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ABSTRACT 

Prostate cancer is a complex, progressive, bone-tropic disease, which is usually associated with skeletal issues, 
poor mobility and a fatal outcome when it reaches the metastatic phase. Soy isoflavones, steroid-like compounds 
from soy-based food/dietary supplements, have been found to decrease the risk of prostate cancer in frequent 
consumers. Herein, we present a systematization of the data on soy isoflavone effects at different stages of meta-
static prostate cancer progression, with a particular interest in the context of bone-related molecular events. Spe-
cifically, soy isoflavones have been determined to downregulate the prostate cancer cell androgen receptors, re-
verse the epithelial to mesenchymal transition of these cells, decrease the expressions of prostate-specific anti-
gen, matrix metalloproteinase and serine proteinase, and reduce the superficial membrane fluidity in prostate 
cancer cells. In addition, soy isoflavones suppress the angiogenesis that follows prostate cancer growth, obstruct 
prostate cancer cells adhesion to the vascular endothelium and their extravasation in the area of future bone le-
sions, improve the general bone morphofunctional status, have a beneficial effect on prostate cancer metastasis-
caused osteolytic/osteoblastic lesions and possibly affect the pre-metastatic niche formation. The observed, mul-
tilevel antimetastatic properties of soy isoflavones imply that they should be considered as promising compo-
nents of combined therapeutic approaches to advanced prostate cancer. 
 
Keywords: prostate cancer, metastasis, bones, soy isoflavones 
 
 
 

INTRODUCTION 

Prostate cancer is the most common can-
cer in men worldwide, manifesting consider-
able racial, ethnic, geographic and socioeco-
nomic status-related differences in its inci-

dence and mortality (Rebbeck, 2017; Pernar 
et al., 2018; Kimura and Egawa, 2018). The 
highest age-adjusted incidence rates were 
observed in developed countries (the Afri-
can-American male population in the United 
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States is the most vulnerable in this respect), 
while the lowest prostate cancer incidence is 
characteristic of Asian men living in their 
native countries (Rebbeck, 2017; Pernar et 
al., 2018). On the other hand, Afro-
Caribbean and Sub-Saharan African popula-
tions have the highest prostate cancer mortal-
ity rates, strongly correlated with limited ac-
cess to medical care, i.e. prostate-specific an-
tigen (PSA)/ultrasound screening and the 
possibility of early detection of the disease, 
or to adequate therapy (Rebbeck, 2017; Per-
nar et al., 2018). Predominance of an andro-
gen-independent cell phenotype in the pros-
tate tumor is one of the crucial moments in 
the malignant disease progression and brings 
bad news for the patients (Tang and Porter, 
1997; Arnold and Isaacs, 2002). In parallel, 
‘bone tropism’ or the preference of prostate 
cancer cells for bone invasion and coloniza-
tion, resulting from a sequential series of tar-
getable molecular events, underlies the de-
creased quality of life, skeletal pain/compli-
cations and mortality of these cancer patients 
(Rucci and Angelucci, 2014; Ziaee et al., 
2015). The metastasizing of prostate cancer 
cells to bones is a microenvironment-
adjusted process, considering the cancer 
cell–bone tissue cross-talk, and involves nu-
merous signaling pathways (Jin et al., 2011; 
Ziaee et al., 2015). The poor prognosis of a 
prostate cancer in its metastatic stage sug-
gests the need for improving the available 
diagnostic methods as well as for finding in-
novative approaches to establishing a safe 
and promising therapeutic strategy. The ex-
isting treatment protocols and guidelines re-
garding prostate cancer highlight a number 
of factors that should be considered during 
therapy, such as: existence of concrete symp-
toms, serum androgen and PSA levels, type 
of metastasis if present (bone/visceral), 
treatment history, performance status, side 
effects of the therapy, etc. (Crawford et al., 
2015). In line with this, androgen deprivation 
therapy (ADT) is the treatment of choice and 
has a high response rate in the early stages of 
the disease, while the options available for 
treating metastatic castration-resistant pros-

tate cancer (with still activated but deviant 
androgen receptor (AR) signaling) may in-
clude AR-targeted therapy (abiraterone, en-
zalutamide), chemotherapy (docetaxel and 
cabazitaxel), immunotherapy (sipuleucel-T), 
bisphosphonates or radionuclides (radium-
223) (Grossmann et al., 2001; Nuhn et al., 
2019). Palliative care for patients suffering 
from metastatic prostate cancer is a challeng-
ing task that requires a multimodal therapeu-
tic approach (Das and Banerjee, 2017). 

In recent decades, interest in the plant-
derived compounds relevant for cancer pre-
vention and therapy has increased substan-
tially. Soy isoflavones are steroid-like (the 
chemical features of these compounds have 
been more thoroughly described in our pre-
vious works – Ajdžanović et al., 2012; 2014; 
2018), non-nutrient components of soy-
based food and therapeutic dietary supple-
ments whose application is inter alia associ-
ated with improved bone health in both nor-
mal and osteoporotic male rodents (Chin and 
Ima-Nirwana, 2013) as well as with low risk 
of prostate cancer, especially in frequent 
consumers such as Asian-Pacific men (Mes-
sina, 2010; Ajdžanović et al., 2014; 
Mahmoud et al., 2014; Sak, 2017; Xiao et 
al., 2018). There is now a growing body of 
evidence on the exact mechanisms by which 
these compounds of natural origin may pre-
vent the development or progression of pros-
tate cancer (Mahmoud et al., 2014). It would 
be too ambitious to compare the specificity 
and therapeutic potential of soy isoflavones 
with those of the newly developed pharma-
cotherapeutics; however, since isoflavones 
have been well recognized as bone-
modifying agents (Messina, 2010; Messina 
et al., 2010; Filipović et al., 2010, 2018; 
Chin and Ima-Nirwana, 2013; Zheng et al., 
2016), we believe that, in the specific con-
text of prostate cancer bone metastasis for-
mation, the effects of their application de-
serve some attention. Here, we will focus on 
the potential role of soy isoflavones in the 
prevention and treatment of bone metastasis 
in prostate cancer, as very important aspects 
of this cancer management. 
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A BRIEF OVERVIEW OF THE  
MECHANISMS OF BONE  

METASTASIS IN PROSTATE CANCER 

Prostate cancer, like most other solid tu-
mors, shows an intrinsic tendency toward 
metastasizing to distant organs (lungs, liver, 
brain), but it has a pronouncedly high prefer-
ence for metastasizing to the bone (verte-
brae, femur, pelvis, ribs; Yang et al., 1999; 
Jin et al., 2011). This principle of malignant 
disease spreading, with secondary deposits 
formation, is metaphorically presented in the 
‘seed and soil’ model (Paget, 1889), where 
cancer cells or ‘seeds’ metastasize to the 
‘soil’ most appropriate for their growth. Ac-
tually, the bone contains chemotactic factors 
that attract prostate cancer cells and direct 
their movement. Stromal-derived factor-1 
(SDF-1), epidermal growth factor (EGF), in-
sulin-like growth factor (IGF), hepatocyte 
growth factor (HGF), Type I collagen, oste-
onectin and bone sialoprotein have been 
shown to act as chemoattractants for prostate 
cancer cells, predominantly causing them to 
gravitate towards the bone (Jacob et al., 
1999; Taichman et al., 2002; Stewart et al., 
2004; Arya et al., 2006). More broadly, the 
metastasizing of prostate cancer is a multi-
step process that implies angiogenesis at the 
primary site, loss of the cancer cells’ adhe-
sion, followed by their local migration, in-
travasation into the vasculature or lymphat-
ics, transport via circulation, extravasation, 
and homing to distant organs, which is again 
followed by the angiogenesis step (Arya et 
al., 2006). Interestingly, recent findings have 
suggested the existence of an early pre-
metastatic phase, preceding the homing of 
cancer cells to the bone tissue (Gartland et 
al., 2016). This formation of a pre-metastatic 
niche could be described as an adaptation of 
an apartment for the arrival of a new occu-
pant. The discovery of pre-metastatic niches 
confirms the impressive communication be-
tween primary sites and distant tissues, se-
lected for dissemination according to criteria 
that are still unclear. It has become obvious 
that this step is navigated by products pre-
sent in the primary tumor microenvironment, 

the so-called cancer secretome, which is re-
sponsible for the formation of a pre-
metastatic zone in the particular distant or-
gan (Gartland et al., 2016). 

A brief summary of the most important 
mechanisms relevant for prostate cancer me-
tastasis to bone is given below. 
 
The role of androgen receptors (ARs) 

Androgens, realizing their actions 
through ARs, have a crucial role in prostate 
cancer development and progression, most 
likely at all stages of the disease (Cunha et 
al., 2004; Jin et al., 2011; Ziaee et al., 2015). 
The cascade of molecular events implies an-
drogen binding to the AR and translocating 
to the nucleus, where the binding of this 
complex to androgen responsive elements 
occurs, which affects the expression of vari-
ous genes. As a result, proliferation of pros-
tate cancer cells is favored at the expense of 
their apoptosis (Jin et al., 2011). ADT 
(chemical or surgical castration) is the treat-
ment of choice for this malignant disease in 
its early stages. As previously indicated, the 
prostate cancer acquiring a castration-
resistant phenotype is the inevitable next 
stage of the disease, which relies on the fol-
lowing events that take place in the cancer 
cells: upregulation and mutation of ARs with 
irregular downstream gene expression, al-
tered expression and function of AR coacti-
vators, ligand independent AR activation, in-
creased autocrine and paracrine production 
of androgens and elevated expression of in-
terleukin-6 (Adler et al., 1999; Chen et al., 
2000; Debes and Tindall, 2004; Linja et al., 
2004; Dutt and Gao, 2009; Bonkoff and 
Berges, 2010; Jin et al., 2011; Mahmoud et 
al., 2014). 
 
Insight into the epithelial to mesenchymal 
transition (EMT) and adhesiveness of  
prostate cancer cells 

The adhesiveness of prostate cells de-
creases if they ‘move along the way’ of ma-
lignant transformation (Jin et al., 2011; 
Jadaan et al., 2015). Namely, in the process 
of epithelial to mesenchymal transition 
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(EMT), essential for the development of a 
more invasive cancer cell phenotype, the 
static, polarized epithelial cells transform in-
to migratory, spindle-shaped mesenchymal 
cells (Thiery, 2002; Yang and Weinberg, 
2008; Jadaan et al., 2015). The EMT, which 
is specific for higher grades of prostate can-
cer, is accompanied by cadherin protein 
switching, which includes the downregula-
tion of E-cadherin (characteristic of normal 
epithelial cells) and upregulation of N-
cadherin (abundant in mesenchymal cells) 
(Gravdal et al., 2007). At this stage of pros-
tate cancer progression, the expression of β-
catenin also decreases (Jaggi et al., 2005), all 
of which contributes to the loosening of con-
nections between the cells, given the im-
portant role of E-cadherin and β-catenin 
complexes in the maintenance of cell-cell 
adhesions (Jin et al., 2011). In parallel, in-
trinsic overexpression of miRNA-409 and 
downregulation of miRNA-143 and -145 
promote the EMT of prostate cancer cells 
and support the shaping of their metastatic 
phenotype (Peng et al., 2011; Josson et al., 
2014). Of note, somewhat higher expressions 
of E-cadherin and β-catenin have been re-
ported in the metastatic prostate cancer cells 
that have already reached the bone (Saha et 
al., 2008), suggesting that reverse, mesen-
chymal to epithelial transition (MET) is a 
prerequisite for the growth of metastatic cells 
at the site of a secondary bone deposit (Jin et 
al., 2011). Focal adhesions, or more precise-
ly the macromolecular complexes mediating 
the extracellular matrix (ECM)–cell cyto-
skeleton contacts, convert physical vectors 
into chemical signaling, thus affecting the 
cell’s dynamic properties (Bershadsky et al., 
2003; Ajdžanović et al., 2014). Variable ex-
pression of transmembrane integrin proteins, 
regulators of focal adhesions, and the down-
stream signaling molecules they affect, is as-
sociated with decreased adhesion of prostate 
cancer cells and metastasis (Hao et al., 1996; 
Slack-Davis and Parsons, 2004; Nicolas and 
Safran, 2006). Overexpression of focal adhe-
sion kinase (FAK) and the Src family of ki-
nases, the nonreceptor tyrosine kinases that 

are the crucial signaling molecules output-
ting focal adhesions, is characteristic of a 
migratory metastatic prostate cancer cell 
phenotype (Rovin et al., 2002; Kim et al., 
2009; Tatarov et al., 2009). Given the fact 
that increased membrane fluidity enhances 
the malignancy of cancer cells in vitro 
(Zeisig et al., 2007) and correlates with the 
decreased cancer cell adhesiveness (Gonda 
et al., 2010), we will prove that the superfi-
cial membrane fluidity of LNCaP and PC-3 
prostate cancer cells (isolated from lymph 
node and bone metastasis, respectively) at 
least partially determines their invasive ac-
tivity (Ajdžanović et al., 2013, 2014), there-
fore completing the previous observations in 
this context. 
 
Degradation of the extracellular matrix 
(ECM) integrity by prostate cancer cells 

Prostate cancer invasion and metastasis 
require partial degradation of the ECM integ-
rity. This process is mediated by families of 
proteinase enzymes, such as matrix metallo-
proteinases (MMPs), serine proteinases 
(urokinase-type plasminogen activator–uPA 
and plasmin), and probably by PSA, general-
ly known as a fibronectin-degrading protein-
ase (Jin et al., 2011). In human prostate can-
cer tissues, upregulation of MMPs correlates 
with the loss of tissue inhibitor of MMP-1 
(Brehmer et al., 2003), the metastatic pheno-
type brings high plasma concentrations of 
MMP-2 and MMP-9 (Morgia et al., 2005), 
while MMP-12 participates in bone-tropic 
metastasis (Nabha et al., 2008). A biome-
chanical point of view suggests that MMPs 
activity facilitates the expansion tendency of 
prostate cancer cells and their navigation 
through the ‘cracks’ of the degraded matrix 
(Ajdžanović et al., 2013, 2014). A similar 
pattern of ECM degradation characterizes 
the invasive prostate cancer cell-specific ac-
tivity of uPA, the proteinase simultaneously 
involved in the activation of latent MMPs 
and conversion of plasminogen into the func-
tional, matrix-degrading enzyme plasmin 
(Sheng, 2001; Arya et al., 2006). 
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Circulation- and bone-related aspects of 
prostate cancer cell dissemination 

Intravasation of metastatic prostate can-
cer cells and their entry into the circulation 
impose the need for survival in a new milieu, 
and precede the adhesion of malignant cells 
to the vascular endothelium and extravasa-
tion into bone. Vascular endothelial growth 
factor (VEGF) and its receptor (VEGFR), as 
potent stimulators of angiogenesis, are high-
ly expressed in prostate cancer (Pallares et 
al., 2006). Recruited and organized endothe-
lial cells provide a blood supply that nour-
ishes the prostate cancer mass and facilitate 
the cancer cell metastasis at distant loci 
(Ziaee et al., 2015). The membrane fluidity 
of freely circulating cancer cells is found to 
be more than double that of the cells adher-
ing to the inner vascular surface, and around 
23 times higher than the membrane fluidity 
of already adhered cancer cells, migrating 
over the vascular surface (Gonda et al., 
2010). A ‘dock and lock’ mechanism has 
been proposed for the instance of cancer 
cells binding to the vascular endothelium 
(Honn and Tang, 1992). The adhesion mole-
cule P-selectin, expressed by the bone endo-
thelial cells, and sialyl-Lewisx carbohydrate, 
available on the prostate cancer cell surface, 
play a crucial role in the association (Mar-
tensson et al., 1995; Mazo and von Andrian, 
1999), while integrin molecules mediate the 
subsequent locking process (Romanov and 
Goligorsky, 1999). In addition, prostate can-
cer cell- and osteoclast-integrin and cancer 
cell/osteoblast cadherin 11 molecules appear 
to be important in the colonization of these 
malignant cells in the bone (Chu et al., 2008; 
Jin et al., 2011). Growth of prostate cancer 
cells settled in the bone is accompanied by 
their production of growth factors that stimu-
late proliferation and maturation of osteo-
blasts and osteoclasts, and the release of 
these factors in turn stimulates metastatic 
growth (the ‘vicious cycle’; Jin et al., 2011). 
The inevitable disbalance between bone 
formation and bone resorption, characteristic 
of metastatic prostate cancer, results in oste-
oblastic or osteolytic lesions (Ibrahim et al., 

2010). Osteoblastic lesions with irregular, 
increased bone formation occur more fre-
quently (Urwin et al., 1985) and represent 
hot spots for bone fractures. Formation of os-
teolytic lesions, on the other hand, releases a 
three-dimensional space for further prostate 
cancer metastasis progression and at the 
same time liberates the molecules involved 
in further bone and tumor cell proliferation. 
These findings complete the pool of data 
pertinent to dysregulated osteoblast and os-
teoclast function in metastatic-related bone 
remodeling. The bone aspect, both initially 
and at the later stages of prostatic cancer dis-
ease, will determine the diagnostic proce-
dures, treatment, complications, quality and 
duration of life of the patients (Butoescu and 
Tombal, 2014). 
 
The phenomenon of pre-metastatic niche 
formation: general and prostate cancer- 
specific considerations 

Does the metastatic process start before 
detectable cancer cells appear in the bone 
tissue? 

As mentioned above, the reposition of 
circulating tumor cells (CTCs) into distant 
organs is crucial for the development of met-
astatic foci. Obviously, this step is critically 
affected by the local microenvironment at 
the place of CTC arrival. Sound data have 
recently suggested that a primary tumor can 
prearrange its new home before a cancer cell 
enters the site by inducing a supportive mi-
croenvironment recognized as a pre-
metastatic niche (Kaplan et al., 2005; Liu 
and Cao, 2016). The pre-metastatic niche 
could be described as an area where fine ac-
commodation for the newcomer has been 
prepared, offering all the conditions for col-
ony formation, in close interaction with the 
surrounding tissue. 

Kaplan et al. (2005) showed that bone 
marrow-derived hematopoietic progenitor 
cells (BMDC) settle at tumor-specific pre-
metastatic sites and form cellular clusters be-
fore the arrival of tumor cells. Those cells 
express vascular endothelial growth factor 
receptor 1 (VEGFR1), and depletion of 
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VEGFR1+ cells from the bone marrow of 
wild-type mice disables the formation of pre-
metastatic clusters and prevents metastasis 
development, thus confirming the hypothesis 
of their role in the process of dissemination. 
Since a functional reconstitution of this cell 
population in Id3 (inhibitor of differentiation 
3) knockout mice resulted in the reestab-
lishment of the entire process, from cluster 
formation to the development of metastasis, 
it is clear that those cells represent the key 
actors in pre-metastatic niche formation 
(Kaplan et al., 2005). Until today, a long list 
of molecules involved in pre-metastatic 
niche formation has been defined. Among 
the niche promoting molecules are TGF-β 
(Hiratsuka et al., 2008; Olkhanud et al., 
2011), RANK/RANKL (Chu et al., 2014), 
Lysil Oxidase enzyme (LOX) (Erler et al., 
2009), Hypoxia Inducible Factors (HIFs) 
(Unwith et al., 2015), etc. LOX enzyme-
mediated remodeling of ECM in the bones 
leads to the formation of a pre-metastatic 
niche within the bone microenvironment, fa-
voring the homing of CTC and subsequent 
development of dissemination lesions (Cox 
et al., 2015). Data about the pivotal role of 
LOX proteins in the development of prostate 
cancer metastasis has been recently provid-
ed. Crosslinking of collagen, conducted with 
the LOX derived from stromal cells, was 
shown to control the movement of prostate 
cancer cells, while LOX inhibition obstruct-
ed the same process (Caley et al., 2016). In-
terestingly, LOX pro-peptide (LOX-PP), as 
an intermediary product in the formation of 
the final form of LOX enzyme, functions as 
a tumor suppressor (Trackman, 2016). De-
spite its opposite role in comparison with the 
mature protein counterpart, in the case of in-
tramedullary injections of PC-3 LOX-PP ex-
pressing prostate cancer cell lines, enhanced 
appearance of osteolytic lesions and subse-
quent bone destruction were discovered in 
vivo (Alsulaiman et al., 2016). It is important 
to underline that the concept of a pre-
metastatic niche perfectly fits into both the 
linear and parallel models of metastasis de-
velopment. 

Osteolytic prostate cancer metastases 
Presence of specific bone metastases that 

coincide with osteolytic lesions implies a 
pronounced participation of the receptor ac-
tivator of nuclear factor-κB (RANK)/RANK 
ligand (RANKL)/osteoprotegerin (OPG) axis 
(Jin et al., 2011). RANKL, regularly pro-
duced by osteoblasts, can also be the secreto-
ry product of metastatic prostate cancer cells 
that directly activates osteoclasts via RANK 
(Zhang et al., 2003). The mentioned process 
of osteoclast activation and bone resorption 
is inhibited by OPG derived from osteo-
blasts; however, this molecule simultaneous-
ly protects cancer cells from apoptosis 
(Holen et al., 2002; Boyle et al., 2003), thus 
expressing its antinomic nature. In this re-
spect, parathyroid hormone-related protein 
(PTHrP), a homolog of parathyroid hor-
mone, upregulates RANKL production in os-
teoblasts and decreases the OPG expression, 
all of which leads to the activation of osteo-
clasts and osteolytic metastasis formation 
(Liao et al., 2008). Given that PTHrP also 
induces differentiation of osteoblasts (Liao et 
al., 2008), its role in osteoblastic lesion for-
mation appears certain. 

Osteoclast-derived proteinases and pros-
tate cancer cells-secreted PSA and uPA acti-
vate transforming growth factor β (TGF-β), 
which may also promote osteolytic metasta-
ses (Josson et al., 2010; Jin et al., 2011) 
through induction of the proosteolytic gene 
expression in cancer cells, with PTHrP in the 
key position (Yin et al., 1999; Kingsley et 
al., 2007). PC-3 cells, established from an-
drogen independent prostate cancer bone 
metastasis, are potent producers of PTHrP 
prometastatic protein (Kingsley et al., 2007). 
In addition, TGF-β is one of the important 
factors involved in EMT, whereby the 
PI3K/Akt pathway plays a noticeable role in 
this respect (Nakazawa and Kyprianou, 
2017). All together, the bone matrix (con-
taining calcium, TGF-β, insulin-like growth 
factors (IGF) I and II, etc.) with its physical 
features (low oxygen, local acidity) favors 
tumor progression and the subsequent for-
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mation of new osteolytic lesions, forming an 
amplification loop (Kinsley et al., 2007). 
 
Osteoblastic prostate cancer metastases 

Osteoblastic lesions are the main type of 
bone abnormalities in prostate cancer metas-
tasis (Kingsley et al., 2007). Dysregulated 
osteoblast activities are mediated by numer-
ous ‘osteoblastic’ factors. Endothelin-1 (ET-
1) is a vascular endothelium-produced vaso-
constricting peptide of small size that in-
creases osteoblast proliferation and initiates 
bone matrix formation (Yin et al., 2003; 
Guise et al., 2003). Thus, a diagnosis of os-
teoblastic prostate cancer metastasis implies 
elevated plasma levels of ET-1 (Nelson et 
al., 1995). Proliferation of osteoblasts is also 
stimulated by Wnt signaling through β-
catenin-induced gene expression (Behrens et 
al., 1996). It should be mentioned that meta-
static prostate cancer cells are also capable 
of producing Wnt proteins and stimulating 
osteoblast proliferation (Hall et al., 2006), 
and therefore irregular bone formation. Os-
teoblasts produce bone morphogenic protein 
2 (BMP-2) that can activate Akt, ERK and 
NFκB signaling, essential for the migration 
of prostate cancer cells (Lai et al., 2008). Fi-
nally, IGF I is upregulated in prostate cancer 
bone metastasis and stimulates the cancer 
cell proliferation, while elevated levels of 
IGFs may coincide with osteoblast prolifera-
tion and the following susceptibility to bone 
fractures (Rubin et al., 2004; Jin et al., 
2011). 
 

PROSTATE CANCER METASTASES 
AND SOY ISOFLAVONES APPLICA-

TION – THE BONE ENDPOINTS 

In the next section of this analytical arti-
cle, we will focus on prostate cancer metas-
tasis formation in connection with the appli-
cation of soy isoflavones. This up-to-date re-
port attempts to elucidate the effects of these 
steroid-like compounds along the sequence 
of events relevant to the metastatic process, 
which culminates in the bones. A detailed 
mechanistic overview of the soy isoflavone 
actions, which may be useful for compre-

hending the concrete topic, can be found in 
our previous review articles (Ajdžanović et 
al., 2014, 2015). 
 
Soy isoflavone effects on the AR signaling 

It has been reported that the soy isofla-
vone genistein, as a component of diet in 
concentrations comparable to the human in-
take (250 or 1000 mg/kg diet, 2 weeks), 
downregulates AR mRNA in the rat prostate 
(Fritz et al., 2002). In prostate cancer cells, 
genistein (at 30 and 50 μM concentrations, 
24 h) was shown to downregulate the AR 
gene and protein expression in vitro, as well 
as the receptor transcriptional activity (Davis 
et al., 2002). A daidzein metabolite equol (50 
μM, 48 h) was also found to suppress AR 
expression in LNCaP prostate cancer cells 
(Itsumi et al., 2016). Furthermore, significant 
inhibition of some AR pathway-related 
genes in human prostate cancer cells was 
identified after genistein application (at 1 
μM, 5 μM and 25 μM; 48 h) (Takahashi et 
al., 2004) (Figure 1). The proposed mecha-
nism of genistein action in this respect im-
plies its binding to estrogen receptor β (ER-
β) and the initiation of a cascade of molecu-
lar events resulting in the AR downregula-
tion (Bektic et al., 2004). However, some in 
vitro studies have demonstrated that 
genistein, at low doses (2 μM, 24 h) and in 
the presence of a synthetic androgen, may 
have a stimulating effect on the expression 
of AR pathway-related genes (PSA, KLK4, 
NKX3.1, STAMP2) in metastatic prostate 
cancer cells (Lazarevic et al., 2008) (Figure 
1). This phenomenon could at least partly be 
explained by the AR mutations associated 
with prostate cell malignant transformation 
and the ARs acquiring the capability to in-
teract with a wide range of steroid-like com-
pounds (Mahmoud et al., 2014). 
 
EMT and adhesiveness of prostate cancer 
cells upon soy isoflavones application 

The EMT of prostate cancer cells can be 
reversed with the active participation of soy 
isoflavones (Mahmoud et al., 2014). Name-
ly, culturing of IA8-ARCaP cells with low 
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dosed genistein (15 μM/L for 24 h) morpho-
logically changed these human prostate can-
cer cells, from a fibroblast-like shape to an 
epithelial-like shape (Zhang et al., 2008). In-
cubation with genistein that lasted 48 h led to 
enhanced cell-cell contacts in this context 
(Zhang et al., 2008) (Figure 1). The authors 
observed that genistein markedly increased 
the expression of E-cadherin and significant-
ly decreased the expression of the mesen-
chymal marker vimentin, when applied in 
low doses to IA8-ARCaP as well as 
LNCaP/HIF-1a prostate cancer cells (Zhang 
et al., 2008). By establishing a balance be-
tween the expressions of epithelial and mes-
enchymal protein markers which is actually 
characteristic of MET, genistein decreases 
the invasiveness of prostate cancer cells 
(Figure 1). Although the soy isoflavones, 
genistein and daidzein (at concentrations of 
40 μM and 110 μM, 48 h), may affect the 
expression of certain miRNAs in prostate 
cancer cell clones (Rabiau et al., 2011), to 
the best of our knowledge, their concrete ef-
fects on miRNA-409, -143 and -145 (respon-
sible for the EMT and affirmation of a meta-
static phenotype in prostate cancer cells) still 
remain unknown. Morphological flattening 
of highly metastatic prostate cancer PC-3-M 
cells upon genistein (50 μM, 2 h – 3 days) 
treatment was found to be accompanied by 
an increase in cell adhesion (Bergan et al., 
1996). Genistein caused FAK accumulation 
in the areas of focal cell attachment, and 
simultaneous complexing between β-1-
integrin and FAK was shown to occur with-
out the requirement for FAK activation 
(Bergan et al., 1996; Liu et al., 2000) (Figure 
1). Tumor expression of FAK increased, but 
the levels of activated FAK and the cancer 
invasion decreased in mice implanted with 
PC-3-M cells and administered genistein 
(250 mg/kg of food, 4 weeks) (Lakshman et 
al., 2008). On the other hand, some results 
have suggested that genistein application (30 
μg/ml, 48 h) decreased the expression of β-1-
integrins by 40 % in PC-3 and by 22 % in 
DU-145 metastatic prostate cancer cells, 
suppressing the cell adhesion to extracellular 

matrix elements (Skogseth et al., 2006) (Fig-
ure 1), which would be the desired effect in 
target bones, but not at the site of initial dis-
semination. Such findings call for caution 
and highlight the importance of correctly 
timing soy isoflavones application during 
prostatic cancer disease, so they shouldn't be 
overlooked in a serious evaluation of their 
antimetastatic properties. 
 
Soy isoflavone effects on the ECM- 
degrading enzymes 

Genistein was shown to exert a concen-
tration-dependent inhibitory effect on PSA 
(fibronectin-degrading proteinase) secretion 
in androgen-dependent LNCaP metastatic 
prostate cancer cells. After 5 days of treat-
ment, genistein in a concentration of 100 nM 
decreased PSA secretion by 25 %; 5 μM of 
genistein caused a 50 % decrease in the same 
parameter, while a 90 % reduction of secret-
ed PSA was detected with 50 μM genistein 
(Davis et al., 2000). In androgen-independ-
ent VeCaP metastatic prostate cancer cells, 
the same duration of genistein treatment in-
duced an inhibitory effect on PSA secretion 
only at higher (nutritionally irrelevant) con-
centrations. Namely, the PSA secretion was 
decreased by 25 % after 10 μM and by 50 % 
upon administration of 50 μM of genistein, 
while lower, nutritionally relevant concentra-
tions (0.1–5 μM) were ineffective in this re-
spect (Davis et al., 2000). The basis for the 
observed decrease in the PSA secretion from 
these metastatic prostate cancer cell lines 
represents a genistein-induced multirange 
inhibition of the PSA gene and protein ex-
pression (Davis et al., 2000) (Figure 1). Sim-
ilarly, culturing of LNCaP cells with the 
presence of soy milk digestion extract (0.79 
mg/ml; containing a mixture of genistein, 
daidzein, glycitein and other isoflavones, 
whereby ~26 mg/100 g was the concentra-
tion of aglycones) significantly reduced the 
gene expression levels of PSA (Kang et al., 
2016). Interestingly, some clinical studies 
have suggested that prolonged consumption 
of a soy isoflavone mixture (450 mg 
genistein + 300 mg daidzein + other isofla-
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vones, daily for 6 months) may not affect 
PSA levels in prostate cancer patients 
(deVere White et al., 2010). The crucial im-
pact of soy isoflavones in preventing the 
ECM degradation and prostate cancer cells 
expansion is realized through an unambigu-
ously inhibitory effect on the MMP and uPA 
proteinases (Figure 1). Increased expression 
of MMP-2 at least partly underlies prostate 
cancer aggressiveness, while the metastatic 
potential of PC-3 and LNCaP cells coincides 
with an increased expression of MMP-9 
(which is twofold higher in more invasive 
PC-3 cells) (Upadhyay et al., 1999; 
Aalinkeel et al., 2004). Genistein has shown 
a dose- and time-dependent inhibitory effect 
on the MMP-2 protein expression levels in 
both LNCaP and PC-3 cells, being the most 
effective at 50 μg/ml during 48 h (Kumi-
Diaka et al., 2006). In line with this observa-
tion, MMP-2 activity and gene expression 
were decreased after genistein application 
(50 μM, 24 h) in several normal and malig-
nant prostate cell lines (Huang et al., 2005; 
Xu et al., 2009). In PC-3 cells, genistein (50 
μM, 24–72 h) was shown to downregulate 
MMP-9 activity, gene and protein expression 
(Li et al., 2006). Equol, applied at concentra-
tions of 10 μM and 50 μM for 24 h, was 
found to decrease uPA mRNA expression in 
prostate cancer DU-145 cells, which possess 
moderate metastatic potential (Zheng et al., 
2012) (Figure 1). 
 
Membrane fluidity and invasiveness of 
prostate cancer cells after soy isoflavones 
application 

As previously indicated, the increased 
membrane fluidity of metastatic prostate 
cancer cells represents one of the intriguing 
definers of their invasiveness (Ajdžanović et 
al., 2013, 2014). We have demonstrated that 
short-term exposure to genistein (12.5 μg/ml, 
10 min) significantly decreased superficial 
membrane fluidity in LNCaP and PC-3 cells, 
which corresponded with the genistein-
induced poor invasive trends of these cells in 
2.5 D extracellular matrix – Matrigel (Aj-
džanović et al., 2013, 2014). More precisely, 

genistein action at the level of the LNCaP 
cell surface immobilized the membrane an-
drogen receptor containing lipid rafts, down-
regulated these specific androgen receptors 
involved in fast signaling from the cell sur-
face and silenced the related downstream 
pathways (Oh et al., 2010; Ajdžanović et al., 
2015) (Figures 1, 2). The effects of genistein 
on invasive activity and the resulting dynam-
ic phenotype were more prominent in the 
PC-3 metastatic cell clone, while daidzein, 
even in higher doses (25 μg/ml), was ineffec-
tive when it comes to membrane fluidity and 
invasiveness of the tested metastatic prostate 
cancer cells (Ajdžanović et al., 2013; 2014) 
(Figure 2). Considering the fact that the 
membrane fluidity value of cancer cells is 
reciprocal to their adhesiveness (Gonda et 
al., 2010), the effects of genistein observed 
in this context (adhesiveness promotion) are 
desirable at the site of initial dissemination, 
but appear unwanted in distant secondary 
bone deposits. 
 
Angiogenesis following prostate cancer 
growth and soy isoflavones 

Along with the soy isoflavone effects 
that suppress the evolution of metastatic 
prostate cancer cell malignancy, which is 
aimed at enabling the cells entry into the 
bloodstream or lymphatics, their influence 
on the process of angiogenesis, following the 
expansion of cancer growth, deserves some 
attention. Genistein (10-50 μM, 72 h) was 
shown to significantly inhibit basal and hy-
poxia-stimulated VEGF gene expression in 
PC-3 cells (Guo et al., 2007) (Figure 1). 
Subcutaneous inoculation of metastatic pros-
tate cancer LNCaP cells to immuno-deficient 
mice resulted in reduced cancer mass growth 
and diminished density of cancer-pervading 
vessels if a soy phytochemicals-rich diet 
(containing 341 mg or 1705 mg of isofla-
vone equivalents/kg) was applied (Zhou et 
al., 1999). In line with this, a soy isoflavone 
concentrate (49 % of isoflavones; 200 mg/L, 
48 h) reduced the mRNA expression and 
protein level of the pro-angiogenic cytokine 
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interleukin-8 in PC-3 cells (Handayani et al., 
2006) (Figure 1). 
 
Soy isoflavones and the bone aspects of 
prostate cancer 

Metastatic prostate cancer cells adhesion 
to the vascular endothelium and their extrav-
asation in the areas of future bone lesions 
may also be obstructed by the use of soy iso-
flavones. Genistein (10 nM, 24 h) was re-
ported to decrease the gene expression of the 
endothelial cell adhesion molecule P-selectin 
(Sandoval et al., 2010), important for the 
process of association with the prostate can-
cer cell surface (Figure 1). While the charac-
ter of the inhibitory effects of genistein on 
the expression of prostate cancer cells-
derived, adhesion-locking integrins as well 
as on the adhesion-defining cancer cell 
membrane fluidity has already been de-
scribed above, it should be mentioned here 
that, in cancer cells, genistein slightly inhib-
its the mRNA and protein levels of cadherin 
11 (Moiseeva et al., 2007), another bone me-
tastasis-promoting marker (Chu et al., 2008). 
The bone morphofunctional status in prostate 
cancer patients appears to be important both 
initially and during treatment, but also inde-
pendently from the process of metastatic 
cells invasion (Miñana et al., 2014). Our ex-
perimental experience suggests some multi-
dimensional, bone health-related benefits of 
soy isoflavones application in an animal 
model of the andropause (orchidectomized, 
15–16 months old Wistar male rats). 
Genistein and daidzein, s.c. administrated in 
a dose of 30 mg/kg b.m., for three weeks, 
significantly increased the cancellous bone 
area, trabecular thickness and trabecular 
number, but decreased the trabecular separa-
tion, in the proximal tibial metaphysis of this 
animal model (Filipović et al., 2010, 2018). 
The molecular mechanisms through which 
soy isoflavones reinforce the bone microar-
chitecture in andropausal rats primarily in-
volve ER-dependent pathways (Filipović et 
al., 2010, 2018). In parallel, significant re-
ductions in serum osteocalcin levels and uri-
nary Ca2+ concentrations were observed, in 

comparison with orchidectomized controls 
(Filipović et al., 2010, 2018) (Figure 2). 
Elaboration of the andropausal rat pituitary–
adrenocortical axis, under the same condi-
tions, suggested that genistein and daidzein 
decreased the capacity for production and 
secretion of corticosterone (Ajdžanović et 
al., 2009a, b, 2011) (Figure 2), which is im-
portant in light of the fact that glucocorti-
coids are well known to be osteoporosis-
promoting factors (Ringe, 1989). Our results 
confirm numerous other experimental studies 
reporting beneficial effects of soy isofla-
vones on the male skeleton in androgen defi-
ciency situations (frequent during prostate 
cancer therapy; Ishimi et al., 2002; Khalil et 
al., 2005; Soung et al., 2006), while the re-
lated clinical data are still expected. 
 
Soy isoflavones versus osteolytic prostate 
cancer metastases 

Prostate cancer metastasis-caused osteo-
lytic lesions, which release the space for fur-
ther malignant growth in the targeted bone, 
are characterized by significant RANK/ 
RANKL/OPG signaling (Jin et al., 2011). 
Genistein (1 g/kg of diet) was found to sig-
nificantly inhibit the protein expression of 
RANKL in PC-3-induced tumors in severe 
combined immunodeficiency (SCID) mice 
(Li et al., 2006). Genistein and glycitein (10 
nM, 14 days) significantly decreased the os-
teoblast RANKL gene expression in vitro 
(Winzer et al., 2010) (Figure 1). Also, 
genistein (50 μmol/L, 24 h) inhibited the se-
cretion of RANKL protein into the medium 
in RANKL-transfected PC-3 cells (Li et al., 
2006). In line with this, differentiation of 
RANKL-induced RAW264.7 cells (osteo-
clast precursor macrophages) to osteoclasts 
was inhibited by genistein (10 μmol/L) 
treatment (Li et al., 2006). The complex gene 
and protein expression as well as the micro-
array data analysis revealed OPG upregula-
tion in genistein-treated (50 μM, 2–3 days) 
PC-3 cells (Li et al., 2006). Two times high-
er levels of OPG mRNA were found in PC-3 
bone tumors in SCID mice preventively 
treated with genistein (1 g/kg of diet, 58 
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days; Li et al., 2004) (Figure 1). In human 
osteoblastic MG-63 cells, daidzein (0.01, 0.1 
and 1 μM, 3 days) increased OPG, but de-
creased RANKL gene and protein levels, all 
via ER-α and ER-β (Sun et al., 2016). Soy 
extract (0.001 mg/ml, 6 days) was shown to 
increase the OPG secretion levels and to de-
crease those of RANKL in a conditioned 
medium of MC3T3-E1 osteoblasts (Park et 
al., 2014). An increased OPG/RANKL ratio 
was observed in LNCaP and PC-3 cells upon 
genistein or daidzein (10–50 μM, 72 h) ap-
plication (Alonso et al., 2009) (Figure 1). All 
these data suggest specific effects of soy iso-
flavones on concrete constituents of the 
RANK/RANKL/OPG triad that synergisti-
cally strive to deactivate osteoclasts and pre-
vent resorption of the affected bone. A 
somewhat reserved attitude towards the OPG 
increase still remains, given its role in the 
prevention of apoptosis of prostate cancer 
cells (Holen et al., 2002). In addition, the 
PTHrP molecule, generally known to elevate 
the RANKL production in osteoblasts and to 
decrease the OPG expression and activate 
osteoclasts in the formation of metastatic le-
sions (Liao et al., 2008), is susceptible to soy 
isoflavones actions. Genistein and daidzein 
(0.01–50 μM, 48 h) were shown to induce 
the PTHrP gene expression in LNCaP cells, 
while both isoflavones increased the PTHrP 
protein expression in these cells even at nM 
doses during 72 h (Alonso et al., 2009) (Fig-
ure 1). Actually, these results reflect certain 
pro-survival effects of soy isoflavones in re-
spect to the metastatic prostate cancer cells 
(Alonso et al., 2009). Soy isoflavones may 
directly or indirectly affect TGF-β, the cyto-
kine that also promotes osteolytic metastases 
(Jin et al., 2011). Gene and protein expres-
sion of TGF-β2 in PC-3 cells is reduced up-
on genistein (50 μM, 6 h, 36 h and 72 h) ap-
plication (Li and Sarkar, 2002). Isoflavones 
downregulate the levels of PSA and uPA, 
TGF-β-activating molecules, in metastatic 
prostate cancer cells (Davis et al., 2000; 
Josson et al., 2010; Zheng et al., 2012), 
which most likely excludes TGF-β from the 

pool of factors that actively mediate osteolyt-
ic metastases when isoflavones are applied. 
 
Soy isoflavones versus osteoblastic prostate 
cancer metastases 

Metastasis-related osteoblastic lesions 
i.e. foci of irregular bone formation, imply 
osteoblast proliferation, stimulated by Wnt 
signaling, through β-catenin-induced gene 
expression (Behrens et al., 1996). In PC-3 
cells, genistein downregulated Wnt-4 protein 
expression, while the soy isolate mildly de-
creased β-catenin protein levels (Liss et al., 
2010) (Figure 1). Genistein-mediated inhibi-
tion of IGF-1 (usually upregulated in pros-
tate cancer bone metastasis) also silences the 
β-catenin pathway (Rubin et al., 2004; 
Mahmoud et al., 2014). Finally, considering 
the property of E-cadherin to bind to β-
catenin and immobilize it, the increased ex-
pression of E-cadherin upon genistein appli-
cation (15 μM/L, 24 h or 48 h) to prostate 
cancer cells may suggest some indirect bene-
fits in impeding metastasis (Zhang et al., 
2008; Mahmoud et al., 2014). 
 
Soy isoflavones against the pre-metastatic 
niche formation: a new horizon? 

Until now, the potential of soy isofla-
vones to influence pre-metastatic niche for-
mation has not been evaluated directly. 
However, the capacity of these naturally oc-
curring molecules to influence the estab-
lishment of pre-metastatic fields in bones, 
prior to cancer cell arrival, can be discussed 
in light of the numerous findings confirming 
their modulatory effect on the mediators in-
volved in this important phase of the cancer 
dissemination route. One of the factors pre-
sumably important in the pre-metastatic 
ECM bone rearrangement is Hypoxia Induc-
ible Factor 1α (HIF-1α) (Semenza, 2016). 
Generally, this molecule is the main regula-
tor of the expression of genes critical to cell 
survival under hypoxic conditions. One of 
the proteins regulated by HIF-1α is LOX en-
zyme, a key factor in matrix remodeling in 
pre-metastatic fields (Joo et al., 2014). 
Singh-Gupta et al. (2009) found that pre-



EXCLI Journal 2019;18:106-126 – ISSN 1611-2156 
Received: October 25, 2018, accepted: February 12, 2019, published: February 19, 2019 

 

 

117 

treatment of prostate cancer cells with soy 
isoflavones downregulated the Stc/STAT3/ 
HIF-1α pathway and prevented the transloca-
tion of HIF-1α into the nucleus. This finding 
was important from the perspective of soy 
isoflavones usage in the sensitization of 
prostate cancer cells to radiotherapy. Yet, the 
discovery of pre-metastatic fields and the 
role of HIF-1α at this important stage of the 
metastatic process have given another im-
portant context to the ability of genistein/ 
daidzein to inhibit HIF-1α nuclear action. 
Namely, it is known that hypoxic conditions 
are typical for the bone microenvironment, 
and together with the hypoxia related high 
LOX activity, this is one of the main charac-
teristics of the bone tissue matrix (Kingsley 
et al., 2007). A global quantitative analysis 
has confirmed that the dominant molecule of 
the hypoxic cancer secretome, LOX, induces 

pre-metastatic bone lesions and its appear-
ance is remarkably connected with bone-
tropism and relapses (Cox et al., 2015). In 
view of these circumstances, soy isoflavones 
may be of use in the prevention of bone me-
tastases, starting from the earliest phase of 
this process. Also, the soy isoflavone-
induced inhibition of RANKL protein secre-
tion into the medium in RANKL-transfected 
PC-3 cells (Li et al., 2006) and inhibition of 
RANKL protein expression in a PC-3 xeno-
graft model (Li et al., 2006) have been dis-
cussed above. Furthermore, there are numer-
ous sources highlighting the potential of soy 
isoflavones to directly or indirectly affect the 
expression and function of TGF-β and, con-
sequently, the pathways regulated by this 
molecule (Davis et al., 2000; Li and Sarkar, 
2002; Josson et al., 2010; Zheng et al., 
2012). While RANK/RANKL and TGF-β 

 
Figure 1: Highlights of the effects of soy isoflavones application along the sequence of events rele-
vant to metastasis formation in prostate cancer (sorted in a clockwise direction; references are provid-
ed in the appropriate section of the article). ARs – androgen receptors, EMT – epithelial to mesen-
chymal transition, FAK – focal adhesion kinase, MET – mesenchymal to epithelial transition, MMPs – 
matrix metalloproteinases, OPG – osteoprotegerin, PSA – prostate-specific antigen, PTHrP – parathy-
roid hormone-related protein, RANKL – receptor activator of nuclear factor-κB ligand, uPA – uroki-
nase-type plasminogen activator, VEGF – vascular endothelial growth factor 
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are on the list of mediators crucial to the es-
tablishment of pre-metastatic niches, it is 
important to note that soy isoflavones can be 
effective in this (possibly) critical stage for 
prostate cancer dissemination. 

 
Figure 2: Dynamic phenotype of metastatic 
prostate cancer cells (LNCaP and PC-3) and the 
general bone morphofunctional status in an an-
dropausal subject, after treatments with soy iso-
flavones (Ajdžanović et al., 2009a, b, 2011, 
2013, 2014, 2015; Filipović et al., 2010, 2018). 

CONCLUSIONS AND EVIDENCE-
BASED PERSPECTIVES 

The impression is that the phrase ‘better 
safe than sorry’ is more than adequate in the 
context of prostate cancer and soy isofla-
vones, i.e., the prevention of concrete, multi-
variable malignant disease by using soy iso-
flavones appears to be more promising than 
the treatment, especially when the cancer is 
in a metastatic phase. On the other hand, the 
applied soy isoflavones have demonstrated 
beneficial effects at different stages of meta-
static prostate cancer progression, including 
its culmination in the bones. The experience 
so far indicates that the therapeutic potential 
of plant-derived compounds is generally ex-
hausted after they have been formulated as 
dietary supplements/nutraceuticals, and they 
certainly haven't been positioned as first-line 
therapeutics for metastatic cancer. Despite 
certain limitations regarding soy isoflavone 
actions in prostate cancer cells (prevention of 
their apoptosis, coupling with mutated ARs, 
general prevalence of in vitro studies that 
should be extended with the use of isofla-
vone metabolites) as well as the dose- and 
timing-related specificity of isoflavones ac-
tion, the solid evidence of these compounds-
induced metastatic sequence disruption (pos-
sibly including the aspect of pre-metastatic 
niche formation) presented herein suggest it 
might be useful to re-evaluate their therapeu-
tic ranking (Figure 3). Thus, soy isoflavones 
could participate more widely in the com-
bined therapeutic approaches, following the 
already demonstrated radiosensitization of 
prostate cancer and radioprotection of nor-
mal tissues and organs in the field of radia-
tion, all achieved with the use of soy isofla-
vones (Raffoul et al., 2007; Ahmad et al., 
2010; Hillman, 2019), or given the observed, 
more effective docetaxel-induced apoptosis 
of prostate cancer cells pretreated with 
genistein (Li et al., 2005) (Figure 3). How-
ever, studies reporting a lack of combination 
effects of soy isoflavones and taxane chemo-
therapy on castration-resistant prostate can-
cer should also be considered (Eskra et al., 
2019). The possibility of increasing isofla-
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vone lipophilicity through complexation with 
transient metal cations and derived inputs on 
the cell signaling machinery during modified 
compounds application (Tarahovsky et al., 
2014; Ajdžanović et al., 2015) additionally 
open the gate for therapy fine tuning (Figure 
3). 
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