation probabilities) along a different dimension:
actions.

Background
Interactive POMDPs allow a self-interested agent to plan in-
dividually in a partially observable stochastic environment in
the presence of other agents of uncertain types. We briefly re-
view the I-POMDP framework and refer the reader to (Gmy-
trasiewicz and Doshi 2005) for further details.

A finitely-nested interactive I-POMDP for an agent (say
agent 0) of strategy level l operating in a setting inhabited
by one of more other interacting agents is defined as the
following tuple:

I-POMDP0,l = 〈IS0,l, A, T0,Ω0, O0, R0, OC0〉
• IS0,l denotes the set of interactive states defined as,
IS0,l = S ×

∏N
j=1Mj,l−1, where Mj,l−1 = {Θj,l−1 ∪

SMj}, for l ≥ 1, and ISi,0 = S, where S is the set of
physical states. Θj,l−1 is the set of computable, intentional
models ascribed to agent j: θj,l−1 = 〈bj,l−1, θ̂j〉, where
bj,l−1 is agent j’s level l − 1 belief, bj,l−1 ∈ 4(ISj,l−1),

and θ̂j
4
= 〈A, Tj ,Ωj , Oj , Rj , OCj〉, is j’s frame. Here, j

is assumed to be Bayes-rational. At level 0, bj,0 ∈ 4(S)
and a level-0 intentional model reduces to a POMDP. SMj

is the set of subintentional models of j, an example is a
finite state automaton;

• A = A0 ×A1 × . . .×AN is the set of joint actions of all
agents;

• T0 : S × A0 ×
∏N
j=1Aj × S → [0, 1] is the transition

function;
• Ω0 is the set of agent 0’s observations;
• O0 : S ×A0 ×

∏N
j=1Aj ×Ω0 → [0, 1] is the observation

function;



• R0 : S ×A0 ×
∏N
j=1Aj → R is the reward function; and

• OC0 is the optimality criterion, which is identical to that
for POMDPs. In this paper, we consider a finite-horizon
optimality criteria.
Besides the physical state space, the I-POMDP’s interac-

tive state space contains all possible models of other agents.
In its belief update, an agent has to update its belief about the
other agents’ models based on an estimation about the other
agents’ observations and how they update their models. As
the number of agents sharing the environment grows, the size
of the joint action and joint model spaces increases exponen-
tially. Therefore, the memory requirement for representing
the transition, observation and reward functions grows ex-
ponentially as well as the complexity of performing belief
update over the interactive states. In the context of N agents,
interactive bounded policy iteration (Sonu and Doshi 2014)
generates good quality solutions for an agent interacting with
4 other agents (total of 5 agents) absent any problem structure.
To the best of our knowledge, this result illustrates the best
scalability so far to N > 2 agents.

Many-Agent I-POMDP
To facilitate understanding and experimentation, we intro-
duce a pragmatic running example that also forms our evalu-
ation domain.

Figure 1: Protestors of different frames (colors) and police troops
at two of three sites in the policing protest domain. The state space
of police decision making is factored into the protest intensity levels
at the sites.

Example 1 (Policing Protest) Consider a policing scenario
where police (agent 0) must maintain order in 3 geograph-
ically distributed and designated protest sites (labeled 0, 1,
and 2) as shown in Fig. 1. A population of N agents are
protesting at these sites. Police may dispatch one or two
riot-control troops to either the same or different locations.
Protests with differing intensities, low, medium and high (dis-
ruptive), occur at each of the three sites. The goal of the
police is to deescalate protests to the low intensity at each
site. Protest intensity at any site is influenced by the number
of protestors and the number of police troops at that location.
In the absence of adequate policing, we presume that the
protest intensity escalates. On the other hand, two police
troops at a location are adequate for de-escalating protests.

Factored Beliefs and Update
As we mentioned previously, the subject agent in an I-
POMDP maintains a belief over the physical state and joint
models of other agents, b0,l ∈ ∆(S ×

∏N
j=1Mj,l−1), where

∆(·) is the space of probability distributions. For settings such
as Example 1 where N is large, the size of the interactive
state space is exponentially larger, |IS0,l| = |S||Mj,l−1|N ,
and the belief representation unwieldy. However, the repre-
sentation becomes manageable for large N if the belief is
factored:
b0,l(s,m1,l−1,m2,l−1, . . . ,mN,l−1) = Pr(s) Pr(m1,l−1|s)
× Pr(m2,l−1|s)× . . .× Pr(mN,l−1|s) (1)

This factorization assumes conditional independence of mod-
els of different agents given the physical state. Consequently,
beliefs that correlate agents may not be directly represented
although correlation could be alternately supported by intro-
ducing models with a correlating device.

The memory consumed in storing a factored belief is
O(|S| + N |S||M∗j |), where |M∗j | is the size of the largest
model space among all other agents. This is linear in the
number of agents, which is much less than the exponentially
growing memory required to represent the belief as a joint
distribution over the interactive state space, O(|S||M∗j |N ).

Given agent 0’s belief at time t, bt0,l, its action at0 and the
subsequent observation it makes, ωt+1

0 , the updated belief at
time step t+ 1, bt+1

0,l , may be obtained as:

Pr(st+1,mt+1
1,l−1, . . . ,m

t+1
N,l−1|b

t
0,l, a

t
0, ω

t+1
0 ) = Pr(st+1|

bt0,l, a
t
0, ω

t+1
0 ) Pr(mt+1

1,l−1|s
t+1,mt+1

2,l−1, . . . ,m
t+1
N,l−1,

bt0,l, a
t
0, ω

t+1
0 )× . . .× Pr(mt+1

N,l−1|s
t+1, bt0,l, a

t
0, ω

t+1
0 )

(2)
Each factor in the product of Eq. 2 may be obtained as

follows. The update over the physical state is:
Pr(st+1|bt0,l, at0, ωt+1

0 ) ∝ Pr(st+1, ωt+1
0 |bt0,l, at0)

=
∑
st

bt0,l(s
t)
∑
mt
−0

bt0,l(m
t
1,l−1|st)× . . .× bt0,l(mt

N,l−1|st)

×
∑
at−0

Pr(at1|mt
1,l−1)× . . .× Pr(atN |mt

N,l−1)

×Ot+1
0 (st+1, 〈at0,at−0〉, ωt+1

0 ) T0(st, 〈at0,at−0〉, st+1)
(3)

and the update over the model of each other agent, j =
1 . . . N , conditioned on the state at t+ 1 is:
Pr(mt+1

j,l−1|s
t+1,mt+1

j+1,l−1, . . . ,m
t+1
N,l−1, b

t
0,l, a

t
0, ω

t+1
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∑
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j

Oj(s
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j ) Pr(mt+1
j |m

t
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t
j , ω

t+1
j )

(4)



Derivations of Eqs. 3 and 4 are straightforward and not given
here due to lack of space. In particular, note that models
of agents other than j at t + 1 do not impact j’s model
update in the absence of correlated behavior. Thus, under
the assumption of a factored prior as in Eq. 1 and absence
of agent correlations, the I-POMDP belief update may be
decomposed into an update of the physical state and update
of the models of N agents conditioned on the state.

Frame-Action Anonymity
As noted by Jiang et al. (2011), many noncooperative and co-
operative problems exhibit the structure that rewards depend
on the number of agents acting in particular ways rather than
which agent is performing the act. This is particularly evident
in Example 1 where the outcome of policing largely depends
on the number of protestors that are peaceful and the number
that are disruptive. Building on this, we additionally observe
that the transient state of the protests and observations of the
police at a site are also largely influenced by the number of
peaceful and disruptive protestors moving from one location
to another. This is noted in the example below:
Example 2 (Frame-action anonymity of protestors) The
transient state of protests reflecting the intensity of protests
at each site depends on the previous intensity at a site and
the number of peaceful and disruptive protestors entering
the site. Police (noisily) observes the intensity of protest at
each site which is again largely determined by the number
of peaceful and disruptive protestors at a site. Finally, the
outcome of policing at a site is contingent on whether the
protest is largely peaceful or disruptive. Consequently, the
identity of the individual protestors beyond their frame and
action is disregarded.
Here, peaceful and disruptive are different frames of others
in agent 0’s I-POMDP, and the above definition may be
extended to any number of frames. Frame-action anonymity
is an important attribute of the above domain. We formally
define it in the context of agent 0’s transition, observation
and reward functions next:
Definition 1 (Frame-action anonymity) Let ap−0 be a joint
action of all peaceful protestors and ad−0 be a joint action of
all disruptive ones. Let ȧp−0 and ȧd−0 be permutations of the
two joint action profiles, respectively. An I-POMDP models
frame-action anonymity iff for any a0, s, s′, ap−0 and ad−0:
T0(s, a0,a

p
−0,a

d
−0, s

′) = T0(s, a0, ȧ
p
−0, ȧ

d
−0, s

′),
O0(s′, a0,a

p
−0,a

d
−0, ω0) = O0(s′, a0, ȧ

p
−0, ȧ

d
−0, ω0), and

R0(s, a0,a
p
−0,a

d
−0) = R0(s, a0, ȧ

p
−0, ȧ

d
−0) ∀ ȧp−0, ȧd−0.

Recall the definition of an action configuration, C, as the
vector of action counts of an agent population. A permu-
tation of joint actions of others, say ȧp−0, assigns different
actions to individual agents. Despite this, the fact that the
transition and observation probabilities, and the reward re-
mains unchanged indicates that the identity of the agent per-
forming the action is irrelevant. Importantly, the configura-
tion of the joint action and its permutation stays the same:
C(ap−0) = C(ȧp−0). This combined with Def. 1 allows re-
defining the transition, observation and reward functions
to be over configurations as: T0(s, a0, C(ap−0), C(ad−0), s′),

O0(s′, a0, C(ap−0), C(ad−0), o) and R0(s, a0, C(ap−0), C(ad−0
)).

Let Ap1, . . . , Apn be overlapping sets of actions of n peace-
ful protestors, and Ap−0 is the Cartesian product of these sets.
Let C(Ap−0) be the set of all action configurations for Ap−0.
Observe that multiple joint actions from Ap−0 may result in
a single configuration; these joint actions are configuration
equivalent. Consequently, the equivalence partitions the joint
action set Ap−0 into |C(Ap−0)| classes. Furthermore, when
other agents of same frame have overlapping sets of actions,
the number of configurations could be much smaller than
the number of joint actions. Therefore, definitions of the
transition, observation and reward functions involving con-
figurations could be more compact.

Frame-Action Hypergraphs
In addition to frame-action anonymity, domains involving
agent populations often exhibit context-specific indepen-
dences. This is a broad category and includes the context-
specific independence found in conditional probability tables
of Bayesian networks (Boutilier et al. 1996) and in action-
graph games. It offers significant additional structure for
computational tractability. We begin by illustrating this in the
context of Example 1.
Example 3 (Context-specific independence in policing)
At a low intensity protest site, reward for the police on
passive policing is independent of the movement of the
protestors to other sites. The transient intensity of the protest
at a site given the level of policing at the site (context) is
independent of the movement of protestors between other
sites.

The context-specific independence above builds on the
similar independence in action graphs in two ways: (i) We
model such partial independence in the transitions of factored
states and in the observation function as well, in addition to
the reward function. (ii) We allow the context-specific in-
dependence to be mediated by the frames of other agents
in addition to their actions. For example, the rewards re-
ceived from policing a site is independent of the number of
protestors at another site, instead the rewards are influenced
by the number of peaceful and disruptive protestors present
at that site.

The latter difference generalizes the action graphs into
frame-action hypergraphs, and specifically 3-uniform hyper-
graphs where each edge is a set of 3 nodes. We formally
define it below:
Definition 2 (Frame-action hypergraph) A frame-action
hypergraph for agent 0 is a 3-uniform hypergraph G =

〈Ψ, A−0, Θ̂−0, E〉, where Ψ is a set of nodes that represent
the context, A−0 is a set of action nodes with each node rep-
resenting an action that any other agent may take; Θ̂−0 is a
set of frame nodes, each node representing a frame ascribed
to an agent, and E is a 3-uniform hyperedge containing one
node from each set Ψ, A−0, and Θ̂−0, respectively.

Both context and action nodes differ based on whether the
hypergraph applies to the transition, observation or reward
functions:



(a) (b)

Figure 2: Levi (incidence) graph representation of a generic frame-
action hypergraph for (a) the transition function, and (b) the reward
function. The shaded nodes represent edges in the hypergraph. Each
edge has the context, ψ, denoted in bold, agent’s action, a, and its
frame, θ̂, incident on it. For example, the reward for a state and
agent 0’s action, 〈s, a0〉1 is affected by others’ actions a1j and a2j
performed by any other agent of frame θ̂1j only.

• For the transition function, the context is the set of all
pairs of states between which a transition may occur and
each action of agent 0, Ψ = S × A0 × S, and the ac-
tion nodes includes actions of all other agents, A−0 =⋃N
j=1Aj . Neighbors of a context node ψ = 〈s, a0, s′〉 are

all the frame-action pairs that affect the probability of the
transition. An edge (〈 s, a0, s′〉, a−0, θ̂) indicates that the
probability of transitioning from s to s′ on performing a0 is
affected (in part) by the other agents of frame θ̂ performing
the particular action in A−0.

• The context for agent 0’s observation function is the state-
action-observation triplet, Ψ = S × A0 × Ω0, and the
action nodes are identical to those in the transition func-
tion. Neighbors of a context node, 〈s, a0, ω0〉, are all those
frame-action pairs that affect the observation probability.
Specifically, an edge (〈s, a0, ω0〉, a−0, θ̂) indicates that the
probability of observing ω0 from state s on performing a0
is affected (in part) by the other agents performing action,
a−0, who possess frame θ̂.
• For agent 0’s reward function, the context is the set of

pairs of state and action of agent 0, Ψ = S ×A0, and the
action nodes the same as those in transition and observation
functions. An edge (〈 s, a0〉, a−0, θ̂−0) in this hypergraph
indicates that the reward for agent 0 on performing action
a0 at state s is affected (in part) by the agents of frame θ̂−0
who perform action in A−0.

We illustrate a general frame-action hypergraph for context-
specific independence in a transition function and a reward
function as bipartite Levi graphs in Figs. 2(a) and (b), re-
spectively. We point out that the hypergraph for the reward
function comes closest in semantics to the graph in action
graph games (Jiang, Leyton-Brown, and Bhat 2011) although
the former adds the state to the context and frames. Hyper-
graphs for the transition and observation functions differ
substantially in semantics and form from action graphs.

To use these hypergraphs in our algorithms, we first define
the general frame-action neighborhood of a context node.

Definition 3 (Frame-action neighborhood) The frame-
action neighborhood of a context node ψ ∈ Ψ, ν(ψ),
given a frame-action hypergraph G is defined as a subset
of A × Θ̂ such that ν(ψ) = {(a−0, θ̂)|a−0 ∈ A−0, θ̂ ∈
Θ̂, (ψ, a−0, θ̂) ∈ E}.
As an example, the frame-action neighborhood of a state-
action pair, 〈s, a0〉 in a hypergraph for the reward function
is the set of all action and frame nodes incident on each
hyperedge anchored by the node 〈s, a0〉.

We move toward integrating frame-action anonymity in-
troduced in the previous subsection with the context-specific
independence as modeled above by introducing frame-action
configurations.
Definition 4 (Frame-action configuration) A configura-
tion over the frame-action neighborhood of a context node,
ψ, given a frame-action hypergraph is a vector,

Cν(ψ) 4= 〈 C(Aθ̂1−0), C(Aθ̂2−0), . . . , C(A
θ̂|Θ̂|
−0 ), C(φ) 〉

where each a included inAθ̂−0 is an action in ν(ψ) with frame
θ̂, and C(Aθ̂−0) is a configuration over actions by agents
other than 0 whose frame is θ̂. All agents with frames other
than those in the frame-action neighborhood are assumed to
perform a dummy action, φ.

Definition 4 allows further inroads into compacting
the transition, observation and rewards functions of the
I-POMDP using context-specific independence. Specifi-
cally, we may redefine these functions one more time
to limit the configurations only over the frame-action
neighborhood of the context as, T0(s, a0, Cν(s,a0,s

′), s′),
O0(s′, a0, Cν(s

′,a0,ω0), ω0) and R0(s, a0, Cν(s,a0)). 2

Revised Framework
To benefit from structures of anonymity and context-specific
independence, we redefine I-POMDP for agent 0 as:

I-POMDP0,l = 〈IS0,l, A,Ω0, T0,O0,R0, OC0〉
where:
• IS0,l, A, Ω0 and OC0 remain the same as before. The

physical states are factored as, S =
∏K
k=1Xk.

• T0 is the transition function, T0(x, a0, Cν(x,a0,x
′), x′)

where Cν(x,a0,x
′) is the configuration over the frame-action

neighborhood of context 〈x, a0, x′〉 obtained from a hy-
pergraph that holds for the transition function. This transi-
tion function is significantly more compact than the orig-
inal that occupies space O(|X|2|A0||A−0|N ) compared
to the O(|X|2|A0|( N

|ν∗| )
|ν∗|) of T0, where the fraction is

the complexity of
(
N+|ν|∗+1
|ν∗|+1

)
, |ν∗| is the maximum cardi-

nality of the neighborhood of any context, and ( N
|ν∗| )

|ν∗|

� |A−0|N . The value
(
N+|ν|∗
|ν|∗

)
is obtained from combi-

natorial compositions and represents the number of ways
|ν∗|+1 non-negative values can be weakly composed such
that their sum is N .
2Context in our transition function is 〈s, a0, s′〉 compared with

the context of just 〈s, a0〉 in Varakantham et al’s (2014) transitions.



• The redefined observation function is
O0(x′, a0, Cν(x

′,a0,ω0), ω0) where Cν(x′,a0,ω0) is the
configuration over the frame-action neighborhood of
context 〈x′, a0, ω0〉 obtained from a hypergraph that holds
for the observation function. Analogously to the transition
function, the original observation function consumes space
O(|X||Ω||A0||A−0|N ), which is much larger than space
O(|X||Ω||A0|( N

|ν∗| )
|ν∗|) occupied by this redefinition.

• R0 is the reward function defined as R0(x, a0, Cν(x,a0))
where Cν(x,a0) is defined analogously to the configurations
in the previous parameters. The reward for a state and ac-
tions may simply be the sum of rewards for the state factors
and actions (or a more general function if needed). As with
the transition and observation functions, this reward func-
tion is compact occupying spaceO(|X||A0|( N

|ν∗| )
|ν∗|) that

is much less than O(|X||A0||A−0|N ) of the original.

Belief Update For this extended I-POMDP, we compute
the updated belief over a physical state as a product of its
factors using Eq. 5 and belief update over the models of each
other agent using Eq 6 as shown below:

Pr(st+1|bt0,l, at0, ωt+1
0 ) ∝

{∑
st

bt0,l(s
t)

K∏
k=1

∑
Cν(x

t+1
k

,at0,ω
t+1
0 )

Pr(Cν(x
t+1
k ,at0,ω

t+1
0 )|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))

O0(xt+1
k , at0, Cν(x

t+1
k ,at0,ω

t+1
0 ), ωt+1

0 )

}
×
{∑

st

bt0,l(s
t)

K∏
k=1∑

Cν(xt
k
,at0,x

t+1
k

)

Pr(Cν(x
t
k,a

t
0,x

t+1
k )|bt0,l(M1,l−1|st), . . . ,

bt0,l(MN,l−1|st))T0(xtk, Cν(x
t
k,a

t
0,x

t+1
k ), xt+1

k )

}
(5)

Here, the term, Pr(Cν(x
t+1
k ,at0,ω

t+1
0 )|bt0,l(M1,l−1|st), . . . ,

bt0,l(MN,l−1|st)), is the probability of a frame-action con-
figuration (see Def. 4) that is context specific to the triplet,
〈xt+1, a0, ω

t+1〉. It is computed from the factored beliefs
over the models of all others. We discuss this computation
in the next section. The second configuration term has an
analogous meaning and is computed similarly.

The factored belief update over the models of each other
agent, j = 1 . . . N , conditioned on the state at t+ 1 becomes:

Pr(mt+1
j,l−1|s

t+1,mt+1
−j,l−1, b

t
0,l, a

t
0) =

∑
st

bt0(st)
∑
mtj

bt0(mt
j

|st)
∑
atj

Pr(atj |mt
j)

∑
Cν(xt+1,at

j
,ωj)

Pr(Cν(x
t+1,atj ,ωj)|

bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))
∑
ot+1
j

Oj(xt+1,

atj , Cν(x
t+1,atj ,ωj), ωt+1

j ) Pr(mt+1
j |m

t
j , a

t
j , ω

t+1
j ) (6)

Proofs for obtaining Eqs. 5 and 6 are omitted due to space
restrictions. Notice that the distributions over configurations

are computed using distributions over other agents’ models.
Therefore, we must maintain and update conditional beliefs
over other agents’ models. Hence, the problem cannot be
reduced to a POMDP by including configurations with phys-
ical states.

Value Function The finite-horizon value function of the
many-agent I-POMDP continues to be the sum of agent 0’s
immediate reward and the discounted expected reward over
the future:

V h(mt
0,l) = max

at0∈A0

ER0(bt0,l, a
t
0)+

γ
∑
ωt+1

0

Pr(ωt+1
0 |bt0,l, at0)V h−1(mt+1

0,l ) (7)

where ER0(bt0,l, a
t
0) is the expected immediate reward of

agent 0 and γ is the discount factor. In the context of the re-
defined reward function of the many-agent I-POMDP frame-
work in this section, the expected immediate reward is ob-
tained as:

ER0(b
t
0,l, a

t
0) =

∑
st

bt0,l(s
t)

( K∑
k=1

∑
Cν(xt

k
,at0)

Pr(Cν(x
t
k,a

t
0)|

bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))R0(x
t
k, a

t
0, Cν(x

t
k,a

t
0)

)
(8)

where the outermost sum is over all the state
factors, st = 〈xt1, . . . , xtK〉, and the term,
Pr(Cν(xtk,at0)|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) de-
notes the probability of a frame-action configuration that is
context-specific to the factor, xtk. Importantly, Proposition 1
establishes that the Bellman equation above is exact. The
proof is given in the extended version of this paper (Sonu,
Chen, and Doshi 2015).

Proposition 1 (Optimality) The dynamic programming in
Eq. 7 provides an exact computation of the value function for
the many-agent I-POMDP.

Algorithms
We present an algorithm that computes the distribution over
frame-action configurations and outline our simple method
for solving the many-agent I-POMDP defined previously.

Distribution Over Frame-Action Configurations
Algorithm 1 generalizes an algorithm by Jiang and
Lleyton-Brown (2011) for computing configurations
over actions given mixed strategies of other agents to
include frames and conditional beliefs over models of
other agents. It computes the probability distribution
of configurations over the frame-action neighborhood
of an action given the belief over the agents’ models:
Pr(Cν(x,a0,ω0)|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) and
Pr(Cν(x,a0,x

′)|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st)) in
Eq. 5, Pr(Cν(x,ωj)|bt0,l(M1,l−1|st), . . . , bt0,l(MN,l−1|st))
in Eq. 6, and Pr(Cν(x,a0)|bt0,l(M1,l−1|st), . . . ,
bt0,l(MN,l−1|st)) in Eq. 8.



Algorithm 1 Computing Pr(Cν(·)|b0,l(M1,l−1|s),
. . . , b0,l(MN,l−1|s))
Input: ν(·), 〈b0,l(M1,l−1|s), . . . , b0,l(MN,l−1|s)〉
Output: A trie Pn representing distribution over the frame-
action configurations over ν(·)

1: Initialize c0 ← (0, . . . , 0), one value for each frame-
action pair in ν(·) and for φ. Insert into empty trie P0

2: Initialize P0[c0]← 1
3: for j ← 1 to N do
4: Initialize Pj to be an empty trie
5: for all cj−1 from Pj−1 do
6: for all mj,l−1 ∈Mj,l−1 do
7: for all aj ∈ Aj such that Pr(aj |mj,l−1) > 0

do
8: cj ← cj−1
9: if 〈aj , θ̂j〉 ∈ ν(·) then

10: cj [aj ]← cj [aj ] + 1
11: else
12: cj [φ]← cj [φ] + 1
13: if Pj [cj ] does not exist then
14: Initialize Pj [cj ]← 0
15: Pj [cj ] ← Pj [cj ] + Pj−1[cj−1] ×

Pr(aj |mj,l−1)× b0,l(mj,l−1|s)
16: return Pn

Algorithm 1 adds the actions of each agent one at a time.
A Trie data structure enables efficient insertion and access of
the configurations. We begin by initializing the configuration
space for 0 agents (P0) to contain one tuple of integers (c0)
with |ν|+ 1 0s and assign its probability to be 1 (lines 1-2).
Using the configurations of the previous step, we construct
the configurations over the actions performed by j agents by
adding 1 to a relevant element depending on j’s action and
frame (lines 3-15). If an action aj performed by j with frame
m̂j is in the frame-action neighborhood ν(·), then we incre-
ment its corresponding count by 1. Otherwise, it is considered
as a dummy action and the count of φ is incremented (lines
9-12). Similarly, we update the probability of a configuration
using the probability of aj and that of the base configuration
cj−1 (line 15). This algorithm is invoked multiple times for
different values of ν(·) as needed in the belief update and
value function computation.

We utilize a simple method for solving the many-agent
I-POMDP given an initial belief: each other agent is modeled
using a finite-state controller as part of the interactive state
space. A reachability tree of beliefs as nodes is projected for
as many steps as the horizon (using Eqs. 5 and 6) and value
iteration (Eq. 7) is performed on the tree. In order to mitigate
the curse of history due to the branching factor that equals
the number of agent 0’s actions and observations, we utilize
the well-known technique of sampling observations from the
propagated belief and obtain a sampled tree on which value
iteration is run to get a policy. Action for any observation that
does not appear in the sample is that which maximizes the
immediate expected reward.

Computational Savings
The complexity of accessing an element in a ternary search
trie is Θ(ν). The maximum number of configurations
encountered at any iteration is upper bounded by total
number of configurations for N agents, i.e. O(( N

|ν∗| )
|ν∗|).

The complexity of Algorithm 1 is polynomial in N ,
O(N |M∗j ||A∗j ||ν∗|( N

|ν∗| )
|ν∗|) where M∗j and A∗j are largest

sets of models and actions for any agent.
For the traditional I-POMDP belief update, the com-

plexity of computing Eq. 3 is O(|S||M∗j |N |A∗j |N ) and that
for computing Eq. 4 is O(|S||M∗j |N |A∗j |N |Ω∗j |) where ∗
denotes the maximum cardinality of a set for any agent.
For a factored representation, belief update operator in-
vokes Eq. 3 for each value of all state factors and it in-
vokes Eq. 4 for each model of each agent j and for all
values of updated states. Hence the total complexity of be-
lief update is O(N |M∗j ||S|2|M∗j |N |A∗j |N |Ω∗j |). The com-
plexity of computing updated belief over state factor xt+1

using Eq. 5 is O(|S|NK|M∗j ||A∗j ||ν∗|( N
|ν∗| )

|ν∗|) (recall
the complexity of Algorithm 1). Similarly, the complex-
ity of computing updated model probability using Eq. 6 is
O((|S|N |M∗j ||A∗j ||ν∗|+ |Ω∗j |)( N

|ν∗| )
|ν∗|). These complexity

terms are polynomial in N for small values of |ν∗| as op-
posed to exponential in N as in Eqs. 3 and 4. The overall
complexity of belief update is also polynomial in N .

Complexity of computing the immediate expected reward
in the absence of problem structure isO(|S|K|M∗j |N |A∗j |N ).
On the other hand, the complexity of computing expected
reward using Eq. 8 is O(|S|KN |M∗j ||A∗j ||ν∗|( N

|ν∗| )
|ν∗|),

which is again polynomial in N for low values of |ν∗|. These
complexities are discussed in greater detail in (Sonu, Chen,
and Doshi 2015).

Experiments
We implemented a simple and systematic I-POMDP solv-
ing technique that computes reachable beliefs over the finite
horizon and then calculates the optimal value at the root
node using the Bellman equation for the Many-Agents I-
POMDP framework. We evaluate its performance in the
aforementioned non-cooperative policing protest scenario
(|S| = 27, |A0| = 9, |Aj | = 4, |Oj | = 8, |Oi| = 8). We
model the other agents as POMDPs and solve them using
bounded policy iteration (Poupart and Boutilier 2003), repre-
senting the models as finite state controllers. This representa-
tion enables us to have a compact model space. We set the
maximum planning horizon to 4 throughout the experiments.
The frame-action hypergraphs are encoded into the transi-
tion, observation and reward functions of the Many-Agent
I-POMDP (Fig. 3). All computations are carried out on a
RHEL platform with 2.80 GHz processor and 4 GB memory.

To evaluate the computational gain obtained by exploiting
problem structures, we implemented a solution algorithm
similar to the one described earlier that does not exploit
any problem structure. A comparison of the Many-Agent
I-POMDP with the original I-POMDP yields two important
results: (i) When there are few other agents, the Many-Agent
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Figure 3: A compact Levi graph representation of policing protest
as a frame-action hypergraph for (a) the transition function, and (b)
the reward function at site 0. Variables x and x′ represent the start
and end intensities of the protest at site 0 and the action shows the
location of the two police troops. As two police troops are sufficient
to de-escalate any protest, the contexts in which both troops are
at site 0 are independent of the actions of other agents. All other
contexts depend on the agents choosing to protest at site 0 only.

I-POMDP provides exactly the same solution as the original
I-POMDP but with reduced running times by exploiting
the problem structure. (ii) Many-Agent I-POMDP scales to
larger agent populations, from 100 to 1,000+, and the new
framework delivers promising results within reasonable time.

Protestors H I-POMDP Many-Agent Exp. Value

2 2 1 s 0.55 s 77.42
3 19 s 17 s 222.42

3 2 3 s 0.56 s 77.34
3 38 s 17 s 222.32

4 2 39 s 0.57 s 76.96
3 223 s 17 s 221.87

5 2 603 s 0.60 s 76.88
3 2,480 s 18 s 221.77

Table 1: Comparison between traditional I-POMDP and Many-
Agent I-POMDP both following same solution approach of comput-
ing a reachability tree and performing backup.

In the first setting, we consider up to 5 protestors with
different frames. As shown in Table 1, both the traditional and
the Many-Agent I-POMDP produce policies with the same
expected value. However, as the Many-Agent I-POMDP
losslessly projects joint actions to configurations, it requires
much less running time.

Our second setting considers a large number of protestors,
for which the traditional I-POMDP does not scale. Instead,
we first scale up the exact solution method using Many-Agent
I-POMDP to deal with a few hundreds of other agents. Al-
though the exploitation of the problem structures reduces the
curse of dimensionality that plagues I-POMDPs, the curse
of history is unaffected by such approaches. To mitigate the
curse of history we use the well-known observation sampling
method (Doshi and Gmytrasiewicz 2009), which allows us to
scale to over 1,000 agents in a reasonable time of 4.5 hours
as we show in Fig. 4(a). This increases to about 7 hours if
we extend the horizon to 4 as shown in Fig. 4(b).
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Figure 4: (a) The computational gain obtained by observation sam-
pling. (b) Performance of Many-Agent I-POMDP with observation
sampling for horizon 3 and 4. The time required to solve a problem
is polynomial in the number of agents.

Conclusion
The key contribution of the Many-Agent I-POMDP is its scal-
ability beyond 1,000 agents by exploiting problem structures.
We formalize widely existing problem structures – frame-
action anonymity and context-specific independence – and
encode it as frame-action hypergraphs. Other real-world ex-
amples exhibiting such problem structure are found in eco-
nomics where the value of an asset depends on the number of
agents vying to acquire it and their financial standing (frame),
in real estate where the value of a property depends on its
demand, the valuations of neighboring properties as well
as the economic status of the neighbors because an upscale
neighborhood is desirable. Compared to the previous best
approach (Sonu and Doshi 2014), which scales to an exten-
sion of the simple tiger problem involving 5 agents only,
the presented framework is far more scalable in terms of
number of agents. Our future work includes exploring other
types of problem structures and developing approximation
algorithms for this I-POMDP. An integration with existing
multiagent simulation platforms to illustrate the behavior of
agent populations may be interesting.
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