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ABSTRACT

This paper introduces a new model called the buffered autoregressive model with generalized

autoregressive conditional heteroskedasticity (BAR-GARCH). The proposed model, as an exten-

sion of the BAR model in Li et al. (2013), can capture the buffering phenomenon of time series in

both conditional mean and conditional variance. Thus, it provides us a new way to study the non- 15

linearity of a time series. Compared with the existing AR-GARCH and threshold AR-GARCH

models, an application to several exchange rates highlights an interesting interpretation of the

buffer zone determined by the fitted BAR-GARCH models.

Some key words: Buffered AR model; Buffered AR-GARCH model; Exchange rate; GARCH model; Nonlinear time

series; Threshold AR model. 20

1. INTRODUCTION

After the seminal work of Tong (1978), the class of threshold autoregressive (TAR) models has

achieved a great success in practice; see, e.g., Tong (1990) for earlier works and Tong (2011) and
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the references therein for more recent ones. The TAR model with single threshold r basically says

that the structure of an AR model shifts from one regime to another, if the status of the threshold25

variable zt crosses above or below the threshold r. Due to this piecewise linear character, the TAR

model is able to mimic many nonlinear features in time series, such as resonance, limit cycles,

time-irreversibility, and many others; see, e.g., Li and Lam (1995), Pesaran and Potter (1997),

and Hansen (2011) for an overview. However, in the two-regime situation, there are some cases

that the two-way switching of regimes may not happen at the same threshold. A typical example30

is the hoisting of a typhoon warning signal mentioned in Li et al. (2013). It is observed that a

typhoon warning signal is hoisted when the average wind speed up-crosses a certain threshold

rU , but it may only be canceled when the average wind speed down-crosses another threshold

rL which is smaller than rU . In view of this, it is reasonable to treat the zone (rL, rU ] as a buffer

zone, in which the weather station keeps the warning signal unchanged when the average wind35

speed (a threshold variable in this case) lies in the buffer zone.

In order to describe such buffering phenomenon in the real world, Li et al. (2013) first in-

vestigated a buffered AR (BAR) model. Unlike the TAR model, this BAR model says that the

structure of an AR model remains unchanged when the value of zt lies inside the buffer zone

(rL, rU ]. Thus, the BAR model provides us a new way to study nonlinearity in time series. As40

expected, the buffering phenomenon not only exists in meteorology but also in finance and eco-

nomics. A nice illustrative example is the study of the quarterly U.S. GNP data set in Li et al.

(2013) and Zhu et al. (2013). Their empirical studies showed that the BAR model provides a

better fit than TAR model for the GNP series. Based on the fitted BAR model, they discovered

an interval of GNP which does not shift in terms of the probabilistic structure unless we have ex-45

perienced a big ‘contraction’ or ‘expansion’ two years before. This finding is clearly of practical

interest and can not be detected by the TAR model.

The above-mentioned BAR model focuses on the buffering phenomenon that is present in the

conditional mean. A natural but important extension is to consider the buffering phenomenon in

both the conditional mean and variance or in the conditional variance only. It is well known that50

many financial and economic time series exhibit conditional heteroscedasticity, and they can gen-

erally be fitted by the generalized autoregressive conditional heteroskedasticity (GARCH) mod-

els proposed by Engle (1982) and Bollerslev (1986). Moreover, many variants of the GARCH
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model have since been developed to capture the asymmetry and leverage effects in the market

volatility. Among them, the threshold GARCH (TGARCH) model proposed by Rabemanjara and 55

Zakoı̈an (1993) and Zakoı̈an (1994) emphasizes that the structures of volatilities are different for

positive and negative return series. In their settings, the threshold r is fixed at zero. Generally,

we are interested in cases where the threshold is unknown. Some pioneer works in this context

can be found in Li and Li (1996) and Liu et al. (1997), in which the double threshold AR-ARCH

and AR-GARCH models were proposed respectively to capture the piecewise linear conditional 60

mean and variance. Motivated by the BAR model, this paper introduces a new model called the

buffered AR-GARCH (BAR-GARCH) model. The new model includes the AR-GARCH, dou-

ble threshold AR-ARCH, threshold AR-GARCH, or TGARCH model as special cases, and can

capture the buffering phenomenon of time series in both conditional mean and variance. To high-

light the importance of the BAR-GARCH model, we apply it to several exchange rate series. In 65

most of these cases, the BAR-GARCH model gives a better fit than the AR-GARCH or TAR-

GARCH model. Therefore, the participants in these exchange rate markets should not ignore this

buffering phenomenon in the conditional mean/variance or both of them.

This paper is organized as follows. Sections 2 and 3 review the TAR and BAR models, re-

spectively. Section 4 proposes our new BAR-GARCH model, with a specified estimation and 70

model-selection procedure. The application of the BAR-GARCH model to several exchange rate

series is presented in Section 5. Section 6 concludes with some suggested future work.

2. THE CLASSIC THRESHOLD AUTOREGRESSIVE MODEL

Let {yt} be a stationary time series. A p-th order threshold autoregressive [TAR(p)] model for

{yt} can be defined as 75

yt =

{
ϕ0 +

∑p
i=1 ϕiyt−i + εt, if Rt = 1,

ψ0 +
∑p

i=1 ψiyt−i + εt, if Rt = 0,
(1)

where Rt = I(yt−d ≤ r) is the regime indicator of yt, r is the threshold parameter, d(≥ 1) is

the delay parameter, I(·) is the indicator function, and εt is an uncorrelated error term with zero

mean and variance σ2(> 0). Under such a model, there are two separate regimes for yt, and

the regime of yt will shift when the value of yt−d crosses above or below the threshold r. This 80

model allows for a non-linear behavior of yt, since the generating process of yt is different in
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each regime. For example, if yt is the daily return on a certain financial asset, model (1) with

d = 1 and r = 0 describes that the structure of yt today depends on whether the price rose or fell

on the previous day. This kind of asymmetric phenomenon has been well documented in Li and

Lam (1995); see also Tsay (1989, 1998) and Tong (2011) for other empirical studies based on85

TAR models. Moreover, the TAR model can be treated as a special case of the threshold ARMA

(TARMA) model, which also nests TMA model as another special case. A sophisticated study

of TMA or TARMA model can be found in Ling and Tong (2005), Li and Li (2008), Li et al.

(2011) and Li et al. (2013).

Since the non-linearity of yt happens only when there exists a threshold structure, it is impor-90

tant for us to detect the existence of a threshold structure. The related works are the Likelihood

ratio (LR) test in Chan (1990, 1991), Li and Li (2011) and Zhu and Ling (2012), and the Wald

test and Lagrange multiplier (LM) test in Hansen (1996). Once the null hypothesis of no thresh-

old structure is rejected, the least squares estimation procedure in Li and Ling (2012) can be used

to estimate model (1).95

3. THE BUFFERED AUTOREGRESSIVE MODEL

In view of model (1), the regime of yt shifts immediately no matter which direction yt−d

crosses (above or below) the threshold r . However, this may not always be the case. Li et al.

(2013) gave several empirical examples to show that the switch in regime may be delayed when

yt−d lies in a buffer zone. To capture this new non-linear feature of time series, they proposed a100

p-th order buffered autoregressive [BAR(p)] model with Rt in (1) satisfying

Rt =


1 if yt−d ≤ rL
0 if yt−d > rU
Rt−1 otherwise

, (2)

where rL and rU are two threshold parameters such that rL ≤ rU . This BAR(p) model stipulates

that the regime of yt is unchanged when yt−d falls into the buffer zone (rL, rU ]. When rL =

rU , the BAR(p) model reduces to the TAR(p) model. As shown in Li et al. (2013), a sufficient

condition for the geometrical ergodicity of the BAR(p) model is
p∑

i=1

|ϕi| < 1 and
p∑

i=1

|ψi| < 1,

provided that εt has a density function that is positive everywhere on R and E|εt| <∞.
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Although both TAR(p) and BAR(p) models have two regimes, the regime indicator in BAR(p)

model depends on past observations infinitely far away. This can be illustrated by the fact that 105

Rt(γ) = I(yt−d ≤ rL) +

∞∑
j=1

I(yt−j−d ≤ rL)

j∏
i=1

I(rL < yt−i+1−d ≤ rU ) a.s.

in BAR(p) models, where γ = (rL, rU )
′. Thus, unlike TAR(p) model, the states of all past obser-

vations {yj ; j ≤ t− d} have impact on determining the regime of the current observation yt in

BAR(p) models. However, given a finite realizations of yt, the regimes of the first few observa-

tions may not be well identified, since no observations exist for t ≤ 0 in practice. To circumvent

this problem, it is natural to assume that [rL, rU ] is a subset of [a, b], where a, b are set to some

empirical quantiles of the data sample {yt}nt=1 as in Chan (1991) and Andrews (1993). By doing

so, we can always find a smallest integer n0(≥ p) such that yn0−d stays outside the region [a, b].

Hence, the regime indicator Rn0(γ) is well identified, and the regime indicators for observations

{yt}nt=n0+1 can be iteratively calculated by

Rt(γ) = I(yt−d ≤ rL) +Rt−1(γ)I(rL < yt−d ≤ rU ).

For the remaining observations {yt}n0−1
t=1 whose regimes are not well identified, we then set their

regime indicators to be zeros. Thus, we should use R̃t(γ) rather than Rt(γ) in practice, where

R̃t(γ) =

{
0 for t = 1, · · · , n0 − 1,

Rt(γ) for t = n0, · · · , N.
(3)

Although the first (n0 − 1) regime indicators are artificially chosen in (3), efficiency loss is 110

negligible because Zhu et al. (2013) showed that n0, an integer depending on {yt}nt=1, is bounded

in probability.

Even though the BAR(p) model has two thresholds, it has only two regimes. If we treat the

buffer zone as the “middle regime”, the BAR(p) model is similar to the classical three-regime

TAR(p) model, but the parameters in its “middle regime” inherit their values from the two outer 115

regimes. Hence, the buffering phenomenon captured by the BAR(p) model can not be handled by

the three-regime TAR(p) model. Finally, it is worth noting that the non-linearity of yt in BAR(p)

model exists only when the threshold variables rL and rU are present. Like the TAR(p) model,

it is of interest to detect the existence of these two thresholds. Under certain conditions, the LR

test in Zhu et al. (2013) is applicable. Once the BAR(p) model is preferable, the least squares 120

estimation procedure in Li et al. (2013) can be used to estimate this model.
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4. THE BUFFERED AR-GARCH MODEL

Conditional heteroscedasticity is a key character in most of economic and financial real data.

Basically, it says that the conditional variance of the data is changing over time. So far, this phe-

nomenon has been well modelled by the ARCH model in Engle (1982) and its huge variants;125

see, e.g., Bollerslev et al. (1992) and Francq and Zakoı̈an (2010). In many applications, a condi-

tional mean model along with an ARCH-type conditional variance model is necessary to fit the

real data (see, e.g., Tsay (2005)). Bollerslev et al. (1992) showed that ignoring the ARCH effect

would lead to inefficient estimates and suboptimal statistical inference in the conditional mean

model. In view of this, it is of interest to consider the following buffered AR(p)-GARCH(m, s)130

(BAR-GARCH) model:

yt =

{
ϕ0 +

∑p
i=1 ϕiyt−i + εt, if Rt = 1,

ψ0 +
∑p

i=1 ψiyt−i + εt, if Rt = 0,
(4)

where Rt is defined as in (2), and

εt =
√
htηt with ht =

{
α0 +

∑m
i=1 αiε

2
t−i +

∑s
i=1 βiht−i, if Rt = 1,

π0 +
∑m

i=1 πiε
2
t−i +

∑s
i=1 δiht−i, if Rt = 0,

(5)

and ηt is a sequence of iid random variables with mean zero and variance one. Here, we assume135

that α0, π0 > 0 and other αi, βi, πi, δi ≥ 0 for the positivity of ht. Particularly, when rL = rU ,

we call models (4)-(5) the threshold AR-GARCH (TAR-GARCH) model which includes the

double threshold AR-ARCH model in Li and Li (1996) and Wong and Li (1997, 2000) as a

special case. When both rL and rU are absent, model (4)-(5) becomes the classical AR-GARCH

model. Also, when p = 0, we have a buffered GARCH model which can be viewed as a natural140

extension of the threshold GARCH models in Liu, et al. (1997) and Brooks (2001). Thus, when

two threshold variables rL and rU in Rt are present and different, the BAR-GARCH model

captures the buffering phenomenon of yt in terms of both conditional mean and variance. Note

that our BAR-GARCH model assumes that both conditional mean and variance models switch

regime at the same time. This assumption seems to be the most likely situation in practice,145

although allowing for different regime-switching rules in the conditional mean and variance

models could easily be done.

Next, we consider the estimation for the BAR-GARCH model. Let θ = (θ′1, θ
′
2)

′ with θ1 =

(ϕ′, α′, β′)′, θ2 = (ψ′, π′, δ′)′, ϕ = (ϕ0, · · · , ϕp)′, ψ = (ψ0, · · · , ψp)
′, α = (α0, · · · , αm)′, β =

(β1, · · · , βs)′, π = (π0, · · · , πm)′ and δ = (δ1, · · · , δs)′. Given n observations of yt, −2 times150
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quasi-log-likelihood of models (4)-(5) (ignoring some constants) can be written as

Ln(θ) =

n∑
t=1

[
log ht(θ, γ) +

ε2t (θ, γ)

ht(θ, γ)

]
, (6)

where εt(θ, γ) and ht(θ, γ) are iteratively calculated as

εt(θ, γ) =

[
yt − ϕ0 −

p∑
i=1

ϕiyt−i

]
R̃t(γ) +

[
yt − ψ0 −

p∑
i=1

ψiyt−i

]
(1− R̃t(γ)),

ht(θ, γ) =

[
α0 +

m∑
i=1

αiε
2
t−i(θ, γ) +

s∑
i=1

βiht−i(θ, γ)

]
R̃t(γ) 155

+

[
π0 +

m∑
i=1

πiε
2
t−i(θ, γ) +

s∑
i=1

δiht−i(θ, γ)

]
(1− R̃t(γ))

with R̃t(γ) being defined as in (3) and the initial values Y0 ≡ {yi; i ≤ 0} being zeros.

Given (p,m, s, d, γ), the quasi-maximum-likelihood estimator θ̂ of θ is obtained by minimiz-

ing Ln(θ) with the Newton-Raphson method. Then, the estimation of d and γ is employed by

considering 160

min
(d,γ)∈Ad×Aγ

Ln(θ̂),

where Ad = {1, · · · , D} and Aγ = {(rL, rU ); a ≤ rL ≤ rU ≤ b} for a user-chosen integer D

and two user-chosen real numbers a and b. The space Ad ×Aγ contains all potential candidates

for (d, γ). Furthermore, the estimation of p,m and s is performed by considering

min
(p,m,s)∈Ap×Am×As

AIC(p,m, s), 165

where AIC(p,m, s) =: Ln(θ̂) + 2(p+m+ s+ 1) is the Akaike information criterion (AIC),

and Ap ×Am ×As =: {0, · · · , P} × {0, · · · ,M} × {0, · · · , S} for some user-chosen integers

P,M and S, contains all potential candidates for (p,m, s).

Although the aforementioned estimation procedure of θ and (p,m, s, d, γ) is efficient, it will

be very time-consuming. A simple but less efficient way is to first select an efficient TAR- 170

GARCH model (i.e., rL = rU ), and then use these estimators for (p, d,m, s) in the TAR-

GARCH model to estimate the parameter θ in the BAR-GARCH model. The detailed steps are

as follows:

1. Apply the foregoing estimation procedure in model (4)-(5) with rL = rU = r0 to get the

estimators (p̂, m̂, ŝ, d̂, r̂0, r̂0) for (p,m, s, d, rL, rU ). 175
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2. Based on (p̂, m̂, ŝ, d̂, r̂0) from step 1 and each (rL, rU ) ∈ [a, r̂0]× [r̂0, b], calculate the es-

timator θ̂(rL.rU ) for θ by minimizing Ln(θ) in (6) with the Newton-Raphson method.

3. Obtain the estimators (r̂L, r̂U ) for (rL, rU ) and estimator θ̂(r̂L,r̂U ) for θ via

(r̂L, r̂U ) := min
(rL,rU )∈[a,r̂0]×[r̂0,b]

Ln(θ̂(rL,rU )).

Note that for the AR-GARCH model, the aforementioned procedure is not needed. It is be-180

cause we do not need to estimate the threshold and delay parameters in this model. Thus, the

AR-GARCH model can be estimated efficiently. Also, it is worth noting that although the esti-

mation procedure in steps 1-3 is sub-efficient for the BAR-GARCH model, the TAR-GARCH

model estimated from step 1 is nested within the fitted BAR-GARCH model obtained from steps

1-3. Hence, statistical inference about comparing TAR and BAR models in terms of their log-185

likelihood values becomes standard.

5. APPLICATION TO EXCHANGE RATES

In this section, we apply the BAR-GARCH model to fit several exchange rate series. Our main

objective is to check whether the BAR-GARCH gives a better fit to the data sets than the AR-

GARCH or TAR-GARCH model. If this is the case, practitioners in the exchange rate markets190

can get more insight from the BAR-GARCH model, which demonstrates that the asymmetric

property, caused by a novel buffered mechanism, should not be ignored.

The exchange rate series we studied are the six daily currencies against the U.S. dollar,

the Argentine Peso(USD/ARS), Bulgarian Lev(USD/BGN), Philippine Peso(USD/PHP), Polish

Zloty(USD/PLN), Russian Ruble(USD/RUB) and Taiwan Dollar(USD/TWD), over the period195

from January 1, 2006 to December 31, 2011. They are mostly currencies from developing coun-

tries, one from Latin America, two from Asia and three from Eastern Europe. Each series has

a total of 2191 observations. The log-return (×100) yt of each series is plotted in Figure 1. A

simple visual inspection of the sample autocorrelation plots of yt and y2t (not reported here) im-

plies that all return series are highly correlated with possible ARCH effect. Thus, it is natural to200

consider fitting AR-GARCH, TAR-GARCH and BAR-GARCH models for these exchange rates.

We employ the estimation procedure stated in Section 4. The maximum orders (P,M, S,D) for

these models are set to be (8, 1, 1, 8), which is generally enough for selecting the best model in
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most financial applications. The value of a (or b) is set to be the 10th (or 90th) percentile of the

data. 205

Table 1 reports the estimates for (p,m, s, d, γ) of the best fitted AR-GARCH, TAR-GARCH

and BAR-GARCH models for all six exchange rate return series, together with the corresponding

values of -2 times the maximized log-likelihood function (LLF), AIC, BIC, and AICc, where LLF

is the Ln(θ̂) defined in (6), and

AIC = Ln(θ̂) + 2k, 210

BIC = Ln(θ̂) + k log(n),

AICc = Ln(θ̂) + 2k(k + 1)/(n− k − 1).

Here, k is the number of estimated parameters and n is the sample size. Meanwhile, it is worth

mentioning that all best fitted models are adequate by looking at the the ACF and PACF plots

(not depicted here) of the residuals and squared residuals. From Table 1, we find that the TAR-

GARCH model nests the AR-GARCH model in all cases. Thus, it is meaningful to use the LR

test statistic

LR1n := LLFAR-GARCH − LLFTAR-GARCH

to test for no threshold structure (i.e., the null is H10: the AR-GARCH model and the alternative

is H11: the TAR-GARCH model). Conventionally, the p-value of LR1n is p1 = 1− Fk1(LR1n)

with k1 = p+m+ s+ 4, where Fk(·) is the cdf of a chi-square distribution with degrees of

freedom k. Similarly, we can use the following LR test statistic

LR2n := LLFTAR-GARCH − LLFBAR-GARCH

to test for no buffer zone (i.e., the null is H20: the TAR-GARCH model and the alternative is

H21: the BAR-GARCH model), and its p-value is p2 = 1− F1(LR2n). The values of p1 and p2

for all return series are also given in Table 1, from which we can see that at the 5% level of 215

significance, the TAR-GARCH model is always superior to the AR-GARCH in all cases while

the BAR-GARCH model is superior to the TAR-GARCH model except the case of USD/PHP.

To look for further evidence, Table 1 also reports the values of nL, nB and nU , where nB ,

nL and nU are the number of observations in the buffer zone (i.e., rL < yt−d ≤ rU ), the lower

regime outside the buffer zone (called lower outer regime) (i.e., yt−d ≤ rL), and the upper regime 220



10 K. ZHU, W.K. LI AND P.L.H. YU

outside the buffer zone (called upper outer regime) (i.e., yt−d > rU ), respectively. Clearly, nB is

zero for all TAR-GARCH models, and nB for a fitted BAR-GARCH model can be decomposed

into nBL and nBU , which are the number of observations in the buffer zone belonging to the

lower and upper regimes, respectively. For the TAR-GARCH models, neither nL nor nU is small,

indicating that the threshold effect tends to exist, as also evidenced by significant testing results225

based on LR1n. For the BAR-GARCH model, most exchange rates except USD/PHP generally

have a large buffer zone, particularly for USD/PLN, USD/RUB and USD/TWD. This implies

that the buffer zone exists in most exchange rates except USD/PHP, and this result is consistent

with the one based on the likelihood ratio test statistic LR2n. Suppose for instance, the USD/RUB

series is now in the lower regime. According to its fitted BAR-GARCH model, it will move to230

the upper regime whenever its previous day’s log-return exceeds 0.4202% and then return back

to the lower regime only when its previous day’s log-return drops below -0.3381%. However, the

TAR-GARCH model will wrongly assign it to the lower regime once its previous day’s log-return

drops below 0.4202%.

Figures 2-7 plot the time points of each return series belonging to lower outer regime235

(i.e., yt−d ≤ rL), lower buffer regime (i.e., rL < yt−d ≤ rU , Rt = 1), upper buffer regime

(i.e., rL < yt−d ≤ rU , Rt = 0), and upper outer regime (i.e., yt−d > rU ) based on the best fitted

BAR-GARCH model. It can be seen that the USD/PLN, USD/RUB and USD/TWD return series

stayed in the buffer zone (lower or upper buffer regimes) most of the time before the financial cri-

sis in 2008 but they switched regimes and moved outside the buffer zone more frequently during240

and after the crisis. This finding reveals that the buffer zone reflects a normal range of exchange

rate variation under normal market condition, and the market intervention by the central bank

will be invoked only when the exchange rate move outside the buffer zone.

As the hypothesis of no buffer zone is not rejected for USD/PHP, it is natural to see that

USD/PHP had very few observations located inside the buffer zone throughout the whole time245

period. Noted from Figure 3 that USD/BGN stayed in the lower outer regime (return less than

0.2249%) most of the time, particular in 2006-2007. Once it reached the upper outer regime (re-

turn greater than 0.5048%), it would often bounce back to the lower outer regime. This indicates

that relative to the Bulgarian Lev, the U.S. dollar was weakening in 2006-2007.
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Table 1. Model selection results for all six exchange rate return series.
Log-return Series (×100)

USD/ARS USD/BGN
AR-GARCH TAR-GARCH BAR-GARCH AR-GARCH TAR-GARCH BAR-GARCH

Orders p = 2 p = 2 d = 5 p = 2 d = 5 p = 4 p = 4 d = 7 p = 4 d = 7

m = 1 s = 1 m = 1 s = 1 m = 1 s = 1 m = 1 s = 1 m = 1 s = 1 m = 1 s = 1

Thresholds r = −0.0761 rL = −0.0761 r = 0.5048 rL = 0.2249

rU = −0.0025 rU = 0.5048

LLF† -4828.0 -4914.3 -4919.2 -1476.3 -1512.0 -1519.0
AIC -4816.0 -4886.3 -4889.2 -1460.3 -1476.0 -1481.0
BIC -4781.9 -4806.6 -4803.8 -1414.8 -1373.6 -1372.9
AICc -4828.0 -4914.1 -4919.0 -1476.3 -1511.7 -1518.7

LR tests‡ p1 = 0.0000 p2 = 0.0269 p1 = 0.0001 p2 = 0.0082

#observations nL = 523 nL = 523 nL = 1949 nL = 1665

nU = 1667 nBL = 114 nU = 241 nBL = 229

nBU = 325 nBU = 55

nU = 1228 nU = 241

USD/PHP USD/PLN
AR-GARCH TAR-GARCH BAR-GARCH AR-GARCH TAR-GARCH BAR-GARCH

Orders p = 3 p = 3 d = 5 p = 3 d = 5 p = 4 p = 4 d = 1 p = 4 d = 1

m = 1 s = 1 m = 1 s = 1 m = 1 s = 1 m = 1 s = 1 m = 1 s = 1 m = 1 s = 1

Thresholds r = 0.2129 rL = 0.1700 r = 0.4305 rL = −0.5396

rU = 0.2129 rU = 0.7347

LLF -2648.4 -2683.2 -2683.6 390.9 359.7 351.3
AIC -2634.4 -2651.2 -2649.6 406.9 395.7 389.3
BIC -2594.5 -2560.1 -2552.9 452.4 498.1 497.5
AICc -2648.3 -2682.9 -2683.3 391.0 360.0 351.7

LR tests p1 = 0.0001 p2 = 0.5271 p1 = 0.0005 p2 = 0.0038

#observations nL = 1753 nL = 1665 nL = 1751 nL = 394

nU = 437 nBL = 74 nU = 439 nBL = 988

nBU = 14 nBU = 544

nU = 437 nU = 264

USD/RUB USD/TWD
AR-GARCH TAR-GARCH BAR-GARCH AR-GARCH TAR-GARCH BAR-GARCH

Orders p = 1 p = 1 d = 1 p = 1 d = 1 p = 5 p = 5 d = 7 p = 5 d = 7

m = 1 s = 1 m = 1 s = 1 m = 1 s = 1 m = 1 s = 1 m = 1 s = 1 m = 1 s = 1

Thresholds r = 0.4202 rL = −0.3381 r = 0.1804 rL = −0.2542

rU = 0.4202 rU = 0.2679

LLF -2834.1 -2887.8 -2901.7 -3771.6 -3841.6 -3874.6
AIC -2824.1 -2863.8 -2875.7 -3753.6 -3801.6 -3832.6
BIC -2795.6 -2795.5 -2801.7 -3702.3 -3687.8 -3713.0
AICc -2834.1 -2887.6 -2901.5 -3771.5 -3841.2 -3874.1

LR tests p1 = 0.0000 p2 = 0.0002 p1 = 0.0000 p2 = 0.0000

#observations nL = 1970 nL = 285 nL = 1861 nL = 247

nU = 220 nBL = 1250 nU = 329 nBL = 986

nBU = 435 nBU = 737

nU = 220 nU = 220

† The smaller value of LLF (AIC, BIC, or AICc), the better fitted model.

‡ p1 and p2 are the p-values of the test statistics LR1n and LR2n respectively.
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Table 2. Estimated results for the best fitted model of each return series.
yt Fitted model Regime

USD/ARS AR-GARCH ——— ϕ0 = 0.0088 (0.0025) ϕ1 = −0.0838 (0.0193) ϕ2 = −0.1835 (0.0198)

α0 = 0.0044 (0.0004) α1 = 0.2857 (0.0192) β1 = 0.6754 (0.0161)

TAR-GARCH Rt = 1 ϕ0 = 0.0241 (0.0067) ϕ1 = −0.0476 (0.0398) ϕ2 = −0.2510 (0.0398)

α0 = 0.0203 (0.0017) α1 = 0.3018 (0.0392) β1 = 0.5656 (0.0344)

Rt = 0 ψ0 = 0.0041 (0.0026) ψ1 = −0.0639 (0.0201) ψ2 = −0.1714 (0.0176)

π0 = 0.0012 (0.0003) π1 = 0.2698 (0.0209) δ1 = 0.6924 (0.0208)

BAR-GARCH Rt = 1 ϕ0 = 0.0202 (0.0058) ϕ1 = −0.0016 (0.0404) ϕ2 = −0.2265 (0.0346)

α0 = 0.0154 (0.0014) α1 = 0.3911 (0.0418) β1 = 0.5734 (0.0314)

Rt = 0 ψ0 = 0.0036 (0.0026) ψ1 = −0.0821 (0.0198) ψ2 = −0.1759 (0.0180)

π0 = 0.0012 (0.0003) π1 = 0.2539 (0.0209) δ1 = 0.7005 (0.0213)

USD/BGN AR-GARCH ——— ϕ0 = −0.0154 (0.0059) ϕ1 = 0.2187 (0.0156) ϕ2 = −0.0325 (0.0145)

ϕ3 = 0.0029 (0.0132) ϕ4 = −0.0593 (0.0149)

α0 = 0.0016 (0.0003) α1 = 0.0379 (0.0040) β1 = 0.9554 (0.0043)

TAR-GARCH Rt = 1 ϕ0 = −0.0161 (0.0060) ϕ1 = 0.2195 (0.0185) ϕ2 = −0.0204 (0.0169)

ϕ3 = 0.0086 (0.0159) ϕ4 = −0.0511 (0.0157)

α0 = 0.0000 (0.0002) α1 = 0.0234(0.0037) β1 = 0.9758 (0.0037)

Rt = 0 ψ0 = 0.0334 (0.0208) ψ1 = 0.2492 (0.0459) ψ2 = −0.1679 (0.0462)

ψ3 = −0.1246 (0.0486) ψ4 = −0.0419 (0.0455)

π0 = 0.0189 (0.0031) π1 = 0.0487 (0.0104) δ1 = 0.8893 (0.0204)

BAR-GARCH Rt = 1 ϕ0 = −0.0151 (0.0062) ϕ1 = 0.2118 (0.0168) ϕ2 = −0.0121 (0.0168)

ϕ3 = 0.0129 (0.0165) ϕ4 = −0.0517 (0.0163)

α0 = 0.0001 (0.0002) α1 = 0.0206(0.0044) β1 = 0.9764 (0.0044)

Rt = 0 ψ0 = 0.0212 (0.0171) ψ1 = 0.2766 (0.0384) ψ2 = −0.1993 (0.0431)

ψ3 = −0.1152 (0.0416) ψ4 = −0.0350 (0.0363)

π0 = 0.0176 (0.0035) π1 = 0.0460 (0.0105) δ1 = 0.9030 (0.0205)

USD/PHP AR-GARCH ——— ϕ0 = −0.0125 (0.0049) ϕ1 = 0.0631 (0.0171) ϕ2 = −0.0812 (0.0163)

ϕ3 = 0.0512 (0.0163)

α0 = 0.0020 (0.0005) α1 = 0.0689(0.0081) β1 = 0.9177 (0.0097)

TAR-GARCH Rt = 1 ϕ0 = −0.0127 (0.0062) ϕ1 = 0.0791 (0.0262) ϕ2 = −0.0782 (0.0187)

ϕ3 = 0.0423 (0.0130)

α0 = 0.0009 (0.0005) α1 = 0.0698(0.0100) β1 = 0.9201 (0.0104)

Rt = 0 ψ0 = −0.0042 (0.0130) ψ1 = 0.0035 (0.0373) ψ2 = −0.0926 (0.0398)

ψ3 = 0.0731 (0.0384)

π0 = 0.0082 (0.0026) π1 = 0.0000 (0.0267) δ1 = 0.9559 (0.0460)

BAR-GARCH Rt = 1 ϕ0 = −0.0126 (0.0052) ϕ1 = 0.0791 (0.0188) ϕ2 = −0.0777 (0.0189)

ϕ3 = 0.0446 (0.0180)

α0 = 0.0007 (0.0005) α1 = 0.0729(0.0085) β1 = 0.9222 (0.0104)

Rt = 0 ψ0 = −0.0058 (0.0116) ψ1 = 0.0064 (0.0317) ψ2 = −0.0817 (0.0340)

ψ3 = 0.0676 (0.0330)

π0 = 0.0081 (0.0024) π1 = 0.0008 (0.0078) δ1 = 0.9453 (0.0251)
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yt Fitted model Regime

USD/PLN AR-GARCH ——— ϕ0 = −0.0280 (0.0091) ϕ1 = 0.2368 (0.0168) ϕ2 = −0.0287 (0.0176)

ϕ3 = −0.0115 (0.0167) ϕ4 = −0.0145 (0.0178)

α0 = 0.0050 (0.0009) α1 = 0.0620 (0.0061) β1 = 0.9306 (0.0064)

TAR-GARCH Rt = 1 ϕ0 = −0.0264 (0.0104) ϕ1 = 0.2109 (0.0223) ϕ2 = −0.0055 (0.0178)

ϕ3 = −0.0101 (0.0161) ϕ4 = 0.0022 (0.0164)

α0 = 0.0047 (0.0007) α1 = 0.0339 (0.0076) β1 = 0.9289 (0.0071)

Rt = 0 ψ0 = 0.0437 (0.0460) ψ1 = 0.2198 (0.0461) ψ2 = −0.1060 (0.0342)

ψ3 = −0.0057 (0.0420) ψ4 = −0.0840 (0.0367)

π0 = 0.0378 (0.0092) π1 = 0.0621 (0.0098) δ1 = 0.9379 (0.0223)

BAR-GARCH Rt = 1 ϕ0 = −0.0325 (0.0912) ϕ1 = 0.1949 (0.1087) ϕ2 = 0.0043 (0.1860)

ϕ3 = −0.0560 (0.2370) ϕ4 = −0.0063 (0.5004)

α0 = 0.0065 (0.0891) α1 = 0.0195 (0.1203) β1 = 0.9579 (0.4704)

Rt = 0 ψ0 = −0.0410 (0.1197) ψ1 = 0.2701 (0.5639) ψ2 = −0.0718 (0.0278)

ψ3 = 0.0600 (0.2954) ψ4 = −0.0420 (0.3987)

π0 = 0.0000 (0.0989) π1 = 0.0768 (0.0118) δ1 = 0.9232 (0.9632)

USD/RUB AR-GARCH ——— ϕ0 = −0.0130 (0.0035) ϕ1 = 0.2807 (0.0162)

α0 = 0.0005 (0.0001) α1 = 0.0687 (0.0063) β1 = 0.9313 (0.0061)

TAR-GARCH Rt = 1 ϕ0 = −0.0111 (0.0036) ϕ1 = 0.2702 (0.0178)

α0 = 0.0003 (0.0001) α1 = 0.0336(0.0055) β1 = 0.9575 (0.0048)

Rt = 0 ψ0 = −0.0722 (0.0536) ψ1 = 0.3497 (0.0711)

π0 = 0.0040 (0.0060) π1 = 0.1443 (0.0195) δ1 = 0.7254 (0.0361)

BAR-GARCH Rt = 1 ϕ0 = −0.0088 (0.0038) ϕ1 = 0.2766 (0.0202)

α0 = 0.0002 (0.0001) α1 = 0.0265(0.0055) β1 = 0.9626 (0.0048)

Rt = 0 ψ0 = −0.0123 (0.0114) ψ1 = 0.2768 (0.0291)

π0 = 0.0053 (0.0009) π1 = 0.1088 (0.0118) δ1 = 0.8791 (0.0130)

USD/TWD AR-GARCH ——— ϕ0 = 0.0001 (0.0031) ϕ1 = −0.0018 (0.0165) ϕ2 = −0.0801 (0.0174)

ϕ3 = −0.0409 (0.0171) ϕ4 = 0.0450 (0.0155) ϕ5 = 0.0214 (0.0165)

α0 = 0.0007 (0.0001) α1 = 0.0879(0.0070) β1 = 0.9121 (0.0062)

TAR-GARCH Rt = 1 ϕ0 = 0.0013 (0.0038) ϕ1 = 0.0105 (0.0253) ϕ2 = −0.0661 (0.0208)

ϕ3 = −0.0239 (0.0186) ϕ4 = 0.0227 (0.0167) ϕ5 = 0.0468 (0.0157)

α0 = 0.0003 (0.0001) α1 = 0.0712(0.0083) β1 = 0.9243 (0.0089)

Rt = 0 ψ0 = 0.0152 (0.0110) ψ1 = −0.0695 (0.0461) ψ2 = −0.1064 (0.0452)

ψ3 = −0.0184 (0.0482) ψ4 = 0.0797 (0.0365) ψ3 = −0.1455 (0.0459)

π0 = 0.0110 (0.0017) π1 = 0.1902 (0.0311) δ1 = 0.7587 (0.0407)

BAR-GARCH Rt = 1 ϕ0 = −0.0002 (0.0046) ϕ1 = 0.0132 (0.0265) ϕ2 = −0.0245 (0.0360)

ϕ3 = −0.0328 (0.0243) ϕ4 = 0.0300 (0.0235) ϕ5 = 0.0669 (0.0218)

α0 = 0.0008 (0.0005) α1 = 0.1348(0.0168) β1 = 0.8652 (0.0406)

Rt = 0 ψ0 = 0.0091 (0.0063) ψ1 = −0.0439 (0.0370) ψ2 = −0.1015 (0.0282)

ψ3 = −0.0192 (0.0243) ψ4 = 0.0218 (0.0211) ψ5 = −0.0284 (0.0320)

π0 = 0.0199 (0.0058) π1 = 0.2496 (0.0462) δ1 = 0.5678 (0.0934)

† The standard deviations in parentheses are calculated as in Bollerslev and Wooldridge (1992).
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Now we consider the parameter estimates of the best fitted models as shown in Table 2. For250

ease of comparison, we also compute the volatility persistence in each regime derived from these

models (see Table 3).

Table 3. Persistence measure in each regime derived from the best fitted models.
USD/ARS USD/BGN USD/PHP USD/PLN USD/RUB USD/TWD

AR-GARCH 0.9611 0.9933 0.9866 0.9926 1.0000 1.0000
TAR-GARCH Rt = 1 0.8674 0.9992 0.9899 0.9628 0.9911 0.9955

Rt = 0 0.9622 0.9380 0.9559 1.0000 0.8697 0.9489
BAR-GARCH Rt = 1 0.9645 0.9970 0.9951 0.9774 0.9891 1.0000

Rt = 0 0.9544 0.9490 0.9461 1.0000 0.9879 0.8174

It can be seen from Table 3 that there was a strong persistence in volatility in all these models,

with a slightly higher persistence in the lower regime in most exchange rates except the case of

USD/PLN where it had an explosive volatility in the upper regime. This might be because Poland255

is the only European country to have avoided the recession in the late 2000s (Buckley, 2012).

One may argue that as the BAR-GARCH model is nested within the three-regime TAR-

GARCH (denoted by 3R-TAR-GARCH) model, it is therefore interesting to see whether the

3R-TAR-GARCH model can give a better fit to our data sets than the BAR-GARCH model. Ta-

ble 4 shows the results of the best fitted 3R-TAR-GARCH model, which is obtained by using the

same estimation procedure for the BAR-GARCH model. We also calculate the LR test statistic

LR3n := LLFBAR-GARCH − LLF3R-TAR-GARCH

to test for the null hypothesis H30: the BAR-GARCH model against the alternative H31: the

3R-TAR-GARCH, and its p-value p3 = 1− Fk2(LR3n) with k2 = p+m+ s+ 2.

We can see from Table 4 that for the USD/BGN, USD/PLN and USD/TWD return series, their

best fitted 3R-TAR-GARCH models are simply their corresponding two-regime TAR-GARCH260

models. This indicates that a two-regime model is enough for these three series. For the other

three return series, the results of the likelihood ratio test reveal that, at the 5% significance level,

the BAR-GARCH model is superior to the 3R-TAR-GARCH model except the USD/ARS return

series. However, there are only nM = 21 observations in the middle regime of 3R-TAR-GARCH

model for the USD/ARS return series. In view of this, it is believed that the BAR-GARCH model265

is a plausible alternative to TAR-GARCH model.
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Table 4. Model selection results for 3-R-TAR-GARCH model in all six log-return series.
Log-return Series (×100)

USD/ARS USD/BGN USD/PHP USD/PLN USD/RUB USD/TWD
Orders p = 2 d = 5 p = 4 d = 7 p = 3 d = 5 p = 4 d = 1 p = 1 d = 1 p = 5 d = 7

m = 1 s = 1 m = 1 s = 1 m = 1 s = 1 m = 1 s = 1 m = 1 s = 1 m = 1 s = 1

Thresholds rL = −0.0838 rL = 0.5048 rL = 0.0886 rL = 0.4305 rL = 0.0038 rL = 0.1804

rR = −0.0761 rR = 0.5048 rR = 0.2129 rR = 0.4305 rR = 0.4202 rR = 0.1804

LLF† -4958.8 -1512.0 -2696.6 359.7 -2905.0 -3841.6
AIC -4916.8 -1476.0 -2648.6 395.7 -2869.0 -3801.6
BIC -4797.2 -1373.6 -2512.0 498.1 -2766.5 -3687.8
AICc -4958.3 -1511.7 -2696.1 360.0 -2904.7 -3841.2

LR test‡ 0.0000 — 0.0721 — 0.6538 —

#observations nL = 502 nL = 1949 nL = 1491 nL = 1751 nL = 1270 nL = 1861

nM = 21 nM = 0 nM = 262 nM = 0 nM = 700 nM = 0

nU = 1667 nU = 241 nU = 437 nU = 439 nU = 220 nU = 329

† The smaller value of LLF (AIC, BIC, or AICc), the better fitted model.

‡ The p-values the test statistic LR3n.

6. CONCLUDING REMARKS

This paper proposes a new BAR-GARCH model, which captures the buffering phenomenon

of time series in both conditional mean and variance. The empirical study on the six exchange

rates series shows that the BAR-GARCH model could provide a better fit than AR-GARCH and 270

TAR-GARCH models in most of cases. It is interesting to find that the buffer zone obtained in

these series can be interpreted as a normal region of the exchange rates so that possibly there is no

market intervention. All of our findings imply that the property of asymmetry, caused by a novel

buffered mechanism from BAR-GARCH model, should not be ignored. Due to the empirical

importance of the BAR-GARCH model, a theoretical exploration on its stationarity, estimation, 275

statistical inference and model-diagnostic, should be considered, and we leave it for a future

study.
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Fig. 1. The log-return (×100) of all six exchange rates.
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Fig. 2. The time points (represented by circles) in the lower outer regime (i.e., yt−d ≤ rL), the lower buffering

regime (i.e., rL < yt−d ≤ rU , Rt = 1), the upper buffering regime (i.e., rL < yt−d ≤ rU , Rt = 0), and the upper

outer regime (i.e., yt−d > rU ) of the BAR-GARCH model for USD/ARS return series are located at z = 0, z = 1,

z = 2, and z = 3, respectively. Here, every two consecutive time points are linked by a dotted line.
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Fig. 3. The time points (represented by circles) in the lower outer regime (i.e., yt−d ≤ rL), the lower buffering

regime (i.e., rL < yt−d ≤ rU , Rt = 1), the upper buffering regime (i.e., rL < yt−d ≤ rU , Rt = 0), and the upper

outer regime (i.e., yt−d > rU ) of the BAR-GARCH model for USD/BGN return series are located at z = 0, z = 1,

z = 2, and z = 3, respectively. Here, every two consecutive time points are linked by a dotted line.
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Fig. 4. The time points (represented by circles) in the lower outer regime (i.e., yt−d ≤ rL), the lower buffering

regime (i.e., rL < yt−d ≤ rU , Rt = 1), the upper buffering regime (i.e., rL < yt−d ≤ rU , Rt = 0), and the upper

outer regime (i.e., yt−d > rU ) of the BAR-GARCH model for USD/PHP return series are located at z = 0, z = 1,

z = 2, and z = 3, respectively. Here, every two consecutive time points are linked by a dotted line.
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Fig. 5. The time points (represented by circles) in the lower outer regime (i.e., yt−d ≤ rL), the lower buffering

regime (i.e., rL < yt−d ≤ rU , Rt = 1), the upper buffering regime (i.e., rL < yt−d ≤ rU , Rt = 0), and the upper

outer regime (i.e., yt−d > rU ) of the BAR-GARCH model for USD/PLN return series are located at z = 0, z = 1,

z = 2, and z = 3, respectively. Here, every two consecutive time points are linked by a dotted line.
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Fig. 6. The time points (represented by circles) in the lower outer regime (i.e., yt−d ≤ rL), the lower buffering

regime (i.e., rL < yt−d ≤ rU , Rt = 1), the upper buffering regime (i.e., rL < yt−d ≤ rU , Rt = 0), and the upper

outer regime (i.e., yt−d > rU ) of the BAR-GARCH model for USD/RUB return series are located at z = 0, z = 1,

z = 2, and z = 3, respectively. Here, every two consecutive time points are linked by a dotted line.
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Fig. 7. The time points (represented by circles) in the lower outer regime (i.e., yt−d ≤ rL), the lower buffering

regime (i.e., rL < yt−d ≤ rU , Rt = 1), the upper buffering regime (i.e., rL < yt−d ≤ rU , Rt = 0), and the upper

outer regime (i.e., yt−d > rU ) of the BAR-GARCH model for USD/TWD return series are located at z = 0, z = 1,

z = 2, and z = 3, respectively. Here, every two consecutive time points are linked by a dotted line.


