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Abstract 

It is widely recognised that environmental health services and interventions operate in dynamically 

complex systems. Environmental health researchers and practitioners work to solve complex 

problems yet continue to favour methods that eschew the concept of complexity. Conventional 

quantitative risk assessment methods used in environmental health, while valuable, are often based 

on studies that examine the effects of individual environmental hazards in isolation. They do not 

examine a system that leads to adverse environmental health outcomes, such as disease outbreaks. 

In this research, I explored the applicability of participatory system dynamic modelling as a means 

of assisting environmental health decision-makers in the management of dynamically complex 

infectious diseases. Using cryptosporidiosis in South East Queensland as a case study, I applied 

system dynamic modelling techniques to explore the population-level drivers of Cryptosporidium 

transmission in the study area, with a particular focus on the role of public aquatic facilities (i.e. 

public swimming pools).  

This research was conducted in three stages. This first involved an extensive review of the literature 

on complexity and environmental health service delivery, decision-making for complex 

environmental health problems, and system dynamic modelling. This review highlighted current 

challenges environmental health decision-makers face when developing policies and interventions 

and identified ways in which system dynamic models can assist in overcoming some of these.   

The second stage involved a participatory system modelling exercise, informed by a series of 

stakeholder consultation workshops and interviews. This process identified a series of 

interconnected drivers and barriers to Cryptosporidium transmission in South East Queensland and 

emphasised the often-overlooked role of the primary health care sector, as well as overseas travel, 

in local transmission dynamics. It also uncovered multiple interconnected feedback loops within the 

system that cross sectoral boundaries, highlighting the need for multisectoral collaboration to 

address Cryptosporidium outbreaks. These feedback loops were captured in a causal loop diagram.  

Lastly, a quantitative system dynamic model was constructed to simulate the relationships identified 

in the participatory system modelling exercise, and empirically test a range of policy options to 

improve the management of cryptosporidiosis in the study area. The modelling process identified 

several policy-relevant insights, including (1) unclear guidelines for the management of disease risk 

associated with swimming pool water, (2) the non-cyclic nature of a seemingly cyclical pattern of 
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cryptosporidiosis notifications, and, (3) the relative effectiveness of primary versus secondary 

outbreak prevention strategies in the overall management of cryptosporidiosis.    

The implications and contributions of this study are two-fold. The insights mentioned above call 

into question many commonly held assumptions about community-level Cryptosporidium 

transmission dynamics. From a local perspective, the model provides a platform for stakeholders 

and decision-makers to tests these assumptions in a locally-relevant context. It also uncovered 

previously unexplored leverage points within the system, particularly those related to the primary 

healthcare sector that can be used to improve the management of cryptosporidiosis. More broadly, 

this research contributes to the body of evidence supporting the benefits of applying system 

dynamic modelling to understand and manage complex environmental health problems.  

 



 

iii 

Declaration by author 

This thesis is composed of my original work, and contains no material previously published or 

written by another person except where due reference has been made in the text. I have clearly 

stated the contribution by others to jointly-authored works that I have included in my thesis. 

 

I have clearly stated the contribution of others to my thesis as a whole, including statistical 

assistance, survey design, data analysis, significant technical procedures, professional editorial 

advice, financial support and any other original research work used or reported in my thesis. The 

content of my thesis is the result of work I have carried out since the commencement of my higher 

degree by research candidature and does not include a substantial part of work that has been 

submitted to qualify for the award of any other degree or diploma in any university or other tertiary 

institution. I have clearly stated which parts of my thesis, if any, have been submitted to qualify for 

another award. 

 

I acknowledge that an electronic copy of my thesis must be lodged with the University Library and, 

subject to the policy and procedures of The University of Queensland, the thesis be made available 

for research and study in accordance with the Copyright Act 1968 unless a period of embargo has 

been approved by the Dean of the Graduate School.  

 

I acknowledge that copyright of all material contained in my thesis resides with the copyright 

holder(s) of that material. Where appropriate I have obtained copyright permission from the 

copyright holder to reproduce material in this thesis and have sought permission from co-authors for 

any jointly authored works included in the thesis. 

 



 

iv 

Publications during candidature 

Currie, DJ., Smith, C., Jagals, P. (2018) The application of system dynamics modelling to 

environmental health decision-making and policy - a scoping review., BMC Public Health  

 

Currie, DJ. (2018) Aquatic Facilities and Cryptosporidium: Exploring the Bigger Picture using 

participatory systems modelling – Oral Presentation at Public Health Australia’s Public Health 

Prevention Conference. Sydney, Australia  

 

Currie, DJ. (2017) System dynamics modelling to support environmental health decision-making: 

the case of cryptosporidiosis in Queensland, Australia, - Plenary presentation at the 18th Annual 

PhD Colloquium of the Student Chapter of the System Dynamics Society. Boston, USA 

 

Currie DJ, Smith C, Knibbs L, Reid S (2017) Participatory system dynamics as a tool for 

knowledge mobilization in environmental health, - Poster presentation at the 29th Annual Scientific 

Conference of the International Society of Environmental Epidemiology, Boston, USA 

 

Hall, N., Barbosa, M. C., Currie, D., et al. (2017). Water, sanitation and hygiene in remote 

Indigenous Australian communities: a scan of priorities. Global Change Institute discussion paper: 

water for equity and wellbeing series 2207-9602, Global Change Institute, The University of 

Queensland, Brisbane. 

 

Hall, N., Acosta Jaramillo, C.M., Jagals, P., Currie, D., et al. (2016) Strengthening community 

participation in meeting UN Sustainable Development Goal 6 for water, sanitation and hygiene, 

Global Change Institute Working Paper, The University of Queensland, Brisbane 

 

Publications included in this thesis 

 

No publications included 

 

Contributions by others to the thesis  

 

No contributions by others 

 

 



 

v 

Statement of parts of the thesis submitted to qualify for the award of another degree 

 

None 

 

Research Involving Human or Animal Subjects  

Ethical approval to conduct this research was obtained from Queensland Health’s Royal Brisbane 

and Women’s Hospital Human Research and Ethics Committee (approval number: 

HREC/16/QRBW/509) and the University of Queensland’s Human Research and Ethics Committee 

(approval number: 2016001630). Copies of the approval letters can be found in Appendix C: 

Human Ethics Approval Letters. 

 



 

vi 

Acknowledgements 

The 4-year journey that has culminated in this thesis has been one of the most challenging, but also 

rewarding, experiences of my life. I wish to acknowledge the support and guidance of the many 

people who have made it possible. I also wish to acknowledge The University of Queensland and 

the Government of Australia for providing the funding that enabled me to pursue this PhD. 

Firstly, I would like to thank my supervisory team, Dr Simon Reid, Dr Carl Smith and Dr Luke 

Knibbs. Your guidance, feedback, enthusiasm and unwavering support has been invaluable and 

very much appreciated. I truly could not imagine a better set of mentors. To Simon and Luke, a 

special thank you for taking a chance on me when I showed up at your doors mid-way through this 

journey.  To Carl, thank you for not only opening my eyes to the world of system dynamics, but 

also for always believing I could do this even when I didn’t quite believe it myself.  

To Dr Paul Jagals, whose early support helped lay the foundation that became this project. Thank 

you for introducing me to the world of environmental health.  

To Dr Greg Jackson, the entire Water Unit at Queensland Health, and all the other experts I worked 

with over the course of this project. Thank you for taking the time to share your knowledge and 

expertise with me. It is your expertise that sits at the centre of this work, and without you this 

research would never have been possible.  

To all my fellow students who have passed through room 120. Thank you for you feedback, 

support, and of course, friendship. A special thank you to Dwan for your encouragement, humour, 

and most importantly, for putting up with endless discussions of ‘accidental faecal releases’. I’m not 

sure I could have done this without you.  

To my family, my deepest gratitude is due. To my parents David and Madelaine, my parents-in-law 

Rosemary O’Brien and Jennifer Oades and my brother Philippe. Your love, support, and persistent 

encouragement to never stop learning has spurred me on throughout this journey. Also, to my late 

father-in-law Brendan Reynolds, who knew just how to crack a poo-joke when things got stressful. 

This is for all of you.   

And finally, to partner Sarah, who has had to live with me through all the highs and lows that took 

me to get here. Thank you for your love, patience, and tireless support. Thank you for joining me on 

this crazy journey. You are my world.  

 



 

vii 

Financial support 

This research was supported by an Australian Government Research Training Program Scholarship. 

 

Keywords 

 

environmental health; systems thinking, system dynamics, complex systems, decision support 

systems, simulation, infectious diseases, Cryptosporidium  

 

Australian and New Zealand Standard Research Classifications (ANZSRC) 

 

ANZSRC code: 111705, Environmental and Occupational Health and Safety 40% 

ANZSRC code: 080605 Decision Support and Group Support Systems, 40% 

ANZSRC code: 160508 Health Policy, 20% 

 

Fields of Research (FoR) Classification 

 

FoR code: 1117 Public Health and Health Services, 60% 

FoR code: 0806 Information Systems, 40% 

  



 

viii 

Abbreviations and Acronyms 

Term Meaning 

AFR Accidental Faecal Release 

AR Action research 

CLD Causal loop diagram 

EH Environmental health 

NCOS Notifiable Conditions System  

NHMRC National Health of Medical Research Council  

NSW New South Wales  

ODE Ordinary differential equations 

PAF Public Aquatic Facility 

PCR Polymerase chain reaction 

PHU Public Health Unit 

PMB Participatory model building 

QH Queensland Heath 

QLD Queensland 

RWI Recreational water illnesses 

SD System dynamics 

SEQ South East Queensland 

WHO World Health Organisation 

  

  

  

  

  



 

ix 

 Table of Contents 

Chapter 1. Introduction .................................................................................................................... 1 
 Background .............................................................................................................. 1 
 Study Rationale ....................................................................................................... 2 
 Case Study Introduction .......................................................................................... 2 
 Research Aims and Objectives ................................................................................ 3 
 Study Design ........................................................................................................... 4 
 Overall Contribution of the Research ...................................................................... 5 
 Thesis Structure ....................................................................................................... 5 

Chapter 2. Literature Review ........................................................................................................... 7 
 Complexity in Environmental Health ...................................................................... 7 

2.1.1. Environmental Health Practice ........................................................................... 7 
2.1.2. Infectious disease management within environmental health ............................. 8 
2.1.3. Complex systems .............................................................................................. 10 
2.1.4. Environmental health problems as complex systems problems ........................ 11 
 Decision-making for complex problems under uncertainty .................................. 13 

2.2.1. Decision support tools in Environmental Health .............................................. 15 
 System dynamics modelling for EH decision-making .......................................... 20 

2.3.1. Theoretical basis of systems thinking ............................................................... 20 
2.3.2. Principles of systems thinking .......................................................................... 21 
2.3.3. System dynamics approach ............................................................................... 22 
2.3.4. Key concepts in system dynamics .................................................................... 23 
2.3.5. System Dynamics for Environmental Health Decision-making ....................... 25 
 Summary ................................................................................................................ 27 

Chapter 3. Case Study Background ............................................................................................... 28 
 Cryptosporidium spp. as infectious agents ............................................................ 28 

3.1.1. Taxonomy ......................................................................................................... 28 
3.1.2. Transmission ..................................................................................................... 29 
 Symptoms and management of cryptosporidiosis ................................................. 34 

3.2.1. Healthcare-related behaviours ........................................................................... 35 
3.2.2. Diagnostic Methods .......................................................................................... 37 
3.2.3. Cryptosporidiosis and international travel ........................................................ 37 
3.2.4. Cryptosporidiosis and weather, climate, and seasonality ................................. 38 
3.2.5. Cryptosporidiosis management ......................................................................... 40 
 Case Study – Cryptosporidiosis in South East Queensland .................................. 43 

3.3.1. Location of Study .............................................................................................. 43 
3.3.2. Population ......................................................................................................... 44 
3.3.3. Cryptosporidiosis in South East Queensland .................................................... 45 
3.3.4. Risk Factors....................................................................................................... 46 
 Cryptosporidiosis in South East Queensland as a complex environmental health 

problem .................................................................................................................. 52 
 Summary ................................................................................................................ 54 



 

x 

Chapter 4. Methodology and Methods .......................................................................................... 55 
 Theoretical approach and justification .................................................................. 55 

4.1.1. System Dynamics Modelling ............................................................................ 56 
4.1.2. Action Research ................................................................................................ 61 
 Research approach – Participatory model building ............................................... 64 

4.2.1. Method overview .............................................................................................. 64 
4.2.2. Data collection .................................................................................................. 65 
4.2.3. Data Analysis .................................................................................................... 67 

Chapter 5. Conceptualizing the Problem Using Causal Loop Modelling ................................... 69 
 Problem structuring ............................................................................................... 69 

5.1.1. Reference mode ................................................................................................. 69 
5.1.2. Problem Articulation ......................................................................................... 70 
5.1.3. Model scope and boundary ............................................................................... 71 
 Causal loop modelling – development of a dynamic hypothesis .......................... 73 

5.2.1. Analysis of the cryptosporidiosis conceptual model ......................................... 75 
 Initial insights from causal loop diagrams ............................................................. 84 
 Conclusion ............................................................................................................. 89 

Chapter 6. Design, testing and validation of a system dynamics model of cryptosporidiosis 
dynamics in South East Queensland ........................................................................... 90 
 Introduction ........................................................................................................... 90 
 Model set-up and constraints ................................................................................. 92 
 Model structure ...................................................................................................... 94 

6.3.1. Population (SIER) Sector (Sector 1) ................................................................. 95 
6.3.2. Secondary Transmission Sector (Sector 2) ..................................................... 101 
6.3.3. Healthcare Sector (Sector 3) ........................................................................... 102 
6.3.4. Public Aquatic Facility Sector (Sector 4) ....................................................... 109 
6.3.5. Imported Cases Sector (Sector 5) .................................................................... 125 
6.3.6. Public Health Sector (Sector 6) ....................................................................... 129 
 Model Parameters ................................................................................................ 132 

6.4.1. Parameterising variable or uncertain parameters ............................................ 132 
6.4.2. Input Variables used in the Model .................................................................. 135 
6.4.3. Framework for model parameters ................................................................... 140 
 Model Validation ................................................................................................. 142 

6.5.1. Boundary Adequacy ........................................................................................ 142 
6.5.2. Dimensional Consistency ................................................................................ 143 
6.5.3. Structural Assessment ..................................................................................... 143 
6.5.4. Extreme Conditions test .................................................................................. 144 
6.5.5. Period Comparison .......................................................................................... 145 
6.5.6. Trend Analysis, Discrepancy Coefficient and Family Member Test .............. 147 

Chapter 7. Risk-management strategies for Cryptosporidium transmission in South East 
Queensland .................................................................................................................. 151 
 Sensitivity Analysis ............................................................................................. 151 

7.1.1. The Base Case ................................................................................................. 154 
7.1.2. Results of sensitivity analysis ......................................................................... 158 



 

xi 

7.1.3. Combined contribution of model sectors ........................................................ 162 
 Policy Analysis .................................................................................................... 164 

7.2.1. Scenario development ..................................................................................... 164 
 Insights and policy implications .......................................................................... 175 
 Summary .............................................................................................................. 187 

Chapter 8. Conclusions ................................................................................................................. 189 
 Key findings in response to research questions ................................................... 189 
 Limitations and suggestions for future research .................................................. 193 

References   ............................................................................................................................. 196 

Appendix A: Loop breakdown in causal loop diagram .............................................................. 209 

Appendix B: Model Parameters and Equations ......................................................................... 214 

Appendix C: Human Ethics Approval Letters ............................................................................ 235 
 

  



 

xii 

List of Figures 

Figure 2.1: Framework of environmental drivers of infectious disease (source: Eisenberg et al. 
(2007)) .............................................................................................................................. 9 

Figure 2.2: Example of the hierarchical organisation of ecosystems (adapted from (Reuter et al., 
2010)) ............................................................................................................................. 12 

Figure 2.3: Role of decision-support tools in the decision-making process ...................................... 15 

Figure 2.4: The classic toxicological paradigm ................................................................................. 17 

Figure 2.5: Positive (reinforcing) and negative (balancing) feedback loops ..................................... 24 

Figure 3.1: Primary transmission pathways of Cryptosporidium ...................................................... 29 

Figure 3.2: Surveillance pyramid for cryptosporidiosis, included factors influencing ascertainment.
 ........................................................................................................................................ 36 

Figure 3.3: Total weekly number of cryptosporidiosis notifications in Australia by state or territory, 
2001-2012 (reprinted from Lal et al. (2015)) ................................................................. 39 

Figure 3.4 Study Area as defined by the Queensland Ministry of Health’s Hospital and Health 
Services boundaries ........................................................................................................ 44 

Figure 3.5: Estimated Resident Population by Age, South East Queensland, 2010 and 2015 
(Australian Bureau of Statistics, 2015b) ........................................................................ 44 

Figure 3.6: Weekly cryptosporidiosis notifications in the three PHU Regions of the study area 
(2007-2017) .................................................................................................................... 45 

Figure 3.7: Mean monthly cryptosporidiosis notifications in South East Queensland by age group 
and region (2007-2017) .................................................................................................. 46 

Figure 3.8: Monthly passenger arrivals at Brisbane International Airport and Gold Coast 
International Airport, 2009-2017(Australian Department of Infrastructure Regional 
Development and Cities, 2018) ...................................................................................... 50 

Figure 3.9: Percent of Queensland residents returning from short-term overseas travel, by age and 
destination-related Cryptosporidium transmission risk, July 2007 – 2017 (Australian 
Bureau of Statistics, 2017) ............................................................................................. 50 

Figure 3.10: Queensland residents returning from short-term overseas travel to high-risk 
destinations, by sub-region of travel, July 2007 – 2017 (Australian Bureau of Statistics, 
2017) ............................................................................................................................... 51 

Figure 4.1: Model building process according to Maani and Cavana (2007) .................................... 56 

Figure 4.2: Symbols used as part of the system dynamics modelling process .................................. 59 

Figure 4.3: The cyclical process of action research (adapted from Susman and Evered (1978)) ...... 62 

Figure 4.4: Stages of the participatory model-building approach used in this research project 
(adapted from (Maani and Cavana, 2007)) ..................................................................... 64 



 

xiii 

Figure 4.5: Hierarchy of data and evidence used to parameterize the simulation model .................. 68 

Figure 5.1: Reference mode - Weekly notifications of cryptosporidiosis to the NCOS by PHU 
region, July 2007-2017 ................................................................................................... 70 

Figure 5.2: Subsystem diagram of the overall system structure of cryptosporidiosis in South East 
Queensland ..................................................................................................................... 72 

Figure 5.3: Combined causal loop diagram of cryptosporidiosis dynamics in South East Queensland
 ........................................................................................................................................ 74 

Figure 5.4: Person-to-person transmission loop (R1) and public aquatic facility transmission loop 
(R2) ................................................................................................................................. 75 

Figure 5.5: Use of healthcare services (loop B1 and loop B2) .......................................................... 76 

Figure 5.6 Public Messaging campaigns (loop B3) ........................................................................... 77 

Figure 5.7: Community awareness of crypto following public messaging campaigns leading to 
community members avoiding pools (Loop B7) ............................................................ 78 

Figure 5.8: Messaging directed at primary healthcare providers (loop R3 and loop B4) .................. 79 

Figure 5.9: Swimming pool hyperchlorination at the request of the Public Health Service (loop B5)
 ........................................................................................................................................ 80 

Figure 5.10: Swimming pool hyperchlorination at the request of a patron (loop B6) ....................... 81 

Figure 5.11: Media-driven public awareness (loop B8) and policy change (loop B9) ...................... 82 

Figure 5.12: Training and staff knowledge and experience (loop B10) and financial disincentive to 
close pool for hyperchlorination (loop B11) .................................................................. 83 

Figure 5.13: Drifting goals archetype – Outrage-driven action ......................................................... 87 

Figure 5.14: Growth and underinvestment archetype - Impact of situational awareness .................. 88 

Figure 6.1: Outline of causal structures included in the system dynamics simulation model. .......... 91 

Figure 6.2: Example of three parallel stock and flow structures encapsulated within a single arrayed 
stock and flow structure. ................................................................................................. 93 

Figure 6.3: High-level model structure .............................................................................................. 95 

Figure 6.4: Stock and flow structure of the Population Sector .......................................................... 96 

Figure 6.5: Stock and flow structure of the Secondary Transmission Sector .................................. 101 

Figure 6.6: Structure of the stock and flow model in the Healthcare Sector ................................... 103 

Figure 6.7: Structure used to model the number of symptomatic infectious people who go to the 
doctor ............................................................................................................................ 104 



 

xiv 

Figure 6.8: Estimated effect of the treatment-seeking delay on the dynamics of the number of 
people  5+ years old with crypto at the doctor in Metro North (day 500-800) ............ 104 

Figure 6.9: Stock and flow structure used to model the fraction of symptomatic infectious people 
who get their faeces tested for Cryptosporidium. ......................................................... 105 

Figure 6.10: Graphical function of the Testing Transition (TT) Variables ..................................... 106 

Figure 6.11: Structure used to model the number of symptomatic infectious people that have been 
made aware of their transmission risk by their doctor ................................................. 107 

Figure 6.12: Stock and Flow diagram depicting the complete Public Aquatic Facility (PAF) Secto
 ...................................................................................................................................... 111 

Figure 6.13: Stock and flow structure illustrating the division of infectious swimmers into large and 
small pools. ................................................................................................................... 112 

Figure 6.14: Stock and flow diagram depicting proportion of infectious people who swim on any 
given day ...................................................................................................................... 113 

Figure 6.15: Stock and flow structure depicting PAF-led messaging.............................................. 114 

Figure 6.16: Stock and flow diagram illustrating the mechanisms used to calculate the frequency 
and size of AFRs per pool per day ............................................................................... 115 

Figure 6.17: Stock and flow diagram illustrating the mechanisms associated with infectious bathers 
shedding faeces containing Cryptosporidium oocytes into the swimming pool .......... 116 

Figure 6.18: Stock and flow diagram illustrating the mechanisms of contamination and 
decontamination in the large pool ................................................................................ 118 

Figure 6.19: Modelled behaviour of ‘oocytes in large pool’ stock in relation to standard inactivation 
(left), reactionary hyperchlorination (centre) and routine hyperchlorination (right) 
[Metro North, LP4] ....................................................................................................... 119 

Figure 6.20: Stock and flow structure of the Healthy Swimmers module ....................................... 120 

Figure 6.21: Stock and flow structure illustrating the mechanisms for establishing risk of infection 
per person per swim given the estimated concentration of oocytes in each pool ......... 122 

Figure 6.22: Stock and flow structure illustrating the process of susceptible swimmers becoming 
infected through contact with PAFs. ............................................................................ 123 

Figure 6.23: Structure of the stock and flow model in the Imported Cases Sector ......................... 126 

Figure 6.24: Number of ‘daily departures’ for persons 0-4 years old (left) and persons 5+ years old 
(right) over the period of July 1, 2007 to July 1, 2017. (Source: (Australian Bureau of 
Statistics, 2017)) ........................................................................................................... 127 

Figure 6.25: Ratio of travellers returning from low-risk and high-risk countries for persons 0-4 
years old (left) and persons 5+ years old (right) over time .......................................... 128 

Figure 6.26: Structure of the stock and flow model in the Public Health Sector ............................. 129 



 

xv 

Figure 6.27: Stock and flow structure describing preventative public health messaging campaigns
 ...................................................................................................................................... 131 

Figure 6.28: Period comparison of correlograms of actual and predicted (modelled) weekly 
cryptosporidiosis notifications in South East Queensland (95% confidence bands shown 
in grey) .......................................................................................................................... 146 

Figure 6.29: Trend Analysis - Daily Cryptosporidiosis notifications in South East Queensland 
(initial base case) .......................................................................................................... 147 

Figure 6.30: Trend Analysis - Daily Cryptosporidiosis notifications in South East Queensland 
(updated base case with 5% reduction in healthcare seeking fraction) ........................ 148 

Figure 6.31: Trend Analysis - Daily Cryptosporidiosis notifications in Metro North PHU (final base 
case) .............................................................................................................................. 149 

Figure 6.32: Trend Analysis - Daily Cryptosporidiosis notifications in Metro South PHU (final base 
case) .............................................................................................................................. 149 

Figure 6.33: Trend Analysis - Daily Cryptosporidiosis notifications in Gold Coast PHU (final base 
case) .............................................................................................................................. 150 

Figure 7.1: Behaviour pattern measures used for the sensitivity analysis ....................................... 153 

Figure 7.2: Daily new infectious cases in South East Queensland, by source of exposure. ............ 156 

Figure 7.3: Results of sensitivity analysis on cryptosporidiosis notifications in South East 
Queensland ................................................................................................................... 160 

Figure 7.4: Predicted effect of installing 3-log secondary disinfection systems in only high-risk 
swimming pool or all large pools on new cryptosporidiosis cases attributed to all small 
and large swimming pools in SEQ ............................................................................... 161 

Figure 7.5: The sensitivity of daily number of cryptosporidiosis notification to changes in the daily 
number of new secondary infections ............................................................................ 162 

Figure 7.6 Sensitivity of daily number of cryptosporidiosis notification to changes in the daily 
number of new overseas-acquired infections (OAIs) entering the community. ........... 163 

Figure 7.7: Sensitivity of daily number of cryptosporidiosis notification to changes in the daily 
number of new infections originating from Public Aquatic Centres (PAF). ................ 164 

Figure 7.8: Cumulative total number of cryptosporidiosis notifications over the study period (2007-
2017) under each policy scenario ................................................................................. 169 

Figure 7.9: Performance of each scenario, measured in percent difference from base case (a smaller 
polygon indicates greater reduction across the five measures) .................................... 173 

Figure 7.10: Generic structure of overshoot and collapse behaviour (source: Breierova (1997)) ... 177 

Figure 7.11: Simplified risk-based water management framework (source: Fewtrell and Bartram 
(2001)) .......................................................................................................................... 183 

 



 

xvi 

List of Tables 
Table 1.1: Outline of thesis structure ................................................................................................... 6 

Table 2.1: Advantages and disadvantages of model-based decision support systems ....................... 19 

Table 3.1: Adults (18 years+) who reported swimming in the last week, 2012 (source: (Australian 
Bureau of Statistics, 2012a)) .......................................................................................... 47 

Table 3.2: Number of adults in South East Queensland* who report caring for (unpaid) one or more 
children in the last two weeks, 2011 (source: (Australian Bureau of Statistics, 2011)) . 49 

Table 3.3: Primary source of drinking water by location of primary dwelling, 2012 (source: 
(Australian Bureau of Statistics, 2012a)) ....................................................................... 51 

Table 4.1: Stakeholders (by industry) who participated in the workshops and interviews ............... 66 

Table 5.1: Stakeholder-identified challenges to cryptosporidiosis prevention efforts in South East 
Queensland communities ................................................................................................ 71 

Table 6.1: Variables used in the ordinary differential equations to describe the dynamics of the 
population Sector ............................................................................................................ 99 

Table 6.2: Volume of pools contained in the large and small pool arrays ....................................... 110 

Table 6.3: Value of model input variables ....................................................................................... 136 

Table 6.4: 3 x 2 matrix used to classify model parameters .............................................................. 140 

Table 6.5: Characterization of parameters used in each sector of the model ................................... 141 

Table 6.6: Mean daily values for extreme conditions test ............................................................... 145 

Table 7.1: Parameter values used in the base case scenario ............................................................ 154 

Table 7.2: Results of the sensitivity analysis measure under the ‘base-case’ scenario for the 
cryptosporidiosis in Queensland system dynamic model. ............................................ 155 

Table 7.3: Simulated cumulative count of days spent in each of the four NHMRC recreational water 
quality microbial risk criteria categories, for large and small pools under ‘base case’ 
conditions, by PHU region ........................................................................................... 157 

Table 7.4: Simulated water-related infections per 10,000 population per year under 'base case' 
conditions, by PHU region ........................................................................................... 157 

Table 7.5: Model parameters used for each policy scenario ............................................................ 166 

Table 7.6: Scenario priority based on days above the non-outbreak mean ...................................... 170 

Table 7.7: Scenario priority based on outbreak intensity (amplitude) ............................................. 170 

Table 7.8: Scenario priority based on outbreak duration (period) ................................................... 171 

Table 7.9: Scenario priority based on total number of outbreaks .................................................... 172 



 

xvii 

Table 7.10: Overall scenario priority based on ‘impact effect’ (total combined percent difference 
across all five criteria) .................................................................................................. 174 

Table 7.11: Overall scenario priority based on ‘impact symmetry’ (relative performance of each 
scenario compared to the best performing scenario) .................................................... 175 

  



 

1 

Chapter 1. Introduction 

 Background 

The environment plays a key role in the health and wellbeing of people around the world, with an 

estimated one-quarter of the global burden of disease in adults, and one-third in children, attributed 

to modifiable environmental factors (Prüss-Ürsün and Corvalán, 2006). Managing the 

environmental drivers of health is challenging at the best of times. Environment-and-health 

relationships are complex, non-linear, unstable, and difficult to define. While, in the past, 

environmental health management has focused primarily on understanding, and subsequently 

managing risk associated with single cause-effect relationships, current knowledge points to the 

need to adopt a much more integrated approach. This approach must account for a number of 

interrelated social, behavioural, economic, technological and climatic factors, all of which can 

influence the way the environment impacts health and wellbeing (Institute of Medicine, 2009).  

A gap remains between the conceptual understanding of environmental health problems as 

dynamically complex phenomena and the methods and tools needed to integrate that understanding 

into the design, development, implementation and evaluation of policies and interventions. 

Commonly used risk assessment frameworks do not capture the complexity of environmental 

health-related infectious disease problems, nor do they provide a clear way forward for practitioners 

and decision-makers to act upon their findings (Briggs et al., 2009). System dynamics, a computer-

based modelling approach that focuses on seeking the root causes of problematic behaviour within 

complex systems, is a potentially promising approach to investigate systemic problems related to 

environmental health service delivery. Unlike many commonly used modelling techniques that rely 

on statistical correlation to provide decision makers with point-estimate prediction, system 

dynamics models instead help users identify and quantify causal structures and relationships within 

a system, with the goal of improving the users’ overall understanding (i.e. mental model) of system 

behaviour. Doing so helps identify key leverage points within systems, which can be of great use 

when trying to improve the effectiveness of a system. While there has been limited application of 

system dynamics to investigate complex problems in the context of environmental health decision-

making, it has shown to be a successful approach for improving our understanding of complex 

health problems. 

Using cryptosporidiosis in South East Queensland (SEQ) as a case study, this project explores the 

use of participatory system dynamics to help decision makers gain a better understanding of the 

complex system behaviours that create and sustain complex environmental health problems. This 
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improved understanding can be used to design more effective strategies based on leverage points 

within the system, which in turn has the potential to lead to improved population health outcomes 

 Study Rationale 

System dynamics (SD) modelling, as part of the broader systems thinking approach, is being 

advocated by organisations such as the World Health Organisation as a tool to support health-

related decision-making processes by strengthening decision-makers’ and stakeholders’ 

understanding of the underlying causes of complex problems and identifying leverage points for the 

development of effective policies (Savigny, 2009). The complex and dynamic nature of 

environmental health issues make them ideal candidates for analysis using system dynamics 

modelling, yet there has currently been only limited application within the field of environmental 

health.  Given the success of SD in a range of fields from ecology to economics (Sterman, 2001), 

this research intends to explore whether or not it can be successfully applied in the field of 

environmental health, using cryptosporidiosis in South East Queensland as a case study. 

 Case Study Introduction 

Cryptosporidiosis, caused by the enteric protozoa Cryptosporidium, is one of the most common 

causes of diarrhoeal disease worldwide, with increasing prevalence in high income countries (Snel 

et al., 2009). It has been estimated that up to 20% of cases of childhood diarrhoea in high income 

countries is caused by infection with Cryptosporidium (Mosier and Oberst, 2000). The prediction, 

management and prevention of cryptosporidiosis outbreaks is extremely difficult and complex due 

to a number of factors including its multiple transmission pathways, its persistence in the 

environment, and its extended asymptomatic infectious period (Rossle and Latif, 2013). 

While most attempts to model cryptosporidiosis transmission have focussed on contaminated 

drinking water (Casman et al., 2000, Brookhart et al., 2002, Okhmatovskaia et al., 2010, Perz et al., 

1998), contaminated recreational water, and in particular swimming pools, is widely recognised as a 

major source of transmission (Lam et al., 2014). Swimming pools are thought to be a major source 

of Cryptosporidium associated with outbreaks due several factors.  These include the  exposure of 

large numbers of people who immerse themselves and swallow water (Schoefer et al., 2008), the 

resistance of Cryptosporidium oocytes to chemical disinfectants and the small size of the organism 

that allows it to bypass many filtration systems (Centers for Disease Control and Prevention, 2001).  

In addition, the poor hygiene practices of swimmers (Yoder et al., 2008), high levels of oocytes in a 

stool, a low infectious dose, and the continued excretion of oocytes in asymptomatic individuals and 

individuals whose diarrhoea has been resolved (Desai et al., 2012) also contribute. 
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In Australia, there have been a number of cryptosporidiosis outbreaks, many of which have been 

linked to swimming pools (Paterson and Goldthorpe, 2006, Black and McAnulty, 2006, Hellard et 

al., 2000a, Puech et al., 2001, Stafford et al., 2000, Lemmon et al., 1996, Mayne et al., 2011, Ng-

Hublin et al., 2015). Sporadic cases of cryptosporidiosis  have also been linked to the consumption 

of unpasteurized milk (Harper et al., 2002), contact with infected animals (Ng et al., 2008, Ashbolt 

et al., 2003) and attendance at childcare centres (Government of Australia, 2005).  

In response to the increasing number of pool-related cryptosporidiosis outbreaks, the Government 

of Queensland released guidelines for the control of Cryptosporidium in swimming pools within its 

Swimming and Spa Pool Water Quality and Operational Guidelines (Queensland Health, 2004). 

Despite these guidelines, cryptosporidiosis remains a persistent problem in the state. In particular, 

the number of cases of cryptosporidiosis has increased significantly over the past 3 years, with the 

state reporting 668, 1314, and 2037 cases annually in 2014, 2015, and 2016 (year-to-date), 

respectively (Government of Australia, 2016). The persistence of cryptosporidiosis within 

Queensland, and Australia as a whole, points to the need for better management approaches.  

There are a significant number of gaps in knowledge regarding the transmission and control of 

Cryptosporidium infections, which limit the robustness and applicability of many decision-support 

tools.  These include inadequate human exposure data, unknown relative contribution of the various 

transmission pathways, a lack of data on pathogen loads in various environments, as well as bias in 

study design that largely focussed on the investigation of outbreaks and single transmission 

pathways such as contaminated drinking water scenarios. Additionally, there is a dearth of 

integrative research that approaches the issue of cryptosporidiosis from a holistic systems 

perspective, addressing the wider community-level drivers of the disease, as well as the multiple 

exposure pathways.  

 Research Aims and Objectives 

The central aim of this project is to develop a decision-support tool using system dynamics 

modelling to help decision-makers uncover the underlying environmental and social feedback 

mechanisms that contribute to the transmission of cryptosporidiosis in South East Queensland, 

Australia. 
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The aim of this project is guided by the following three specific research questions: 

• Research Question 1: What are the population-level drivers of Cryptosporidium 

transmission in South East Queensland, and how do these drivers dynamically interact to 

create the trends in notified cases of cryptosporidiosis that have been observed in the region? 

• Research Question 2: What policies or interventions could be used to more effectively 

reduce the incidence of cryptosporidiosis in South East Queensland? 

• Research Question 3: Can system dynamics modelling add value as a decision-support tool 

for environmental public health decision-making processes, in particular in the management 

of cryptosporidiosis in South East Queensland? 

 Study Design 

The construction of the system dynamics model will use group model building techniques, and will 

have 4 iterative methodological phases (as proposed by Maani and Cavana (2007)): (1) problem 

structuring, (2)  causal loop modelling, (3) Dynamic modelling, (4) scenario planning and 

modelling (figure 2).  

 
Figure 2: model building process according to Maani and Cavana (2007) 

Data and information used to develop the system dynamic model was collected primarily through a 

series of workshops and interviews with key stakeholders. A problem articulation workshop, which 

was attended by academic and government stakeholders and experts, was held at the beginning of 

the project. This workshop involved a series of divergent and convergent exercises aimed at 

identifying important variables and relationships within the system.  The variables and feedback 

structures identified in the workshop, together with information and theories identified in the 



 

5 

literature, will form the basis of the dynamic hypothesis for the model. Following the consultation 

interviews, the causal loop diagram was translated into a system dynamics stock-and-flow model. 

The model was parameterised with available government data, and in the absence of data, 

assumptions were made based on expert opinion.  

Once parameterised, the model was validated using several tests including comparing model 

behaviour with known behaviour, conservation of matter tests, extreme conditions tests and 

sensitivity tests. The model was then used to assess the potential impact of a variety of different 

policy-related scenarios on the dynamics of cryptosporidiosis in the region.   

 Overall Contribution of the Research 

This research intends to have two main contributions. The first is the creation of the first model of 

socio-environmental drivers of cryptosporidiosis transmission, as well as the first system dynamics 

model of infectious disease transmission related to public aquatic facilities. This model will 

improve understanding of the causal relationships between population-level drivers of 

cryptosporidiosis outbreaks in an Australian context. The goal of this model will be to improve the 

management of cryptosporidiosis in South East Queensland. The hope is that the insights that 

emerge from the model will translate into policies and interventions that reduce the burden of 

disease related to cryptosporidiosis.  The second is to improve knowledge of the applicability of 

systems thinking and system dynamics to environmental health. The utility of system dynamics to 

support decision making has been established in a variety of fields yet remains largely untested in 

the context of environmental health infectious disease issues. 

 Thesis Structure 

This thesis contains 8 chapters as outlined in Table 1.1 that are divided into 5 sections, (i) 

Introduction, (ii) Background and Literature Review, (iii) Research Methodology and Case Study 

Context, (iv) Inquiry and Findings and (v) Conclusion. 

The first section includes the introduction (Chapter 1) that outlines the aims, objectives and 

rationale of the study, provides a brief description of the case study and research methods and 

outlines the structure of the thesis.  

The second section includes a literature review (Chapter 2) that examines and appraises the key 

concepts underpinning this thesis, including environmental health, systems theory and models of 

decision-making.  
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The third section also includes two chapters (Chapter 3 and 4). Chapter 3 also introduces the case 

study and gives background information on cryptosporidiosis and South East Queensland. Chapter 

4 outlines and defends the study methodology and provides background information on the practical 

application of the system dynamics modelling methods. 

The fourth section includes three chapters (Chapter 5, 6 and 7). Chapter 5 describes how 

participatory systems thinking was used to create qualitative systems maps of Cryptosporidium 

transmission dynamics in South East Queensland. Chapter 6 builds on the work of the previous 

chapter and outlines the transformation of the systems maps into a system dynamics simulation 

model. Using that system dynamics model from the previous chapter, Chapter 7 describes the policy 

analysis process and insights gained from using a system dynamics model to simulate 

Cryptosporidium transmission dynamics.  

The fifth section (Chapter 8) brings a conclusion to the thesis and proposes questions and 

implications for further research.  

Table 1.1: Outline of thesis structure 

Section Chapters 

SECTION I - Introduction Chapter 1: Introduction 

SECTION II - Literature Review Chapter 2: Literature Review 

SECTION III - Research Methodology 
and Case Study Context 

Chapter 3: Case Study Background 
Chapter 4: Methodology and Methods 

SECTION IV - Inquiry and Findings Chapter 5: Conceptualizing the Problem Using Causal 
Loop Modelling 
Chapter 6: Design, testing and validation of a system 
dynamics model of cryptosporidiosis  
Chapter 7: Risk-management strategies for 
Cryptosporidium transmission in South East Queensland 

SECTION V - Conclusion Chapter 8: Conclusion 
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Chapter 2. Literature Review 

 Complexity in Environmental Health  

2.1.1. Environmental Health Practice 

The environments in which we live, work and play have a significant impact on our health and 

wellbeing. The field of environmental health (EH), which traditionally sits in the nexus between 

environmental management and public health, is the domain responsible for managing the complex 

relationships and interactions between health and the environment.  

The World Health Organization has defined environmental health as follows: 

“Environmental health addresses all the physical, chemical, and biological factors 
external to a person, and all the related factors impacting behaviours. It encompasses the 
assessment and control of those environmental factors that can potentially affect health. 
It is targeted towards preventing disease and creating health-supportive environments. 

This definition excludes behaviour not related to environment, as well as behaviour 
related to the social and cultural environment, and genetics” – World Health 

Organization (2015) 

Although the WHO definition of Environmental Health is widely accepted, other definitions of 

environmental health do exist, often with varying acknowledgements of the impact of the “total 

environment” (i.e. physical, biological, social, cultural, etc. environments) on human health.  

While environmental health research and practice has primarily focused on exposure to 

environmental hazards, it is increasingly being recognised that an exploration of distal determinants 

is needed to truly understand their root causes. Upon closer inspection, it often becomes clear that 

EH problems are not limited to a single agent, media, vector, exposure or health effect. Most 

environmental health problems simply represent the outcome of complex web of causality that 

causes the problematic situation to emerge over time (Briggs, 1999).  Beyond these problematic 

events and situations lies a system of farther-reaching drivers and pressures, such as environmental 

degradation, population growth, poverty, climate change, and rapid urbanization which, while not 

necessarily set solely in the domain of environmental health, must be given significant 

consideration when investigating environmental health impacts and risk.  While, in the past, 

environmental health management has focused primarily single cause-effect relationships, current 

knowledge points to the need to adopt a much more integrated approach. There is a growing need to 

stop examining exposure and effect relationships stripped from the broader political, social and 

environmental systems that created their existence in the first place(Krieger, 2008). This approach 

must account for a number of interrelated social, behavioural, economic, technological, political and 



 

8 

climatic factors, all of which can influence the way the environment impacts health and wellbeing 

(Institute of Medicine, 2009).  

2.1.2. Infectious disease management within environmental health 

The scope of environmental health practice is ever-widening. Historically, environmental health 

research and practice has focused predominantly on exposure to chemical and physical agents 

(Feingold et al., 2010). Recently, there has been growing recognition of the crucial role that the 

environment plays not only in the transmission of infectious diseases, but also in the emergence and 

re-emergence of infectious diseases. The World Health Organisation’s environmental burden of 

disease study (Prüss-Üstün and Neira, 2016) estimated that adverse environmental conditions 

contribute between 15% and 30% of all infectious-disease related disability adjusted life-years, 

representing enormous impact on the health and wellbeing of populations around the world. These 

advances in our understanding of the linkages between the environment and infectious diseases 

means that environmental health practitioners are playing an increasing role in their management 

and control. 

 In a review of the environmental determinants of infectious disease, Eisenberg et al. (2007) present 

a framework (shown in Figure 2.1) outlining how both proximal and distal environmental 

factors/characteristics influence and shift the transmission cycle of infectious diseases, which 

ultimately affect the overall prevalence and severity of many infectious diseases within a region. 

This framework further highlights that, like other environmental health management problems, 

infectious disease problems from complex webs of causal factors.  

To-date, much of the environmental health research and practice on infectious disease has centred 

on environmental and socio-environmental factors affecting individual exposure, with considerably 

less attention given to factors affecting transmission (Woolhouse, 2011). That which has focused on 

transmission has tended to focus on proximal environmental factors that directly influence disease 

transmission processes (Eisenberg et al., 2007). Despite growing recognition of the importance of 

more distal socio-environmental factors such as land use, transportation, water supply, hygiene, etc. 

relatively little attention has been given to investigating the impact of both proximal and distal 

environmental and socio-environmental factors on infectious disease transmission.  While an 

understanding of the factors that influence an individual’s risk of being exposed to an infectious 

disease is an important part of the policy puzzle, a comprehensive understanding of the factors 

which contribute to the transmission of the disease is equally important. The limited transmission-
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related evidence-base poses a challenge for environmental health decision-makers to design and 

implement effective interventions. 

 
Figure 2.1: Framework of environmental drivers of infectious disease (source: Eisenberg et al. 

(2007)) 

From an environmental health perspective, addressing the drivers of infectious disease transmission 

often requires long-term investment in programs that may not appear directly related to health or 

disease transmission. For example, factors such as overcrowding, inappropriate disposal of solid 

waste, poor hygiene, and exposure to flooding conditions have all been linked to disease 

transmission and poor health (Australian Indigenous HealthInfoNet, 2008), and all of which require 

sustained and long-term investment to be corrected. 

This integration of environmental health and infectious disease management presents several 

challenges for environmental health practitioners. Classic toxicological models, which were the 

traditional mainstay environmental health, most often approach toxicodymanics at the level of the 

individual, and don’t typically address hazards whose quantity and virulence have the potential to 

change quickly and non-uniformly.  They are also poorly-equipped to address the complexity of 

proximal and distal environmental, social, institutional and technological drivers of these disease, 

nor the feedback cycles which modulate the diseases (Eisenberg et al., 2007). Conceptual and 

analytical tools are needed which can help environmental health practitioners address the growing 

complexity of managing the environmental infectious disease problems. 
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2.1.3. Complex systems 

As discussed above, complex environmental-health-related infectious disease management 

problems should not be thought of as individual problems that arise and exist in isolations, but 

rather as the output of a much broader ‘system’ of causal factors and relationship. While many 

definitions of what a ‘system’ is exist within the literature, the early definition proposed by Hall and 

Fagen (1956) provides a good outline of the fundamental components of a system: 

“A system is a set of objects together with relationships between the objects and between 
their attributes” 

Hall and Fagen’s definition focuses on the building blocks of a system, objects, attributes and 

relationships. Objects can be both tangible and intangible and represent the various components or 

variables within a system. Attributes are the properties and characteristics of the objects, which can 

vary within and amongst objects. Relationships are the connections and interactions between 

objects. While this definition provides some clarity on what a system is made up of, it does fall 

short in terms of capturing the essence of what a system is.  The following definition by Ackhoff 

(1994) of what a system is fills this gap: 

“A system is a whole consisting of two or more parts (1) each of which can affect the 
performance or properties of the whole, (2) none of which can have an independent effect 
on the whole, and (3) no subgroup of which can have an independent effect on the whole. 

In brief, then, a system is a whole that cannot be divided into independent parts or 
subgroups of parts” 

Taken together, these two definitions explain what a system is and what it is made up of. A system 

is made up of objects, each with varying attributes, which are connected by relationships. While the 

components, attributes and relationships within a system are important, their whole is than just the 

sum of their parts.  Systems can be mechanical, such as a car or a television, organismic, such the 

human heart or an ecosystem, or social, such as an organisation or a community (Ackoff, 1994).  

Systems themselves can be simple, complicated or complex. The distinction between these is not 

based solely on the number of components within them, but also on the way that the components 

interact. On one end of the spectrum are simple systems, which are made up of a limited number of 

components that interact in well-defined and well-understood ways. In the middle of the spectrum 

are complicated systems, which are made up of many different components, whose interactions may 

not be easily understood. Though they vary in the number of components and interactions within 

the system, the behaviour of both simple and complicated systems is well predictable. Knowing the 

past behaviour of simple and complicated systems is a good predictor of future system behaviour.   
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At the other end of the spectrum are complex systems. Like complicated systems, complex systems 

are made up of many interacting components, but the behaviour of the system is not easily 

predictable, and the behaviour of the system changes and evolves over time. In addition to the 

dynamic nature of complex systems, Ladyman, Lamber and Wiesner (2013) outline 7 key 

characteristics that complex systems have in common: 

• Nonlinearity: system outputs are not directly proportional to the inputs, demonstrating 

disproportional cause and effect 

• Feedback: the output of a particular event within a system depends on the past and future state 

of that event 

• Spontaneous order: system structure is not random, nor does it arise from intentional design 

or planning, but rather from the interactions of system components, which are governed by 

basic principles and rules. 

• Robustness and lack of central control: system structure is organised in such a way that a 

shock in one area of the system do not automatically impact the stability of the whole system. 

This is possible because control of the system is not governed by a central entity, but rather by 

adaptive self-correcting feedback mechanisms within the system.  

• Emergence: higher order system behaviour arises from the collective interactions of system 

components, but cannot be explained solely by examining the components alone 

• Hierarchical organisation: systems are comprised of multiple structural levels (sub-systems), 

each interacting with the levels above and below it, and sharing common causal regularities. 

• Numerosity: systems which are made up of a large number of parts which engage in a large 

number of interactions. 

2.1.4. Environmental health problems as complex systems problems 

Applying Ladyman, Lamber and Wiesner’s characteristics of complex systems (as outlined in 

section 2.2), to the environmental health systems which produce many of the wicked environmental 

health problems we see today demonstrates how these systems can be considered complex systems. 

Nonlinear cause and effect relationships are commonly encountered when investigating the 

relationship between exposure to environmental health hazards and morbidity and mortality. An 

example of this is the health effect of parasitic infections. A non-linear relationship may be seen 

between parasite load within the infected individual and the health effect, due to factors such as 

nutritional status or past infections (Hochberg, 1991).  
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Feedback mechanisms are also commonplace within environmental health systems. Feedback 

mechanisms drive the growth of vector-borne disease epidemics such as malaria or yellow fever, 

with the number of infected mosquitos driving up the number of infected humans. This, in turn, 

drives up the number of mosquitos.  Feedback mechanisms also drive the way people interact with 

the environment. For example, increases in large forest fires in the United States prompted fire 

suppression activities, which caused the progressive accumulation of flammable leaf litter in forests, 

which in turn lead to increases in large forest fires (Donovan and Brown, 2007).  

The concepts of spontaneous order, emergence, robustness and hierarchical organisation can 

be used to describe many of the systems from which environmental health problems emerge. The 

robustness of environmental, biological, economic, health and social systems provides resilience 

against variability and shocks through both their ability to resist change, as well as their capacity to 

adapt to it. Fluctuations in the system, as well as the system being exposed to shocks of 

perturbations, facilitates self-organization and evolution of the system. Ecosystems, for example, 

exemplify these concepts as the structures and interactions which govern ecosystems emerge not 

from a central control, but rather from both salient and inconspicuous interactions between different 

ecosystem components; all of which happen according to general principles (such as supply and 

demand). Shocks to complex ecosystems, such as a forest fires or floods, expose the system to 

perturbations without necessarily destroying it, due to the systems’ inherent robustness. The 

hierarchical organisation of ecosystems (as shown in Figure 2.2) can be elucidated by observing 

how the interactions between individual components within the ecosystem, such as individual 

rodents spreading the seeds of plants they have consumed, shape the dynamics at higher (population 

and community) level.  

 
Figure 2.2: Example of the hierarchical organisation of ecosystems (adapted from (Reuter et al., 

2010)) 
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Much of the difficulty in managing complex environmental health problems, such EH-related 

infectious disease management problems, is because they emerge from complex systems.  

Addressing these complex problems requires environmental health professionals to identify and 

account for the web of interconnected environmental, social, institutional, economic and 

technological factors that are embedded in the dynamic fabric of the communities in which the 

work. Understanding the factors that make these systems ‘complex’ is a crucial component to 

uncovering the source of these complex problems.   

 Decision-making for complex problems under uncertainty 

Rooted within environmental health service delivery is the need for EH professionals to investigate 

environmental public health problems and make decisions regarding the management and control of 

environmental health hazards. The complex and multi-disciplinary nature of environmental health 

problem means that EH professionals are often encounter many unknowns making problem-related 

decisions.  

Decision-making, whose overall premise is to either make a choice that permits something to 

happen, or prevents something from happening, occurs many times throughout planning, 

management and evaluation processes. More specifically, a decision-making situation exists when 

1) a problem exists, 2) two or more possible actions are available, 3) there is some understanding of 

the objective of the decision and its connection to the problem, and 4) it is possible to estimate or 

predict the outcome of the decision (Skyttner, 1996). Fundamental to decision-making is the 

evaluation possible options, each having associated outcomes and consequences, and the selection 

of an alternative from the considered options.  

The reality of environmental health management is that decisions often must be made despite 

uncertainty. Uncertainty, which Brown (2004) defines simply as “imperfect knowledge”, generally 

fits within one of two categories, outcome uncertainty, and problem-based uncertainty.   

Outcome uncertainty is related to the decision-maker’s ability to predict the outcome of their 

decision. Decision situations typically exist within one of the following three categories of 

outcome-related conditions:  

• Decision making under certainty: Decision-maker has a complete understanding of each 

actions (and their alternatives) and the outcomes of the actions on the problem. 

• Decision making under risk: Decision-maker knows the possible outcomes and the 

probabilities that each will occur but does not know which outcome will actually occur. 
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• Decision making under uncertainty: Decision-maker cannot predict the outcomes of the 

possible actions or the probability that the outcomes will occur. 

With decisions under risk, the decision maker has sufficient information to understand the possible 

outcomes of a decision, and assign each outcome with a probability of occurring, but cannot 

ultimately know which outcome will occur. Under uncertainty, the decision maker also cannot 

confidently predict the possible outcome of a decision.  

Problem uncertainty is related to the decision-makers’ ability to understand the nature of the 

problem itself. This uncertainty can be broadly characterized as originating for one or more of the 

following three groups (Committee on Decision Making Under Uncertainty et al., 2013): 

• Variability and heterogeneity: Also called aleatoric uncertainty, this type of uncertainty 

refers to natural variations in factors such as susceptibility and exposures that exist within 

environmental health system. These make it difficult to quantify or predict the effects of 

decisions on populations. 

• Systemic uncertainty: Also known as epistemic uncertainty, this type of uncertainty is 

related to a lack of consensus or knowledge regarding the system of cause and effect 

relationships, or the parameters within a system. 

• Deep (process) uncertainty: Deep uncertainty is a more fundamental lack of understanding 

of the underlying environmental or health process, or a lack of method to characterize the 

process, and/or disagreement on the desirability of various options.  

Aleatoric uncertainty, which can also be thought of as analytical uncertainty, is the type of 

uncertainty that gets the greatest focus in EH-related studies, likely because it is the type of 

uncertainty that is easiest to detect (Briggs et al., 2009). Uncertainty due to variability within the 

population or environment can be managed to some degree by replicating studies, collecting and 

linking large datasets, performing sensitivity analysis on models, and using statistical analysis to 

account for error and variation.  

Despite potentially having greater implications, systemic and process uncertainty, which can be 

thought of as conceptual uncertainty, receive far less discussion in EH-related studies. Conceptual 

uncertainty centres on whether the correct question is being asked. Briggs (2009) argues that 

widely-taken positivist paradigm – where ‘facts’ and ‘values’/’perceptions’ are fundamentally 

separate and the goal is the development of general laws and theories – may make it difficult for us 

to detect and acknowledge conceptual uncertainty. By failing to acknowledge that one’s perspective 
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fundamentally shapes one’s observation of ‘facts’, we are unable to see things from alternative 

perspectives, and thus may be unable to properly conceptualize the problem.  This is particularly 

relevant in the context of complex problems, where non-linear causality and feedback cycles may 

make it difficult to adequately consider the important causal factors and relationships driving the 

problem.  

2.2.1. Decision support tools in Environmental Health 

Decision support tools provide decision-makers with an avenue to reduce uncertainty in the 

decision-making process, The idea of ‘decision support’ encompasses tools or approaches that can 

help guide decision-making by providing actionable information that can be used to examine the 

trade-offs between policy options (Walker et al., 2003).  

Figure 2.3: Role of decision-support tools in the decision-making process 

Figure 2.3 outlines where decision-support tool typically fit within the decision-making process. 

Their use is generally prompted by an upcoming policy- or intervention-related decision. Ideally, 

the tools are informed not only by the policy process, but also by the objectives of the stakeholders, 

the research evidence, and the broader context in which the decision is being made.  
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Historically, risk assessment has been one of the key problem-focused decision-support tools used 

by environmental health decision makers1. Risk assessment provides decision-makers with an 

estimated probability and magnitude of effect from exposure to a particular environmental hazard 

given a certain level of exposure. In infectious disease management, models, and particularly 

regression-based statistical models, are one of the key decision support tools. The following section 

provided a brief overview of the use and applicability of these tools in the context of complex 

environment-related infectious disease management problems.  

 Risk assessment 

One of the most common decision-support tools used in environmental health management is risk 

assessment. Risk assessment is a process-based tool where information about a particular hazardous 

substance, process or event is collected and qualitatively or quantitatively analysed in relation to 

dose, exposure and susceptibility of various receptors (Willows et al., 2003). The outcome of a risk 

assessment is a measure of the predicted probability and magnitude of effect that will result in 

exposure to the hazard. In most cases, risk assessment considers one hazard at a time and assumes 

independence of outcomes, rarely considers cumulative exposure to many hazards, or the effect of 

human behaviour beyond that directly related to the exposure (Briggs et al., 2009).  

Risk assessment process are generally built in such a way to account for variability and 

heterogeneity (problem uncertainty) and a degree of decision uncertainty using highly conservative 

estimates with large margins of error. By greatly over-estimating the magnitude and likelihood of 

effect, the risk assessment accounts for highly susceptible individuals. The usefulness of risk 

assessment is that it provided decision-makers with a future prediction of the likely outcome(s) 

related to a hazardous environmental health substance, process or event, given a set of 

circumstances. The remaining uncertainty therefore is primarily focused on whether or the 

circumstances that would produce that outcome will occur or not.  

The UK Government’s Guidelines for Environmental Risk Assessment and Management (Áine 

Gormley, 2011) outlines the following key principles of risk assessment in the context of EH 

problems:  

                                            
1 While other decision support tools such as environmental impact assessment, health impact assessment, cost-benefit 

analysis and life cycle assessment are also commonly used in environmental health decision making, they are primarily 

project or solution focused, and are generally ill-suited for decision support in cases where the source of the problem is 

unclear.  
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• the importance of correctly defining the actual problem at hand; 

• the need to screen and prioritise all risks before quantification; 

• the need to consider all risks in the options appraisal stage; and 

• the iterative nature of the process. 

When the above-mentioned principles are followed, the process of decision-making under risk can 

be quite simple provided there is sufficient information about the likelihoods of events and 

consequences to make reasonable risk estimates, and that the risks related to all relevant hazards 

have been appropriately characterised. In reality, this is rarely the case with EH problems, which 

can leave decision-makers with significant ambiguity. 

Furthermore, much of risk assessment relies on classic toxicological paradigm, which usually 

approach toxicodymanics at the level of the individual, and don’t typically address hazards whose 

quantity and virulence have the potential to change quickly and non-uniformly.  They are also 

poorly-equipped to address complexities such as disease transmission or the feedback cycles which 

modulate disease (Eisenberg et al., 2007). 

 
Figure 2.4: The classic toxicological paradigm 

An additional challenge to effectively using risk assessment as decision-support tool in the context 

of EH-related infectious disease problems relates to the first principle in the above-mentioned 

guidelines; the importance of correctly defining the actual problem at hand. In this context, a 

correctly defined problem requires that the problem itself has little-to-no systemic or process 

uncertainty. This is rarely the case with IDM problems. Because of this, the traditional risk-

assessment-driven approach to EH decision-making is ill-suited to many of the complex EH 

problems practitioners and decision-makers face.  

 Infectious Disease Models 

While rarely used in the field of environmental health, infectious disease models have been widely 

used within the public health and clinical medicine spheres as decision support tool.  The term 
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‘model’ is used to describe a simplified representation of a reality that is built specifically to answer 

a question. While there are many different types of models used routinely in public health, 

Manheim et al. (2016) identified five main types of models commonly used to model infectious 

disease in the public health sector, divided into two main categories. The first category, statistical 

models, includes the following two types of models: 

• Regression-based models: These models are often considered the ‘standard’ statistical 

approach to modelling infectious disease. They involve using statistics to identify best-fit 

between predictor and outcome variables and can be used even without an in-depth 

knowledge of the underlying causal structures. They are also the centre of the ‘risk-factor’ 

approach to epidemiology where individual ‘risk factors’ for disease are identified from 

historic case data.  

• Machine-Learning models: These complex models compare input and output data across 

several parameters to ‘learn’ the structure of the relationships between variables, and 

subsequently predict future outcomes. While extremely useful in disease forecasting, these 

models can be highly complex and require large volumes of data.  

The second category is theory-based models, and includes the following three types of models: 

• Compartmental population models: These relatively-simple probabilistic or deterministic 

models divide the population into compartments based on disease status and are designed to 

capture disease transmission within a population. For example, the population may be 

divided into susceptible or infectious depending on disease status. System dynamics model 

are a more detailed and comprehensive form of compartmental population model.   

• Event-based micro-simulation models: These individual-level models offer a more 

complex description of disease dynamics by represent the dynamics of discrete events that 

an individual may experience. For example, instead of simply separating the population 

based on infectious or not infectious, they may instead include individual level measures 

such as the infectiousness of a particular individual.  

• Agent-based models: Like the micro-simulation models, agent-based models are 

individual-level, but instead of modelling events, they model the interaction between 

individual behaviour and disease using a set of pre-defined rules. For example, models of 

this type could model infectiousness as the number of contacts a sick individual meets in a 

given period of time.  
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Each type of model has its advantages and disadvantages, depending on the context in which is it 

used, and the intended used of the model’s outputs.  In general, statistical-type models excel at 

predicting future disease outbreaks, whereas theory-type models excel at helping understand the 

problem of interest and identify and analyse potential interventions to address the problem.  Briggs 

et al.(2016) and Manheim et al. (2016) compared the advantages and disadvantages of each type of 

model in more detail, the results of which are summarised below in Table 2.1. 

 

Table 2.1: Advantages and disadvantages of model-based decision support systems 

 Advantages Disadvantages 

Regression-
based models 

Work well when there is poor 
understanding of disease 
dynamics 
computationally fast 

Does not incorporate or communicate 
causality 
Requires significant data to be useful 
Cannot be easily used to compare 
interventions 

Machine-
Learning models 

Work well when there is poor 
understanding of disease 
dynamics 
Can give accurate forecasts 

Does not incorporate or communicate 
causality 
Model structure can be difficult to interpret 
and communicate. 
Requires significant data to be useful 
Limited applicability in planning and 
evaluating intervention options 

Compartmental 
Population 

Models /System 
Dynamics 

models 

Useful for comparing 
interventions 
Computationally fast 
Structure and behaviour easy to 
communicate 

Simplistic structure can lead to less 
accurate forecasts 
Deterministic form can struggle to 
accommodate variability or uncertainty 

Event-based 
micro-simulation 

models 

Useful for planning and 
comparing interventions 
Flexible and precise 
Can incorporate empirical data 
and expert opinion 
Weill-suited for complex 
situations 

Model structure can be complex and 
difficult to communicate 
Computationally slow 
Can be challenging to design 
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 Advantages Disadvantages 

Agent-based 
models 

Useful for selecting optimal 
intervention(s) 
Well-suited for complex 
situations 
 

Requires significant understanding of 
underlying theory driving individual 
behaviour 
Computationally slow and requires 
substantial computational power 
Model structure can be complex and 
difficult to communicate. 
Limited ability to forecast disease 
occurrence 

Even in the presence of uncertainty and significant assumptions, quantitative models such have 

advantages over using our mental models for judgement-based decision-making. Quantitative 

models are transparent – allowing their underlying ideas and assumptions to be examined and 

critiqued. They also allow for potential interventions to be tested in a virtual world before being 

implemented in a real-world setting (Woolhouse, 2008).  

 System dynamics modelling for EH decision-making 

System dynamics (SD) modelling, which has its roots in systems thinking, is an additional 

modelling-based decision support tool. System dynamics modelling uses similar nomenclature and 

structure as compartmental population models, but incorporates the more complex description of 

disease, community and environmental dynamics of micro-simulation models. The research 

associated with this literature proposed that system dynamics model, used in conjunction with other 

systems thinking techniques, may be another decision-support tool well suited for decision-makers 

confronted with a complex infectious disease problem. The following section explores systems 

thinking, system dynamics and their potential application to complex environmental health and 

infectious disease problems.  

2.3.1. Theoretical basis of systems thinking 

The concept of a ‘system’, as discussed in section 2.2.1.2, is rooted in “systems theory”. The 

creation of “systems theory” has been credited to biologist Ludwig von Bertalanffy, who theorized 

in the late 1920’s that investigating a single part of a living system cannot provide a complete 

understanding of that phenomena as it gives little-to-no understanding of the coordination of the 

processes within the system. He then theorized that it was therefore more important to determine the 

laws which govern biological systems than the individual components (Bertalanffy and Woodger, 

1934). This contrasted with the prevailing theory at the time ( Descarte’s “scientific method”), 
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which viewed that systems were made up components which could be broken up into parts and 

investigated independently of one another, and systems could be described by adding all of the 

components of the system in a linear fashion. Descarte’s “scientific method” neglected to address 

how the components of a system interact with one another, and the impacts that non-linear 

components could have on one another(Bertalanffy, 1972). Von Bertalanffy later solidified his 

theory by saying:  

“There exists models, principles and laws that apply to generalized 
systems or their subclasses irrespective of their particular kind, the nature 
of the component elements, and the relations of “forces” between them. 
We postulate a new discipline called general systems theory (Bertalanffy, 
1968).”  

Von Bertalanffy’s theory recognized that when investigating a living system, the system as a whole 

is greater than the sum of its parts.   

2.3.2. Principles of systems thinking 

Rather than being a single field, systems thinking is both a paradigm and a problem-solving 

approach. While definitions of systems thinking vary from extremely simple to highly complex 

depending on the field of study in which it is used, Arnold and Wade proposed the following multi-

disciplinary definition of systems thinking: 

“Systems thinking is a set of synergistic analytic skills used to improve the capability of 
identifying and understanding systems, predicting their behaviours, and devising 

modifications to them in order to produce desired effects. These skills work together as a 
system (Arnold and Wade, 2015).” 

As a paradigm, systems thinking draws on several overarching principles that provide a framework 

for conceptualizing the world. While not an exhaustive list, the following foundational principles 

were identified as key components of the systems thinking paradigm: 

Holism: The principle of holism is best summed up by Aristotle said “the whole is greater than the 

sum of its parts; the part is more than a fraction of the whole”(Hitchins, 2009). The principle of 

holism is essential in systems thinking as it requires systems thinkers to consider all parts of a 

systems as being connected, meaning that no one part of the system can be examined in isolation of 

the system as a whole.   

System as the cause: This principle explains that problems that systems experience are most often 

created internally within a system, as opposed to being created by some external influence (Maani 

and Maharaj, 2001). When taking a systems thinking approach, one must look inwards for the 
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source of the problem, as opposed to blaming the problematic behaviour on something being driven 

by an external source that is outside your control. 

Closed-loop: Linked to the principle of “system as the cause” the closed-loop principle maintains 

that causality does not run one way, but rather is reciprocal (Richmond, 1994). The outputs of a 

system will eventually come back around and become inputs of that same system (i.e. the ends can 

influence the means). 

Operational thinking: This principle simply means that when examining causality, one must not 

focus solely on the fact that casualty or influence exists, but also on the mechanisms that brought 

about that causal relationship (Richmond, 1994). This principle aims to draw our attention toward 

the architecture and the interconnectedness of factors within a system. 

Beyond providing an alternative point of view for approaching and understanding problems, 

‘systems thinking’ is also a functional skill-set. Expanding on their definition of systems thinking 

(listed above), Arnold and Wade built on works previously done based primarily on the works of 

Sweeny and Sterman (2000), Hopper and Stave (2008), and Plate and Monroe (2014) and identified 

8 key functions/elements of systems thinking: 

1. Recognizing Interconnections 

2. Identifying and Understanding Feedback 

3. Understanding System Structure 

4. Differentiating Types of Stocks, Flows, Variables 

5. Identifying and Understanding Non-Linear Relationships 

6. Understanding Dynamic Behaviour 

7. Reducing Complexity by Modelling Systems Conceptually 

8. Understanding Systems at Different Scales 

When viewed together, the underlying principles and key functions of systems thinking provide 

practitioners and decision-makers with a set of tools for conceptualizing complex problems.  

2.3.3. System dynamics approach 

Many scientists and researchers have extended Von Bertalanffy’s General Systems far beyond the 

realm of biological sciences into many other disciplines including economics, business, health and 

the social sciences. In particular, in the late 1950’s, Jay W. Forrester’s  developed a theory, which 
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builds on Von Bertalanffy’s theory, and pioneered the field of System Dynamics (then called 

Industrial Dynamics) (Forrester, 1958). System Dynamics is a policy-oriented computer-assisted 

modelling approach that is used to understand and manage complex systems that continuously 

change over time. It can be used to analyse any dynamic system that is characterized by 

interdependence, information feedback and mutual circular causality (System Dynamics Society, 

2015). The system dynamics society2 has defined the key features of the system dynamics approach 

as: 

• “Defining problems dynamically, in terms of graphs over time. 

• Striving for an endogenous, behavioural view of the significant dynamics of a system, a 
focus inward on the characteristics of a system that themselves generate or exacerbate 

the perceived problem. 

• Thinking of all concepts in the real system as continuous quantities interconnected in 
loops of information feedback and circular causality. 

• Identifying independent stocks or accumulations (levels) in the system and their inflows 
and outflows (rates). 

• Formulating a behavioural model capable of reproducing, by itself, the dynamic 
problem of concern.  The model is usually a computer simulation model expressed in 
nonlinear equations but is occasionally left unquantified as a diagram capturing the 

stock-and-flow/causal feedback structure of the system. 

• Deriving understandings and applicable policy insights from the resulting model. 

• Implementing changes resulting from model-based understandings and insights” 
(System Dynamics Society, 2015). 

2.3.4. Key concepts in system dynamics 

 Feedback 

One of the driving concepts of system dynamics is feedback. Feedback, also known as circular 

causality, is a process that occurs when the output of a particular event depends on the past and 

future of that event (Sterman, 2000a). In other words, the outputs of a system will eventually come 

back around to their point of origin and become the inputs of the system. An example of a feedback 

loop is the human body’s effort to maintain a constant temperature. As the body senses that its 

internal temperature is rising it begins to sweat, which causes the temperature to drop. Once the 

                                            
2 The system dynamics society is the leading international organisation devoted to promoting the use and advancement 

of system dynamics modelling around the world. 
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optimal temperature has been reached, the body stops sweating until the body temperature rises 

again. 

Two types of feedback exist within systems; positive and negative feedback (Figure 2.5). Positive 

feedback refers to loops where system behaviour causes the initial action to be reinforced. Despite 

the name “positive”, these loops can be either vicious or virtuous cycles, as they enhance the action 

in whatever direction the change is imposed. Within a system, reinforcing loops cause accelerated 

growth or decline, which can have a destabilizing effect on the system. Oppositely, negative 

feedback refers to loops where system behaviour causes the initial action to self-correct or balance 

out. These loops seek to return the system to equilibrium.  

 
Figure 2.5: Positive (reinforcing) and negative (balancing) feedback loops 

As complex systems are made up of a network of interconnected feedback loops whose interactions 

generate and govern the overall behaviour of the system, understanding the structure, behaviours 

and interactions of the various feedback loops within a system is crucial to understanding the 

system as a whole.  

 Stock and flows 

Stocks and flows are the essential building blocks of systems. In broad terms, stocks represent the 

current state of the system, and flows represent the rate of change within the system. Stocks are a 

visual representation of key variables within a system where accumulation (both positive and 

negative) and storage takes place and form the basis upon which decisions or actions about a system 

or its components are made. The current value of a stock is dependent on the previous values the 

stock has possessed, as stock are only able to change over time. A bank account is a simple example 

of a stock, as money can accumulate, be stored and be withdrawn at varying rates. The only way a 

stock can change is through flows, which control the rate at which things are added or withdrawn 

from a stock over time. In the absence of a flow, or when the value of a flow is 0, the value/contents 

of a stock are static. In the bank account example, the money deposited and the money withdrawn 

are both examples of flows associated with the bank account.   
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 Delays 

Delays are a fundamental component of dynamic behaviour in most systems. In real-world systems, 

the transfer of information and materials through a system takes time, making them an inherent 

component of most flows. While some delays are so short they can be considered negligible, other 

delays can be years. Examples of delays include time between ordering and receiving a product, 

between exposure to a hazard and the onset of symptoms, between recognising a hazard exists and 

initiating the behaviour to avoid the hazard, and between the emission of greenhouse gases and a 

perceivable change in the climate.  

 Endogeneity  

Another key concept within system dynamics is the concept of endogeneity, meaning that system 

dynamics seek to find explanations for phenomena that lie within the system, as opposed to 

behaviours external to the system (Sterman, 2000a). Because of that, system dynamics model must 

be built in such a way that the behaviours and interactions which govern the system must fit within 

the defined system boundary (Richardson, 2011).  Forrester described this principle as: 

“In concept, a feedback system is a closed system. Its dynamic behaviour arises within its 

internal structure. Any action which is essential to the behaviour of the mode being 

investigated must be included inside the system boundary (Forrester, 1968)” 

The overarching goal of system dynamics is to uncover and understand the behaviour of 

endogenous variables within the system. This way of thinking switches the perspective that the 

behaviour of a system is governed primarily by factors outside our purview and control, to a view 

that both the problems and solutions lie within the internal structure of the system (Richardson, 

2011). By focusing on endogenous sources of system behaviour, system dynamics allows 

practitioners to explore system structure and patterns of interaction between variables, and 

ultimately develop and model policy changes that alter these structures and patterns in order to 

change system behaviour. 

2.3.5. System Dynamics for Environmental Health Decision-making 

“Managers are not confronted with problems that are independent of each other, 

but with dynamic situations that consist of complex systems of changing problems 

that interact with each other… Managers do not solve problems, they manage 

messes” - Russell Ackoff (1979) 
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The ‘wicked’ nature of environmental health management problems, which are often constantly 

changing and are almost always intertwined in a web of different political, cultural, social, 

economic and environmental structures (Kreuter et al., 2004), make them ideal candidates for 

analysis using a system dynamics approach. The integrated nature of the system dynamics approach 

allows for the inclusion of all the basic elements of the ecological approach when creating both 

qualitative and quantitative models, such as disease prevalence, health, risk and lifestyle behaviours, 

environmental conditions, and resources that provide health and social services or are involved in 

health-related social transformation (Homer and Hirsch, 2006).  

As part of this research project (but not directly included in this thesis), a systematic scoping review 

of the application of system dynamics to complex environmental health problems (Currie et al., 

2018) was conducted. The review identified only 15 published studies or report between 2000 and 

2016 where system dynamics modelling had been used to inform environmental health policy or 

decision-making. The review found that a system dynamics approach has been used, in a limited but 

increasing capacity, to analyse a variety of different environmental health problems, such as 

designing sustainable strategies for managing contaminated land (McKnight and Finkel, 2013), 

investigating the health impacts of sea level rise (Diaz et al., 2012), understanding the impacts that 

that traffic congestion has on air pollution (Armah et al., 2010) and modelling the population health 

impacts of different forms of energy production (Diaz et al., 2011). While the majority of 

applications originated from within the health sector (n = 6), with the remaining came from other 

sectors including transport, public utilities, water, housing, food, agricultural, and urban and 

regional planning sectors. This highlighted the multi-sectoral nature of environmental health.  No 

studies were identified that used system dynamics to inform policy related to water quality and 

infectious diseases.  

Despite being well-suited for analysis using system dynamics models, there has been little 

application of system dynamics models to infectious disease problems within the field of 

environmental health. In the absence of a quantitative model, environmental health decision-makers 

must fall back on their mental model of disease transmission. While in some instances decisions 

based solely from a mental model may be sufficient, the complex non-linear dynamics of infection 

transmission means that in many cases this is likely to be insufficient. For example, previous 

experience and intuition might lead decision-makers to close a swimming pool that is suspected of 

being infected with Cryptosporidium to control an outbreak. While this initially appears logical, this 

action can have the unintended consequence of increasing the geographic spread of the outbreak. As 

their regular swimming facility is not available, swimmers from the infected pool may choose to 
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visit neighbouring pools, potentially infecting additional pools and exposing a larger segment of the 

population to the pathogen (McCann et al., 2014). The feedback mechanisms within socio-

environmental systems can cause them to behave in counterintuitive ways. System dynamics 

models provide a tool to help overcome our mental model’s inability to simulate the complex 

dynamics that produce counterintuitive system behaviour.   

 Summary 

Environments play a key role in the health and wellbeing of populations around the world, with the 

health impact associated with modifiable environmental conditions representing a non-trivial 

portion of the global burden of disease. The field of environmental health involves the application 

of a diverse range of scientific and technical disciplines to understand, assess, and predict the 

relationships between environmental hazards and human health, and deliver effective environmental 

health services. 

Despite remarkable strides being made in the field of environmental health, significant challenges 

remain in meeting its ultimate goals of reducing the environmental burden of disease and creating 

safe and healthy environments for all. It has been argued that many environmental and public health 

interventions fail to successfully meet those goals because they approach problems in isolation, 

rather than addressing them in a comprehensive manner that acknowledges that individual 

problematic events or environmental hazards rarely occur in isolation and are likely heavily 

influenced by behaviours within the wider system (Homer and Hirsch, 2006). Conventional analytic 

methods of investigating the causes and effects of environmental health impacts often do not 

account for the constantly changing nature of environment-and-health interactions, and they often 

struggle to characterize the long delays between cause and effect that often accompany 

environmental health problems.  

Quantitative models, and in particular system dynamics models, present a potentially valuable tool 

to help overcome many of these challenges posed by complex disease transmission problems. They 

provide an avenue to explore, anticipate and predict the feedback behaviour that makes up complex 

dynamic systems, even in situations where data is lacking or incomplete.  Active participation in the 

system dynamics modelling process not only adds credibility and confidence in the model itself, but 

it also provides decision-makers with an opportunity to gain insight, generate testable hypotheses, 

predict the effect of interventions over short and long time periods and improve communication in 

their decision-making processes.  
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Chapter 3.  Case Study Background 

The purpose of this chapter is to provide a general overview of information specifically-relevant to 

the case study of cryptosporidiosis in South East Queensland. The purpose of this chapter is not to 

provide an exhaustive review of the literature related to Cryptosporidium, but rather to serve as an 

evidence-based point of reference for factors that may contribute to the transmission of 

Cryptosporidium infections in the study area. It has been divided into two sections. The first 

provides a general overview of Cryptosporidium and cryptosporidiosis, including transmission, risk 

factors and the current literature on the management of cryptosporidiosis. The second provides 

background on the case study location, as well as an overview of the local context of known 

cryptosporidiosis risk factors.  

  Cryptosporidium spp. as infectious agents 

Cryptosporidium, a protozoal parasite in the family Cryptosporidiae, was first identified in humans 

in 1976 (Meisel et al., 1976). Cryptosporidium spp. are now considered one of the most commonly 

identified intestinal parasites causing infection in humans throughout the world (Organization., 

2002), with increasing incidence in developed countries (Snel et al., 2009).The prediction, 

management and prevention of cryptosporidiosis outbreaks is difficult and complex due to a 

number of factors including its multiple transmission pathways, its persistence in the environment, 

and its extended asymptomatic infectious period (Rossle and Latif, 2013).   

3.1.1. Taxonomy  

Originally thought to be one species, there are now currently 19 known species of Cryptosporidium 

(Leitch and He, 2012), five of which (C. hominis, C. parvum, C. meleagridis, C. felis, and C. canis) 

are thought to be responsible for the majority of cases of cryptosporidiosis in humans (Xiao and 

Fayer, 2008).  Cryptosporidium hominis, C. parvum are the two most frequently identified species 

in cryptosporidiosis cases in developed countries, representing over 90% of the cases (Bouzid et al., 

2013). Cryptosporidium hominis is largely restricted to human hosts, and therefore has low zoonotic 

potential (Chalmers and Casemore, 2004). Cryptosporidium parvum has been detected in both 

animals (wild and livestock) and humans, and is a major pathogen in calves (Bouzid et al., 2013, 

Hashim et al., 2006).  Cryptosporidium felis, and C. canis are most commonly associated with 

feline and canine hosts, respectively (Chalmers and Casemore, 2004). Cryptosporidium meleagridis 

is associated with avian hosts including turkeys, parrots and chickens but also has been associated 

with a small number (<1%) of human cases of cryptosporidiosis (Chappell et al., 2011).   
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The distribution of the various Cryptosporidium spp. in high-income countries varies considerably 

both geographically and seasonally. Generally speaking, urban areas experience a greater incidence 

of cryptosporidiosis caused by C. hominis, whereas rural areas often have greater incidence of C. 

parvum infections due to greater exposure to livestock (Leitch and He, 2012). Seasonal variations in 

the Cryptosporidium spp. responsible for outbreaks have been noted some countries. An example of 

this is New Zealand, which has seen an increase in zoonotic (C. parvum) cases in the spring and an 

increase in anthroponotic cases (C. hominis) in the autumn (Learmonth et al., 2004). The spring 

peak in incidence has been attributed to the spring lambing/calving season, and the autumn peak to 

increased use of aquatic facilities in the late summer. 

3.1.2. Transmission  

Cryptosporidium is transmitted through the faecal-oral route, and while it is primarily considered to 

be a waterborne pathogen, transmission can also occur through person-to-person contact, animal-to-

person contact, and consumption of contaminated food (Figure 3.1).  Cryptosporidium is highly 

infectious with a low median infective dose (35.7 oocytes using diarrheal illness as an indication of 

cryptosporidiosis) (Messner et al., 2001), making it easily transmittable. Following exposure to 

Cryptosporidium oocytes, the incubation time in humans is 1-12 days (mean 7.2 days) (DuPont et 

al., 1995). 

 
Figure 3.1: Primary transmission pathways of Cryptosporidium 
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 Waterborne Transmission – Drinking water 

Cryptosporidium oocytes have been identified in most fresh water bodies, with higher 

concentrations found in water with heavy human use, nearby livestock and faecal pollution (DuPont 

et al., 1995). Cryptosporidium oocytes have also been identified in sewage-contaminated marine 

waters, demonstrating the ability to survive up to four days in saline conditions (Johnson et al., 

1997).  In general, Cryptosporidium oocytes are considered highly-persistent in the environment. 

Oocytes are known to survive for months in fresh surface water (Alum et al., 2014), though are 

viable for less than two hours on dry surfaces at room temperature (Robertson et al., 1992).  

Contaminated drinking water sources have been associated with numerous cryptosporidiosis 

outbreak. A major outbreak in Milwaukee, USA in 1993, thought to be caused by sewage released 

from a sewage treatment plant upstream of a water treatment plant, resulted in over 400,000 

individuals being infected over a 2 week period (Eisenberg et al., 2005). Outbreaks attributed to 

drinking water have been identified in a number of European countries, though the frequency varies 

considerably based on the quality of the public water supply and sewage treatment systems 

(Semenza and Nichols, 2007). 

A study of waterborne outbreaks of gastrointestinal disease in Australia found that less than 20% of 

outbreaks were attributed to drinking water, and only 1 positively linked to Cryptosporidium. This 

single outbreak occurred in South Australia and was caused by the contamination of a private water 

supply (Dale et al., 2010) and not community supplied water.   

 Waterborne Transmission - Swimming pools and recreational waters 

Public aquatic facilities are a frequently identified source of outbreaks, for several reasons. 

Cryptosporidium oocytes are both small enough to bypass many swimming pool filtration systems 

(Centers for Disease Control and Prevention, 2001) and highly resistant to chlorine disinfection 

(Suppes et al., 2016). This can result in their persistence in even well managed swimming pools.  It 

is estimated that oocytes can survive 3.5-10 days in a swimming pool where free chlorine is 

maintained at the recommended level of 1–3 mg/L (Shields et al., 2008b). 

A single accidental faecal release (AFR) by an infected swimmer can release 109 Cryptosporidium 

oocytes, which, coupled with an extremely low infectious dose of as little as 10 oocytes, can result 

in significant number of exposed swimmers becoming ill (Suppes et al., 2016). It should be noted 

that the spread of Cryptosporidium through an AFR is primarily limited to releases of loose stool, as 

studies have identified low prevalence of oocytes in formed stool (2001). 
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Additionally, public aquatic facilities are venues where a heterogeneous mixture of people not only 

bathe, but also inadvertently swallow water (Schoefer et al., 2008). A study by Dufour et al. (2006) 

determined that on average children and adults unintentionally swallow between 0 to 154 mL (mean 

37 mL) and 0 to 53 mL (mean 16 mL) of pool water per swim, respectively.  

While significant advancement has been made in the development of nappies which are capable of 

retaining solid stool during water-based activities, a study by Amburgey and Anderson (2011) 

determined that currently available “swim nappies” are not able to contain Cryptosporidium-sized 

particles of faecal-matter. Their study found that after 10 minutes of water-based play, 77-100% of 

oocytes-sized test particles deposited in the swim nappies had been released from the nappy into the 

water. This means that infected children who defecate in swim nappies while swimming are easily 

able to contaminate recreational water. 

The ‘shedding’ of Cryptosporidium oocytes by bathers can also be a major source of contamination 

in recreational water (Ashbolt et al., 2010). Gerba (2000) determined that bathers, on average, shed 

0.14 grams of faeces per swim. As infectious stools can have a concentration of 109 oocytes of 

Cryptosporidium per gram of stool (Rose et al., 2002), a single infected swimmer has the potential 

to shed 14,000,000 oocytes into a swimming pool without knowing it. 

While Cryptosporidium have been found in swimming pools during outbreaks, a variety of studies 

have also sought to determine the presence of oocytes in the water of public aquatic facilities in the 

absence of reported disease. A study of 5 public pools in the Netherlands identified 

Cryptosporidium oocytes in 4.6% of filter backwash samples over the period of one year (Schets et 

al., 2004). A study of 160 public pools in Atlanta, Georgia found the water in 3 pools was positive 

for Cryptosporidium spp. (Shields et al., 2008a). It is possible that this contamination is a result of 

undetected accidental faecal releases or to shedding by bathers.  

Swimming pool operators and staff have themselves also been implicated in cryptosporidiosis 

outbreaks (Wheeler et al., 2007, Louie et al., 2004, Sorvillo et al., 1992). In all these cases at least 

one lifeguard swam while knowingly ill. An investigation of a large outbreak at a water park in 

California found that, while waterpark management was aware of illness among staff, ill staff were 

only excluded from the pool when too ill to work (Wheeler et al., 2007). It is likely that the 

potential employment and financial repercussions of excluding themselves from the swimming pool 

for the duration of the infectious period, coupled with a lack of knowledge of transmission 

dynamics, contributed to the lifeguards continuing to swim while ill. These outbreaks demonstrate 

that pool patrons are not the only contributors to outbreaks. 
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Only about 10% of recreational-water-related cases of cryptosporidiosis are associated with 

swimming in fresh water (Roy et al., 2004). This is likely because fresh water bathing areas tend to 

have a higher water volume and a lower bather density than swimming pools, especially in relation 

to incontinent bathers. It is possible that fresh water venues contribute more to sporadic cases of 

cryptosporidiosis than outbreaks.  

 Person-to-person Transmission 

Person-to-person transmission of Cryptosporidium is also thought to be a major transmission 

pathway associated with outbreaks. In particular, childcare centres have been implicated in multiple 

outbreaks of cryptosporidiosis (Cordell and Addiss, 1994). Much like swimming pools, childcare 

centres are venues where children without full bowel control are present in large numbers. It has 

been estimated that 50% of cases of infectious diarrhoea in children under 3 years old who attend 

day-care are acquired at the day-care facility (Morrow et al., 1991). It is also thought that most 

outbreaks of cryptosporidiosis in childcare settings occur because an infected child is brought into 

the childcare environment, and subsequently infects other children or staff members through direct 

contact as well as depositing Cryptosporidium oocytes on various surfaces in the environment 

(Cordell and Addiss, 1994). Staff members are less commonly implicated as the source of infection  

Evidence of person-to-person transmission of Cryptosporidium has been documented in several 

outbreak investigations. An investigation of a 1993 outbreak in the United States related to the 

consumption of contaminated apple cider found that 33% of households with one primary case 

experienced one or more secondary cases of cryptosporidiosis (Millard et al., 1994). In this 

outbreak, 37% of primary cases aged 5 to 9 transmitted their infection to another member of their 

household, compared to 28% of primary cases aged 10 to 19 and 25% of primary cases over 20 

years old. An investigation of a 1984 childcare centre outbreak in the United States has similar 

results with 38% of symptomatic children and 9% of asymptomatic children passing their infection 

to another member of their household (Heijbel et al., 1987). A somewhat lower transmission rate 

was observed in a Norwegian outbreak among schoolchildren (12-13 years old) visiting a holiday 

farm, where household person-to-person transmission accounted for 17% of cases (Johansen et al., 

2015). In 75% of these cases, Cryptosporidium was transmitted from a child to a caregiver. A lower 

person-to-person transmission rate was reported in the large 1993 waterborne outbreak in 

Milwaukee, where person-to-person transmission rates involving a primary adult case were only 5% 

(MacKenzie et al., 1995b). A case-control study of sporadic cases of cryptosporidiosis in the United 

States also found that contact with a child 2 to 11 years old posed a significant risk, whereas no 

significant risk was associated with contact with an infected older child or adult (Roy et al., 2004).  
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This indicates that the age of the primary case likely has a considerable impact on the risk of 

secondary transmission.  

 Foodborne Transmission 

While it is thought that cases of cryptosporidiosis related to contaminated food are less common 

than those related to water (Karanis et al., 2007), foodstuffs still remain a possible source of 

Cryptosporidium exposure. Foodborne-transmission of Cryptosporidium oocytes is associated with 

a variety of sources including food contaminated by surface water run-off, irrigation water and/or 

wash water (Chaidez et al., 2005, McKerr et al., 2015, Dixon et al., 2013, Amorós et al., 2010), flies 

(Graczyk et al., 2003), and through infected food handlers (Centers for Disease Control and 

Prevention, 1998, Quiroz et al., 2000). Foodborne outbreaks of cryptosporidiosis have also been 

attributed to the consumption of unpasteurized milk (poor udder hygiene) (Harper et al., 2002) and 

unpasteurized fresh-pressed apple cider (fallen apples) (Blackburn et al., 2006, Millard et al., 1994). 

A review by Robertson and Chalmers (2013) identified 18 reported outbreaks of cryptosporidiosis 

globally that were attributed to foodborne transmission. Of these, 6 were attributed to uncooked 

vegetables/leafy greens, 6 to unpasteurized milk and milk products, 3 to unpasteurized apple cider, 

1 to a meat product that was consumed raw, and 2 to infected food handlers. As with many other 

foodborne parasitic infections, identifying and investigating food-related outbreaks of 

cryptosporidiosis is extremely challenging as the long incubation time between infection and 

symptoms makes it difficult to identify the vehicle of infection (Robertson and Chalmers, 2013). 

This likely results in an under-reporting of foodborne cases of cryptosporidiosis.  

 Zoonotic Transmission 

Cryptosporidium is highly prevalent in ruminants, such as cattle, and is excreted in large numbers in 

their faeces (Coffey et al., 2007). It has been estimated that 15 to 24% of dairy calves shed 

Cryptosporidium oocytes, and an estimated 67 – 96% of dairy herds have at least one shedding 

animal (Garro et al., 2016).   A study conducted in the United Kingdom of farms linked to 

outbreaks of cryptosporidiosis found that farms with cattle, sheep and pigs had the highest 

prevalence of Cryptosporidium infection.  Furthermore, faecal samples from young (pre-weaned) 

cattle were 11 times more likely to be positive for Cryptosporidium than samples from adult cows 

(Smith et al., 2010).  

There have been numerous reported outbreaks of cryptosporidiosis related to livestock including in 

veterinary students working with young calves and lambs, and children visiting educational farms 

and petting zoos (Utsi et al., 2016, Sayers et al., 1996, Stefanogiannis et al., 2001, Preiser et al., 
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2003, Ashbolt et al., 2003). Studies of people’s hygiene-related behaviour in educational farms and 

petting zoos has found several common behaviours that would support the transmission of zoonotic 

pathogens such as Cryptosporidium. These behaviours include bringing items that come into 

contact with children’s mouths (e.g. pacifiers and baby bottles) into the farm area, low hand-

hygiene compliance, allowing animals to lick children’s hands or face, and children and adults 

eating and/or drinking within animal contact areas (Erdozain et al., 2013, McMillian et al., 2007, 

Conrad et al., 2016, Weese et al., 2007). 

The role that companion animals play in the transmission of cryptosporidiosis in high income 

countries is thought to be minimal. Studies investigating the prevalence of Cryptosporidium in 

domestic animals showed that the prevalence of infection ranged from 0.5% to 44.1% in dogs and 

0% to 29.4% in cats (Lucio-Forster et al., 2010). Despite this relatively high prevalence, 

epidemiological studies have found that contact with cats and dogs has minimal (source) or no 

association with human cryptosporidiosis (Goh et al., 2004), and may even be protective (Robinson 

and Pugh, 2002). 

 Symptoms and management of cryptosporidiosis 

Cryptosporidiosis is characterized by prolonged watery diarrhoea, abdominal cramping, and flu-like 

symptoms. Symptoms are normally self-limiting in immunocompetent people, but can cause life-

threatening diarrhoea in immunocompromised people, particularly those with Acquired Immune 

Deficiency Syndrome (AIDS) (Cruickshank et al., 1988). There is currently no approved treatment 

for cryptosporidiosis in Australia.  Supportive management and oral fluid replacement is the 

primary treatment approach.  

Asymptomatic infection with oocyte shedding is possible, though little is known about the rate by 

which asymptomatic carriage occurs. Reported rates of asymptomatic cryptosporidiosis vary 

greatly, with a study of US children reporting rates of 6.4% in immunocompetent children and 22 % 

in immunocompromised children (Pettoello-Mantovani et al., 1995), to a study in Melbourne which 

reported an asymptotic carriage rate in the adult general public of 0.4% (Hellard et al., 2000b). A 

detailed investigation in an outbreak related to a childcare centre found that 24% of infected 

children were asymptomatic (Vandenberg et al., 2012). Infected individuals also continue to shed 

oocytes in their stool after symptoms have ceased. A study by Xiao et al. (2001) found that 

individuals infected with C. hominis have a longer shedding period than individuals infected with 

C. parvum (13.9 days and 6.4 days, respectively). C. hominis infected individuals have also been 

found to excrete larger quantities of oocytes in their stool than individuals infected with C. parvum 
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(McLauchlin et al., 1999). Asymptomatic shedding of crypto oocysts is of great public health 

significance as individuals are unlikely to follow common advice such as not swimming and 

avoiding childcare for 2 weeks. The standard advice of avoiding swimming while you have 

symptoms such as diarrhoea is insufficient to stop cryptosporidiosis transmission.  

Gastrointestinal symptoms associated with cryptosporidiosis frequently re-occur following recovery 

from the acute stage of cryptosporidiosis. A study by Hunter et al. (2004b) found that 40.9% of 

symptomatic patients had a relapse of gastrointestinal symptoms following their initial recovery. 

This is consistent with observations from a large cryptosporidiosis outbreak in Milwaukee in 1993 

where 39% of patients experienced a reoccurrence of diarrhoea after 2 or more days of normal stool 

(median 3 days, range 2-10) (MacKenzie et al., 1995b). Of these individuals, only 6% had a 

reoccurrence after 45 or more days of normal stool (Osewe et al., 1996). 

There is no conclusive evidence that infection with Cryptosporidium confers immunity to re-

infection in humans. A study by Chappell et al. (1999), that involved infection of a small number of 

both uninfected and previously infected volunteers, showed  that prior infection prevented re-

infection at low doses (500 oocytes), but not at higher doses (10,000 or more oocysts). However, 

Okhuysen et al. (1998) found previous Cryptosporidium infections provided no significant 

protection one year following initial exposure, though they did find decreased severity (number of 

unformed stools) and intensity (likelihood of detecting oocytes in stool) of the disease in the 

previously exposed population.  Interestingly, an analysis of data from a water-associated outbreak 

in Oregon found that long-term residents of the town were less likely to show symptoms of illness 

compared to short-term, or out-of-town visitors (Frost et al., 1998).  This was interpreted as 

evidence of the protective effect of multiple exposures with regards a reduction in symptomatic 

illness (but not necessarily infection) in individuals. 

3.2.1. Healthcare-related behaviours 

One of the factors that complicates the management of outbreaks of cryptosporidiosis is the 

relatively low rate of presentation for healthcare in patients with symptoms of cryptosporidiosis, 

and diarrhoea in general. Perz et al. (1998) estimated that only 5% of adults and 10% children with 

symptoms of diarrhoeal illness will seek medical care (increasing to 33% and 50% respectively 

when symptoms are moderate-severe).  They further estimated that of the adults and children who 

present to a doctor with symptoms, only 25% of adults, and 50% of children will have their stool 

tested. Other studies have found that between 18%-23.5% (Scallan et al., 2011, Tam et al., 2012, 

Majowicz et al., 2005, Scallan et al., 2005) of individuals with diarrhoeal illness sought medical 
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attention, and of those only 14% - 26% (Scallan et al., 2005, Majowicz et al., 2005, Scallan et al., 

2011) had their stool tested. The low stool testing rate may be due to a variety of factors such as 

physicians initially adopting a supportive approach, a lack of noteworthy circumstances to raise 

physician’s suspicions, or concerns about the cost of testing. Figure 3.2 illustrates several additional 

factors at each stage of the surveillance pyramid that likely contribute to the under-reporting of 

Cryptosporidium infections in disease surveillance systems. 

 
Figure 3.2: Surveillance pyramid for cryptosporidiosis, included factors influencing ascertainment. 

Physicians’ knowledge of cryptosporidiosis also plays an important role in the management of both 

sporadic- and outbreak-associated cases of cryptosporidiosis. Studies of American physicians have 

found that more than 75% of gastroenterologists, general/family practitioners, and paediatricians 

rarely or never ordered diagnostic tests for patients with symptoms consistent with 

cryptosporidiosis (Morin et al., 1997).  In addition, only 44.4% of obstetrician-gynaecologists could 

correctly identify that prolonged, intermittent diarrhoea could lead to a differential diagnosis of 

cryptosporidiosis (Domjahn et al., 2014). A similar study also found that 40% of physicians did not 

know the most appropriate tests for parasitic diseases such as cryptosporidiosis (Hennessy et al., 

2004), which may result in requests for inappropriate diagnostic tests (Polage et al., 2011). 

Therefore, existing surveillance significantly underestimates the incidence of cryptosporidiosis 

because of the small proportion of symptomatic infectious cases that receive a clinical diagnosis and 

are subsequently reported to public health agencies. 

 

 



 

37 

3.2.2. Diagnostic Methods 

Confirmation of Cryptosporidium infection is achieved by detection of oocysts or Cryptosporidium 

antigens or nucleic acid in faecal specimens from infected individuals.  

Direct microscopy to visually detect oocysts involves the examination of infected stool under a 

microscope, typically using modified Kinyoun Acid-Fast stain or fluorescent monoclonal antibody 

(FA) staining reagents (Public Health Laboratory Network, 2017). Due to the difficulty visualizing 

Cryptosporidium oocytes, the examination of multiple stool specimens (up to 3) may be necessary 

to make a diagnosis. The sensitivity of direct microscopy varies considerably depending on the 

technician’s experience and the staining technique used, but is thought to vary between 33% and 

100% (mean 70.85%) (ten Hove et al., 2009, Van den Bossche et al., 2015). 

Antigen detection involves the use of commercially available testing kits, which use either Enzyme 

immunoassays using microtitre plates or immunochromatographic immunoassays to detect 

Cryptosporidium oocytes in faeces (Public Health Laboratory Network, 2017). Antigen detection 

has often been the laboratories’ preferred diagnostic method as detection can occur in a single step. 

The sensitivity of antigen detection varies considerably based on the kit used and the species of 

Cryptosporidium, but ranges from <35% to 100% %) (ten Hove et al., 2009, Van den Bossche et al., 

2015). Unlike the other two methods, antigen detection can suffer from poor specificity if the stool 

sample contains blood. 

Nucleic acid detection is the newest diagnostic method available for the detection of 

Cryptosporidium in stool. Real-time polymerase chain reaction (PCR) is a molecular diagnostic 

technique that targets specific genes within the Cryptosporidium oocyte. This technique has a high 

sensitivity, ranging from 80% to 100% (ten Hove et al., 2009, Stark et al., 2014, Liu et al., 2013), 

though this is often limited to the detection of C. parvum and C. hominis. Real-time PCR has 

largely replaced microscopy and antigen detection as the routine method used for diagnosis due to 

its speed and high sensitivity. 

3.2.3. Cryptosporidiosis and international travel  

Recent international travel to developing countries is considered a major risk factor for acquiring 

Cryptosporidium infections, particularly when the destination of travel is a low- or middle-income 

country (Roy et al., 2004).  This is likely due to international traveller accidentally consuming food 

or beverages that contain inadequately treated water, as well as travellers visiting areas without 

improved sanitation and hygiene practices. However, Cryptosporidium is not considered one of the 
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primary pathogens responsible for traveller’s diarrhoea. Jelinek et al. (1997) found that only 13 

(2.8% of 469 German travellers with diarrhoea were infected with Cryptosporidium.  This is similar 

to the results of recent studies that showed that 3% of US travellers to Guadalajara, Mexico 

(Bouckenooghe et al. (2002) and 1% of long-term Dutch  travellers to the (sub)tropics (Soonawala 

et al. (2014)) were infected with Cryptosporidium.  

A 5-year surveillance study (2004-2009) in the United States of travellers to low income countries 

found that travellers to Africa and Central America have higher than average risk of 

Cryptosporidium infections (9.6 cases per 100 000 travellers and 2.8 cases per 100 000 travellers 

respectively) (Kendall et al., 2012). It also found that overall, Cryptosporidium infections represent 

3.8% of travel-associated enteric infections and 5.9% of non-travel-associated enteric infections in 

the American general population and estimated that travel-associated cases represent 8.9% of 

cryptosporidiosis in the United States.  

Whilst the individual risk of infection with Cryptosporidium in travellers is low, the number of 

people travelling is high, which represents a significant potential source of infection for Australian 

communities.  Indeed, Australia recorded 15 million international arrivals in 2012, 8.1 million of 

which were Australian residents returning from a short trip overseas (Australian Bureau of 

Statistics, 2012). While only a portion of these arrivals are likely from developing countries.  

While not specific to cryptosporidiosis, existing research in diarrhoea in travellers may also provide 

some insight on cryptosporidiosis dynamics related to international travel. A review conducted by 

Diemert (2006) found that age plays a significant role in infectious diarrhoea in travellers, with 

young children and adults aged 21-29 years having the highest incidences of diarrhoea related to 

foreign travel. This study attributed the high rates of diarrhoea in young adults to a lack of vigilance 

in avoiding contaminated food and beverages and a more adventurous lifestyle that would bring 

them into contact with contaminated environments. It is possible that this contributes, at least to 

some degree, to the higher rates of cryptosporidiosis that have been identified in young children 

compared to other age groups. 

3.2.4. Cryptosporidiosis and weather, climate, and seasonality 

There has been limited study of the effect that weather and climate have on the transmission of 

cryptosporidiosis in high income countries. A study of weekly weather variability and cases of 

cryptosporidiosis in Brisbane, Australia identified a possible link to maximum temperature and 

relative humidity, with cryptosporidiosis cases increasing when temperature is above 31oC and 

relative humidity is below 63% (Hu et al., 2010). A similar study in Victoria, Australia showed that 
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a 1oC increase in monthly average minimum temperature was associated with a 22% increase in 

cryptosporidiosis notifications (Kent et al., 2015). Neither study identified any association between 

rainfall and cryptosporidiosis notifications. Furthermore, a study conducted in the United States 

found that increases in temperature, changes in river flow, and increased water pollution associated 

with climate change could increase the incidence of cryptosporidiosis.  However, the authors argued 

that climate change-related factors are poor predictors of the risk of cryptosporidiosis in high-

income countries as the overall impacts of public health investment and water treatment 

infrastructure overwhelm the effects of changes in climate (Casman et al., 2001). 

The distribution and incidence of cryptosporidiosis have been found to differ according to seasons. 

In Canada and the United States, Cryptosporidium infections were found to peak in the late summer 

(Laupland and Church, 2005, Dietz and Roberts, 2000) whereas in New Zealand (Learmonth et al., 

2001) and the United Kingdom (Naumova et al., 2005) observe peaks of incidence  peaks in both 

the spring and autumn. It is thought that the spring peak coincides with the spring calving season. 

The United Kingdom also experiences a spring and autumn peak. In Australia, reported cases have 

been found to peak towards the end of the summer, with Queensland, Victoria and New South 

Wales also experiencing a smaller peak in the spring (Figure 3.3) (Lal et al., 2015).  

 
Figure 3.3: Total weekly number of cryptosporidiosis notifications in Australia by state or territory, 

2001-2012 (reprinted from Lal et al. (2015)) 

While many studies attribute seasonality to weather and climate conditions (Naumova et al., 2005, 

Naumova et al., 2007, Jagai et al., 2009), it is likely that routine seasonal occurrences such calving 
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and lambing seasons, and increased contact with recreational water in the summer, play a 

significant role in the seasonality of cryptosporidiosis. Evidence in some countries of increased C. 

parvum cases in the spring likely due to lambing and calving season, and spring runoff, and 

increased C. hominis in the late summer, likely due to increased recreational water activities and 

international travel, supports this hypothesis (Goh et al., 2004, Hunter et al., 2004a). 

3.2.5. Cryptosporidiosis management 

The primary methods currently used to prevent and manage the spread of cryptosporidiosis fit 

broadly into 3 categories: design and construction of facilities, operation and management, and 

public behaviour modification. This section will examine the existing literature on currently 

adopted cryptosporidiosis management approaches, with a focus on their impact on public aquatic 

facility. As the focus of this research project is not the evaluation of specific engineering elements 

of aquatic facility design and construction, that section will only provide a brief overview of 

cryptosporidiosis-related studies and interventions. 

 Design and construction of facilities 

As Cryptosporidium oocytes are not quickly inactivated at normal free chlorine levels, pool 

operators often rely on external filtration or treatment systems such as UV irradiation and ozone 

treatment. Because these treatments occur outside the pool, it is important that pool systems are 

designed with sufficiently regular turnover to ensure all water regularly passes through the 

treatment system, while also allowing for sufficient mixing of pool water to allow in-situ treatments 

to be effectively dispersed throughout the pool. A study conducted by Lewis et al. (2015) of 

computational fluid dynamics assessed the effects of operational practices on the risk to public 

health within large indoor swimming pools. They found that current pool design approaches 

sufficiently disperse disinfectants within the pool within a desired timeframe, but do not exchange 

water sufficiently, creating ‘dead-zones’ at either end of the pool which can harbour pathogens such 

as Cryptosporidium. This is of particular concern as the ends of the pool are the areas where people, 

particularly children, are likely to congregate.  

 Operation and management 

One of the key methods used to control Cryptosporidium transmission in aquatic facilities is by 

establishing accidental faecal release (AFR) procedures. These procedures are used when a pool 

patron has a faecal accident in or around the pool. They generally consist of closing the aquatic 

venue, removing as much of the faecal matter as possible, disinfecting the pool water or draining 
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(typically through hyper-chlorination), and cleaning the venue. The water is then replaced, returning 

the chemical parameters in the water to a safe level, and then allowing patrols to return to the venue.  

The Centers for Disease Control and Prevention’s Model Aquatic Health Code (Centers for Disease 

Control and Prevention, 2016a) recommends that following the detection of an diarrhoeal AFR, that 

free chlorine residual is raised to 20mg/mL and maintained for at least 12.75 hours or to circulate 

the pool water through a secondary disinfection system to theoretically reduce the concentration of 

Cryptosporidium oocytes to less than 1 oocyte/100 ml.  

Unfortunately, cryptosporidiosis can be transmitted through faecal accidents that are undetected, or 

when contamination occurs though shedding. In these cases, pool operators may be unaware of the 

contamination and therefore do not implement the decontamination procedures until notified by a 

public health authority. This delay can result in a significant number of additional pool users being 

infected. In an attempt to overcome this delay, a county in Ohio tested a proactive approach where a 

pool, as well as two neighbouring pools, were ordered to hyper-chlorinate based on anecdotal 

evidence or pool use by infected individuals, and before the source of the outbreak was 

epidemiologically ascertained (Cope et al., 2015). Further investigations did find the pool 

significantly associated with the outbreak and that a community-wide outbreak had likely been 

avoided. While it is impossible to ascertain whether the proactive approach prevented a community-

wide outbreak, the evidence does support this hypothesis.  

Pool operators, who are responsible for the correct maintenance and operation of public aquatic 

facilities, play an integral role in the prevention and management of cryptosporidiosis outbreaks. To 

ensure that aquatic facility mismanagement isn’t the source of disease outbreaks, there have been 

calls for mandatory pool operator training. While there have been no studies on the impact of pool 

operator training on the incidences of cryptosporidiosis in pool patrons, a study investigating the 

effectiveness of mandatory pool operator training on overall pool water quality was conducted in 

the United States. Buss et al. (2009) compared pool water quality violations in Nebraska counties 

with and without mandatory pool operator training, finding that violations were twice as likely in 

counties without mandatory training than those with mandatory training. While Cryptosporidium 

can be present even in well-maintained pools, their findings do support the idea that mandatory 

operator training and certification can reduce the health risk posed by public aquatic facilities. 
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 Public behaviour modification through education and information  

As current technical interventions cannot alone prevent the spread of cryptosporidiosis, 

interventions that aim to change the behaviour of people who can potentially catch and spread 

cryptosporidiosis are important.  

There has been limited study of the behaviour of aquatic facility users in relation to the overall 

hygiene environment of public aquatic facilities. Of the studies conducted, most have identified a 

low level of compliance with basic hygiene-related behaviours such as pre-swim showering and not 

swimming while ill (Bonini et al., 2011, Wiant, 2011, Nett et al., 2010). As well, these studies have 

identified a poor understanding of the health-related rationale driving the need for compliance with 

these behaviours, and, with the exception of wart and mycosis, as a poor understanding of the 

existence and mechanisms of infectious diseases transmitted in aquatic facilities (Liguori et al., 

2007, Galle et al., 2016, Amodio et al., 2014, McClain et al., 2005, Nett et al., 2010). Interestingly, 

a hygiene survey in the United States conducted by the Water Quality and Health Council found 

that despite admitting to non-compliance with hygiene-related behaviours themselves, the majority 

of Americans believe that their fellow swimmers are engaging in more unhygienic behaviours in the 

pool than they are (Wiant, 2011). 

McClain et al. (2005) conducted a study of parents’ perception of their children’s risk for 

recreational water illnesses (RWI). Their results indicate that for parents with poor awareness of 

RWIs, that their perception of their child’s vulnerability to RWIs and the perceived severity of 

RWIs had the biggest influence on their overall perception of risk. Once they acknowledge the 

potential risk associated with RWIs, the parent’s perception of the effectiveness of potential 

interventions (response efficacy), and their perception of their ability implement/enforce behaviour 

modifications in their children (self-efficiency) had the bigger influence on their overall perception 

of risk. 

One of the primary methods currently used to prevent bather contamination of public aquatic 

facilities is displaying pool rules and regulations. The WHO Guidelines For Safe Recreational 

Water Environments (World Health Organization, 2006) recommend that signage is used to convey 

personal hygiene measures such as pre-swim showers. In addition, the Center for Disease Control 

and Prevention’s Model Aquatic Health Code requires conspicuous signage prohibiting polluting 

the water, swimming while ill with diarrhoea, swallowing pool water and requiring patrons to 

shower before entering the water (Centers for Disease Control and Prevention, 2016a). These 

recommendations are echoed within Australia including in the Government of Victoria’s Pool 
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Operators Handbook (Victorian Government, 2008), the Queensland Health Swimming and Spa 

Pool Water Quality and Operational Guidelines (Queensland Health, 2004) and the Government of 

New South Wales Public swimming pool and spa pool advisory document (Health Protection NSW, 

2013). To date, there have been no published studies regarding the effectiveness of signage in 

relation to reducing or managing cryptosporidiosis, but a series of studies conducted in Italy of 

general health-related behaviours in swimming pool users found no association between knowledge 

of hygiene-related pool rules and regulations through viewed posted signage, and compliance with 

those rules (Galle et al., 2016). Similar results were found in a study of splash-park visitors in the 

United States, which found that educational signage did not appear to influence visitor’s compliance 

with hygiene behaviours or attitudes (Nett et al., 2010). This indicates that knowledge of pool rules 

is insufficient on its own to ensure pool-users adopt the hygiene-related behaviours necessary to 

prevent pool-related cryptosporidiosis transmission.   

Another method currently used by public health agencies that is aimed at reducing the spread of 

cryptosporidiosis by users of public aquatic facilities is through educational media campaigns. 

There has been little evaluation of cryptosporidiosis-specific education campaigns, with the 

exception of a 2008 campaign in Utah following a massive cryptosporidiosis outbreak the previous 

year (Centers for Disease Control and Prevention, 2012). This large campaign used online, 

television, radio and print media to convey messages such a “A Swimming Pool is like a 

community bathtub”, as well as sent targeted messaging to high risk user groups such as water 

sports teams and childcare centres. Following the media campaign, the study found Utah residents 

had greater healthy swimming knowledge than residents of other states, particularly residents who 

had seen the television advertisements. While knowledge does not necessarily correspond with 

behaviour change, the authors did note that there had been no subsequent pool-related outbreaks in 

Utah following the media campaign.  

 Case Study – Cryptosporidiosis in South East Queensland 

3.3.1. Location of Study 

South East Queensland 3(SEQ) is a geographical and administrative region of Queensland, located 

on the eastern coast of Australia, stretching from the New South Wales border in the south to the 

                                            
3 The study region sits within a region commonly referred to as ‘South East Queensland’ (written as a proper 

noun), which specifically refers to region surrounding the metropolitan areas of Brisbane and the Gold Coast 

and does not encompass the entire southeast (geographical) portion of the state of Queensland.  
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city of Noosa in the north and the city of Toowoomba in the west. The two major urban areas with 

SEQ are the city of Brisbane and the city of Gold Coast. A variety of geographical boundaries for 

South East Queensland exist, the 

boundary for the study area was 

defined using the Queensland 

Ministry of Health’s boundaries 

for the Metro North, Metro 

South, and Gold Coast Health 

and Hospital Health Services 

(Figure 3.4).  

3.3.2. Population 

The population of the study area 

is estimated to be approximately 

2.5 million persons, representing 

54.9% of the total Queensland 

population (Queensland 

Government Statistician’s Office, 

2015). Population density in SEQ varies tremendously with areas of central Brisbane and Gold 

Coast having a population density exceeding 3500 persons/km2, to outer areas of the region having 

a population density below 500 persons/km2 (Australian Bureau of Statistics, 2015c). 

 
Figure 3.5: Estimated Resident Population by Age, South East Queensland, 2010 and 2015 

(Australian Bureau of Statistics, 2015b) 
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Figure 3.4 Study Area as defined by the Queensland Ministry 
of Health’s Hospital and Health Services boundaries 
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Within the study area, the 2014 National Health survey determined that 55.9% of households had 

no children 0-14 years old, 14.6% had one child, 19.21% had 2 children, and 10.29% had 3 or more 

children (Australian Bureau of Statistics, 2015a).  A total of 63.57% of adults in the study area have 

some form of post-secondary qualification, which is similar to the national average of 62.38% of 

adults, but somewhat higher than the Queensland average of 59.82% of adults (Australian Bureau of 

Statistics, 2015a). 

3.3.3. Cryptosporidiosis in South East Queensland 

During the study period, cryptosporidiosis notifications showed an apparent cyclic trend, with 

increased periods of increased notifications being observed in 2009, 2012, 2015, 2016 and 2017 

(Figure 3.6). All three regions of the study area follow a similar cyclic trend, except for the Gold 

Coast, which was less affected by the 2012 and 2015 peaks. 

 
Figure 3.6: Weekly cryptosporidiosis notifications in the three PHU Regions of the study area 

(2007-2017) 

Mean monthly cryptosporidiosis notifications are at their highest in the late summer / early fall 

across all three are groups and regions (Figure 3.7). Few cases occur from July-October in all three 

regions. That trend continues until December in the Gold Coast, whereas Metro North and Metro 

South Brisbane experience a notable increase as of November. Interestingly, the average monthly 

cases in individuals 5+ years old peaks one month before (February) those individuals 0-4 years old 

(March) in Metro South and Gold Coast. 
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Figure 3.7: Mean monthly cryptosporidiosis notifications in South East Queensland by age group 

and region (2007-2017) 

 Healthcare seeking behaviour 

While there has been no study that specifically looked at healthcare seeking behaviour in 

individuals with cryptosporidiosis in SEQ, the Australian National Gastroenteritis Survey II 

conducted in 2010 (Kirk et al., 2014) found that 28% of survey respondents who reported 

gastroenteritis sought some kind of healthcare advice (just over half of which was advice from a 

pharmacist), with 15.5% seeking care from a doctor or health clinic, and 3.5% seeking care from an 

emergency/casualty department. Individuals with symptoms lasting two or more days were more 

likely to see a doctor. Vomiting was found to be significant predictors of going to see a doctor, 

whereas individuals with stomach cramps where less likely to seek medical attention.  Of the cases 

who saw a doctor, approximately 24% submitted a stool sample for testing. A similar study in 2005 

(Scallan et al., 2005) found that 19.5% of Australian respondents who had diarrhoea reported 

visiting a doctor, and of those who did visit a doctor, 18.4% were asked to submit a stool sample.  

3.3.4. Risk Factors 

 Physical Activity and Swimming 

The residents of the Metro North and Gold Coast areas of the study area are more active than the 

state and national average, whereas the activity level of residents of Metro South are less active and 

more closely match the state average (Australian Bureau of Statistics, 2015c). Overall, the residents 

of the study area have higher self-assessed health than the national or state average, with 58.4% of 

residents reporting they are in excellent or  good heath, compared with 55.57% in Queensland, and 

56.25% in Australia as a whole (Australian Bureau of Statistics, 2015c). 
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The proportion of individuals in each region who regularly swim, and the frequency of swimming, 

varies between the regions. Residents of the Gold Coast are more likely to regularly swim, though 

this is likely due to their close proximately to a number of public beaches.  

All three regions have similar densities of public council swimming pools, with 8-12 aquatic centres 

per region (Brisbane City Council, n.d., City of Gold Coast, n.d.). These facilities generally contain 

a combination of different swimming pools and aquatic features, including shallow learn-to-swim 

pools, splash parks, indoor and outdoor pools, lap pools, diving pools and hydrotherapy pools. 

These pools vary in size ranging from small learn-to-swim pools (70,000 to 200,000 litres) to 

Olympic-sized lap pools (2,500,000 litres). Except for the Gold Coast Aquatics Centre, council-

owned pools are operated and maintained under long-term contract by private leisure management 

companies. Approximately 1/3 of the pools are closed to public from late fall to mid-spring. 

Table 3.1: Adults (18 years+) who reported swimming in the last week, 2012 (source: (Australian 
Bureau of Statistics, 2012a)) 

  Brisbane 
South 

Brisbane 
North 

Gold 
Coast Total 

Adults who reported swimming in the 
last week 49,300 31,500 33,900 116,000 

Total adult population (18 years+) 816,100 640,800 454,800 1,904,100 

Percentage of adults who reported 
swimming in the last week 6.0% 4.9% 7.5% 6.1% 

The region is also home to numerous privately-owned aquatic facilities including pools in 

elementary and secondary school. As there is no central registry of publicly-accessible aquatic 

facilities in Queensland, the study will be limited to council-owned aquatic facilities.  

There is currently no legislation in Queensland that legislate the design and operation of swimming 

pools in relation to water quality, except for the Public Act, 2005, which states that a swimming 

pool must not pose a public health risk. In 2004, the Queensland Department of Health released the 

Swimming and Spa Pool Water Quality and Operational Guidelines. These voluntary guidelines 

provide swimming pool operators with guidance and advice on how to maintain the quality of 

aquatic facilities they operate.  

There are also currently no guidelines in Australia that outline or recommend an acceptable 

(tolerable) risk of infection related to contact with swimming pool water. Therefore, swimming pool 

water can only be compared to the threshold for tolerable risk for either natural water bodies or 

drinking water.  The state of Queensland has adopted the federal Guidelines for Managing Risks in 
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Recreational Water produced by Australia’s National Health of Medical Research Council 

(NHMRC), though these guidelines only apply to natural waterbodies. The NHMRC guidelines 

rank water quality on a scale of A (very good) to D (poor) with estimated risks of gastrointestinal 

illness from enterococci per swimming event of <1%, 1-5%, 5-10% and >10% for categories A, B, 

C and D respectively (NHMRC, 2008). While the risk posed to humans from enterococci differs 

somewhat from that posed by Cryptosporidium, enterococci are a commonly used indicator of 

microbial water quality in recreational water bodies.  Additionally, while these categories are not 

direct indications of acceptable risk thresholds, bodies of water within category A, which have very 

low or low susceptibility of contamination (as would be the case with swimming pools) likely meets 

that threshold (NHMRC, 2008). Bodies of water in category B are also considered to be ‘very 

good’. Alternatively, a much more stringent threshold of 1 infection per 10,000 people per year is 

widely used as a reference point for tolerable risk related to drinking water (Hunter and Fewtrell, 

2001).  

 Childcare 

In terms of adults providing care for children, approximately 23% of adults in South East 

Queensland report caring for either their own, or someone else’s child at least once in the last 2 

weeks (Table 3.2). While only a portion of these people likely cared for a young child, it does 

represent a rough estimate of the proportion of the adult population within the study site that has 

regular contact with a known high-risk group for cryptosporidiosis (children). 
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Table 3.2: Number of adults in South East Queensland* who report caring for (unpaid) one or more 
children in the last two weeks, 2011 (source: (Australian Bureau of Statistics, 2011)) 

  

Number of adults 
(15 years +) 

Percent of adult 
(15 years +) 
population 

Total number of people 15 years+ who cared 
for one or more children in the last two weeks 655,622 22.98% 

Cared for own child/children 469,283 16.45% 

Cared for other child/children 162,873 5.71% 

Cared for own child/children and other 
child/children 23,466 0.82% 

Total number of people 15 years+ who did not 
care for any children in the last two weeks 2,197,815 77.02% 

Did not provide child care 1,460,120 51.17% 

Not stated 173,548 6.08% 

Not applicable 564,147 19.77% 

Total population 2,853,437  

*The geographical boundaries used in this survey (QLD Major Urban) does not precisely match the study 
area as it includes both the study area as well as small portions of Ipswich and the Sunshine Coast 

 International travel 

South East Queensland is home to two large international airports, as well as a cruise ship termal. 

On average, Brisbane International Airport and Gold Coast International Airport together receive 

over one million arrivals per month, peaking in July and October, and decreasing in February 

(Figure 3.8) (Australian Department of Infrastructure Regional Development and Cities, 2018). 

While the majority of these passangers are international vistors and/or people transitting through to 

onward destinations, a portion of them are local SEQ residents who are returning home from short-

term visits overseas. These residents can serve as potential vectors, introducing overseas-aquired 

Cryptosporidium into the local community.  
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Figure 3.8: Monthly passenger arrivals at Brisbane International Airport and Gold Coast 

International Airport, 2009-2017(Australian Department of Infrastructure Regional 
Development and Cities, 2018) 

Of those Queensland residents returning from short-term stays abroud, slightly more than half of 

them are arriving from desitination with a lower risk of aquiring cryptopsoridiosis infections such as 

New Zealand, western Europe or North America (Figure 3.9) (Australian Bureau of Statistics, 

2017).  

 
Figure 3.9: Percent of Queensland residents returning from short-term overseas travel, by age and 

destination-related Cryptosporidium transmission risk, July 2007 – 2017 (Australian 
Bureau of Statistics, 2017) 

Of those residents returning from high-risk destinations, the majority came from South and South 

East Asia, Oceania (not including New Zealand), and East Asia (Figure 3.10). Children 0-4 years 

old represent a  small proportion of all returning residents, irrespective of travel destination.  
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Figure 3.10: Queensland residents returning from short-term overseas travel to high-risk 

destinations, by sub-region of travel, July 2007 – 2017 (Australian Bureau of Statistics, 
2017) 

 Source of drinking water 

Most residents in the study area obtain their drinking water from community water supply (Table 

3.3). Catchment management, bulk water supply and drinking water treatment in South East 

Queensland is the responsibility of Seqwater, a statutory authority of the Government of 

Queensland. Under the Australian Drinking Water Guidelines, Seqwater is required to remove 

pathogens including Cryptosporidium. This is accomplished through a multi-barrier approach of 

source water protection, microfiltration during water treatment process, and UV disinfection at 

treatment plants with high levels of turbidity that may reduce the effectiveness of the filtration stage 

(Seqwater, 2013). 

Table 3.3: Primary source of drinking water by location of primary dwelling, 2012 (source: 
(Australian Bureau of Statistics, 2012a)) 

Drinking water source Brisbane 
North 

Brisbane 
South Gold Coast 

Community water supply 93.2% 84.7% 91.7% 

Tank 2.3% 9.1% 4.9% 

Other 2.3% 2.3% 0.0% 

Spring 2.7% 0.4% 0.0% 

Never drink tap water 1.2% 4.8% 2.1% 
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While there is no routine testing to detect Cryptosporidium in drinking water systems, several 

samples have been taken from catchments supplying the study area. Of those tested, all had low 

levels of Cryptosporidium (<4 oocytes/ 10 litres) (Seqwater, 2012). Additionally, no reported 

cryptosporidiosis outbreaks within the study have been attributed to the community water supply. 

For that reason, drinking water is not considered to be a main source of Cryptosporidium exposure 

in the study area. 

 Contact with livestock 

While contact with livestock is considered a risk-factor for acquiring Cryptosporidium infections, it 

is not considered to be a major source of infection in the study area. Residents of the area have, in 

general, little-to-no contact with livestock due to its urban and peri-urban nature. Additionally, few 

people in the study area are employed in the agricultural industry, with 709,826, and 314 people 

living in Metro North, Metro South and the Gold Coast respectively reporting in the 2016 census 

that they work in livestock-related agricultural jobs. This represents less than 1% of the employed 

persons in those regions (Australian Bureau of Statistics, 2016). 

The one exception is the Royal Queensland Show (commonly referred to as ‘Ekka’), which is an 

annual 10-day agricultural show held in the centre of Brisbane in mid-August. During this show, 

which is attended by over 400,000 visitors and over 10,000 animals annually, the general public is 

given the opportunity to interact with livestock on display and in petting zoos (RNA, 2016). In the 

past, the EKKA has been implicated in at least one large zoonotic disease outbreak. In 2013, a 

petting zoo at the Ekka was associated with a confirmed outbreak of Shiga toxin producing E. coli 

O157 (STEC) infection involving 57 cases (Government of Australia, 2013). Never the less, there 

have been no reported outbreaks of Cryptosporidium infections associated with the Ekka, nor any 

major outbreaks that coincide with the timing of the show.  

 Cryptosporidiosis in South East Queensland as a complex environmental health 

problem 

The trend of cryptosporidiosis notifications over time (as shown in Figure 3.6) demonstrates how 

effective management solutions for the cryptosporidiosis problem in South East Queensland have 

thus far eluded local and state decision makers. The nature of this problem shares many of the 

characteristics of complex problems as defined in section 2.3.1. For example, this problem is 

characterised by nonlinearity, system outputs (e.g. number of new cases in the community) are not 

directly proportional to the inputs (e.g. infectious cases in the community), demonstrating 

disproportional cause and effect. Feedback loops also drives this problem, such as the circular 
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relationship between the number of new cases in the community and the number of infectious cases 

that are currently in the community. This problem also exhibits emergence, where higher order 

system behaviour arises from the collective interactions of system components (e.g. public aquatics 

facilities, the public health system response, international travel, etc.), but cannot be explained 

solely by examining the components alone. Additionally, the irregular frequency of outbreaks 

makes it difficult to identify what is causing the outbreaks, and therefore makes it difficult to 

prevent outbreaks from occurring.  

Beyond the complex nature of the problem itself, decision-making related to cryptosporidiosis in 

SEQ is also hindered by high levels of all three types of problem uncertainty (as described in 

section 2.2). There is significant natural variability and heterogeneity (aleatoric uncertainty) in 

factors such as susceptibility, infectivity, exposures, and human behaviour that exist within the 

systems, which make it difficult to quantify or predict the effects of decisions on the local 

population. Additionally, there is broader systemic uncertainty (epistemic uncertainty) related to a 

lack of information and consensus regarding the system of cause and effect relationships, as well as 

the parameters within a system specific to SEQ. For example, there is very little SEQ-specific 

information about Cryptosporidium exposure events, person-to-person and environmental contact 

behaviours of people within the community, or treatment behaviours of local healthcare providers. 

Additionally, the interconnections between person-to-person exposure, waterborne exposure and 

zoonosis is unclear in the region. Finally, despite there being a strong level of certainty related to 

the individual-level biological mechanisms of transmission, there is a great deal of deep uncertainty 

related to the local community-level social, environmental, technological and health process driving 

this problem at the population-level. For example, it is unclear whether some unknown factor is 

driving the seemingly cyclic 2-3 year pattern of outbreaks, or if this is just a random effect.  

The problem of cryptosporidiosis in South East Queensland is a clear example of a complex 

problem that environmental health practitioners must tackle on a regular basis. Despite 

Cryptosporidium being a relatively well researched issue, local decision makers are not equipped 

with the tools that can capture the degree of complexity presented by this problem and translate the 

existing evidence into actionable information.  It is for this reason that the problem of 

cryptosporidiosis in South East Queensland has been chosen as a case study for this project to 

explore the value of system dynamics modelling as a decision-support tool for environmental public 

health decision-making processes. 
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 Summary 

The intention of this chapter was to provide a broad overview of the current state of the literature 

regarding Cryptosporidium and cryptosporidiosis, as well as background on the case study location 

and the local context of known cryptosporidiosis risk factors. Current research indicates that 

Cryptosporidium has numerous modes of transmission, many of which are temporarily or 

geographically-specific. Recreational water, and particularly swimming pools, is a major source of 

transmission, and presents numerous management challenges. The chlorine-resistant nature of this 

pathogen allows it to persist in swimming pools for an extended period of time, allowing for 

prolonged periods of exposure to high-risk populations (i.e. small children). Though limited, the 

research also indicates cryptosporidiosis remains a persistent problem in SEQ, particularly during 

the summer months when swimming pool attendance is at its peak. While common sources of 

exposure such as drinking water and contact with livestock are reported to play an important role in 

cryptosporidiosis dynamics in many parts of the world, they are not thought to play major role in 

SEQ. The information presented in this chapter forms much of the evidence-based foundation that 

was used to support the qualitative systems map and quantitative system dynamics model presented 

in chapters 5 and 6 respectively.   
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Chapter 4. Methodology and Methods 

This chapter is broken into two sections, an overview of the general methodology used in this 

thesis, and a description of the methods used in the case study. This chapter will build on the 

discussion of system dynamics in chapter 2, describing system dynamics from an applied 

perspective. It will also introduce action research as a complementary methodology for studying the 

applicability of systems thinking and system dynamics to environmental health decision-making.  

 Theoretical approach and justification 

‘there is nothing so practical as a good theory’ – Kurt Lewin (1951) 

From a broader perspective, this research follows a constructivist paradigm, the premise of which is 

that the truth is dependent on, and relative to, one’s perspective. The ontology of the constructivist 

paradigm is relativist, meaning that multiple realities of the same situation exist, and that reality is 

socially constructed (Labonte and Robertson, 1996). The constructivist paradigm, as adopted in this 

thesis views that the prior ideas and experiences of the research participants shape their individual 

and collective experience of reality. Therefore, this project seeks to bring together multiple realities 

and perspectives to develop a consensus construct of a problem.  

This research in this thesis combines two different methodologies that are often thought to sit on 

different ends of the continuum of research paradigms: action research and system dynamics.  

Action research (AR), which predominantly sits on the qualitative side of the research paradigm 

continuum, involves the ‘researcher’ and the research ‘subjects’ jointly defining a problem and then 

undertaking a sequence of iterative cycles of action and reflection, where each cycle seeks to prove 

or disprove the findings of the previous cycle (Scholl, 2004).  

System dynamics (SD), on the other hand, traditionally sits on the quantitative side of the 

continuum of research paradigms. Traditionally, system dynamics modelling takes a top down 

approach, with the modeller (or team of modellers) identifying a problem within a problematic 

situation, defining variables and interactions, and then simulating the behaviour of system they are 

trying to model.  

While AR and SD may differ in the way they approach problem solving, they share a number of 

similarities that make them well suited for integration into a combined methodology.  The following 

section describes each methodology, as well as the commonalities and differences between them. It 
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concludes with a description of how this research project has joined AR and SD into a combined 

method using participatory model building.  

4.1.1. System Dynamics Modelling  

As discussed in Chapter 2, system dynamics modelling approaches problems based on the premise 

that the structure of a complex system (i.e. the causal relationships among components) is the 

source of the system’s dynamic behaviour. Therefore, to effectively develop policy interventions for 

complex problems, one must understand the structure of the system. 

From an applied perspective, system dynamics modelling is a process where a mathematical 

simulation model is constructed through a series of iterations of increasing complexity as the model 

is built and continuously refined. New information that is gathered during each portion of the 

process is used to future refine past and future portions of the process (Sterman, 2000a). Once 

produced, the model can be used to predict if changes in policy variables, structures or mental 

models can lead to improved performance (Ford, 2009).  

The SD modelling process is both flexible and intuitive, which means that each project will provide 

a unique output.  However, the process to develop a system dynamics model can be generalized into 

the following four iterative methodological phases (as proposed by Maani and Cavana (2007)): (1) 

problem structuring, (2) causal loop modelling, (3) dynamic modelling, and (4) scenario planning 

and modelling (Figure 4.1). 

 
Figure 4.1: Model building process according to Maani and Cavana (2007) 

As with all dynamic system modelling methodologies, the steps in the process are not expressly 

linear, and information gained in each step is used to refine prior steps. There is also no specific 

endpoint in the modelling process as the model continuously evolves as the system which is being 
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modelled evolves in the real world (Sterman, 2000a). It is important to note that the learning 

contained within the conceptual and simulation models sit within the broader context of the 

continuous learning cycles occurring within the organization, society and the environment. 

Continuous changes within those systems provides feedback, in response to which the model can be 

progressively modified. 

 Problem structuring 

The first step of SD modelling process, the problem structuring stage, involves identifying the root 

problem to be modelled. It is arguably the most important stage in model design, as it ensures that 

the correct problem (or element of the problem) is modelled, and that the model has a clear purpose 

(Sterman, 2000a). According to Sterman (2000a), key questions to be answered at the stage include: 

• What is the problem that is being addressed? 

• Who are the main stakeholders involved? 

• Who are the model’s intended users? 

• What are the conceptual, temporal and geographic boundaries of the inquiry? 

• What are the key variables and relationship that make up the system in which the problem 

sits? 

• Is SD modelling the correct methodological approach for the problem? 

One common characteristic of complex problems is that the root problem that is causing the 

symptoms is not always apparent at first inspection, nor is the solution obvious once the problem 

has been defined (Kreuter et al., 2004). It is important at this stage to differentiate between the true 

problem and symptoms of the problem.  It is also the stage where the scope and boundaries of the 

problem are defined, ensuring that only relevant information is included in the model. 

 Causal Loop Modelling (dynamic hypothesis) 

A dynamic hypothesis is a working theory of what factors and system behaviours caused the 

problem (Sterman, 2000a). Conceptually mapping the problem helps identify causal structures and 

feedback relationships within the model. The dynamic hypothesis forms the basis of future 

simulation models. 

From a practical perspective, dynamic hypotheses are typically expressed in the form of causal loop 

diagrams (CLD). Causal loop diagrams are a type of diagram in which causal relationships between 

factors are linked together with arrows describing causality. Each arrow within the CLD is marked 
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with an ‘s’ or ‘o’, polarity depending on the nature of the relationship between two variables. An ‘s’ 

polarity is used to indicate that two variables move in the same direction. An ‘o’ polarity is used to 

indicate that two variables move in opposite directions.  

A feature that differentiates CLDs from other causal diagrams is the identification of circular 

feedback relationships between variables. Reinforcing and balancing feedback loops within the 

system (as described in detail in section 2.3.4.1) are depicted using the (R) and (B) symbols 

respectively.  

 Dynamic Modelling 

While qualitative causal loop diagrams are a useful tool for describing the structure of relationships 

between system variables and identify potential future intervention points, they alone cannot predict 

how dynamic changes in system structure and/or behaviour will impact future system outcomes. 

Quantitative system dynamics models have the advantage of being able to capture the dynamics of 

relationships between system variables. This provides users with the opportunity to gain insight on 

why a system behaves the way it does as a function of its structure.  

It is important to note that unlike some other forms of mathematical modelling, the purpose of 

system dynamics modelling is not to produce numerical forecasts at a given point in time in the 

future, but rather to generate predictions that allow the user to compare how the system may behave 

under a variety of different policy scenarios. This allows users to better understand why and how 

certain outcomes can be achieved.  

As described by Maani and Cavana (2007), system dynamics models are built from four key 

elements called stocks, flows, converters and connectors, each represented by a specific symbol 

(Figure 4.2).  The symbols shown in figure 4.2 represent the standard symbols used in the Stella 

Architect program, which may differ slightly from those used in other system dynamics software.  
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Figure 4.2: Symbols used as part of the system dynamics modelling process 

 Stocks represent accumulations within the system. They are most easily thought of as a container 

in which something can either accumulate or be withdrawn from. The value of a stock depends on 

the net flow through the stock (inflows minus outflows). Mathematically, the value of a stock (S) as 

it changes over a given period of time (t), can be expressed by the following equation:  

𝑺𝑺𝒕𝒕 =   �[𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊𝒊(𝒕𝒕) − 𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐(𝒕𝒕)]
𝒕𝒕

𝒕𝒕𝟎𝟎

 𝒅𝒅𝒅𝒅 + 𝑺𝑺(𝒕𝒕𝟎𝟎) 

Two types of stocks were used in the dynamic modelling stage of this research project, reservoir-

type stocks, and conveyor-type stocks. Reservoir-type stocks, represented using a simple rectangle, 

simply accumulate their net flow. The contents of the stock are uniformly mixed together. 

Conveyor-type stocks, represented using a rectangle filled with vertical lines, operate like a 

conveyor-belt, where each element within the stock enters the stock, rides the conveyor for a given 

period, and then exits.   

Flows control the rate at which materials is transferred to and from stocks.  Flow that transfer 

material into a stock are called inflows, whereas flows that transfer material out of a stock are called 

outflows. A third type of flow, called a biflow (bi-directional flow), can change dynamically from an 

inflow to an outflow (or vice versa) depending on the system’s behaviour. The cloud-shaped icons 

attached to flows represents the boundary of the system. 

Converters are the auxiliary system elements that either represent the boundary of the system (i.e. 

elements whose value is not determined by the behaviour of the system itself) or are part of the 
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system itself (i.e. elements whose value is derived from system behaviour). Converters can be 

constants, dynamically updating equations (behavioural relationships) or graphical relationships. 

They are particularly useful in that they break-up complex equations into manageable components. 

The inclusion of converters into the system dynamics models also makes them easier to understand.  

Connectors are used to depict the relationship between variables/converter and stocks, flows, or 

other variables/converters.  Unlike flows, which represent actual transfer of material within the 

system, connectors simply represent the effect or influence that variables and/or converters have on 

other system elements. Two different types of connectors, distinguished by their appearance, are 

used in this model; action connectors, and information connectors. Action connectors, shown using 

a solid direct line, transmit actions (the result of a decision) between variables. Information 

connector, shown using a direct dashed line, transmit information needed to make decisions.  

The dynamic modelling phase also involves testing the simulation models to determine whether 

they adequately represent past system behaviours (where appropriate), as well as testing the 

strength, robustness and sensitivity of the model when different parameters within the model are 

modified. It is at this point where the model can be used to identify leverage points, points where a 

small shift in one part of the system can have a large effect in other parts of the system. Identifying 

points of leverage allows users to direct future interventions to parts of the system where they are 

likely to have the greatest effect. 

 Scenario planning and modelling 

One of the greatest strengths of system dynamics models is their ability to be used for scenario 

planning. In this stage, ‘policies’, which refer to pre-defined intentional changes to one or more 

system variables, are postulated and tested (Maani and Cavana, 2007).  The simulation model 

allows these policies to be designed, refined, and tested under various external conditions. It is 

through this analysis that some of the greatest insights from SD models arise. 

 Implementation and organisational learning 

The over-arching goal of system dynamics modelling is organisational learning and decision-

support. Organisational learning can occur in several ways. The most tangible way is through using 

the policies and insights that emerge from the scenario planning and modelling in a real-world 

decisional context.  An additional way that organisational learning can occur is through 

management flight simulators. These simulators typically have user-friendly interactive dashboard 

that users can explore and adjust (Maani and Cavana, 2007). Individual and organisation learning 



 

61 

occurs as users experiment with different scenarios and expand their understanding of the possible 

system behaviours produced when structures internal and external to the system are changed.  

 Strengths of System Dynamics Modelling in the Context of Complex EH Problems 

In addition to being well-suited to capture the complexity of environmental health problems, system 

dynamic models have several strengths when used in this context. Proposed interventions where the 

effect on human health is unknown can be severely limited for moral and ethical reasons. Because 

of this, EH decision-makers have little opportunity to experiment with the outcome of potential 

actions before making decisions. SD models provide decision-makers with an opportunity to test 

the outcome of various potential interventions in an ‘artificial world’, before taking action in the 

real world. SD modelling also can accommodate the long time-delays that often exist within 

complex EH problems and therefore give decision-makers the ability to anticipate the long-term 

consequences of their actions. A scoping review of previous applications of SD modelling to 

environmental health decision making (Currie et al., 2018) (as discussed in Chapter 2) identified a 

number of additional  strengths of using SD in the context of environmental health decisions, 

including the integration of information from separate sectors and planning processed into a shared 

understanding of the problem, the use of SD modelling as a platform for stakeholder engagement, 

and ultimately using the model’s outputs as an advocacy tool for alternative policy options.   

4.1.2. Action Research 

“theory is really only useful insofar as it is put in the service of a practice focused on achieving 

positive social change” (Brydon-Miller et al., 2003b) 

Action research is reflective and problem-focused research approach designed to pursue both 

research and action while diagnosing problems and developing practical solutions. Reason and 

Bradbury (2001) define action research as: 

“a participatory, democratic process concerned with developing practical knowing 

in the pursuit of worthwhile human purposes, grounded in a participatory 

worldview which we believe is emerging at this historical moment. It seeks to bring 

together action and reflection, theory and practice, in participation with others, in 

the pursuit of practical solutions to issues of pressing concern to people, and more 

generally the flourishing of individual persons and their communities” 

While a variety of action research methodologies exist, all have at least three features in common. 

The first is that both researchers and the practitioners/decision-makers are actively involved in the 
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project. The collaboration between the researcher and the subjects, where they are joint actors in the 

inquiry, is one of the fundamental components of action research. The second is that the two groups 

jointly identify and define the problem and one or more potential interventions to decrease the 

problem or its effect. The third is the dual purpose of action (improving the subjects/ organization) 

and research (generating new knowledge) (Scholl, 2004).   

Action research differs from more fundamental types of research in that it does not subscribe to the 

idea of value-free and objective knowledge-generation, but rather views knowledge-generation as 

explicitly socially-engaged and democratic (Brydon-Miller et al., 2003a). In the simplest terms, 

action research can be thought of as an investigation with people, rather than an investigation on or 

about people. 

The process of action research has been described as repeated cycles of diagnosing, planning, 

acting, evaluating and reflecting (Kolb, 1984) (Figure 4.3). The process can be entered at any stage, 

but once started follows the cycle of steps.  

 
Figure 4.3: The cyclical process of action research (adapted from Susman 

and Evered (1978)) 

This process also differs from traditional research approaches, which test a hypothesis by seeking 

evidence. The action research cycle instead builds confidence in its findings by attempting to refute 

the previous cycle’s findings. An acceptable ‘solution’ to the problem has been found if and when 

the researchers and practitioners fail to find counter-evidence to refute the validity of the previous 
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action (Scholl, 2004). The iterative process of reflecting on the previous action while planning the 

next action gives the user additional clarity on the relationship between the process and the problem 

being addressed.  

 Strengths and limitations of system dynamics modelling and action research in the 
context of complex EH problems 

System dynamics modelling and action research are well-suited to a combined approach due to each 

methodology’s ability to counteract some of the other’s key limitations when used in the context of 

complex environmental health problems.  

For example, implementing interventions where the impact on human health is unknown in the real 

world can be severely limited for moral and ethical reasons. Because of this, EH decision-makers 

have little opportunity to experiment with decisions. SD models provide decision-makers with an 

opportunity to test the outcome of various potential interventions in an ‘artificial world’, before 

acting in the real world. SD modelling also can accommodate the long time-delays that often exist 

within complex EH problems. 

Conversely, as the outcome of many environmental decisions can have non-negligible impacts on 

individual and community health, action-related decisions must be strongly weighed against the 

possible health outcomes of the decision. The can severely limit the breadth of potential actions at 

the researcher’s disposal when conducting traditional action research. Additionally, the long delays 

between action and noticeable change within the system that are often embedded within complex 

environmental health systems can pose a challenge to action research. Changes to the environment, 

such as the construction of a solid waste landfill, may have no noticeable health impacts for many 

years. This long delay can make it difficult to successfully reflect on the impact of an action before 

the next action-reflection cycle. The extended time scale of environmental health problems can 

hinder the usefulness of traditional action research in these contexts.  

One of the key limitations of traditional system dynamics modelling is that it tends to be expert-

driven, where the participation of stakeholders or practitioners is severely limited if they are not 

competent modellers themselves. This can both limit the amount of local knowledge drawn upon to 

design the model, but also limits the potential ‘new knowledge’ the stakeholders gain to insights 

gained from the final working model.  

Oppositely, one of action-research’s key strengths is that practitioners/ decision-makers and 

researchers work in unison on a project to improve practice generate new knowledge. The new 

knowledge is generated not only through the research findings, but also though the research process 
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itself. In the context of this project, a strength of an action research approach is that there are three 

forms of “new knowledge” that have the potential to be generated. The first is knowledge related to 

the community-level dynamics of cryptosporidiosis in South East Queensland that is gained from 

the model and the results of the policy analysis. The second is knowledge and insight about 

cryptosporidiosis dynamics that are gained from reflecting on the modelling process. The third form 

of knowledge is a higher-level conceptual form of knowledge related to how complex problems are 

investigated and approached by the local decision-makers.  

 Research approach – Participatory model building 

4.2.1. Method overview  

The approach taken for this research projects (shown in Figure 4.4) combined the modelling 

underpinning of a traditional system dynamics modelling process, with the collaborative and action-

driven nature of action research. For this project, the multi-methodology approach taken is referred 

to as participatory model building (PMB). Drawing from the definition of Action Research, a PMB 

approach was selected in recognition that those embedded within practical and decision-making 

process hold significant untapped knowledge and ability to understand and action problems that 

they are immediately confronted with. The PMB (also referred to as group model building) has been 

widely used by system dynamics practitioners (Siokou et al., 2014) and centres itself on incorporate 

the active participation of stakeholders and decision makers in both the scoping of the problem 

itself, and the exploration of potential interventions(Vennix, 1999). 

 
Figure 4.4: Stages of the participatory model-building approach used in this research project 

(adapted from (Maani and Cavana, 2007)) 
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Much like the diagnosis stage of action research, the first stage of the PMB process involved 

engaging with stakeholders to identify a problem of current relevance to them, for which potential 

upcoming opportunities for action exist. Through the PMB process, a problem that was likely to 

encounter opportunities for action was actively sought, to increase the relevance of both the model 

and the model-building process to stakeholders. 

The following 3 stages of the PMB process drew heavily on the SD problem scoping and causal 

modelling process, except they take the form of a stakeholder-driven systematic inquiry. During this 

stage, the stakeholders and the researcher jointly developed a theory about the nature of the problem 

and the boundaries in which it sits. In order to capture the different mental models of the problem 

that exist within the stakeholder group, stakeholders were first given the opportunity map their 

understanding of the problem independently before the joint theory (causal loop diagram) of the 

problem was developed.  The systematic inquiry process also sought to engage stakeholder in the 

process of identifying and bounding areas within the system where interventions may be possible. 

This was done to ensure that proposed interventions carried forward in the model-building process 

were realistic and potentially actionable. The final two stages of the PMB process closely followed 

the dynamic modelling and scenario planning stages of the SD modelling process.  

The final stage of the SD process, implementation and organisational learning, which closely 

resembles the action and reflection stage of action research, fell outside the scope of this research 

project. The intention of this research is the provide stakeholders with insight on the dynamic 

system behaviours that contributed to the daily trend of cryptosporidiosis notification in South East 

Queensland communities over the past 10 years, in support of upcoming actions.  

4.2.2. Data collection 

At the commencement of the project, a problem identification and scoping meeting was held with 

key member of the environmental health unit of the Queensland Department of Health. The purpose 

of this meeting was to identify one or more complex environmental health problems that are 

currently of interest to the Department, and for which there is a need for future decision support. 

The result of this meeting was that cryptosporidiosis, and particularly its assumed connection with 

public aquatic facilities in the region, was chosen as the problem to be investigated.  

Cryptosporidiosis was chosen as it is a particularly perplexing problem to Queensland Health 

because previous management interventions were not able to control outbreaks and the frequency of 

outbreaks was not regular, making it difficult to identify what the cause of outbreaks was and 

therefore difficult to control.  



 

66 

Data to support the problem definition and causal modelling as part of this project were collected 

predominantly through consultation with stakeholder and key-informants and supplemented by a 

detailed review of the academic and grey literature. Stakeholders were identified in consultation 

with Queensland Health during the problem scoping meeting, and included individuals outlined in 

table 4.1. Consultation with stakeholder and key-informants occurred during of two participatory 

workshops, as well as several semi-structured interviews with stakeholders. All stakeholders were 

invited to attend the workshops. Stakeholders who were unable to attend a workshop were 

individually interviewed.  

Table 4.1: Stakeholders (by industry) who participated in the workshops and interviews 
Organisation/ 

Industry Roles Number of 
participants 

Queensland 
Department of 
Health 

Management (Health Protection) 
Senior Environmental Health Officer 
Senior Scientist (Microbiology) 

6 

Public Health 
Units 

Environmental Health Officer 
Public Health Physician 

8 

Local City 
Council 

Manager 
Environmental Health Officer 

27 

Aquatic Industry 
 

Swimming Pool Operator 
Swimming Pool Inspector 

3 

Academic 
Researchers 
 

Health Promotion 
Infectious Disease Management (OneHealth) 
Microbiology 

7 

 

Two problem structuring workshops were held, the first attended by stakeholders from the 

Department of Health, local public health units, pathology laboratories, and public health and 

infectious disease researchers, and the second by stakeholder from the local government. Attendees 

collectively had expertise in various components of public and environmental health such as water 

management, epidemiology, outbreak investigations, policy, etc. Initially, workshop participants 

were given a short lesson on the concepts of system dynamics and qualitative causal mapping. 

Participants were then asked to independently, and collectively, brainstorm and group 

social/behavioural, environmental, technical, institutional, and economic factors related to 

Cryptosporidium transmission in the region.  Following the brainstorming session, participants were 

divided into groups and used the identified factors to create causal maps and diagrams using either 

the software MentalModeler® or drawing them out on large sheets of butcher’s paper.   

Semi-structured interviews were also used to elicit information and data from key-informants who 

were unable to attend the problem structuring workshop.  Like the workshops, interview 

participants were asked to draw on their professional experience to identify factors contributing to 
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Cryptosporidium transmission in South East Queensland. They were also asked to describe the 

possible ways in which the previously identified key components can influence the system.  

Prior to the conclusion of the workshops and interviews, participants were asked to identify any 

known datasets that may be available to help populate a simulation model that is representative of 

the identified model structure and behaviour. This information was used request access for data 

from relevant data custodians for later use in the simulation model.  

As this research involved conducting workshops and interviews, ethical approval to conduct this 

research was obtained from Queensland Health’s Royal Brisbane and Women’s Hospital Human 

Research and Ethics Committee (approval number: HREC/16/QRBW/509) and the University of 

Queensland’s Human Research and Ethics Committee (approval number: 2016001630). 

4.2.3. Data Analysis 

Factors and causal relationships included in the causal maps and diagrams created by workshop 

participants were initially combined in the Stella Architect (ISEE Systems®) modelling software to 

create a master causal loop diagram (CLD).  

Data and information extracted from tape and video recordings of the workshops and interviews and 

researcher’s field notes was then extracted and thematically analysed to identify any additional 

factors or system behaviours that had not been captured in the initial master diagram. This step 

involved open-coding, where key concepts (codes) from the data were identified and grouped 

together with other like-concepts. Codes were sourced both directly from the workshops and 

interviews, as well as from concepts and key terms identified in the literature. These were then 

added to refine the master causal loop diagram using an iterative process.  

The resulting CLD provided a high-level conceptual overview of the stakeholders’ understanding 

and assumption of the system’s structure and behaviour. Variables and relationships in the 

combined CLD were validated against the research and grey literature, with particular focus giving 

to literature originating from Australia. A memo system was used to collate information from both 

the interviews and the literature that support and substantiate the inclusion of each variable and 

relationship that appeared in the diagram. Particular attention was given to finding confirmatory 

evidence from the research and grey literature to support the biological and physical plausibility of 

relationships identified in the CLD. None of the relationships identified by the stakeholders 

contradicted the existing body of research evidence.  
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The CLD was then translated into a system dynamics stock-and-flow model. The memo system 

described above also included reference to any data or evidence that could be used to quantify the 

value of each variable and relationship. The model was then parameterised with available data 

based on the hierarchy show in Figure 4.5. In cases where data was not available, evidence from the 

literature (where available) was combined with local expert opinion to form a Beta-PERT 

distribution. The used of Beta-PERT distributions is described in more detail in Section 6.4.1.  

 
Figure 4.5: Hierarchy of data and evidence used to parameterize the simulation model 

 A series of interventions that could be used to manage cryptosporidiosis in SEQ were created using 

themes identified in the workshops and interviews and then run as scenarios in the model to predict 

possible future outcomes and trajectories. Additional information about the creation and selection of 

scenarios is provided in section 7.2).  

Local (SEQ) administrative data

Administrative data from other regions of Australia

Australia-specific evidence described in the literature
+

Local expert opinion 

Evidence from other developed-
countries described in the 

literature
+

Local Expert opinion

Expert opinion

Described with a  
Beta-PERT distribution 
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Chapter 5. Conceptualizing the Problem Using Causal Loop 

Modelling 

The main purpose of this chapter is to provide an overview of the first two stages of the system 

dynamics modelling process; problem structuring and qualitative causal loop mapping. The chapter 

is broken into three main sections. The first section describes the problem structuring process, 

including identifying the problem’s reference mode, and establishing the scope and boundary of the 

system to be modelled. The second section describes the results of causal loop mapping and 

provides a detailed description of the main feedback loops within the system. The final section of 

this chapter outlines several initial policy-relevant insights that emerged from the causal mapping 

process. 

The results described in this chapter are the outcomes of a series of workshops and interviews with 

key stakeholders (as described in Chapter 4.2.2) from the following sectors: 

• Queensland Department of Health 

• Public Health Units 

• Local Government 

• Aquatics Industry 

• Infectious Disease/Public Health Research 

 Problem structuring 

5.1.1. Reference mode 

Characterising problems dynamically, that is, as a pattern of changing behaviour over time, is a 

central premise of system dynamic modelling. The term ‘reference mode’ is used to describe the 

graphical representation of the problem’s dynamic pattern of behaviour and is used to guide the 

model-building process. From a practical perspective, the intent of the SD modelling process is to 

map, and later model, the causal structures and relationships that, when calibrated with local data, 

can reproduce the pattern of behaviour shown in the reference mode.   

During the initial problem identification and scoping meeting, stakeholders identified the apparent 

cyclic trend in the weekly cryptosporidiosis notifications as the reference mode that captured the 

problematic system behaviour for which they sought an explanation (Figure 5.1). The pattern in 
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weekly cryptosporidiosis notifications was chosen to be the main reference mode for this project 

because it is the most readily available data on the incidence of cryptosporidiosis infections in the 

community. Additionally, it also represents the key source of information currently used by public 

health units to determine when interventions are necessary to control outbreaks.  

  
Figure 5.1: Reference mode - Weekly notifications of cryptosporidiosis to the NCOS by PHU 

region, July 2007-2017 

5.1.2. Problem Articulation  

As discussed in section 4.1.1.1, once the reference mode has been identified the first stage of the 

modelling process is problem structuring, which involves identifying the root problem to be 

modelled. In order to define the boundaries of the ‘problem’ that will be modelled, workshop and 

interview participants were asked to describe challenges and barriers to successful cryptosporidiosis 

prevention efforts in South East Queensland (SEQ) communities. Participants identified several 

recurrent themes related to these challenges, which were then broadly grouped according to the four 

main stakeholder groups for whom the challenges exist (Table 5.1). 
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Table 5.1: Stakeholder-identified challenges to cryptosporidiosis prevention efforts in South East 
Queensland communities 

Stakeholder 
Group Challenges to disease prevention efforts 

Public Aquatic 
Facility Staff/ 

Operators 

• High bather load in peak season 
• Large number of incontinent patrons 
• Complexity of existing management standards and guidelines 
• Staff and operator knowledge and training 
• Availability and design of hygiene facilities in existing aquatic 

facilities 
• Perceived low prevalence of cryptosporidiosis within the 

community 
• Highly seasonal workforce with large turnover 
• Financial viability of public swimming pools 

General Public 

• Frequent contact with incontinent children 
• Low awareness of cryptosporidiosis within the community 
• Low knowledge of transmission and exposure risk factors 
• Confusion related to misinformation  

Public Health Units 

• Finite resource availability and allocation 
• Low priority of cryptosporidiosis relative to other notifiable 

conditions 
• Cost and effectiveness of water sampling/testing 
• Difficulty detecting outbreaks 
• Delays within the surveillance system 
• Potential for politicised, reactionary interventions 
• Limited regulatory capacity 
• High levels of international travel within the population 

Medical 
Community 

• Provider familiarity with cryptosporidiosis 
• Providers’ perceived prevalence of cryptosporidiosis within the 

community 
• Frequency of faecal testing 
• Inconsistent provision of accurate transmission-related 

information to patients during pre- and/or post-test counselling 

5.1.3. Model scope and boundary  

Subsystem diagrams are a useful tool for outlining the scope and boundary of the model, as well as 

capturing the high-level architecture of the system in which the problem sits. Key factors identified 

by stakeholders largely fit within one or more of the following categories: (1) disease dynamics, (2) 

population dynamics, (3) the primary healthcare system, (4) the public health sector, (5) public 
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aquatic facilities (PAFs), and (6) international travel. As seen in Figure 5.2, disease dynamics are 

directly affected by factors related to the interactions between individuals within the community 

(secondary transmission), as well as the management and operation of public aquatic facilities 

(environmental transmission). Overseas travel, which results in the introduction of overseas-

acquired infections into the community, also has a direct causal link with local disease dynamics.  

 
Figure 5.2: Subsystem diagram of the overall system structure of cryptosporidiosis in South East 

Queensland 

Additionally, the primary healthcare and public health systems have indirect causal relationships 

with local disease dynamics. Symptomatic individuals seek medical attention from the healthcare 

system, which in turn leads to notification of confirmed cases to the public health system. The 

public health service then provides information to the public on how to modify their behaviour to 

prevent further disease transmission and advises/instructs the operators of implicated PAFs on how 

to remediate their facilities. The public health service also supplies information to primary 

healthcare providers to encourage doctors to give precautionary advice to patients on how to reduce 

the risk of transmitting their illness to others within the community. 

While subsystem diagrams are a useful tool to understand the overall scope of the problem being 

modelled, they are not intended to comprehensively capture the causal structures and relationships 

that created the problem in the first place. The subsystem diagram shown in Figure 5.2 served as a 

starting point for more detailed causal loop diagrams used to convey stakeholders’ collective 

dynamic hypothesis (i.e. their working theory of the systemic source of the problem).  
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 Causal loop modelling – development of a dynamic hypothesis 

The causal loop diagram (CLD) in Figure 5.3 represents the combination of causal diagrams created 

by the workshop and interview participants, as well as causal relationships identified during the 

literature review that supported the information provided by local stakeholders. This diagram, 

which is explained in more detail in section 5.2.1, shows the non-linear causal relationships that 

contribute to the number of cryptosporidiosis cases in SEQ communities. Like the subsystem 

diagram, the CLD is organised into six categories, each shown in a different colour. Each category 

involves a different set of actors, all playing different roles in the problem. 

Two reinforcing loops and eleven balancing loops were identified in the combined CLD, each 

representing a different transmission-related issue. Interestingly, the majority (9 out of 13) of loops 

identified involve variables from two or more sectors that highlights the multisectoral and 

interconnected nature of the problem. The section below describes each of these main causal loops 

and outlines the dynamics of the relationships within the loops.  A more detailed explanation of the 

loops can be found in Appendix A.
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Figure 5.3: Combined causal loop diagram of cryptosporidiosis dynamics in South East Queensland 



 

75 

5.2.1. Analysis of the cryptosporidiosis conceptual model 

Person-to-person transmission loop (R1) and PAF-related transmission loop (R2)  

The first, and arguably core components of the dynamic hypothesis are the person-to-person 

transmission loop (R1) and the environmental (PAF-related) transmission loop (R2). These simple 

loops exhibit reinforcing feedback behaviour. In the cases of person-to-person transmission, the 

number of cryptosporidiosis cases in the community causes an increase in the number of healthy 

people exposed to Cryptosporidium. This has a reinforcing effect, causing the number of cases in 

the community to increase.  

 

Figure 5.4: Person-to-person transmission loop (R1) and public aquatic facility transmission loop 
(R2) 

In the case of PAF-related transmission, an increase in the number of cryptosporidiosis cases in the 

community causes an increase in the number of infectious people swimming in local pools. As more 

infectious people swim in pools, the number of Cryptosporidium oocysts in the pools increases 

through contamination of the water by passive shedding of oocysts or by gross contamination in the 

form of an accidental faecal release (AFR). This increased oocyst load in pool water causes an 

increase in the number of healthy swimmers at risk of infection, which results in more 

cryptosporidiosis cases in the community. The combined reinforcing natures of these two feedback 
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loops is assumed to be the main driver of the growth of outbreaks within the community following 

an exposure event.  

Use of healthcare services (loop B1 and loop B2)  

The primary role of healthcare providers in the dynamics of cryptosporidiosis in SEQ is the 

education of infected individuals about the transmission risk they pose to others in the community 

because there is no approved treatment. This occurs most commonly after the patient’s faeces have 

tested positive for Cryptosporidium (B2), or occasionally prior to a confirmed diagnosis (B1) 

(Figure 2.1).  

 
Figure 5.5: Use of healthcare services (loop B1 and loop B2) 

Participants noted that there are numerous delays between when a person becomes symptomatic, 

and when they are diagnosed with cryptosporidiosis. The likelihood of patients receiving correct 

information about their transmission risk is controlled by the doctor’s awareness and knowledge of 

Cryptosporidium transmission. The outcome of any patients being aware of the risk of transmitting 

their illness is a reduction in the number of contacts they have with healthy individuals (B1a & B2a) 

and a reduction in the number of infectious people swimming in public pools (B1b & B2b).  

Public Messaging campaigns (loop B3) 

In Queensland, cryptosporidiosis is a notifiable disease.  Therefore, a laboratory-confirmed case 

will be automatically notified to the state public health service. If the public health service observes 



 

77 

a significant increase in disease notifications in a given period suggesting an outbreak they may 

respond in several ways to limit transmission.  

 
Figure 5.6 Public Messaging campaigns (loop B3) 

The first control measure is public messaging campaigns to educate the general public about 

Cryptosporidium transmission (Figure 5.6). The intended effect of these campaigns is to increase 

awareness and knowledge of cryptosporidiosis within the community, with the goal of reducing 

infectious contacts between healthy and exposed people (B3a) and to reduce the number of infected 

people who swim while infectious (B3b). 

Community awareness of crypto following public messaging campaigns leading to community 
members avoiding pools (Loop B7) 

In addition to causing infectious cases to avoid contact with swimming pools, public health 

messaging campaigns can have the effect of creating fear within the community (as seen in Figure 

5.7). This, in turn, can potentially reduce transmission because fewer healthy swimmers are exposed 

to Cryptosporidium oocysts in pool water. An unintended consequence of this reaction is decreased 

revenue for the PAF operator. Study participants noted that the effect of this decreased revenue 

would not be uniform in the study area because some PAFs rely on admission fees as their main 

revenue source while other pools are publicly-funded and do not charge users an admission fee.  
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Figure 5.7: Community awareness of crypto following public messaging campaigns leading to 

community members avoiding pools (Loop B7) 

Messaging directed at healthcare practitioners (loop R3 and loop B4) 

Another control measure that is used following an outbreak is an awareness and information 

campaign directed at primary healthcare providers. The aim of this campaign is to raise awareness 

amongst doctors of the increased number of cases of in the community and to provide them with the 

contemporary messaging they should provide to their patients. 

The effect of these campaigns creates both reinforcing and balancing feedback loops. A reinforcing 

loop (R3) is created when this increased awareness causes a temporary rise in the proportion of 

patients who are tested for cryptosporidiosis. A balancing feedback loop (B4) was created as the 

increased knowledge leads to an increase in the number of patients correctly counselled about their 

transmission risk, which in turn decreases the number of both secondary and PAF-associated cases 

of cryptosporidiosis.   
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Figure 5.8: Messaging directed at primary healthcare providers (loop R3 and loop B4) 

It was unclear the degree to which (if at all) this activity was occurring in the community.  

Therefore, the model was constructed on the assumption that it was not currently a dominant loop in 

the system.   

Swimming pool hyperchlorination at the request of the Public Health Service (Loop B5) 

A third control measure implemented following the identification of a suspected PAF-associated 

outbreak is the closure and hyperchlorination of implicated swimming pools at the request of the 

Public Health Service. Additionally, if there is sufficient evidence to suggest that a particular PAF 

is implicated in an outbreak the current public health legislation (Health Act 1937) provides the 

authority to force the closure and remediation of the facility in the interest of protecting the health 

of the public (Queensland Health, 2004). 
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Figure 5.9: Swimming pool hyperchlorination at the request of the Public Health Service (loop B5) 

Study participants noted that in most cases it was difficult and time-consuming to isolate the source 

of cryptosporidiosis outbreaks. This creates a potentially significant time delay between the 

identification of a potential outbreak and implicating a specific swimming pool. Participants also 

noted that the difficultly in exposure source attribution for cryptosporidiosis outbreaks means that 

this feedback loop rarely occurs and PAF operators are unlikely to be directly made aware of 

ongoing outbreaks by the public health service.  

Swimming pool hyperchlorination at the request of a patron (Loop B6) 

Study participants from the aquatics industry noted that they are occasionally alerted by one of their 

patrons who is ill and suspects the pool is the source of their illness. These situations are frequently 

a source of confusion and frustration for both the PAF operator and the patrons as the pool has yet 

to be formally implicated. Stakeholders noted that these requests most often came from individuals 

who suspected they were infected with Cryptosporidium or another enteric pathogen but were not 

yet confirmed cases. Nevertheless, in these situations the pool operator may choose to proactively 

hyperchlorinate their pool, which creates a balancing feedback loop by inactivating any oocysts that 

may be present in the swimming pool. 
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Figure 5.10: Swimming pool hyperchlorination at the request of a patron (loop B6) 

Unfortunately, in the system’s current form, stakeholders indicated that swimming pool operators 

rely heavily on their patrons for awareness of cryptosporidiosis outbreaks within the community. 

The piecemeal and sporadic nature of this information, coupled with the relative rarity of outbreaks 

successfully attributed to specific aquatic facilities, means that swimming pool operators often have 

very poor situational awareness of cryptosporidiosis outbreaks when they are occurring. This low 

level of awareness has created a perception amongst many operators that cryptosporidiosis 

outbreaks are very rare within SEQ and not a significant concern for them.  

Media-driven public awareness (loop B8) and policy change (loop B9) 

Multiple stakeholders identified the media as playing a role in the prompting and amplifying the 

public health response to suspected outbreaks. Media outlets in the study area are known to monitor 

the weekly disease counts posted on the online publicly-accessible notifiable conditions 

surveillance reports and report any unusual changes that may indicate a disease outbreak. 

Additionally, Queensland Health posts information about confirmed outbreaks on a public website 

and social media to raise awareness of ongoing outbreaks.  

Stakeholders noted that increased media coverage of outbreaks has two main effects on community-

level cryptosporidiosis dynamics. The first (loop B8) is the creation of a balancing loop whereby 

increased media attention leads to increased public awareness of the presence of Cryptosporidium 
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in their community. This is assumed to lead to an overall increase in the public’s (including 

symptomatic and asymptomatic cases) knowledge of transmission-prevention strategies, resulting in 

a decrease in the number of infectious cases contaminating local swimming pools. As the notifiable 

condition surveillance reports are only posted on a weekly basis, this loop is somewhat constrained 

by an information delay.   

 
Figure 5.11: Media-driven public awareness (loop B8) and policy change (loop B9) 

The second is the creation of an additional balancing loop whereby the increased public awareness 

of cryptosporidiosis within the community captures the attention of local and state politicians, who 

then call for additional guidelines and regulations to protect the health and safety of the public. In 

the case of cryptosporidiosis, this is likely to result in a call for additional guidance and training of 

PAF operators and staff, with the intention of improving the effectiveness of disinfection systems 

and thus reducing the number of Cryptosporidium oocysts in pool water. Loop B9 is also 

constrained by several major delays between public awareness of cryptosporidiosis in their 

community and improved effectiveness of disinfection systems. The first is a delay between 

increased public awareness and an increase in political will to more thoroughly tackle the problem. 

Politicians face many competing priorities and are assumed to respond in cases where there is 

significant public pressure to do so. This would require heavy and sustained media coverage and 

public attention. The second delay is a delay between an increase in political will and the creation of 

additional guidelines, resulting from the long and complex government policy-making processes. 
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The third major delay is a delay reflecting the amount of time stakeholders assumed it would take to 

implement any changes included in the new guidelines.  

Some of the system behaviours associated with these two loops are based on stakeholders’ 

experience with other similar notifiable conditions, as well as the outcome of outbreaks in other 

regions of Australia.  This is because the relative lack of media and political interest in 

Cryptosporidium-related illness only rarely stimulates significant public health or political 

responses. 

Training and staff knowledge and experience (loop B10)  

The PAF operations and maintenance section of the CLD contains two balancing loops. The first, 

shown in Figure 5.12, describes the relationship between training and staff knowledge and 

experience (loop B10). Stakeholders noted that due to the highly seasonal nature of employment in 

the aquatics industry, PAFs frequently experience high rates of staff turnover. As new and/or less 

experienced staff are hired during the busy season, the overall staff knowledge and experience at the 

facility drops. This drop is balanced out through increased training to upskill the new staff. A delay 

is present within this balancing loop to allow time for new staff to acquire the on-the-job experience 

necessary to competently manage the water quality of a PAF. Additionally, the ability to train new 

staff is also constrained by the financial resources of the PAF.  

 
Figure 5.12: Training and staff knowledge and experience (loop B10) and financial disincentive to 

close pool for hyperchlorination (loop B11) 
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 Financial disincentive to close pool for hyperchlorination (loop B11) 

The second balancing loop in the PAF operations and maintenance section of the CLD describes the 

financial disincentive PAFs face in terms of routine hyperchlorination of swimming pools. The 

financial resources of PAFs is highly reliant on user fees, which requires sustained community 

attendance at the facility. As discussed in chapter 3.2.5, effective hyperchlorination of a swimming 

pool requires closure of the facility for between 12 and 25 hours. In the case of many swimming 

pools in the study area, this time exceeds the normal period that the PAF is normally closed each 

day. Therefore, hyperchlorination would require some swimming pools to be closed during their 

normal operating hours. This would reduce the user fees collected, which would provide PAF 

operators with a disincentive to practice hyperchlorination.  Additionally, stakeholders noted that 

hyperchlorination of a pool immediately after detection of a loose or semi-solid AFR does not 

always occur because it requires closure of the pool and cancellation of all remaining activities for 

the day. This creates several logistical and financial implications for the pool operator, which is also 

a disincentive for proper hyperchlorination post-AFR. 

 Initial insights from causal loop diagrams 

Unlike other modelling techniques where the ‘result’ (i.e. output) of the modelling exercise takes 

the form of predictions, the primary aim of system dynamic models is not to produce predictions 

per se but to facilitate the development of an expanded theory of the relationship between system 

structure and behaviour. The outputs of this theory-driven exercise are commonly referred to within 

the system dynamics community as ‘insights’ (Stave et al., 2016). In the context of system 

dynamics, ‘insights’ also refer more generally to areas where the model provides information or an 

understanding that differs from currently held mental models of the system or the problematic 

behaviour it produces.  While most of the insights originating from SD models come from 

quantitative simulation modelling, some initial insights, particularly those related to the broader 

conceptualisation of the problem, can also emerge from qualitative modelling.  

The following section outlines a number of ‘insights’ produced as a result of the qualitative system 

mapping process and discusses their implications from a policy perspective.  

Multi-sectoral nature of the problem 

Of the thirteen feedback loops driving the transmission dynamics of cryptosporidiosis in SEQ 

identified by stakeholders, ten of them (71%) are ‘multi-sectoral’ (i.e. cross one or more sectoral 

boundaries). In particular, the CLD indicates that the majority of the balancing feedback loops 
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involve at least three sectors. Balancing feedback loops maintain balance within a system. In the 

case of infectious disease management, it is these loops that help keep individual exposure events 

from becoming major outbreaks. As with any cycle, feedback loops are only as strong as their 

weakest link. Despite identifying the numerous intersectoral linkages that exist within the system, 

there was broad consensus amongst stakeholders that there is insufficient communication and 

collaboration amongst different sectors involved in this problem. The cross-sectoral nature of these 

loops highlights the necessity of intersectoral collaboration to achieve greater balance within the 

system. 

Role of compounding delays in the system 

Several of the key feedback loops identified in the system were characterised by multiple material 

and/or information delays4. Numerous material delays were identified in the primary healthcare 

sector, including delays related to seeking care, being tested, testing positive, being notified of one’s 

disease status, and notification of the positive result to the public health service/system. Each of 

these delays increases the time between the initial exposure event and the ability of any of the key 

actors to react. This is important because an infected individual may be infectious in the community 

for nearly their entire infectious period before they are made aware of their status.  These material 

delays also compound information delays that are present in other areas of the system.  

Sporadic cases of cryptosporidiosis are not routinely investigated by public health units 

(Queensland Health, 2015) and stakeholders indicated that there was no established threshold for 

how many notifications over a particular time period warrants an investigation.  Therefore, it is 

largely discretionary when, and if, cases are investigated.  

The amount of time that must pass before sufficient notifications are received by the public health 

units to prompt them to initiate an investigation is an information delay within the system. Similar 

information delays exist in relation to how long it takes the media and/or the general public to 

become sufficiently interested in an outbreak to bring about noticeable action.  Awareness of the 

problem by infected individuals, the public health units, swimming pool operators, and the general 

public is key to reducing further transmission of the disease. In order for interventions to be 

successful, potential outbreaks need to be identified before they become community-wide events.  

                                            
4 The term ‘material delays’ describes delays that modify the speed at which things flow in and out of stocks. 

‘Information delays’ is the term used to describe delays in changes of people’s perceptions or beliefs 

(Sterman, 2001b). 
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Early intervention for cryptosporidiosis requires significant reductions in the time delays identified 

in the system.  

Leverage points within the system – System Archetypes 

System archetypes are generic system structures that characterise patterns of behaviour seen in 

systems across a wide array of disciplines (Senge, 2006, Sterman, 2000a). These universal 

behaviours provide insight on the system structures creating problematic behaviour within a system. 

Analysing the archetypal structures within a system can help pinpoint potential leverage points for 

future action. (Senge, 2006). During the mapping process, behaviour associated with two main 

system archetypes were identified.  

1) Drifting goals – Outrage-driven action 

Drifting goals describes how the gap between the actual conditions and the desired conditions (goal) 

can be achieved either through actions to adjust the actual conditions, or by lowering the goal (Kim, 

1995). In cases where there is a significant delay between actions and a change in actual conditions, 

managers can take the easier path of simply lowering the goal to more rapidly close the gap 

between actual and desired conditions. 

In the case of cryptosporidiosis in SEQ, there is gap between the number of cryptosporidiosis cases 

in the community and the acceptable threshold of cases within the community that are sufficient to 

justify an intervention (Figure 5.13). It should be noted that there is currently no specified or 

regulated ‘acceptable threshold’ of cases in the community. Nevertheless, there are unstated and 

unofficial thresholds that, when exceeded, will prompt decision-makers to call for action. Because 

these thresholds are informal, they can differ both geographically and temporarily. During 

outbreaks this gap may become sufficiently large to initiate actions to reduce the number of cases 

within the community, such as information and awareness campaigns (B1). Unfortunately, the 

effects of these interventions are difficult to measure and may take time to have an effect. 

Therefore, decision-makers may lose interest in the problem before the gap has been sufficiently 

closed, which in-turn decreases the time and resources dedicated to gap-closing actions (B2). This 

effectively raises the threshold for future interventions as the number of cases may still be above the 

previous threshold, yet the actions to reduce the gap have been curtailed.  

There is one exception to this archetype behaviour. In some rare instances, an outbreak may receive 

significant media attention or public outrage calling for immediate action (essentially compelling 

decision-makers to lower their threshold for action) (B3). While this effect may be sudden and 

intense, it is typically short-lived. The reality of this behaviour is that the threshold for action is 
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controlled by the degree of outrage the problem is producing, rather than by evidence-based public 

health decision making. 

 
Figure 5.13: Drifting goals archetype – Outrage-driven action 

The key leverage point to the drifting goals archetype is to anchor the goal to an external framework 

or reference point, to stop it from drifting or being open to interpretation (Senge, 2006). In the 

context of this problem, this would involve transparently establishing a threshold for intervention 

that could be consistently applied across the region. This would also help counteract the effect of 

public outrage on the threshold for action by providing the public with a transparent rationale of 

when action is and isn’t required. 

2) Growth and underinvestment archetype - Impact of situational awareness  

A second system archetype behaviour that was identified within the system was the ‘growth and 

underinvestment archetype’. This archetype characterises behaviour where success reaches a limit 

due to an underinvestment in the capacity needed to sustain continued performance. This behaviour 

will perpetuate itself as decreased performance is compensated for by decreasing performance 

standards, which in turn further decreases performance. (Senge, 2006).  

Despite having a strong desire to do more to prevent cryptosporidiosis outbreaks in the community, 

low awareness of current outbreaks amongst PAF operators and staff was identified as being a 

major barrier to successful and sustained outbreak reduction. As outbreak reduction efforts become 
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more successful, the number of outbreaks in the community decreases (B1). As the number of 

outbreaks decreases, PAF staff become less and less aware of cryptosporidiosis as a potential issue 

that is relevant to them, which eventually undermines the outbreak reduction efforts (B2). In the 

case of cryptosporidiosis in SEQ, this decreased ‘situational awareness’ is further compounded by 

regular staff turnover, as new staff will have had little to no exposure to previous outbreaks. The 

less frequent exposure of staff to outbreaks or awareness campaigns will lead to a greater tendency 

to interpret cryptosporidiosis events as ‘rare cases’ (effectively increasing the number of incidents 

they need to be exposed to in order to change their belief that cryptosporidiosis outbreaks are rare). 

This cycle is only broken when the number or severity of outbreaks increases to such a level that 

they are compelled to act by an outside force.  

 
Figure 5.14: Growth and underinvestment archetype - Impact of situational awareness 

The key point of leverage in systems exhibiting growth and underinvestment archetypes is to 

identify and better understand the relationship between what is driving demand and performance, 

and what is the limiting factor. This can help sever the link between the driving and limiting factor. 

In the case of cryptosporidiosis in SEQ, there is need for greater communication between public 

health units and the operators of PAFs, particularly in keeping operators informed of increases in 

disease notifications in their region. Making them aware of disease trends, regardless of whether 

their facility is involved, may increase their appreciation of the magnitude of the problem at any 

given time, and encourage them to actively participate in interventions to reduce the severity of and 

prevent outbreaks.  
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 Conclusion 

The causal mapping process presented in this chapter outlines a whole-of-systems approach to 

conceptualising our understanding of the community-level system structures driving the 

cryptosporidiosis in SEQ. This extends beyond simply presenting a list of factors, and instead focus 

on the dynamic relationships between factors that are producing the problematic system behaviour. 

The inclusion of diverse stakeholder perspectives produced a map of the problem extending beyond 

the typical view of cryptosporidiosis as a ‘swimming pool management problem’. In particular, the 

role of international travel and primary healthcare, two sectors not typically involved in the 

management of cryptosporidiosis outbreaks, were identified as important drivers of the dynamics of 

this problem. 

Beyond producing a more comprehensive description of this problem in SEQ, several insights 

emerged from the mapping process. Most of the balancing feedback loops in the system cross at 

least one sectoral boundary, indicating that the effective management of this problem will require a 

multi-sectoral approach. This was further highlighted by the insight that delays in one sector are 

likely undermining the effectiveness of interventions in adjacent sectors. Additionally, the lack of a 

consistent threshold for action is allowing the media/public outrage cycle to dictate the threshold for 

action, rather than evidence-based decision making. Finally, the lack of communication between the 

aquatics industry and the public health service has created a cycle where PAF staff incorrectly 

believe cryptosporidiosis is rare in the community, and therefore do not prioritise actions to prevent 

it.  
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Chapter 6.  Design, testing and validation of a system dynamics 

model of cryptosporidiosis dynamics in South East 

Queensland 

The main purpose of this chapter is to provide an overview of the design, testing and validation of 

the stock-and-flow system dynamics simulation model that was constructed based on the qualitative 

causal loop diagrams presented in Chapter 5. The chapter is broken into five main sections. The first 

section provides a brief introduction to the model, and the modelling approach used. The second 

section describes the model’s setup and constrains. The third section describes the structural and 

behavioural assumptions that form the basis of the model itself. The fourth section outlines the 

parameters that were used to populate the model, including how the model handles parameters with 

highly variable or uncertain values. The final section outlines the various tests used to validate the 

model, as well as their results.  

 Introduction 

As discussed in Chapter 5, qualitative systems thinking exercises such as causal loop diagramming 

(CLD) can provide significant insight on our collective assumptions about the systemic structures 

driving systemic behaviour. Nevertheless, an inherent limitation of CLDs is their inability to show 

the dynamic nature of causal relationships between system components. Because of that, they have 

limited utility as an operational tool to predict the how changes in one part of the system’s structure 

and/or behaviour may affect the overall system’s behaviour.  

To operationalize the model of the system structures and relations uncovered during the qualitative 

modelling portion of the project, a system dynamics stock-and-flow simulation model was 

developed. The stock-and-flow model allows users to dynamically simulate the interactions 

between different elements within the system, as well as uncover potential leverage points for future 

action.  

The overall modelling approach chosen for the cryptosporidiosis in South East Queensland (SEQ) 

problem was centred on the primary objective of endogenizing (i.e. find an internal explanation for) 

the transmission mechanisms associated with contact with contaminated recreational water at public 

aquatic facilities. The modelling approach therefore sought to outline the structures and feedback 

mechanisms that link infected people with public aquatic facilities, which eventually cause 

susceptible people to then become exposed. Specifically, using a modified Susceptible-Exposed-

Infected-Recovered (SEIR) compartmental model, causal chains originating from the infectious 
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persons compartments were drawn, first to describe the processes driving how an infectious person 

come in contact with and contaminates the water at a PAF, followed by how a susceptible person 

then comes in contact with the contaminated water and becomes exposed to the pathogen.  

The model was then expanded to include the relationships between several key sectors identified in 

the conceptual model, including overseas acquired cases, secondary transmission, and the public 

health service. Additionally, the role that the healthcare sector plays in this problem, particularly in 

closing the gap between the true disease incidence in the community and the number of disease 

notifications the public health service receives. The resulting composite structure formed the basis 

of the model used for scenario simulation. 

 

Figure 6.1: Outline of causal structures included in the system dynamics simulation model. 

Figure 6.1 outlines the relationship between the causal loop diagram described in Chapter 5 and the 

simulation model used for scenario simulation. Several factors identified in the causal mapping 

exercise were not explicitly included within the scope of the simulation model for the sake of model 

parsimony. Factors excluded from the explicit structure of the model were either implicitly included 

in the design of the scenarios used for policy analysis in section 7.2 (such as ‘swimming pool staff 

knowledge and experience’ and ‘swimming pool operator training’, which were key components of 

policy analysis scenarios 1A and 1B) or excluded due to a high level of uncertainty surrounding the 

factors impact on system behaviour (‘political will’, ‘media attention’ and ‘swimming pool operator 

awareness of crypto in the community’).   
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 Model set-up and constraints 

Model purpose: The purpose of this simulation model is to provide insight on some simple 

dynamic system behaviours, especially those related to public aquatic facilities, which are 

contributing to the overall trend of cryptosporidiosis notification in South East Queensland 

communities.  

Intended audience: With the above-mentioned purposed in mind, the intended audience of this 

model are public health officers and managers in South East Queensland, as well as decision makers 

and facility operators in the region. While the model approaches the problem at a population level, 

some of the insights derived from the model may be of interest to the larger medical community.  

Spatial and temporal extent: The model runs on a daily time-step over a period of 10 years, from 

July 1, 2007 to July 1, 2017. This amounts to a total of 3651 days.  

The model represents the dynamics of Cryptosporidium transmission in South East Queensland, 

Australia, within the geographic boundaries of the Metro North Brisbane, Metro South Brisbane 

and Gold Coast Public Health Unit (PHU) boundaries, as defined by Queensland Health.  

Reference mode: The primary reference mode for the model (i.e. the main variable whose 

behaviour over time is of greatest interest) is the daily count of case notifications for the entire SEQ 

study area, as seen in Figure 5.1, which have peak and trough pattern, with spikes ever  1-3 years 

(as discussed in section 5.1.1). There is also a slight overall upward trend of an increasing number 

of notifications over the study period. The desired system behaviour is a reduced number of daily 

case notifications in SEQ, particularly with shallower and less frequent peaks.  

Degree of aggregation: The model examines the transmission dynamics of Cryptosporidium 

infections at the population level. It has been aggregated to the degree that there is no distinction 

between variations in individual persons, medical practices or practitioners, or public aquatic 

facilities. Public aquatic facilities are also aggregated in such a way that five shallow children’s 

swimming pool and ten adult lap pools represent all the public aquatic facilities within each PHU 

region.   

Model boundaries: The model’s boundaries are designed to align with the boundaries of the causal 

loop diagrams discussed in Chapter 5. Several known factors related to Cryptosporidium 

transmission are considered outside the boundaries of this model. The simulation model focuses on 

the contribution of secondary transmission, international travel, and the use of public aquatic 

facilities to the population-level transmission dynamics of Cryptosporidium infections in the study 
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area. Other known sources of transmission such as contact with livestock and domestic animals, and 

contaminated drinking water are not included in this model. Additionally, only attendance at public 

aquatic facilities is addressed. The model does not account for individuals swimming in other 

sources of recreational water such as lakes, rivers, the ocean or private swimming pools. Weather 

and climate are considered exogenous to this model and are not accounted for other than the impact 

that various seasons have on attendance patterns at public aquatic facilities. 

Arrayed dimensions and elements: System dynamics modelling allows for model structure and 

behaviour to be replicated across multiple dimensions, such as age or geographic region. These 

parallel model structures are called arrays (also known as subscripts). Each variable can be defined 

such that it differs in a pre-defined way for different arrays. Arrayed variables are show in the 

model structure as a three stacked variables (as seen in Figure 6.2)  For example, the variable 

proportion of people who swim can be arrayed so that it has a unique value for different age groups 

and/or regions. 

 
Figure 6.2: Example of three parallel stock and flow structures encapsulated within a single arrayed 

stock and flow structure. 

This model has been arrayed across two main dimensions; by age, and by Public Health Unit 

(PHU).  The dimension [Age] contains two elements, children 0-4 years old, and people ≥5 years 

old. The distinction between these two age groups was chosen as children 0-4 years old are more 

likely to be faecally-incontinent. This increases their likelihood of coming into contact with faeces 

(their own or their peers’).  They are also more likely to use specialized ‘learn-to-swim’ pools at 

public aquatic facilities.  

The dimensions [PHU] contains three elements, Metro North, Metro South and Gold Coast. These 

three elements are consistent with the geographical boundaries of the three Public Health Units. The 

model was arrayed by PHU as the rate of cryptosporidiosis differs amongst the three regions.  
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The additional arrays have been used within the Public Aquatic Facility (PAF) Sector; pool size, 

pool type, and season. The [pool size] array divides the PAF sector model into large pools and small 

pools, to represent the differences in user profile and behaviour between users of lap-style 

swimming pool (large pools) and shallow learn-to-swim style pools (small pools). The large and 

small pools have further been divided into ten individual large pools ([large pool number] array) 

and five small pools ([small pool number] array) to represent the approximate number of council-

owned swimming pools in each PHU region.  

The last array is season, which was arrayed across two-dimensions, summer and winter. This array 

was used to differentiate between swimming pools that close in the winter from those that are open 

year-round.  

Software: The software used to construct this model is Stella® Architect (version 1.7.1, ISEE 

Systems). 

 Model structure 

The simulation model is made of six different interconnected sectors, the population sector (shown 

in green), secondary transmission sector (shown in aquamarine), healthcare sector (shown in red), 

Public Aquatic Facility (PAF) sector (shown in blue), imported cases sector (shown in purple) and 

public health sector (shown in orange), as seen in Figure 6.3. Each sector contains several causally-

linked stocks, flows and converters (as shown in Figure 4.2 and described in section 4.1.1.3) that 

influence the way Cryptosporidium infections spread throughout the community. As variables from 

one sector may influence variables in several other sectors (and thus appear in the structure of other 

sectors), stocks and converters that appear in other sectors have been colour-coded to match the 

sector from which they originate (as per the colouring scheme described at the beginning of this 

paragraph). The following six sections describe the structural and behavioural assumptions used in 

each sector to collectively simulate the historical trends of cryptosporidiosis notifications in South 

East Queensland over the past 10 years.  
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Figure 6.3: High-level model structure 

6.3.1. Population (SIER) Sector (Sector 1) 

The Population Sector (shown in Figure 6.4) is both the starting point and the backbone of the 

entire system dynamics model. In this Sector, the population of each region, which are handled by 

seven stocks, move between different stages of the disease progression. The structure of this Sector 

follows a modified version of the SEIR compartmental model used in commonly epidemiology 

(Brauer, 2008). The classic SEIR model has been expanded to capture features specific to 

Cryptosporidium infections, such as the difference between symptomatic and asymptomatic 

infections, as well as symptom relapse in recovering symptomatic individuals.  
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Figure 6.4: Stock and flow structure of the Population Sector 

 Sector Summary 

The first stock of the model, ‘Susceptible People’, contains the portion of the total population that 

is not infected with Cryptosporidium, nor are they immune to the parasite. These people represent 

the pool of people who have the potential to be exposed. The remainder of the people described in 

this model are considered “immune to exposure” because they are actively infected with parasite 

and therefore can’t currently become infected. The number of susceptible people is influenced by 

population change (i.e. births, aging, deaths, immigration and emigration) over time. This effect is 

controlled by the rate variable ‘daily population change’. 

The remaining six stocks represent individuals at different stages of the natural progress of 

Cryptosporidium infections.  

The second stock, ‘Latently Infected People’ represents the number of people who are infected 

with Cryptosporidium but are in the incubation period. Individuals in this model can be exposed 

either through person-to-person contact or thought contact with contaminated water at a public 

aquatic facility (defined by the auxiliary variables ‘new person to person cases’ and ‘new 

swimming-related cases’ respectively). These individuals are not yet symptomatic, nor are they 

infectious. The mechanisms by which individuals are exposed to Cryptosporidium by person-to-

person contact and contact with recreational water is discussed in sections 6.3.2 and 6.3.4 

respectively.  The average time spent in the latently infected stock is defined by the auxiliary delay 

parameter ‘incubation period’, i.e. infected but not yet symptomatic. 

After the incubation period, a portion of people in this category move on to the third stock 

‘Symptomatic Infectious People’, which contains the people who are currently experiencing 
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symptoms of cryptosporidiosis. People in this group are infectious, meaning they have the potential 

to transmit their infection to others. The amount of time where a person remain symptomatic is 

defined by the auxiliary delay variable ‘duration of symptoms’. Not all people who are infected 

with Cryptosporidium develop symptoms. The people without symptom instead move from the 

latently infected group to the fourth stock ‘Asymptomatic Infectious People’. Much like the 

people in the third stock, individuals in this stock have the potential to transmit their infection to 

others. The division of people between the third and fourth stock is determined by the auxiliary 

variable ‘probability of being symptomatic given infection’.  

The fifth stock, ‘Recovering Symptomatic Infectious People’, contains the symptomatic people 

who have ceased to display symptoms. These individuals remain infectious.  

A fraction of people will move from the fifth stock to the sixth stock, ‘Relapsed Symptomatic 

Infectious People’. These individuals are people who experience a relapse of symptoms. The 

portion of people who fall into this category is determined by the auxiliary variable ‘relapse rate’ 

and the amount of time that passes before the relapse occurs is controlled by the auxiliary delay 

variable ‘reinfection delay’. Individual in this stock return to the recovering symptomatic 

infectious people stock after a specified period, defined by the auxiliary delay variable ‘relapse 

duration’. 

After a period defined by the auxiliary delay variable ‘post-symptom infectious period’, the 

people from both the symptomatic and asymptomatic infectious people stocks move to the seventh 

and final stock, ‘Recovered People’. Individuals in this stock are no longer infectious and are 

experiencing a period of temporary immunity (following their infection). The duration of time 

people remain in this stock is defined by the auxiliary delay variable ‘immunity period’. After their 

immunity period, the people contained within this stock will return to the ‘Susceptible People’ 

stock at the beginning of the model.  

 Sector Dynamics 

While the structure of the system is conveyed visually by the stock and flow diagram, the value of a 

stock as it changes dynamically over time is expressed with an ordinary differential equation 

(ODE). To illustrate the connection between the visual depiction of a stock and flow structure and 

the associated mathematical equations that drive the dynamic nature of the model, the differential  

equations that describe the dynamic change of each stock within the Population Sector, are show 

below in equations (6.1) to (6.8), described using the symbols listed in Table 6.1. Additional 
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information about the dynamics of this, as well as the ODEs driving the dynamics of the remaining 

sectors, can be found in Appendix A. 
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Table 6.1: Variables used in the ordinary differential equations to describe the dynamics of the 
population Sector 

Text description of model variable Symbol used in 
ODEs 

SUSCEPTIBLE PEOPLE S 
LATENTLY INFECTED (EXPOSED) PEOPLE E 
ASYMPTOMATICALLY INFECTED PEOPLE IA 
SYMPTOMATICALLY INFECTED PEOPLE IS 

RECOVERING SYMPTOMATIC PEOPLE ISR 
RELAPSED SYMPTOMATIC PEOPLE ISS 

RECOVERED PEOPLE R 

daily population change Δ𝓅𝓅 
population 𝓅𝓅 

new person-to-person cases Φ 
new swimming-related cases Ψ 

incubation period 𝜄𝜄 
probability of being symptomatic given infection 𝓈𝓈 

duration of symptoms 𝜑𝜑 
re-infection delay 𝜇𝜇 

relapse rate 𝓇𝓇 

relapse duration 𝜋𝜋 
post-symptom infectious period 𝜌𝜌 

immunity period 𝜆𝜆 

 Sector assumptions and limitations 

The purpose the stock and flow diagram of the system (shown in Figure 6.4) is to make explicit our 

understanding and assumptions of the system’s structure and behaviour. Nevertheless, the current 

depiction of the model’s structure includes several additional implicit assumptions. These implicit 

assumptions are over-simplifications of our understanding of reality but have nevertheless been 

retained in the model for model simplicity and for ease of understand. For the Population Sector, 

these implicit assumptions include: 

1. Individuals who enter or leave the system do so only from the ‘susceptible people’ stock 

(i.e. no one dies in any of the other stocks, and no one enters the system already infected). 

o In reality, individuals may die, immigrate or emigrate from the population at any 

stage of the disease. As the number of diseased individuals is only a small fraction of 

the total population, and the duration of infection is relatively short, it is expected 
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that individuals entering or exiting the system while infected represents a negligible 

fraction of the population. 

2. There is no treatment or outside means that would decrease the symptomatic period or 

duration of infectiousness. 

o Treatment of cryptosporidiosis using the drug nitazoxanide is available in a number 

of countries including the United States of America (Fox and Saravolatz, 2005).  

However, Nitazoxanide is not currently registered in Australia and is only available 

via the Special Access Scheme (Zhu, 2018).  Because it is not routinely available in 

Australia, the model has been built to assume that no treatment is available.  

3. Previous infection has no impact on the outcome of future infections once an individual has 

returned to the susceptible people stock.  

o There is no conclusive evidence that long-lasting immunity is conferred by infection 

with Cryptosporidium (see section 3.2).  Therefore, the model assumes that previous 

infection has no impact on the outcome of future infections.  

4. Symptom onset and onset pathogen shedding (onset of infectious period) occur at the same 

time in symptomatic infectious people.  

o The model assumes that the duration of the prepatent period (period from exposure 

to presence of oocytes in faeces) and incubation period (period from infection to 

onset of symptoms) are the same. While a number of studies have found these 

periods vary slightly (+/- 1-2 days) depending on the exposure dose (Chalmers and 

Davies, 2010).  As the time difference is relatively short, and for model simplicity it 

is assumed that the prepatent and incubation periods are of equal duration.  

5. Cryptosporidium infections are not fatal. 

o In immunocompetent individuals, Cryptosporidium infections are self-limiting, with 

symptoms ceasing typically in less than a month. However, In immunocompromised 

individuals, (particularly those whose T-cell function is compromised such as those 

with acquired immune deficiency syndrome (AIDS) or severe combined 

immunodeficiency syndrome (SCIDS)), Cryptosporidium infections can become 

chronic, progressive and potentially life-threatening (Hunter and Nichols, 2002). 
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While present in Queensland, rates of HIV in the state are believed to be quite low5. 

As the number of individuals in the study area whose T-cell function is sufficiently 

compromised to lead to fatal cryptosporidiosis is assumed to be quite small.  For 

model simplicity, it is assumed that no one dies of cryptosporidiosis.   

6.3.2. Secondary Transmission Sector (Sector 2) 

The Secondary Transmission sector outlines a key component of most disease transmission models; 

person-to-person transmission. Person-to-person transmission has been implicated in numerous 

cryptosporidiosis outbreaks (as outlined in Chapter 2), particularly those involving children. As 

person-to-person transmission is not the main area of focus for this model, a simplified structure has 

been used to describe the dynamics of this form of transmission (shown below in Figure 6.5).   

 
Figure 6.5: Stock and flow structure of the Secondary Transmission Sector 

 Sector Summary 

The structure of the Secondary Transmission Sector begins with the variable ‘potential infectors’, 

which is the sum of the daily number of new infections (i.e. the sum of ‘asymptomatic infection’ 

and ‘symptomatic infection’ flows described in the Population sector (section 6.3.1.1)). The model 

assumes that only a fraction of potential infectors will transmit their infection to others at some 

point in their period of infectiousness (‘secondary transmission rate’). As young children are 

thought to be more likely than adults to transmit their infection to others, the rates of transmission 

for adults and children have been separated into the ‘adult secondary transmission rate’ and the 

                                            
5 The 2012-2015 average rate of new HIV diagnosis in Queensland is 4.5 cases/100,000 persons, with less 

than 10% of those cases being at an advanced stage at time of diagnosis (Queensland Health, 2015). 
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‘child secondary transmission rate’ respectively. The model further assumes that ¾ of people 

infected by children are adults (presumably their parents or caregivers) whereas adults are assumed 

to be equally likely to infect both children and other adults.  The people that they infect then 

become ‘new secondary cases’. 

A stock and flow structure is used to determine the point of time during the primary infector’s 

period of infectiousness when they infect a susceptible person. The ‘new secondary cases’ drive the 

stock’s inflow. A ‘conveyor-type’ stock is used as they allow for flow prioritization (i.e. first in-first 

out). These cases remain within the ‘Susceptible Contacted People’ stock, until a pre-defined 

period of time where they flow out of the stock and become ‘New person to person cases’. This 

period represents the average time after the infector’s onset of infectiousness that they infect a 

susceptible person. This variable is necessary as secondary transmission can occur at any point 

within the infector’s period of infectiousness, but ‘potential infectors’ is calculated at the point of 

time when the infectors first become infectious. The stock and flow structure ensures that the ‘new 

person to person cases’ enter the exposure flow of the person to person sector (described in section 

6.3.1.1) at the correct point in time.  

Another key assumption of this sector is that it is possible to prevent secondary cases, even when 

contact between susceptible and infectious people occurs. The model assumes the number of 

prevented (avoided) cases is dependent on the primary case being sufficiently aware of their 

potential to transmit their infection to others, that they are able to use transmission-prevention 

behaviours. This is included in the model using a second outflow from the susceptible contacted 

people stock (‘avoided cases’).   

6.3.3. Healthcare Sector (Sector 3)  

The Healthcare Sector describes changes in healthcare-seeking behaviour of symptomatic infectious 

people, as well as the testing, diagnosis and information-provision patterns of physicians. These 

changes ultimately effect both the number of symptomatic infectious people who are able to 

implement measures to reduce the risk of disease transmission, but also the number of disease 

notifications the public health service receives (described in the Public Health Sector model in 

section 6.3.6).  

 Sector Summary 

The Healthcare Sector is built around three stocks, ‘People with Crypto at the Doctor’, ‘People 

with Crypto Tested’ and ‘Aware Infectious People’. The first two stocks are controlled by bi-

directional flows (bi-flows).  
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Furthermore, both stock and bi-flow structure in the healthcare sector model exhibits a similar goal-

seeking behaviour. The behaviour of each flow is controlled by the gap between the predicted value 

of the stock and the actual value of the stock, as controlled by a delay variable. When the predicted 

value exceeds the actual value, the gap becomes a positive number and the bi-flow behaves like an 

inflow. When the actual value exceeds the predicted value, the gap becomes negative and the bi-

flow behaves like an outflow. This produces goal seeking behaviour and allows the delay between 

people becoming sick and seeking treatment by a doctor, and the delay between seeking treatment 

by a doctor and being tested for crypto, to be modelled. A more detailed description of these stocks, 

in the form of their equations, can be found in Appendix B. 

.  
Figure 6.6: Structure of the stock and flow model in the Healthcare Sector 

This section provides an overview of the structural and behavioural assumptions used in the 

Healthcare Sector (shown in Figure 6.6) to represent the mechanisms by which symptomatic 

infectious people are diagnosed and given education of means to reduce the transmission of their 

infection to others.  

 Patients’ Healthcare-Seeking Behaviour 

The first portion of this sector (Figure 6.7) describes the model assumptions related to patients’ 

health-seeking behaviour. The model assumes that a fraction of symptomatic people from the 

population sector will visit a doctor, with this typically occurring several days after the onset of 

their symptoms. 
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Figure 6.7: Structure used to model the number of symptomatic infectious people who go to the 

doctor 

The ‘healthcare seeking gap’, which is the difference between the actual number of people at the 

doctor and the predicted number of people at the doctor, creates a goal-seeking behaviour which is 

modulated by the treatment seeking delay. 

 
Figure 6.8: Estimated effect of the treatment-seeking delay on the dynamics of the number of 
people 5+ years old with crypto at the doctor in Metro North (day 500-800) 

Using the [Metro North, Over 5 Years Old] arrays for days 500-800, Figure 6.8 compares the Stella 

Architect modelled dynamics of the ‘Symptomatic Infectious People’, ‘People with Crypto at 

the Doctor’, People with Crypto Tested’ and ‘Aware Infectious People’ stocks. The figure 

demonstrates the effect of the three delay variables in the Healthcare Sector, with delays clearly 

shown between peaks in the number of symptomatic persons, and the corresponding peaks in the 

other variables. A vertical reference line on day 608 has been added to demonstrate the value of 

each stock when ‘symptomatic infectious people’ is at its highest. 
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 Diagnostic Approach of the Healthcare Provider 

The next section of the model describes the assumptions related to the diagnostic approach of the 

healthcare provider (Figure 6.9). Of the people with symptoms who visit a doctor, a fraction of 

them will be asked by their doctor to collect and submit a stool sample to the pathology lab for 

testing. This process may take a few days (‘test submission delay’). Not all symptomatic infectious 

people will have their faeces tested for a variety of reasons, including parasites rarely being 

considered in the initial differential diagnosis of diarrhoea, an initial treatment of just supportive 

therapy, a perceived lack of specific treatment options for Cryptosporidium infections making 

testing unwarranted, poor practitioner awareness of Cryptosporidium, and/or the perceived rarity of 

cryptosporidiosis in the community (Attias et al., 2015). 

Once the faecal sample has been submitted, it will be tested. The ‘testing gap’ is the difference the 

actual number of people with symptoms have been tested and the predicted number of people with 

Cryptosporidium infections who have been tested. This creates a goal-seeking behaviour that is 

modulated by the faecal testing delay. 

 
Figure 6.9: Stock and flow structure used to model the fraction of symptomatic infectious people 

who get their faeces tested for Cryptosporidium. 

Depending on the sensitivity of the testing method used, a portion of the samples will correctly test 

positive for infection with Cryptosporidium. For the purpose of this model, two different diagnostic 
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techniques are used; microscopy/antigen detection and polymerase chain reaction (PCR) analysis6. 

Each type of analysis has a different sensitivity to Cryptosporidium, with PCR considered more 

sensitive than microscopy/antigen detection.  Beginning in 2013, the pathology laboratories began 

transitioning from faecal microscopy to the more sensitive polymerase chain reaction (PCR) 

analysis (‘testing transition’) which may 

influence the annual trend of 

cryptosporidiosis notification. 

 The ‘testing transition’ variable uses a 

graphical function (Figure 6.10) to describe 

the percent of faecal samples that are tested 

using Multiple PCR detection vs. microscopy 

or direct antigen.  The behaviour graphical 

function represents the transition from 

microscopy and antigen testing to multiplex 

PCR, which began in January 2013 (point A 

at t=2010), and became widespread in from 

2015 (point B at t= 2755) to 2017 (point C at 

t=3102).   

 Transmission-risk awareness 

Lastly, the final section of this sector models the number of people who become aware of the 

transmission-risk related to a diagnosis of cryptosporidiosis (shown in Figure 6.11). For this 

purposed of this model, “awareness” is defined as the patient knowing: 

• they are, or potentially are, infected with Cryptosporidium; 

• the transmission risk associated with being infected with Cryptosporidium; and 

• the appropriate transmission control measures necessary to reduce risk of spreading 

Cryptosporidium to others, including abstaining from swimming for 2 weeks after their 

diarrhoea has ceased. 

                                            
6 While microscopy and antigen detection tests are fundamentally different diagnostic technique, laboratory 

billing practices make it unclear which proportion of tests were done with each technique during the study 

period as they are both use the same billing code. Because of this, the sensitivity of microscopy and antigen 

detection have been combined into a single variable (‘microscopy sensitivity’). 

Figure 6.10: Graphical function of the Testing 
Transition (TT) Variables 
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The model assumes “awareness” instigated by the healthcare sector occurs in one of two ways, 

either by the doctor counselling the patient once their faeces has tested positive for Cryptosporidium 

(‘predicted aware infectious people’), by the doctor pre-emptively counselling the patient at their 

initial visit when cryptosporidiosis is suspected (‘people not tested but aware’). 

In the first case, the laboratory notifies the physician of the case of cryptosporidiosis following the 

positive faecal test result, who will then contact the patient and inform them of the transmission risk 

associated with their diagnosis (‘predicted aware infection people’). For the sake of model 

simplicity, this variable used a constant value of 0.43 (43%) is based on the study from Attitas et al. 

(2015) which found that only 43% of physicians knew the correct advice to provide to patients 

regarding measures to prevent transmission of Cryptosporidium infections. 

 
Figure 6.11: Structure used to model the number of symptomatic infectious people that have been 

made aware of their transmission risk by their doctor 

The process from sample submission to becoming aware of their diagnosis (and the associated 

measures to reduce the risk of transmitting it to others) is assumed to take between 1 and 5 days to 

complete. This delay includes the time it takes for the laboratory to return the results to the 

physician, and the number of days it takes for the physician to contact the patient to provide the 

results. 

In the second case, a fraction of the patients who are not tested will nevertheless be counselled by 

their physician about measures they can use to reduce the risk of them transmitting their illness to 

others.  The size of this fraction is based on the number of people who seek medical attention but do 

not get tested, multiplied by the physician precautionary advice rate.  While these individuals that 

fall into this category may be unaware of their diagnosis, they are sufficiently aware of the 

transmission potential to implement risk-reduction strategies. Patients who are pre-emptively 

counselled are not subjected to the numerous delays in the Healthcare Sector, as they do not need to 

wait to be tested to receive the risk-reduction information.   
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The ‘healthcare messaging effect’ (from the Public Health Sector in Section 6.3.6) variable 

describes the potential effect that messaging targeted specifically at healthcare professionals can 

have on their likelihood to communicate correct transmission-prevention information to patients 

they suspect have cryptosporidiosis. If/when the public health sector releases messaging targeted at 

healthcare professionals, both variables increase by an amount specified by the healthcare 

messaging effect variable.  

 Sector Assumptions and Limitations 

The design of the Healthcare Sector incorporates several additional implicit assumptions and/or 

limitation, including: 

1. Symptomatic infectious individuals only visit the doctor a single time. 

o A more complete model may account for individuals who seek medical attention 

more than once, as the doctor’s differential diagnosis (and associated likelihood to 

test the patients’ faeces for Cryptosporidium) may change over time as their 

symptoms progress. For the sake of model simplicity, it is assumed that patients only 

visit their doctor once during their infection. 

2. Each symptomatic infectious person is equally as likely to visit the doctor as any other 

symptomatic infectious person. 

o A more complete model may include the relationship between healthcare-seeking 

behaviour and symptom severity and duration. Individuals with more severe 

symptoms, or symptoms that have lasted longer, are more likely to present to a 

doctor than those with mild symptoms, or symptoms lasting less than 3 days (Scallan 

et al., 2006, Kirk et al., 2014). For the sake of model simplicity, it is assumed that all 

symptomatic infectious people are equally as likely to visit a doctor. 

3. Infectious individuals only need to submit a single faecal sample; 

o A more complete model equation might consider the frequent necessity to submit 

multiple stool samples before a positive or negative diagnosis is made. It is 

recommend that up to three stool samples are submitted prior to a negative test result 

being reported (Centers for Disease Control and Prevention, 2016b) due to 

intermittent shedding of oocytes. For the sake of model simplicity, it is assumed that 

only one faecal sample is necessary for diagnosis. 

4. Physicians order the correct faecal test capable of identifying the presence of 

Cryptosporidium in faeces. 
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o A more complete model may also consider the number of people tested with a 

diagnostic technique that is not capable of detecting Cryptosporidium. As the 

number of times this occurs is unknown, and it is believed that this does not 

routinely happen in Australia, this has not been included in the model. 

5. There are no false-positive test results.  

o A more precise model might also consider the specificity of each test, as it is likely 

that a small number of false positive test results contribute to the predicted number 

of cryptosporidiosis cases. As the number of individuals with diarrhoea in the 

community who are tested but do not have cryptosporidiosis is considered 

exogenous to this model, the number of false positive tests cannot be calculated. For 

the sake of simplicity, the model only considers the sensitivity of the tests. 

6.3.4. Public Aquatic Facility Sector (Sector 4) 

In addition to exposure to Cryptosporidium through person-to-person contact (as described in 

section 6.3.2), contact with contaminated water at public aquatic facilities is another means of 

exposure that is addressed in this model. The intention of the Public Aquatic Facility (PAF) Sector 

is to describe the mechanisms by which infected individuals contaminate the water at public aquatic 

facilities, as well as how susceptible individuals who swim at contaminated PAFs can be exposed.  

These mechanisms are represented explicitly in the model to endogenise the effect of PAF 

management and patron behaviour in this systemic problem. The overall structure of the PAF 

Sector can be seen in Figure 6.12. 

 Sector Summary 

The Public Aquatic Facility Sector is divided into two related sections (sub-models). The first 

models the faecal contamination of PAFs through accidental faecal releases (AFR) or bather 

shedding (swimming pool sub-model). The second models susceptible people becoming infected by 

swimming in the contaminated water (contamination exposure sub-model)  

To account for differences in the way people interact with different types and sizes of PAFs, the 

model within the PAF Sector has been divided and arrayed in several ways. The first is by 

swimming pool type, with a division between large pools and small pools (described in the model 

as LP and SP respectively). For the purpose of this model, ‘large pools’ are considered lap-style 

swimming pools, primarily used for recreational and competitive swimming, as well as other 

aquatic-based sports/activities such as water polo and aqua aerobics. ‘Small pools’ are considered 

shallow pools (often referred to as ‘wading pools’ or ‘learn-to-swim’ pools) that are designed 
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primarily to be used to teach diaper-aged children to swim. As can be seen in Figure 6.12 , the 

design of the swimming pool sub-model contains two identical structures, one for large pools (left) 

and one for small pools (right) adjacent to each other. While the structural assumptions for the 

contamination of large and small pool is assumed to be the same, the value of the auxiliary variables 

within the model have been tailored to reflect the differences in the way each pool is typically used. 

Additionally, each pool type has been arrayed to contain several pools of various sizes.7 The large 

and small pool model structures have been arrayed into 10 and 5 different pools respectively. The 

number of arrays and the 2:1 ratio of large to small pools represents the approximate breakdown of 

council-owned pools in each Public Health Unit area.  The pools within these arrays have been 

varied by size (from a 16m x 6m x 0.75m learn-to-swim pool to a 25m x 50m x 2m Olympic-sized 

pool) to represent the various sizes of council pools within the regions (Table 6.2).  

Table 6.2: Volume of pools contained in the large and small pool arrays 

Large Pools Small Pools 

Pool 
number 

Pool 
volume 
(litres) 

Closed 
in 

winter 

Pool 
number 

Pool 
volume 
(litres) 

Closed 
in 

winter 

LP1 375,000 Y SP1 205,200 Y 

LP2 375,000 N SP2 205,200 N 

LP3 375,000 N SP3 116,600 N 

LP4 468,750 Y SP4 69,570 N 

LP5 468,750 N SP5 69,570 N 

LP6 468,750 N    

LP7 2,500,000 N    

LP8 2,500,000 N    

LP9 2,500,000 N    

LP10 2,500,000 Y    

 

                                            
7 Pool sizes have also been arrayed by PHU, with each PHU containing the same number of number of small 

and large pools.  



 

111 

 
Figure 6.12: Stock and Flow diagram depicting the complete Public Aquatic Facility (PAF) Secto
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The variables ‘Users in each LP’ and ‘Users in each SP’, as shown in Figure 6.13, is used to 

divide the users from each PHU into the various pools, with a higher proportion of swimmers using 

the higher volume pools than the smaller volume pools.  As many of the PAFs in SEQ are closed 

during the winter months (mid-May to mid-August) the variables ‘seasonal LP users’ and 

‘seasonal SP users’ switch the users in three of the large pools and one of the small pools to 0 

during these months.  

 
Figure 6.13: Stock and flow structure illustrating the division of infectious swimmers into large and 

small pools.  

Within the two sub-models are four modules. Modules (depicted as white boxes with rounded 

corners, as seen in Figure 6.13)  are self-contained ‘mini-models’ embedded within the main model 

and are used to simplify its appearance.  The ‘Sick swimmer’ and ‘Healthy swimmer’ modules 

calculate the estimated number of infectious and healthy people swimming in each pool. There are 

then two identical copies of the ‘AFR’ module, one for each size of pool (small and large pool), that 

contain the mechanisms used to predict the frequency and severity of accidental faecal releases.  

As the assumptions dictating the system structure of the large and small pool portions of the model 

are identical, the following summary will focus only on that of the large pool.  All assumptions 

regarding the large pool portion of the model also apply to the small pool unless otherwise stated.  

 Swimming Pool sub-model 

The intention of the Swimming Pool sub-model is to imitate the dynamic system behaviour that 

leads to infectious people contaminating the PAFs.  

Sick Swimmers  

The Sick Swimmers module (shown in figure 6.14) is the starting point for the Swimming Pool sub-

model. It outlines the assumptions related to the estimated fraction of infectious people in the 

population who are swimming in a PAF at any given time.  
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The model assumes that only a certain percentage of the population, regardless of their health 

status, swims in public aquatic facilities (they are referred to hereafter as “swimmers”). To estimate 

the fraction of infectious people who are considered ‘swimmers’, the number of infectious people is 

multiplied by the proportion of the population who report swimming in the last year.  

As one of the key transmission prevention strategies is for infectious individuals to abstain from 

swimming, the portion of infectious swimmers who are ‘aware’ of these strategies (as described in 

section 6.3.3.1) is excluded from the calculation of infectious swimmers. 

The estimated number of infectious swimmers who are swimming on any given day is calculated by 

dividing the total number of infectious 

swimmers by the average frequency of 

swimming (swim events per year). While 

South East Queensland has a sub-tropical 

climate, the model assumes that seasonality 

does influence the rate at which people 

swim. This is primarily because a large 

percentage of public aquatic facilities are 

outdoors, many of which close during the 

colder months. It is assumed that people are 

more likely to swim during the summer 

months, with pool attendance peaking in 

January (mid-summer) and falling during 

the colder months (June-September). It is 

also assumed that this effect is less 

pronounced for the 0-4 year old age group 

as the majority of swimming is done as part 

of ‘learn-to-swim’ classes, which typically 

occur in indoor heated pools. 

 As the model addresses small and large 

pools separately, the number of child 

swimmers and adult swimmers in each pool 

are calculated separately. The model 

assumes that most young children (90%) 

swim exclusively in the small pool, and the 

Figure 6.14: Stock and flow diagram depicting 
proportion of infectious people who 
swim on any given day 
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majority of adults (95%) swim exclusively in the large pool. These proportions are multiplied by the 

number of swimmers in both age groups to determine the estimate number of adult and child 

swimmers in each pool per day.  

The sick swimmers module also 

captures the effect that targeted 

messaging by PAF operator has on 

the number of infectious swimmers in 

the pools (Figure 6.15). For this 

model, it is assumed that this 

messaging is targeted at both 

increasing swimmer hygiene and 

promoting self-exclusion of 

individuals with a recent history of 

diarrhoea.  

 The model assumes that the operators of the PAFs may release periodic messaging to their patrons 

about the risk of transmitting cryptosporidiosis to other patrons if they swim while infectious and/or 

do not shower prior to entering the pool. The uptake of the message depends when the message is 

released and how effective the messaging campaign is (i.e. the proportion of people who will 

modify their behaviour as a result of the messaging campaign).This assumption is modelled with 

the ‘PAF messaging’ variable, which represents the fraction of the population that will modify their 

behaviour in accordance with the message being delivered. This variable is a delay variable whose 

input is controlled by the ‘messaging converter’ and whose output is delayed by the “PAF 

messaging effectiveness delay’. The timing of when the message is released (‘messaging 

converter’ variable) is controlled by two variables. The first is a switch variable that determines 

whether the messaging occurs. The second is a counter variable that releases a value of 1 at 

predetermined intervals (‘PAF messaging start period’). The model assumes that the effect of the 

messaging campaign decreases over time, with the effect only lasting a short duration. The ‘PAF 

messaging effectiveness decay’ variable controls the length of time people continue to modify their 

behaviour based on the messaging they receive.   

When the PAF messaging switch variable is on, the number of infectious swimmers who decide to 

self-exclude based on the PAF messaging are removed from the calculation of the number of 

infectious people in the pool. PAF messaging switch variable is switched off in the model’s base 

case. 

Figure 6.15: Stock and flow structure depicting PAF-led 
messaging 
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Accidental Faecal Release 

The ‘ARF in pool’ module, shown below in Figure 6.16, calculates the predicted number of oocytes 

released into the pool via an accidental faecal release, given the number of infected swimmers in the 

pool. The intention of the ARF module is to imitate intermittent AFRs that occur seemingly at 

random.  

As watery diarrhoea is one of the most common symptoms of cryptosporidiosis, the module begins 

with the assumption that there is a given probability of an ARF given infection with 

Cryptosporidium. Multiplying this probability by the number of infectious swimmers provides an 

estimated probability of AFR per pool per day. A binomial random number generator (‘AFR LP’), 

which releases the value ‘0’ or ‘1’ based on that probability, is then used to simulate days where an 

AFR occurs in one or more of the swimming pools. This structure insures that AFRs occur as 

discrete pulse-like events lasting only 1 dt.  

 
Figure 6.16: Stock and flow diagram illustrating the mechanisms used to calculate the frequency 

and size of AFRs per pool per day 

To calculate the number of oocytes released per ARF event, the predicted weight of faeces (in 

grams) released in an AFR is multiplied by the predicted concentration of oocytes per gram of stool.  

As guidance provided by the US Centers for Disease Control states that formed (solid) faeces poses 

little-to-no risk of transmitting Cryptosporidium infections, the model assumes that all AFRs are 

diarrhoeic faeces (Centers for Disease Control and Prevention, 2016a).  

The predicted oocyte concentration per AFR is then combined with the result of the AFR generator 

process described above, using an additional IF, THEN, ELSE statement shown in equation 6.9. 
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Large ARF released = IF (AFR_LP=1) THEN 
Oocyte_concentration_in_an_AFR ELSE 0 

(6.9) 

The resulting value is a discrete pulse of oocytes (‘oocytes released into LP’) released into the pool 

when it is predicted than an AFR has occurred.  

Bather shedding 

In addition to contamination resulting from accidental faecal releases, Cryptosporidium oocytes also 

enter the swimming pool through bather shedding. The figure below (Figure 6.17) show the portion 

of the model relating to this effect.  

 
Figure 6.17: Stock and flow diagram illustrating the mechanisms associated with infectious bathers 

shedding faeces containing Cryptosporidium oocytes into the swimming pool 

This section begins with the assumption that all swimmers will have some amount of residual faecal 

matter on their perianal area, which will be shed upon entering the swimming pool. The amount of 

faeces shed per swimmer is calculated as the amount of faeces (in grams) that the average person 

has on their perianal area, multiplied by the oocytes per grams of faeces (‘oocytes in 1 grams of 

stool’). The amount of faeces shed has been separated by age group as young children, particularly 

those in nappies, are believed to have significantly more residual faeces on their body than those 5+ 

years old. The value of the ‘oocytes in 1 grams of stool’ is assumed to be highly variable and 

therefore has been given a continuous probability distribution with a large range to account for 
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periods of intermittent shedding8. The number of oocytes shed per swimmer is then multiplied by 

the number of infectious swimmers to determine the number of oocytes infected swimmers will 

shed into the pool. 

Showering, including cleansing the perianal area with soap, is believed to effectively remove 

residual faeces from the body. The model assumes that individuals who shower prior to entering the 

pool have 80% less faeces on their bodies than those who do not shower.  

While a small percentage of swimmers routinely shower prior to entering the swimming pool, the 

model assumes that patron showering is also prompted by hygiene messaging campaigns. During 

these messaging campaigns, the number of swimmers who shower increases in proportion to the 

effectiveness of the campaign.  The predicted number of oocytes associated with the proportion of 

swimmers who shower is therefore factored out of the calculation of oocytes shed into the pool 9. 

Contamination and decontamination of the swimming pool  

The figure below (Figure 6.18) shows the part of the swimming pool sub-model that describes how 

contaminants (Cryptosporidium oocytes) enter and exit the swimming pool water. Twice a day (dt = 

½ a day) the sum of the total number of oocytes shed by swimmers and oocytes released by AFRs 

enter the ‘Oocytes in the Large Pool’ stock. 

Oocytes are then removed from the pool by chlorine inactivation, which the model assumes can 

happens in one of four ways: standard chlorine inactivation, log-3 disinfection, routine 

hyperchlorination, or reactionary hyperchlorination.  

It is well-established that Cryptosporidium oocytes are highly resistant to disinfectants such as 

chlorine, and that it can take up to a week for oocytes to be inactivated in a well-maintained 

swimming pool with the standard free chlorine concentration of 1-3 mg/L (referred to in this model 

as “standard chlorine inactivation”). For the purpose of this model, the process of standard chlorine 

inactivation is modelled with by ‘removal LP’ flow, with the period of time required for oocyte 

inactivation (2-7 days) controlled by the ‘oocyte inactivation LP’ variable.  

                                            
8 Intermittent shedding refers to the process where the faeces of infectious individuals may alternate between 

containing large numbers of oocytes, to containing little to no oocytes. 
9 For the purpose of this model, the ‘percent of pool patrons who shower’ variable only includes individuals 

who effectively shower with soap (including cleansing their perianal area) prior to entering the swimming 

pool. 
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The model has also included the option for both large and small pools to have a secondary 

disinfection system, such as UV or ozone disinfection, that is capable of rendering 99.9% of oocytes 

inactive (‘log-3 disinfection’). The model assumes that the system inactivates all oocytes as they 

pass through the system. According to Gage and Bidwell’s Law of Dilution, assuming that a 

treatment system is able to remove all of the target pathogen as water passes through the system, 

only 42% of the pathogens in the pool are removed per turnover cycle (Health Protection NSW, 

2013). Because of this, it takes 7 turnovers of the pool water to ensure that 99.9% of the water 

within the pool is treated. A log-3 disinfection system reduces the amount of time viable oocytes are 

present in the pool, from the standard 2-7 days, to 0.6-2 days, depending on the size of the pool and 

the pool’s turnover rate. 

 
Figure 6.18: Stock and flow diagram illustrating the mechanisms of contamination and 

decontamination in the large pool 

A binomial switch variable (‘disinfectant type switch’) is used to control whether the pools have a 

log-3 secondary disinfection system. The base case of the model assumes that none of the pools 

currently have such a system.  

The remaining two methods of chlorine inactivation describe the process of hyperchlorination (also 

known as ‘shock chlorination’ or ‘shocking’), which involves raising the free chlorine concentration 

in the pool to 10-20 mg/L, and maintaining that concentration for 12-25 hours (respectively) to 

ensure total oocyte inactivation in the pool. As these concentrations of chlorine can be harmful to 
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human health, the pool must be closed during the hyperchlorination process. The process of 

hyperchlorination may be reactionary, as part of faecal incident (AFR) response initiated routinely 

as part of a routine disinfectant procedure.  

The model assumes that reactionary hyperchlorination is directly controlled by the percentage of 

AFRs that are detected by PAF staff (‘AFR detection rate’). When an AFR is detected (‘AFR 

detected’), the staff will initiate hyperchlorination procedures. This corresponds with all of the 

oocytes in the ‘oocytes in the large pool’ stock being removed via the ‘decontamination LP’ 

outflow.  

Routine hyperchlorination is modelled in a similar fashion, with the decision of whether it occurs 

controlled by the ‘routine hyperchlorination switch LP’ variable, and the number of days 

between hyperchlorination events controlled by the ‘routine hyperchlorination frequency LP’ 

variable.  

As the pool must be closed during hyperchlorination, the ‘contamination LP’ inflow has a value of 

0 whenever reactionary or routine hyperchlorination is occurring. For the base-case, the model 

assumes that 30% of AFRs are detected, and that routine shocking does not occur. 

 
Figure 6.19 illustrates the dynamic relationships between the number of oocytes in the pool and the 

three inactivation methods. When standard inactivation occurs (left), the number of oocytes in the 

pool decreases exponentially over a period of approximately a week.10 When reactionary 

hyperchlorination occurs (centre), the quantity of oocytes in the pool does not spike, but rather falls 

                                            
10 The count of oocytes in the pool rapidly increases due to an AFR on day 2715. 

Figure 6.19: Modelled behaviour of ‘oocytes in large pool’ stock in relation to standard inactivation 
(left), reactionary hyperchlorination (centre) and routine hyperchlorination (right) [Metro 
North, LP4] 
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to 0 following the AFR (shown occurring on day 2749). When routine hyperchlorination occurs, the 

quantity of oocytes in the pool falls to 0 at pre-defined intervals.  

 Contamination Exposure sub-model 

The design of the Contamination Exposure sub-model is strongly based on concepts originating in 

the field of risk assessment. To calculate the daily number of new cases attributable to public 

aquatic facilities, the model multiplies the estimated number of susceptible people who swim each 

day with the risk per person per swim (i.e. the probability of infection for a single exposure to PAF 

water – adjusted daily). The section below provides an overview of the structural and behavioural 

assumptions used in the Contamination Exposure sub-model to represent the dynamics of 

susceptible people becoming infected through exposure to contaminated pool water. 

The Contamination Exposure sub-model 

begins in a similar way to the Swimming 

Pool sub-model, with a module describing 

the fraction of people in the population who 

are swimming in a PAF at any given time. 

As with the Swimming Pool sub-model, this 

sub-model is also separated by swimming 

pool type, containing two identical structures 

for large and small pools respectively. For 

the sake of brevity, the description of this 

sub-model will focus only on the structures 

related to the large pools.  

Healthy Swimmers Module 

The structural assumptions of the Healthy 

Swimmers module (shown to the right in 

Figure 6.20) are nearly identical to those of 

the previously discussed Sick Swimmers 

module. The model assumes that only a 

fraction of susceptible people are swimmers, 

and that on any given day a fraction of 

swimmers will swim. Of those that do swim, 

the majority of adults will swim in the large 
Figure 6.20: Stock and flow structure of the 
Healthy Swimmers module 
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pool, whereas the majority of young children will swim in the small pool. The resulting variables, 

‘healthy people in LP’ and ‘healthy people in SP’, serve as the module’s output variables.  

Once outside the module, the number of healthy people in the large and small pools are divided 

amongst the different swimming pool arrays (i.e. LP1-LP10 and SP1-SP5) to represent the 

predicted number of healthy swimmers in each of the PHUs’ different swimming pools. 

Risk  

Risk, in the context of environmental exposures, can be calculated as: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  𝑓𝑓( 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 ×  𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻) 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 =  𝑓𝑓( 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸 ×  𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼) 

The model therefor assumes that the risk of Cryptosporidium infection per person per swim is: 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  𝑓𝑓(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 × 𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞𝑞 𝑜𝑜𝑜𝑜 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

×  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑖𝑖𝑖𝑖 𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) 

Figure 6.21 illustrates the portion of the Contamination Exposure sub-model where risk of infection 

per person per swim is established. This portion of the model has been arrayed by age, pool type, 

and PHU, to imitate the different degrees of risk associated with different types of pools and pool-

users. The model assumptions for this section are as follows.  

Exposure 

The quantity of oocytes that all swimmers (collectively) are exposed to is a function of the number 

of oocytes in each pool per day (calculated in the Swimming Pool sub-model) and the volume of 

each pool (described in Table 6.2).  

Dose 

Several factors, in addition to the concentration of oocytes in the water, are considered when 

predicting the ingested dose of Cryptosporidium per swim. 

It is assumed that only a fraction of the oocytes in the pool are viable (capable of causing infection). 

It is also assumed that the quantity of pool water ingested per swim event varies both by the 

swimmer’s age, and by the size/type of pool they are using. Children, on average consume over two 

times as much water per swim event as adults (Dufour et al., 2006). While dose for waterborne 
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pathogen transmission typically includes an element of time, the average volume of water 

consumed per average swim event was used to account for variations in time spent in the pool.  

The amount of water consumed by adults while in the small pool was considered negligible, as 

adults would typically be in the small pool to assist young children who are learning to swim. It is 

not expected that this activity would requires adults to routinely submerge their face. 

Hazard and Risk 

Several plausible dose-response 

relationships for Cryptosporidium 

have been suggested in literature. 

Brower et al. (2017) compared 

various dose-response curves and 

determined that only exponential and 

beta–Poisson functions were 

appropriate for waterborne 

transmission of Cryptosporidium. 

Based on these findings, a single-hit 

exponential dose-response function 

was chosen for this model.  

A single-hit exponential model 

assumes that each viable oocyte acts 

independently and has the sample 

probability of causing infection, that 

the minimum infective dose is 1 

oocyte, and that the distribution of 

oocytes between doses is randomly distributed 

(World Health Organization, 2016).  

The equation for risk (‘probability of infection 

per swim event’) that was used in this model is: 

Pinfection/swim =  1 −  exp(−rN) (6.10) 

where r equals the dose-response parameter (slope of the dose-response curve) and N equals the 

average number of oocytes ingested per swim.  

Figure 6.21: Stock and flow structure 
illustrating the mechanisms for 
establishing risk of infection per 
person per swim given the estimated 
concentration of oocytes in each pool 
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The dose-response parameter is a measure of pathogen infectivity, representing the probability of 

infection per oocyte consumed. A meta-analysis of human dose-response data conducted by 

Messner et.al (2001) combining the estimates for three different Cryptosporidium isolates (UCP, 

IOWA, and TAMU) and estimated the risk of infection, given one oocyst of unknown strain per 

volume ingested, of 0.028 (80% CI: 0.005-0.066). As the strains causing infection in South East 

Queensland are unknown, the Messner estimate was used in this model.  

New swimming-related cases 

The final portion of the sub-model addressed how the risk of infection per person per swim 

translates into new cases (Figure 6.22). The model assumes that the probability of infection per 

swim event multiplied by the number of swimmers swimming each day results in the number of 

new Cryptosporidium infection cases per swimming pool.  

 
Figure 6.22: Stock and flow structure illustrating the process of susceptible swimmers becoming 

infected through contact with PAFs. 

The combined number of new infections from all of the large and small pools within each PHU 

region make up the variable ‘New swimming-related cases’. This variable controls the inflow to the 

‘Latently Infected People’ stock in the Population Sector.  

 Sector Assumptions and Limitations 

In addition to the explicit assumptions previously mentioned, the design of the Public Aquatic 

Sector includes several implicit assumptions and limitations: 

1. Cryptosporidium is an obligate parasite 

o The model is based on the assumption that Cryptosporidium can only breed with a 

host, and therefore does not multiply while in the environment (such as in the 

mechanical components of a swimming pool). Recent studies have called this into 
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question, indicating that Cryptosporidium may have the capacity to multiply 

extracellularly (particularly in biofilms) (Koh et al., 2013). A more detailed model 

would consider the possibility that, under certain conditions, the number of 

Cryptosporidium oocytes in the environment could increase. As these findings are 

still preliminary and require further investigation, the model has not incorporated the 

concept of extracellular multiplication. 

2. Pool systems only use chlorine inactivation as the method of disinfection 

o Several commercially available secondary disinfection systems (ultraviolet light or 

ozone systems) are capable of inactivating Cryptosporidium oocytes in aquatic 

facilities more effectively and efficiently than systems that rely solely on chlorine 

disinfection. A more complete model could account for the dynamics of various 

disinfection systems. Stakeholders from the aquatic industry have indicated that 

these systems are uncommon in the study area as they are expensive to maintain and 

require a higher-level of training to operate. For that reason, and for the sake of 

model simplicity, it is assumed that all pools in the region only use chlorine 

inactivation as the method of disinfection. 

3. All pools have an established faecal response procedure that is compliant with the 

established guidelines for managing faecal accidents 

o Consultations with stakeholders from the aquatic industry have indicated that several 

the PAFs in the region likely do not have established faecal response procedure 

and/or their procedures are not implemented consistently and effectively. This would 

result in incomplete inactivation of oocytes in the pool following an AFR. A more 

complete model may account for the presence and effectiveness of AFR response 

procedures on the effectiveness of reactionary hyperchlorination. For the sake of 

model simplicity, it is assumed that all detected AFRs are appropriately managed.  

4. All hyperchlorination events result in complete inactivation of oocytes in the pool 

o For hyperchlorination to achieve a 99.9% kill rate, the free chlorine concentration in 

the pool must be maintained at 10-20 mg/L for 12-25 hours (respectively). The use 

of chlorine stabilisers or failing to maintain the free chlorine concentration for an 

appropriate amount of time, can result in an incomplete kill. Consultations with 

stakeholders from the aquatics industry indicated that instances of ineffective 

hyperchlorination event may be occurring, particularly in pools with larger volumes. 
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As there is insufficient information about the effectiveness of hyperchlorination 

events in the region, it is assumed that they all achieve a 99.9% kill rate. 

5. Minimum infective dose of Cryptosporidium oocytes is one (i.e. no threshold) 

o The use of a single-hit exponential dose-response model implies that infection is 

possible following ingestion of a single oocyte. This is not truly accurate for 

Cryptosporidium spp. as studies examining the dose-response relationship have 

found that the minimum dose is more likely ~10 oocytes (World Health 

Organization, 2016). A more complete model would therefore consider the minimum 

dose. Nevertheless, a single-hit exponential dose-response model is the approach 

recommended by the World Health Organisation (World Health Organization, 2016).  

For this reason, the model assumes there is no dose-response threshold. 

6. The dose-response relationship is equal within the population 

o The dose-response parameter used in this model is based on studies of the infection 

response mounted in healthy adult volunteers (Messner et al., 2001), which is 

potentially not representative of the response in all members of the population, 

particularly young children and the immunocompromised. As no child-specific data 

exists, the difference in risk between young children and the rest of the population 

was address through differences in exposure.  As the model does not account for 

differences in immune status, it is acknowledged that the model likely 

underestimates the risk posed to immunocompromised persons.  

6.3.5. Imported Cases Sector (Sector 5) 

Although it is likely that most cases of cryptosporidiosis originate from within the study area, a 

small portion of cases are expected to be acquired when residents of SEQ travel overseas.  Overseas 

travel is a known risk-factor for acquiring a Cryptosporidium infection, with some studies 

identifying it as one of the highest risk factors (Roy et al., 2004). From a population perspective, the 

number of overseas-acquired cryptosporidiosis cases depends primarily on the number of residents 

who travel overseas, and the travellers’ destination of travel. The risk of acquiring Cryptosporidium 

infection overseas varies greatly by region of travel, with North America, Western and Central 

Europe, Japan, Singapore, Australia and New Zealand considered ‘low risk’ destinations, and travel 

to other areas of the world is considered ‘high risk’. South-central Asia, a  common travel 

destination for SEQ residents, is considered one of the highest-risk areas for travel-acquired 

cryptosporidiosis. (Weitzel et al., 2006). 
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The Imported Cases Sector (shown in purple in Figure 6.23) describes the contribution that 

imported cases play to the population-level disease dynamics in SEQ.  

 
Figure 6.23: Structure of the stock and flow model in the Imported Cases Sector 

 Sector Summary  

This section provides an overview of the structural and behavioural assumptions used in the 

Imported Cases Sector to represent SEQ residents acquiring Cryptosporidium infections while 

travelling overseas, and then re-entering local population.  

The movement of people departing for, and returning from, temporary overseas travel is modelled 

with the two ‘Travellers’ and ‘Exposed Travellers’.  

Each day a number of healthy people travel overseas by exiting the population model and flowing 

to the ‘Travellers’ stock.  As overseas arrivals and departures data (‘daily departures’) from 

Australia’s Department of Immigration and Boarder Protection were only available at the state 

level, the data were divided by the fraction of the state population living in each study regions 

(‘SEQ fraction’).  

The number of people travelling overseas from Queensland (shown below in Figure 6.24) varies 

considerably by passenger age and time of travel, with the highest rates of travel typically occurring 

during Queensland’s summer months. Throughout the study period, there has been a steady overall 
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increase in the number of overseas departures, though this is likely due to population growth in the 

region.  

 
Figure 6.24: Number of ‘daily departures’ for persons 0-4 years old (left) and persons 5+ years old 

(right) over the period of July 1, 2007 to July 1, 2017. (Source: (Australian Bureau of 
Statistics, 2017)) 

After a delay representing their duration of overseas travel (‘length of travel’), overseas travellers 

return home, with a small fraction of them returning infected. This is represented by two outflows 

from the ‘traveller’ stock. Travellers who have not been infected flow back into the ‘Susceptible 

People’ stock, while those that have been infected flow to the ‘Exposed Travellers’ stock.  

The model assumes that the likelihood of returning infected depends on their travel destination and 

the likelihood of exposure for each region. Data from Australia’s Department of Immigration and 

Boarder Protection were also used to determine the ratio of low-risk to high-risk travellers (Figure 

6.25). While the ratio varied considerably over time for persons 0-4 years old, the 5+ years old  

People within the ‘exposed travellers’ stock are presumed to be infected, flowing back into the 

population model in either the ‘asymptomatic infectious people’ stock, or ‘symptomatic infectious 

people’ stock, based on the rate of asymptomatic carriage in overseas travellers.  It is estimated that 

approximately 1/3 of overseas-acquired cases of cryptosporidiosis are asymptomatic (ten Hove et 

al., 2009).  
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Figure 6.25: Ratio of travellers returning from low-risk and high-risk countries for persons 0-4 
years old (left) and persons 5+ years old (right) over time 

 Sector Assumptions and limitation 

The following implicit assumptions and limitation result from the Imported Cases Sector of the 

model: 

1. Overseas visitors do not contribute to the regional transmission dynamics 

o The model does not account for cases where overseas or interstate visitors transmit 

their infection to local residents. While it is acknowledged that overseas or interstate 

visitors may contribute slightly to the regional transmission dynamics, they were 

deemed exogenous from this model as non-residents are not routinely captured in 

disease surveillance systems.  It is also assumed that interactions capable of 

transmitting infection between locals and visitors are sufficiently uncommon that 

they have not been included in the model.  

2. The fraction of people who travel from each PHU region is equal 

o The model relies on state-level travel data, multiplied by the fraction of the 

population that lived within each part of the study region to calculate the estimated 

number of daily departures. This calculation assumes that the fraction of the 

population who travel overseas is equal within all regions of the state. It is 

acknowledged that this may not reflect the true distribution of travellers throughout 

the state.  

o  
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3. All travellers are equally likely to acquire an infection overseas 

o A more complete model may account for the differences in risk of infection by 

reason for travel. Recent studies have shown that tourists are more likely to acquire 

travel-related illness than travellers for business or education (Angelo et al., 2017). 

For the sake of model simplicity, it is assumed that all travellers have equal 

likelihood of infection. 

6.3.6. Public Health Sector (Sector 6) 

The public health sector in South East Queensland is the sector primarily responsible for conducting 

disease surveillance and implementing population-level disease prevention and management 

measures. In the case of cryptosporidiosis, poor public awareness of disease, combined with the 

complexity and difficultly associated with identifying crypto outbreaks, means that the current 

prevention approach has centred primarily on public health messaging campaigns.   

 
Figure 6.26: Structure of the stock and flow model in the Public Health Sector 

The Public Health Sector (shown below in Figure 6.26) describes the public health surveillance 

system, as well as two different types of messaging campaigns run by the public health units in the 

study area. 
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 Sector Summary 

Infectious case awareness 

The model assumes that one of the key mechanisms to prevent the transmission of cryptosporidiosis 

infections in the community is through a certain proportion of infectious cases becoming aware of 

strategies to prevent transmitting their infections to others (‘aware infectious people’). As 

described in section 6.3.3.4, this awareness can occur when physicians counsel their patients pre- or 

post-diagnosis.  

The model further assumes that this ‘awareness’ can occur in two additional ways.  The first is 

through infectious travellers being screened out and counselled upon arrival in the country 

(‘proportion of symptomatic travellers screened out’). As only symptomatic returning travellers 

would self-identify as being potentially infected, the model assumes that no asymptomatic travellers 

would be affected by these actions.  

The second additional way infectious cases can become ‘aware’ is by infected individuals who 

suspect they have cryptosporidiosis becoming aware of their transmission-risk though public 

messaging campaigns from the public health sector (‘Messaging Effect’). This is modelled by 

multiplying the total number of symptomatic people (from the Population Sector) by the 

‘messaging behaviour change proportion’. 

The model assumes that once aware, individuals remain in the in ‘aware infectious people’ stock 

for the average duration of their period of infectiousness.  

Disease Surveillance System 

The first portion of the Public Health Sector describes the dynamics of the disease surveillance 

system for cryptosporidiosis in the study area. As of 2001 cryptosporidiosis has been a notifiable 

condition in Queensland. In Queensland, laboratories must report all cases where there is laboratory 

definitive evidence that a patient has cryptosporidiosis to the state’s Notifiable Conditions System 

(NOCS). Once in the register, public health units are made aware of the cases and can use this 

information to make decisions about disease control and prevention.  

A simple goal-seeking stock-and-flow structure was used to model the surveillance system, using a 

similar structure to those described in the healthcare sector. The behaviour the biflow is controlled 

by the gap between the ‘positive crypto cases’ (from the healthcare sector as described in section 

6.3.3) and the actual value of the ‘notified crypto cases’ stock, as controlled by the ‘notification 
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delay’ variable. The notification delay represents the average amount of time between faecal sample 

submission to the laboratory, and the case being notified to the NCOS.  

Public Health Messaging 

The second portion of the sector describes the use of proactive messaging to change the behaviour 

of the general public and primary healthcare practitioners (i.e. general practitioners / family 

doctors). While the messaging targeted at the two audiences is modelled separately, the structure 

used to model them is nearly identical. For that reason, only the structure of the general public 

messaging will be discussed in detail.  

 
Figure 6.27: Stock and flow structure describing preventative public health messaging campaigns 

As seen in Figure 6.27, the main variable within this portion of the model is the ‘messaging 

behaviour change proportion’. This variable is used to describe the proportion of infectious, on 

any given day, who become ‘aware’ (as described in section 6.3.3.1) as a result of contact with 

materials/messaging from the public health units (e.g. media releases, flyers, etc.). The model 

assumes that this proportion is primarily controlled by: 1) whether or not the PHU conducts a 

messaging campaign (‘PH Public Messaging switch’); 2) when during the year the PHU releases 

the information (‘routine messaging start date’); and 3) how effective the campaign is as a whole 

at reaching and informing potentially infectious individuals (‘Routine messaging effectiveness’). It 

is assumed that the impact of the messaging is greatest right after it has been released and 

diminishes in an exponential-like manner over a given period of time (‘routine messaging 

effectiveness decay’).  

In other words, the model structure pulses the value of the ‘routine messaging effectiveness’ 

variable, divided by the ‘routine messaging effectiveness decay’ variable at predefined periods, 

which then decays exponentially. For example, when the messaging effectiveness is set at 5% and 

the decay is set at 15 days, the value of the behaviour change proportion will be 0.05/15. Over the 
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next ~14 days the behaviour proportion will decay such that the sum of the values over the 15 day 

period will equal the routine messaging effectiveness. This structure was chosen because the value 

‘messaging behaviour change proportion’ is then multiplied by the number of infectious persons 

on any given day (in the Healthcare Sector) and is added to the ‘awareness rate’ inflow of the 

‘Aware Infectious People’ stock. As this structure feeds into an inflow, a summative effect is 

created.  

The assumptions driving the structure of the messaging directed at doctors is the same as the above 

discussed structure with one minor variation. As the ‘Healthcare messaging effect’ modifies 

auxiliary variables instead of a flow, there is no additive effect on its result. Because of that, instead 

of initially pulsing the effectiveness/decay, the full value of the effectiveness variable is pulsed on 

the first day. As with the other structure, the ‘healthcare messaging effect’ then decays 

exponentially.  

 For the base case scenario, the model assumes that the public health unit has an annual public 

messaging campaign that begins in mid-November. The messaging campaign results in 5% of the 

infectious population modifying their behaviour, and this effect occurs over 15 days. The model 

assumes that the public health unit is not currently providing messaging to doctors.  

 Model Parameters 

In addition to the stock and flow structures that define the causal relationships within the system, 

each sector contains a number of model parameters. These parameters, in the form of auxiliary 

variables, transmit actions and information throughout the sector and ultimately affect the way 

stocks change over time.  From a modelling perspective, the information used to parameterise these 

of these variables can take several forms. They can take the form of a series of functional 

relationships that define the variable, a pre-defined point estimate, a graphical function, or a 

function based on a pre-defined probability distribution.  

6.4.1. Parameterising variable or uncertain parameters 

Modelling population health outcomes comes with the challenge of parameters whose values 

inherently have a high-level of variability or include significant uncertainty. Deterministic 

approaches to model these variables would fail to capture both this variability (range of possible 

and/or reasonable values), and the uncertainty created by using expert opinion and non-local 

research data. For that reason, a stochastic modelling approach was used.   
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Variables in this model were parameterized with input functions that generate random values 

according to predefined distributions. These distributions are routinely used in risk assessment to 

capture variability amongst different member of a given population (expressed as a frequency 

distribution), random variables (expressed as a probability distribution), and uncertainty that exists 

around a parameter that is known to have a fixed value, but where little is known about its true 

value (Vose, 2000).  

The following types of functions are used in this model to parameterize several auxiliary variables: 

Uniform distributions: Uniform distribution functions assign equal probability to all values 

between a defined minimum and maximum value. Uniform distributions were used in cases where 

there is little to no available data for a variable, and plausible maximum, minimum or mean values 

are unknown. The probability density function of a uniform distribution is shown in equation (6.11). 

 𝒇𝒇(𝒙𝒙) =  
𝟏𝟏

𝒎𝒎𝒎𝒎𝒎𝒎 −𝒎𝒎𝒎𝒎𝒎𝒎
 (6.11) 

Triangular distributions: Triangular distribution functions assign a value from a continuous 

distribution with a specified lower bound, mode, and upper bound. Triangular distributions were 

used in cases where there is little to no available data for a particular variable, but where plausible 

maximum, minimum or mean values could be established. The probability density function of a 

triangular distribution is shown in equation (6.12). 

 

𝒇𝒇(𝒙𝒙) =  �

𝟐𝟐(𝒙𝒙 −𝒎𝒎𝒎𝒎𝒎𝒎)
(𝒎𝒎𝒎𝒎𝒎𝒎−𝒎𝒎𝒎𝒎𝒎𝒎)(𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 −𝒎𝒎𝒎𝒎𝒎𝒎) 

𝟐𝟐(𝒎𝒎𝒎𝒎𝒎𝒎− 𝒙𝒙)
(𝒎𝒎𝒎𝒎𝒎𝒎−𝒎𝒎𝒎𝒎𝒎𝒎)(𝒎𝒎𝒎𝒎𝒎𝒎−𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎)

    𝐟𝐟𝐟𝐟𝐟𝐟 𝒎𝒎𝒎𝒎𝒎𝒎 ≤ 𝒙𝒙 ≤ 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎

    𝐟𝐟𝐟𝐟𝐟𝐟 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 ≤ 𝒙𝒙 ≤ 𝒎𝒎𝒎𝒎𝒎𝒎
 

(6.12) 

Log-Normal distributions: The log-normal distribution was used as it is ideal for modelling 

naturally-occurring normally distributed variables that begin at 0 and extend to ∞.  The probability 

density function for a log-Normal distribution is shown in equation (6.13). 

 
𝒇𝒇(𝒙𝒙) =  

1
𝑥𝑥√2𝜋𝜋𝜎𝜎2

𝑒𝑒
−(𝑙𝑙𝑙𝑙𝑙𝑙−𝜇𝜇)2

√2𝜎𝜎2  
(6.13) 

Beta distributions: The Beta distribution function describes a probability distribution (bounded 

between 0 and 1) that can take several shapes, according to the equation (6.14). 

 
𝒇𝒇(𝒙𝒙) =  

(𝒙𝒙)𝜶𝜶−𝟏𝟏(𝟏𝟏 − 𝒙𝒙)𝜷𝜷−𝟏𝟏

𝑩𝑩(𝜶𝜶,𝜷𝜷)
 

(6.14) 

where 𝐵𝐵(𝛼𝛼 ,𝛽𝛽) is a Beta function. 
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While the BETA distribution is a probability distribution, and therefore bounded between 0 and 1, it 

can easily be rescaled to model variables that range from min to max using the following formula: 

 𝐱𝐱 = 𝐁𝐁𝐁𝐁𝐁𝐁𝐁𝐁(𝜶𝜶 ,𝜷𝜷) × (𝐦𝐦𝐦𝐦𝐦𝐦 −𝐦𝐦𝐦𝐦𝐦𝐦) + 𝐦𝐦𝐦𝐦𝐦𝐦 (6.15) 

PERT distribution: In cases where auxiliary variables were parameterized based on expert opinion 

or literature-based evidence, a PERT distribution was used. PERT distributions, which follow the 

structure of BETA distributions, are one of the most commonly used distributions for quantifying 

expert opinion, particular as the permit non-normal and asymmetrical distribution (Kirk et al., 

2014). The distribution is parameterised using a minimum value (pessimistic estimate), a mode 

(most likely estimate) and a maximum value (optimistic value). In the absence of these values, a 

PERT distribution can be specified using a median value and 95% confidence intervals. 

The software used to create this model, Stella Architect, does not have a built-in function for PERT 

distributions. Therefore PERT distributions were converted to BETA distributions according to the 

classic methods described in Malcolm et al. (1959) and modified by Vose (2000) (modified PERT 

distribution), as shown in equations (6.16) to (6.19). 

 
𝒇𝒇(𝒙𝒙) =

(𝒙𝒙 −𝒎𝒎𝒎𝒎𝒎𝒎)𝒂𝒂−𝟏𝟏(𝒎𝒎𝒎𝒎𝒎𝒎− 𝒙𝒙)𝜷𝜷−𝟏𝟏

𝑩𝑩(𝜶𝜶 ,𝜷𝜷)(𝒎𝒎𝒎𝒎𝒎𝒎−𝐦𝐦𝐦𝐦𝐦𝐦)𝜶𝜶+𝜷𝜷−𝟏𝟏  
(6.16) 

where, 

 𝛂𝛂 = (𝒌𝒌 + 𝟐𝟐) �
𝝁𝝁 −𝒎𝒎𝒎𝒎𝒎𝒎

𝒎𝒎𝒎𝒎𝒎𝒎 −𝒎𝒎𝒎𝒎𝒎𝒎
� (6.17) 

and, 

 𝛃𝛃 = (𝒌𝒌 + 𝟐𝟐) �
𝒎𝒎𝒎𝒎𝒎𝒎 − 𝝁𝝁

𝒎𝒎𝒎𝒎𝒎𝒎 −𝒎𝒎𝒎𝒎𝒎𝒎
� (6.18) 

with, 

 
𝝁𝝁 =  

(𝒎𝒎𝒎𝒎𝒎𝒎 + 𝒌𝒌(𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎) + 𝒎𝒎𝒎𝒎𝒎𝒎)
(𝒌𝒌 + 𝟐𝟐)  

(6.19) 

and 

𝐵𝐵(𝛼𝛼 ,𝛽𝛽) is a Beta function  

where, 

min: minimum value (pessimistic estimate or lower value of 95% confidence intervals) 

mode: mode (or median) 

max: maximum value (optimistic estimate or high value of 95% confidence interval) 
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k: scale parameter (set to a default value of 4 for PERT distributions)  

μ:  mean 

6.4.2. Input Variables used in the Model 

A list of variables and their model input functions is provided in Table 6.3. The mean, median, 5th 

percentile and 95th percentile values have been included in the table to demonstrate how each 

distribution reflects the variability and/or uncertainty within that parameter.   
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Table 6.3: Value of model input variables 

Variable name Unit Distribution Mean Median 
5th 

percentile 
95th 

percentile 
Population Sector 
Regional population Persons Empirical distribution -- -- -- -- 
Incubation period Days BETA(3.25, 2.75, 1, 12)a 7.00 7.04 3.98 9.93 
Probably of being symptomatic given 
infection 

Persons/ 
Exposed  

BETA(2.16, 3.84, 0.5, 0.88) a 0.64 0.63 0.54 0.76 

Duration of symptoms Days BETA(2.04, 3.96, 1, 28) a 11.31 10.93 3.45 20.51 
Reinfection delay Days BETA(1.5, 4.5, 2, 10) a 4.02 3.79 2.30 6.56 
Relapse rate Persons/ 

Infected  
BETA(1.68, 4.32, 0.18, 0.95) a 0.37 0.36 0.22 0.58 

Relapse duration Days BETA(1.29, 4.71, 1, 15) a 4.02 3.60 1.29 8.35 
Post-symptom infectious period Days BETA(2.69, 3.31, 1, 15) a 6.84 6.78 2.94 10.91 
Secondary transmission sector 
Adult secondary transmission rate Persons/ 

Infected  
UNIFORM(0, 0.05) b 2.53E-02 2.49E-02 2.47E-03 4.79E-02 

Child secondary transmission rate Persons/ 
Infected  

BETA(3.19, 2.81, 0, 0.31) a 1.63E-01 1.64E-01 6.73E-02 2.59E-01 

Susceptible Contacted People (transit time) Days BETA(1.67, 4.33, 1, 43) a 12.27 11.16 3.09 25.02 
Healthcare sector 
Health seeking fraction Persons/ 

Symptomatic  
BETA(3.25, 2.75, 0.137, 0.24) a 0.19 0.19 0.16 0.22 

Treatment seeking delay Days BETA(1.31, 4.69, 1, 27) a 6.61 5.82 1.64 14.05 
Fraction of people tested Persons/ 

Treated  
BETA(3.08, 2.92, 0.062, 0.283) a 0.18 0.18 0.11 0.24 

Fraction of tests submitted Persons/ 
Tested  

BETA(4, 2, 0.91, 0.95) a 0.93 0.93 0.92 0.95 

Faecal testing delay Days UNIFORM(1, 5) b 3.03 3.02 1.22 4.84 
Microscopy sensitivity  BETA(3.26, 2.74, 0.33, 1) a 0.70 0.70 0.49 0.89 
PCR sensitivity  BETA(3.76, 2.24, 0.8,0.939) a 0.89 0.89 0.84 0.93 
Awareness delay Days      
[Under 5 Years Old]  BETA(1.66, 4.33, 1, 7) a 2.66 2.51 1.28 4.51 
[Over 5 Years Old]  BETA(1.89, 4.11, 1, 10) a 1.32 1.29 1.07 1.65 
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Variable name Unit Distribution Mean Median 
5th 

percentile 
95th 

percentile 
Public Aquatic Facility Sector 
Daily Swimming frequency Swims/Day BETA(1.51, 4.49, 0.008,0.8) a 0.21 0.18 0.04 0.45 
Percent of patrons who shower LP Persons/ 

Person 
Point-estimate 0.15 -- -- -- 

Percent of patrons who shower LP Persons/ 
Person 

Point-estimate 0.15 -- -- -- 

Probability of AFR given infection  AFR/Swim      
[Under 5 years old]  BETA(1.44, 4.56, 0.005, 0.05) a 1.13E-02 9.87E-03 1.97E-03 2.53E-02 
[Over 5 years old]  BETA(2.78, 3.22, 0.001, 0.01) a 5.22E-03 5.18E-03 2.46E-03 8.10E-03 
Weight of faeces shed  Grams      
[Under 5 years old]  BETA(1.1, 4.9, 0.01, 5) a 0.88 0.70 0.08 2.34 
[Over 5 years old]  UNIFORM(0.001, 0.1) 0.05 0.05 0.01 0.10 
Weight of faeces in AFR  Grams      
[Under 5 years old]  TRIANGULAR(30, 50, 70) c 49.93 49.98 36.60 63.73 
[Over 5 years old]  TRIANGULAR(100, 150, 200) c 1.49 E+02 1.49 E+02 1.16 E+02 1.84 E+02 
Oocytes in 1 gram of stool Oocytes UNIFORM(50, 106) b 4.93E+05 4.85E+05 5.32E+04 9.42E+05 
Oocyte inactivation   Days UNIFORM(2, 7) b 4.52 4.55 2.24 6.77 
Pool waster ingested per swim Litres      
[Under 5 Years Old, Large pool]  BETA(1.96, 4.04, 0, 0.154) a 5.14E-02 4.90E-02 1.35E-02 9.85E-02 
[Under 5 Years Old, Small pool]  BETA(1.96, 4.04, 0, 0.154) a 5.02E-02 4.74E-02 1.36E-02 9.78E-02 
[Over 5 Years Old, Large pool]  BETA(2.21, 3.79, 0, 0.053) a 1.96E-02 1.87E-02 6.49E-03 3.52E-02 
[Over 5 Years Old, Small pool]  UNIFORM(0, 0.01) b 5.06E-03 5.12E-03 5.22E-04 9.51E-03 
Percent of oocytes viable  BETA(2.94, 3.06, 61.1, 100) a 60.47 60.31 35.75 85.68 
Dose response parameter  BETA(2.55,3.45, 0.005,0.066) a 3.09E-02 3.07E-02 1.28E-02 5.07E-02 
Large Pool Volume  Litres      
[LP1, LP2, LP3,]  Point-estimate 3.75E+05 -- -- -- 
[LP4, LP5, LP6,]  Point-estimate 4.87E+05 -- -- -- 
[LP7, LP8, LP9, LP10]  Point-estimate  2.50E+06 -- -- -- 
Small Pool Volume  Litres 

 
    

[SP1, SP2]  Point-estimate 2.05E+05 -- -- -- 
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Variable name Unit Distribution Mean Median 
5th 

percentile 
95th 

percentile 
[SP3, SP4]  Point-estimate  1.17E+05 -- -- -- 
[SP5]  Point-estimate 6.96E+04 -- -- -- 
Seasonal LP Users [Summer] 
[LP1, LP2, LP3, LP4,LP5,LP6] 
[LP7,LP8,LP9,LP10] 

Persons/  
Person/Day 

 
Point-estimate  
Point-estimate  

 
0.066 
0.15 

 
-- 
-- 

 
-- 
-- 

 
-- 
-- 

Seasonal LP Users [Winter] 
[LP2, LP3, LP4, LP5] 
[LP7, LP8,LP9] 
[LP1, LP6, LP10] 

Persons/ 
Person/Day 

 
Point-estimate  
Point-estimate 
Point-estimate 

 
0.1 
0.2 
0 

 
-- 
-- 
-- 

 
-- 
-- 
-- 

 
-- 
-- 
-- 

Seasonal SP Users [Summer] 
[SP1, SP2] 
[SP3] 
[SP4, SP5] 

Persons/ 
Person/Day 

 
Point-estimate  
Point-estimate  
Point-estimate 

 
0.3 
0.2 
0.1 

 
-- 
-- 
-- 

 
-- 
-- 
-- 

 
-- 
-- 
-- 

Seasonal SP Users [Winter] 
[SP1] 
[SP2] 
[SP3] 
[SP4, SP5] 

Persons/ 
Person/Day 

 
Point-estimate  
Point-estimate  
Point-estimate 
Point-estimate 

 
0 
0.5 
0.3 
0.1 

 
-- 
-- 
-- 
-- 

 
-- 
-- 
-- 
-- 

 
-- 
-- 
-- 
-- 

Log-3 disinfection LP Days BETA(2.47,3.53, 1.16, 2.63) 1.77 1.76 1.35 2.24 
Log-3 disinfection SP Days BETA(3.071,2.929, 0.58, 1.7) 1.15 1.16 0.80 1..50 
Imported Cases Sector 
Daily Departures Days Empirical distribution -- -- -- -- 
SEQ fraction  

 
    

[Under 5 Years Old, Metro North]  Point-estimate 0.19 -- -- -- 
[Under 5 Years Old, Metro South]  Point-estimate 0.24 -- -- -- 
[Under 5 Years Old, Gold Coast]  Point-estimate 0.11 -- -- -- 
[Over 5 Years Old, Metro North]  Point-estimate 0.20 -- -- -- 
[Over 5 Years Old, Metro South]  Point-estimate 0.22 -- -- -- 
[Over 5 Years Old, Gold Coast]  Point-estimate 0.12 -- -- -- 
Proportion of low risk travellers persons Empirical distribution -- -- -- -- 
Low-risk infection rate Infections/ 

Traveller 
UNIFORM(0,0.009) b 

0.004 0.004 0.000 0.009 
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Variable name Unit Distribution Mean Median 
5th 

percentile 
95th 

percentile 
High-risk infection rate Infections/ 

Traveller 
UNIFORM(0, 0.014) b 

0.007 0.007 0.001 0.013 
Rate of Asymptomatic Travellers Persons/ 

Exposed  
BETA(2.16, 3.84, 0.5, 0.88) a 0.64 0.63 0.54 0.76 

Length of travel Days UNIFORM(2, 30) b 15.85 15.67 3.40 28.68 
Public Health Sector 
Notification delay Days LOGNORMAL(6.29, 4.65) d 6.36 5.10 1.67 15.06 
Routine Messaging Effectiveness Persons/ 

Person/Day 
Point-estimate 0.05    

Routine Messaging Effectiveness Decay Days Point-estimate 15    
Healthcare Messaging Effectiveness Persons/ 

Person/Day 
Point-estimate  0.05    

Healthcare Messaging Effectiveness Decay Days Point-estimate 15    
a Beta (α, β, min, max) 
b UNIFORM(min, max) 

c TRIANGULAR(min, mode, max) 
d LOGNORMAL(mean, standard deviation) 
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6.4.3. Framework for model parameters 

Using a modified version of the framework presented by David Lane (Lane, 2014), each parameter 

was categorised into one of six categories using the 3X2 matrix shown in Table 6.4. The value of a 

parameter could either be locally-known, broadly-known, or uncertain. Locally-known parameters 

are parameters relevant to the local context and are known or available. Broadly-known parameters 

are parameters where locally-relevant knowledge or information is not available, but sufficient 

information from other contexts, or a broader context, exist to be used in its place. Uncertain 

parameters are parameters where there is little to no information available about its value. 

Variable were then further characterised by whether they are fixed or adjustable. Parameters with 

fixed values are either a fixed attribute of nature (such as climate) or are outside the scope or 

interest of the intended users of this model (exogenous control).  

Table 6.4: 3 x 2 matrix used to classify model parameters 

 Fixed Value Adjustable Value 

Locally-known value Fixed, Locally-known Adjustable, Locally-known 

Broadly-known value Fixed, Broadly-known Adjustable, Broadly-known 

Uncertain value Fixed, Uncertain Adjustable, Uncertain 

This framework was used for several reasons. Characterising parameters based on whether they can 

be adjusted allows for the identification of variables that, in principle, can be altered to modify 

system behaviour. These are the first variables to be tested using sensitivity analysis to determine 

whether they can be leverage points of action.  It is important to explicitly recognise what is and 

isn’t within the potential realm of action. Sensitivity analysis conducted on the variables within the 

‘adjustable value’ category is discussed in detail in Chapter 7. 

Characterising the variables by the degree to which their value is known is important to identify 

future points of inquiry or research. Models are never complete, and continuously evolve as our 

understanding of the system grows and improves. Identifying uncertain variables helps chart an 

agenda for future research and inquiry into the problem. Future actions to improve our 

understanding of the problem, and subsequently the strength of the model, should be targeted at 

moving parameters towards the top of the chart.  
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 Categorized model parameters 

The table below applies the parameter characterization matrix to the parameters within each sector 

model. Parameters have been colour-coded based off of the sector from which they originate.  

Table 6.5: Characterization of parameters used in each sector of the model 

 Fixed Value Adjustable Value 

Locally-known 
value 

Testing transition 
Daily Departures 
SEQ fraction 
Proportion of low risk travellers 

Notification delay 
 
 

Broadly-known 
value 

Incubation period 
Probability of being symptomatic 
Re-infection delay 
Relapse rate 
Relapse duration 
Post-symptomatic infectious period 
Duration of symptoms 
Health-seeking fraction 
Fraction of test submitted 
Microscopy sensitivity 
PCR sensitivity 
Adult secondary transmission rate1 
Child secondary transmission rate1 
Secondary transmission delay 
Daily Swimming Frequency 
Portion of population who swim 
Weight of faeces shed by children1 
Weight of faeces shed by adults1 
Oocytes per gram of stool 
Oocyte die-off 
Pool water ingested per swim 
Percent of oocytes viable1 
Dose-response parameter1 

Fraction of people tested 
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 Fixed Value Adjustable Value 

Uncertain 
 value 

 

Length of immunity 
Treatment-seeking delay 
Faecal testing delay 
Awareness delay 
Length of travel 
High risk infection rate 
Low risk infection rate 
Rate of asymptomatic travellers 
Routine messaging decay 
Healthcare messaging effectiveness 
decay 
PAF messaging effectiveness decay 
Seasonal converter 
Probability of AFR given infection 
Seasonal LP users 

Fraction of infectious people made 
aware 
Physician precautionary advice fraction 
Routine messaging start date 
Routine messaging effectiveness 
Healthcare messaging start date 
Healthcare messaging effectiveness 
PAF messaging cycle period 
PAF messaging effectiveness 
Percent of PAF users who shower 
Routine shock frequency 
AFR detection rate 

1 Information related to this variable is highly variable, context specific, or quite limited. Further 
context-specific inquiry is highly warranted.  

 Model Validation 

Once system dynamics models have been constructed, but prior to them being used for their 

intended purpose (i.e. policy analysis), it is necessary for them to undergo “validation”. While real 

“validation” of models is a fallacy, as models simply represent our understanding of a problem and 

are therefore inherently flawed (Sterman, 2000b), a number of tests can be used to assess if a model 

is fit-for purpose.   

As mentioned at the beginning of this chapter, the purpose of this model is to: 

 ‘provide contextual insight on system structures and dynamics behaviours, especially 
those related to public aquatic facilities, that are contributing to the overall trend of 

cryptosporidiosis notification in South East Queensland communities.’ 

With that purpose in mind, the validation tests used sought to establish whether the model presented 

sufficient contextual validity, structural validity, and behavioural validity, to be fit-for-purpose. 

6.5.1. Boundary Adequacy  

The boundary adequacy test ensures that the model’s boundaries fit the purpose of the model. 

Ensuring the model’s boundaries are appropriately scaled to match the purpose of the model is 

necessary to build confidence in the model’s outputs (Sterman, 2000a). 
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The primary method I used to ensure boundary adequacy was continual referral back to the causal 

loop diagrams constructed in the first portion of this study. The causal loop diagrams (CLD) 

provided a basis for defining the desired scope of the model. Actively including the intended users 

of the model in the construction of the CLDs provided additional confidence that the boundaries of 

the CLDs reflected the desired purpose and scope of the simulation model. All variables identified 

during the modelling workshops and interviews that fit within the boundary of the problem (as 

defined by the CLDs) were considered for inclusion in the final model.  Additionally, a substantial 

review of the literature was then conducted (as described in Chapter 2) to ensure that any potentially 

important variables within the boundary of the model were not omitted. The final model was then 

compared with the original CLDs to ensure that important concepts that the participants deemed 

necessary to address the problem were endogenous to the model.  

6.5.2. Dimensional Consistency 

The test for dimensional consistency involves comparing the units of each variable within the model 

to ensure no inconsistencies exist. The dimensional analysis tool built in to the Stella Architect 

program was used to ensure all equations within the model had logical and consistent units. The 

results of the dimensional consistency test indicated that there were no inconsistent units within the 

model. Additionally, the model was built in such a way that dimensional consistency could be 

maintained without the use of arbitrary scaling factors or dummy variables.  

6.5.3. Structural Assessment 

Structural assessment tests ensure that the structure and behaviour of the model is consistent with 

current knowledge of the real system. This includes ensuring that the model respects know physical 

and natural laws, decision rules, and does not include inappropriate assumptions.  

The following two methods were used to evaluating the structure of the model: 

1. As all of the elements represented by stocks in the model are elements that cannot naturally 

have negative values (such as number of infectious people, or Cryptosporidium oocytes in a 

swimming pool), the values of all stocks were reviewed to ensure they did not produce 

negative values in the model. This was also accomplished by ensuring that all stocks in the 

model had a first order negative feedback loop restricting the outflow of the stock. This 

results in the outflow of the stock approaching zero as the value of the stock approaches 

zero.  
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2. The final simulation model was compared to the CLDs from the first portion of the study to 

ensure the model’s structure reflected the relationships between key variables identified by 

local experts.  This also involved ensuring that the polarity of those relationships was 

retained in the simulation model.  

6.5.4. Extreme Conditions test 

The extreme conditions test attempts to ensure the model is capable of producing rational and 

realistic behaviour, even when variables within the system take on extremely high or low values 

(Sterman, 2000a). If the model can provide realistic outputs under these extreme conditions, it is an 

indication that the model’s structure likely reflects reality. 

For this test, several variables from different sectors were modified to simulate extreme conditions. 

Extremely low conditions were simulated by giving each of the test variables a value of 0. 

Extremely high conditions were simulated by giving each test value their maximum value within 

their distribution. The effect of the variables taking their extreme values was evaluated using their 

impact on the mean daily number of notified cases, total infectious people, oocytes in the large 

pool, and oocytes in the small pool.  

The results of the extreme conditions test can be seen in Table 6.6. 

Across all variables, the model produced results that make sense in the context of the modified 

variable. For example, when the health care seeking fraction was set to 0, one would expect the 

number of infectious people to increase because less people receive medical treatment or advice, 

leading to an increase in the transmission of the disease and more infected people. The model 

predicted an increase in the number of infectious people when the healthcare seeking fraction was 

set to 0, so the model behaved as expected. 
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Table 6.6: Mean daily values for extreme conditions test 

 Notified 
casesa 

Total 
infectious 
peoplea 

Oocytes in 
large poola 

oocytes in 
small poola 

Base Case 2.84 330.30 105,960 298,680 
Secondary Transmissionb 

Low 0% 2.26 263.39 81,880 221,850 
High Adult: 5% 

Child: 31% 
5.89 685.19 264,570 727,900 

Overseas-acquired infection ratec 

Low 0% 0.00 0.31 30 120 
High High risk: 0.9% 

Low risk: 1.5% 
5.69 667.00 270,350 600,940 

Probability of being asymptomaticd 
Low 0% 5.35 556.67 192,550 636,250 
High 50% 2.47 298.96 94,680 263,020 
Healthcare-seeking fraction 
Low 0% 0.00 944.42 396,250 1,026,720 
High 24% 3.30 309.24 92,940 263,770 
Daily swim frequency 
Low 0 1.59 188.45 0 0 
High 80% 621.64 74,016.05 43,838,180 46,640,330 
a mean daily value 
b values for the adult secondary transmission rate and the child secondary transmission rate were 
both modified as part of the extreme means test 
c values for low risk infection rate and the high-risk infection rate were both modified as part of 
the extreme means test 
d the value if 1 minus the probability of being symptomatic was used 

6.5.5. Period Comparison 

Period comparison tests aim to ensure that the model is able to replicate the location and duration of 

any cyclical components of the natural behaviour being modelled. As the main variable of interest 

in this problem’s reference model (number of cryptosporidiosis notifications) appears to exhibit 

repetitive oscillating behaviour, assessing whether the model can reproduce the period of the 

reference mode’s oscillation is an important part of model validation. As part of his multi-step 

model validation procedure, Barlas (1989) recommends using the autocorrelation function for 

period comparison.  Autocorrelation is a statistical measure of affiliation between each data point in 

a series and future values within the same series, after a given time interval. Autocorrelation has the 
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advantage of being able to filter out cyclical components of time-series data, even in the presence of 

significant noise. Autocorrelation assigns a value of +1 to strong positive associations between 

variables, -1 to strong negative associations, and 0 to no association. 

 
Figure 6.28: Period comparison of correlograms of actual and predicted (modelled) weekly 

cryptosporidiosis notifications in South East Queensland (95% confidence bands 
shown in grey) 

Figure 6.28 shows correlograms of the result of the autocorrelation period comparison of the actual 

and predicted (modelled) weekly count of cryptosporidiosis notifications in SEQ. The actual data 

shows a statistically significant positive autocorrelation for lags 1 to 15 and 41 to 59 (weeks), 

whereas the predicted data shows statistically significant positive autocorrelation for lags 1 to 15 

and 38 to 59. Both areas of significant autocorrelation have a similar amplitude.  While minor 

differences do exist in the amplitude of the autocorrelation functions between the two data series, 

these differences occur at lags not considered significant. The results of both correlograms point to 

cryptosporidiosis notifications having a strong annual cycle, but do not support the hypothesis that 

there are statistically significant 2-, 3-, or 4-year cycles in cryptosporidiosis notifications in SEQ.  

The high-level of similarity in the periods of the autocorrelation functions for the actual and 

predicted data validates the model’s ability to replicate the oscillation of the reference mode.   
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6.5.6. Trend Analysis, Discrepancy Coefficient and Family Member Test 

The final step of model verification was trend analysis and discrepancy coefficient.  The 

discrepancy coefficient was an index proposed by Barlas (1989) to summarize the overall fit of 

system dynamics simulation models to historical data. The discrepancy coefficient is measured 

between 0 (perfect predictions) and 1 (worst predictions). Values less than 0.6 are considered to 

have at least ‘good’ fit.  

The equation for Barlas’ discrepancy coefficient (U) is: 

𝑈𝑈 =  
�∑(𝑆𝑆𝑖𝑖 −  𝑆𝑆̅ − 𝐴𝐴𝑖𝑖 +  𝐴̅𝐴)2 

�∑(𝐴𝐴𝑖𝑖 −  𝐴̅𝐴)2 +  �∑(𝑆𝑆𝑖𝑖 −  𝑆𝑆̅)2
 

Where:  

A = historical (actual) data (i.e.  A1, A2…Ai)  

S = simulated (predicted) data (i.e. S1, S2…Si) 

 South East Queensland 

Figure 6.29 below shows the results of the trend comparison between the historical daily count of 

cryptosporidiosis notifications in South East Queensland, and the results of the base case of the 

simulation model. Both the historical and simutated trends show a similar cyclical pattern of 

outbreaks throughout the study period.  Barlas’ discrepancy coefficient for the base case of daily 

cryptosporidiosis notification is 0.36, which indicates that it is a good-fitting model. While there are 

minor variations in the amplitude of the peaks within the simulated trend, the overall shape and 

temporal distribution of the peaks is quite similar to that of the historical data.  

 
Figure 6.29: Trend Analysis - Daily Cryptosporidiosis notifications in South East Queensland 

(initial base case) 
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 The base case of the simulation model does indicate a systemic displacement of the silmuated 

curve, with the model overestimating the daily notification count by approximately 0.71 

persons/day. This may be due to an overestimation of the healthcare-seeking fraction in the region. 

This would happen because a higher than average healthcare-seeking fraction would result in the 

detection and reporting or more cases of cryptosporidiosis cases compared to what would otherwise 

be detected and reported. The value of the healthcare seeking fraction variable used in base-case, 

which has a BetaPERT distribution with a minimum value of 13.7%, a mean value of 19.5% and a 

maximum value of 24%, is based on non-Australian values reported in the literature. 

 
Figure 6.30: Trend Analysis - Daily Cryptosporidiosis notifications in South East Queensland 

(updated base case with 5% reduction in healthcare seeking fraction) 

The systemic displacement of the curve is virtually elimiated when there is a 5% decrease in the 

healthcare seeking rate, as shown in Figure 6.30. Barlas’ discrepancy coefficient for the revised 

base case is 0.31, which indicates better model fit.  As no locally-relevant data about the healthcare 

seeking rate of SEQ residents is available, and the revised mean still fits within the range of values 

reported in the literature, the final base case of the model was modified to assume that the revised 

value of the healthcare seeking fraction variable.  

 Public Health Unit Regions 

The overall trends seen in South East Queensland can be examined in greater detail by looking at 

the model outputs for each of the Public Health Unit (PHU) regions. 

Figure 6.31 below compares the historical and simulated trends of cryptosporidiosis notifications in 

Metro North PHU. Barlas’ discrepancy coefficient for the Metro North PHU simulation is 0.39, 

which indicate good model fit.  
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Figure 6.31: Trend Analysis - Daily Cryptosporidiosis notifications in Metro North PHU (final 

base case) 

Figure 6.32 below compares the historical trend of daily cryptosporidiosis notifications in Metro 

South PHU with the simulated trend. Barlas’ discrepancy coefficient for the Metro South PHU 

simulation is 0.35, which also indicates good model fit. 

 
Figure 6.32: Trend Analysis - Daily Cryptosporidiosis notifications in Metro South PHU (final 

base case) 

Lastly, Figure 6.33 below compares the historical trend of daily cryptosporidiosis notifications in 

the Gold Coast PHU region with the model’s simulated trend. Barlas’ discrepancy coefficient for 

the Gold Coast PHU simulation is 0.35 which indicates good model fit. 
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Figure 6.33: Trend Analysis - Daily Cryptosporidiosis notifications in Gold Coast PHU (final base 

case) 

In view of the results of the trend analysis and the results of the discrepancy coefficient, both for 

SEQ as a whole and for each of the PHU regions, it is reasonable to conclude that the base trend 

produced by the simulation model is a good fit to available historical data.   
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Chapter 7. Risk-management strategies for Cryptosporidium 

transmission in South East Queensland 

The aim of this chapter is to identify and explore realistic policy strategies to curb the transmission 

of Cryptosporidium in South East Queensland (SEQ) communities. The first part of the chapter 

begins with an overview of sensitivity analysis in the context of system dynamics models and 

outlines the results of the analysis conducted on the Cryptosporidium in South East Queensland 

model. presents and discusses the results of the simulation of different policy strategies to reduce 

Cryptosporidium transmission in SEQ. The final part of the chapter explores the strategies in terms 

of their ability to harness potential areas of leverage within the system  

 Sensitivity Analysis 

The purpose of sensitivity analysis is to test the robustness of the outputs of an SD model to 

uncertainty or variability in the data or assumptions upon which the model was built. In other 

words, sensitivity analysis allows you to assess if changes in model assumptions produces changes 

in either the numerical values of model outputs, or the behavioural patterns the model produces 

(Sterman, 2000a). Sensitivity analysis also allows for the identification of key leverage points, 

where small changes in system input produce large changes in system output.  

As nearly all the variables in this model are characterised by a high degree of natural variability and 

uncertainty, their value has been parameterised with input functions that generate random values 

according to predefined distributions (as described in section 6.4.1). Therefore, the sensitivity 

analysis of this model will focus on testing its sensitivity in terms of the changes in system 

behaviour generated by changes in the underlying assumptions. 

 While there exist several different approaches to perform sensitivity analysis of system dynamics 

models, a modified version of the following four step process, as proposed by Maani and Cavana 

(Maani and Cavana, 2007) was used:  
“a) Select those parameters or groups of parameters that are considered most likely to 
affect the behaviour of the model, or whose estimation was based on more imprecise or 
uncertain information than that of other parameters.  

b) Modify the value of each separate group of parameters by a given percentage (say 
10%) at a time, and conduct the corresponding simulation runs.  

c) Identify those parameters that, when changed, significantly affect the model behaviour.  

d) Analyse and interpret whether the behavioural changes are justified using existing 
knowledge or common sense.”  
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In this study, each of the chosen input parameters were individually increased and decreased by 

10% (except for ‘physician precautionary advice fraction’ and ‘routine messaging effectiveness’ 

which were only adjusted by ± 5% as their original value was only 5% prior to adjustment) from 

their original value, while holding all other values in the model constant at their base-case value. 

The daily count of cryptosporidiosis notifications in SEQ was used as the dependant variable 

because disease notifications are the primary unit of measure of disease burden.  In addition, the 

sensitivity of several proposed interventions that modify the current structure and behaviour of the 

system was tested. These interventions, while not part of the current system, represent several 

potential system additions proposed by stakeholders during the consultation period. 

As the modelled system produces recurring overshoot and collapse behaviour, the standard 

sensitivity analysis approach of comparing the final values of the dependent variable under different 

scenarios could not be used (Hekimoglu and Barlas, 2010). An alternative approach, using four 

different behaviour pattern measures, was used to estimate the relative influence of various system 

parameters on the dependant variable (case notification). As one of the key features of the system’s 

behaviour is a cycle between outbreak and non-outbreak periods, the analysis focused on assessed 

behaviour of the dependant variable in the context of major disease outbreaks. 

For the purpose of this sensitivity analysis, ‘major outbreaks’ were triggered when at any point in 

time where there was a rapid increase (≥ 3%11) in the weekly trend12 of disease notifications.  

 

                                            
11 There is no established ‘outbreak trigger’ for cryptosporidiosis surveillance in Queensland. Values of 1%, 

2%, 3% and 4% were tested using the model and visually assessed to establish which value correctly 

identified the beginning of the major peaks in disease notifications, without also flagging minor fluctuations 

in the trend. A value of 3% was chosen as the value most closely matching this requirement under the ‘base 

case’ scenario.  

12 The weekly trend is based on the first order exponential average of the input daily cryptosporidiosis 

notifications, and a 7 day exponential averaging time. It is expressed as the fractional change in input per 

unit time.  
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Figure 7.1: Behaviour pattern measures used for the sensitivity analysis 

The four measures used in the sensitivity analysis that are displayed in Figure 7.1, are: 

• Days above the non-outbreak trend: The number of days where the count of disease 

notifications was above the daily non-outbreak trend (Fig. 7.1) was used as a measure of the 

influence each parameter on the overall number of cryptosporidiosis notifications per day 

and not just during outbreaks.  As the daily notification count for days not identified as 

being part of a ‘major outbreak’ were observed to follow a slight upward trend, the data 

were fitted using an exponential trend line13. The percent difference in the mean number of 

days above the non-outbreak trend line was used to compare the relative influence of each 

parameter. 

• Outbreak duration: The period (i.e. duration) of a major outbreak is defined as the amount 

of time between the days the outbreak starts and ends. The start date of a ‘major outbreak’ 

was defined as the first day before the ‘outbreak trigger’ where the trend of disease 

notifications became positive in a sustained14 manner. The end date of a ‘major outbreak’ 

was defined as the last day after the ‘outbreak trigger’ where the trend of disease 

notifications is negative in a sustained manner. The percent difference in the mean outbreak 

period was used to compare the relative influence of each parameter. 

• Outbreak Intensity: The intensity (i.e. amplitude) of the ‘major outbreaks’ was defined as 

the difference between the number of disease notifications on the start date of the outbreak 

                                            
13 y = 1.0671e0.0003x, R2 = 0.55 

14 Defined as ≥7 days. 
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period, and the date within the outbreak period with the greatest number of disease 

notifications. The percent difference in the mean outbreak amplitude was used to compare 

the relative influence of each parameter. 

• Outbreak frequency: The outbreak frequency was defined as the number of ‘major 

outbreaks’ experienced during the study period (2007-2017). The absolute difference in the 

number of outbreaks was used to compare the relative influence of each parameter. 

7.1.1. The Base Case 

Prior to running any simulation experiments using the model, a ‘base case’ scenario is run to 

simulate a ‘business as usual’ situation. The primary aim of the base case is to serve as a baseline 

for sensitivity analysis, and a benchmark against which alternative scenarios are compared.  A 

secondary aim of the base case is to provide insights into parts of the system that may not be easily 

observed in the real world, or for which there is data or information available  

Table 7.1 below outlines the values for key parameters that were used in the ‘base case’ scenario. 

These parameters represent the variables within the model that are considered potentially 

modifiable by decision- and policy-makers in the public health sector. The remaining model 

variables, while critical to the overall dynamics of the system, are not considered within the control 

of decision- and policy-makers in the public health sector. These variables were therefore held 

constant at the values described in Table 6.3. 

Table 7.1: Parameter values used in the base case scenario 

 

 

 

 

 

 

 

 

 

Variable Value in ‘base case’ 

Physician precautionary advice fraction 5% 

Percent of patrons who shower 15% 

Fraction of positive cases made aware 43% 

Routine Messaging effectiveness 5% 

AFR detection and proper management rate 30% 

PAF messaging effectiveness  0% 

Percent of symptomatic travellers screened out 0% 

Healthcare Messaging effectiveness switched off 

Routine hyperchlorination frequency  switched off 

3-log secondary disinfection system switched off 
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 Base Case Results 

Table 7.2 shows the results of the model for the variable ‘notified crypto cases’ when run using the 

base case scenario. The model identifies 8 unique outbreaks over the course of the study period.  

The behaviour ‘notified crypto cases’ variable over the study period when run at the base case can 

be seen in Chapter 6 in Figure 6.29. 

Table 7.2: Results of the sensitivity analysis measure under the ‘base-case’ scenario for the 
cryptosporidiosis in Queensland system dynamic model.  

 Measure Base Case 

Peak value (daily notifications) 

mean 8.44 

median 8.60 

max 20.37 

Amplitude (daily notifications) 
mean 6.58 

median 6.94 

Total period (days) 
mean 157.63 

median 159.00 

Days above non-outbreak mean 
count 2024.00 

% 55.45% 

Number of outbreaks count 8.00 

The number of daily new infectious cases, by source of exposure under the ‘base case’ scenario is 

shown in Figure 7.2. Over the course of the 10-year study period, the model estimates that overseas 

acquired cases are responsible for 58.7% of total infectious individuals in the community, whereas 

PAFs and secondary transmission are responsible for 30.7% and 10.6% respectively.   

The model demonstrates that overseas-acquired cases provide the region with a low but steady 

source of cases.  This is in stark contrast to the current estimation of the fraction of overseas 

acquired cases of 1% to 8% reported in the National Notifiable Diseases Surveillance System (Kirk 

et al., 2014), and 5% to 20% reported in other countries (Havelaar et al., 2008, Adak et al., 2002, 

Scallan et al., 2011) . This discrepancy is most likely due to the reliance on data generated from the 

investigation of outbreaks associated with public aquatic facilities. While the model demonstrates 

that overseas-acquired cases are implicated in seeding many of these outbreaks, they are not 

typically involved in the resulting spike of cases associated with the outbreak itself. They would, 

therefore, likely make up only a small percentage of individuals identified during outbreak 

investigations. 
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Figure 7.2: Daily new infectious cases in South East Queensland, by source of exposure. 

Using the NHMRC Guidelines for Managing Risks in Recreational Water, the number of days over 

the study period (per PHU region) where the risk of infection exceeded 1% of swimming events15,  

was calculated. The number was calculated when looking at users of small and large pools 

separately, as well as pool users as a whole. Over the entire study period (3650 days) Metro North, 

Metro South and Gold Coast had 197, 215.5, and 51.5 days where the water quality of their small 

pools fell below the Level A criteria (Table 7.3). Overall, this represented less than 6% of days 

during the study period. Water quality in large pools only fell below these criteria for 1.5 days and 

0.5 days in Metro North and South respectively. 

 

 

                                            
15 The NHMRC Guidelines for Managing Risks in Recreational Water define waterbodies with a Category A 

(very good) ranking as those that have an estimated average probability of gastrointestinal illness of less than 

1 case in every 100 exposures.  
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Table 7.3: Simulated cumulative count of days spent in each of the four NHMRC recreational 
water quality microbial risk criteria categories, for large and small pools under ‘base 
case’ conditions, by PHU region 

Pool 
type Region 

Level A (<1% risk of 
GI Illness) 

Level B (1-5% 
risk of GI 

Illness) 

Level C (5-10% 
risk of GI 

Illness) 

Level D (>10% 
risk of GI 

Illness) 

Count (%) Count (%) Count (%) Count (%) 

Small 
pools 

Metro 
North 3,453.5 (94.62%) 184.5 (5.05%) 9.5 (0.26%) 2.5 (0.07%) 

Metro 
South 3,434.5 (94.10%) 203.5 (5.58%) 10 (0.27%) 2.0 (0.05%) 

Gold 
Coast 3,598.5 (98.59%) 49.0 (1.34%) 2.5 (0.07%) 0 (0%) 

Large 
pools 

Metro 
North 3,649.5 (99.99%) 0.5 (0.01%) 0 (0%) 0 (0%) 

Metro 
South 3,648.5 (99.96%) 1.5 (0.04%) 0 (0%) 0 (0%) 

Gold 
Coast 3,650.0 (100.00%) 0 (0%) 0 (0%) 0 (0%) 

Alternatively, if the WHO reported tolerable risk threshold for drinking water of 1 infection per 

10,000 population16 per year is used, the threshold is exceeded in all but one year in Metro North 

and Metro South, and six out of 10 years in the Gold Coast, (Table 7.4) 

Table 7.4: Simulated water-related infections per 10,000 population per year under 'base case' 
conditions, by PHU region 

Year Metro North Metro South Gold Coast 

2007-2008 0.7 0.8 0.4 
2008-2009 18.2 21.4 6.8 
2009-2010 1.6 2.0 0.5 
2010-2011 1.7 4.1 1.3 
2011-2012 15.6 16.1 8.3 
2012-2013 2.5 6.5 0.9 
2013-2014 2.1 2.3 0.6 
2014-2015 11.7 12.1 7.6 
2015-2016 28.5 28.9 5.3 
2016-2017 24.0 24.1 2.5 

                                            
16 As reported in Hunter and Fewtrell (2001) 
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Under the base case scenario, the model produces a mean ratio of notified cases to actual cases17 of 

1 to 8.4 (s.d.: 1.78), which is consistent with the mean ratio of 1 to 7.4 (s.d.: 2.38). reported Kirk et 

al. (2014). 

7.1.2. Results of sensitivity analysis 

The results of the sensitivity analysis are shown in Figure 7.3. Across all four sensitivity measures 

decreasing the physician precautionary advice fraction from its base case value of 5% to 0% results 

in the greatest increase in the number of notified cases. Increasing the fraction to 10% also resulted 

the greatest decrease in the overall number of days above the non-outbreak mean, and the mean 

outbreak intensity.  

This may suggest that even at low levels (5%), physicians providing patients who they suspect are 

infected with Cryptosporidium (but have not confirmed) with advice to avoid risky contact 

behaviour and avoid swimming has a noteworthy dampening effect on the number of cases that 

result from outbreaks, making it a high-leverage variable. This is not surprising because providing 

patients suspected of having Cryptosporidium with information at their first point of contact with 

the healthcare system, as opposed to waiting for a confirmed diagnosis, greatly reduces the time 

delay between onset of symptoms and the patient becoming aware that they have the disease. This 

in turn reduces the number of days of potential infectious contact per infectious cases, which 

decreases the amplification potential of each outbreak.   

Similar, yet much less pronounced effects were seen when the fraction of people tested, and the 

fraction of positive cases made aware were adjusted. The logic remains the same that the more 

infectious people who are away of their transmission risk, the fewer infectious people in the 

community who are spreading the disease. The smaller effect relative to that found with advice 

provided to pre-confirmed cases is likely due to the time delay required for testing and being 

notified of the result. These variables are likely of low-to-moderate leverage value.  

A pronounced protective effect was also noted across all four sensitivity measures when the AFR 

detection and proper management rate was increased by 10% in relation to small pools only. This is 

not unexpected as small pools have an increased density of patrons who are both at higher risk of 

fouling the pool (i.e. young children) and consuming pool water, and the pools have a lower water 

                                            
17 Ratio is calculated using the inflow of new cases at time -11 days to account for the average time delay 

between exposure and testing positive.  
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volume, which increases the concentration of oocytes/litre following an AFR. Conversely, large 

pools have high water volumes and older patrons who are less likely to swallow less water (i.e. 

adults). Furthermore, reducing the number of AFRs that are unmanaged is of greater importance in 

small pools than large pools. As a result, the AFR detection and proper management rate in small 

and large pools could be considered of high and moderate leverage values respectively.  

The percent of patrons who shower had minimal effect on measures directly related to outbreaks but 

did have a notable impact on the days above the non-outbreak mean.  As showering only decreased 

the pathogen-load related to bather shedding and not AFRs, this implies that bather shedding does 

have an impact on the overall number of cases of cryptosporidiosis in the community, and to a 

lesser degree on the risk of an outbreak.  

The effectiveness of routine public messaging provided by the public health units had little-to-no 

effect on any of the sensitivity measures. All the proposed system interventions, with the exception 

of PAF messaging (i.e. messaging put out by the operators of swimming pools), had a moderate or 

significant negative impact on case notifications. Much like the public messaging provided by the 

public health units, PAF messaging had little effect on the dependant variable across all four 

sensitivity measures. Conversely, the effectiveness of healthcare messaging (i.e. messaging directed 

at medical practitioners) did have a moderate effect on the mean intensity of outbreaks and the 

overall number of days above the non-outbreak mean. This is likely due to the impact healthcare 

messaging has on the high-leverage physician precautionary advice fraction variable.  

The intervention with the greatest independent effect on case notifications was the introduction of 

3-log disinfection systems (e.g. UV or ozone disinfection) to all small pools 
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Figure 7.3: Results of sensitivity analysis on cryptosporidiosis notifications in South East Queensland 
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The likely mechanism of this is similar to improving the AFR detection and proper management 

rate, i.e. minimising the presence of infectious oocysts from pool water. The use of 3-log 

disinfection systems for only high-risk small pools18 or large pools. This is likely to be attributable 

to the subtle differences that each type of facility plays in the overall dynamics of the outbreaks. 

Small pools (figure 7.4) tend to be the source of both the outbreak itself and the driver of the 

duration of the outbreak through repeated spread and re-contamination. Conversely, while 

outbreaks are unlikely to be initiated in large pools they tend to be associated with amplification of 

the outbreak and the high total number of cases.  

 

Figure 7.4: Predicted effect of installing 3-log secondary disinfection systems in only high-risk 
swimming pool or all large pools on new cryptosporidiosis cases attributed to all small 
and large swimming pools in SEQ 

 While the installation of 3-log disinfection systems in both large and small pools demonstrated a 

significant improvement in the number of cryptosporidiosis cases in the community, the cost of 

                                            
18 For the purpose of this analysis, ‘high-risk’ small pools defined as pools with a total volume ≤100,000 

litres. These pools are considerably smaller than other pools used for similar purposes.  
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these systems and the level of sophistication required to properly manage these systems means that 

these scenarios are unlikely to be feasible in SEQ at this time. For that reason, only the use of 3-log 

disinfection systems in high-risk small pools has been carried forward to the policy analysis stage.  

Much like the AFR detection and proper management rate, routine hyperchlorination had a marked 

effect on reducing case notification when applied to both large and small pools, thought the effect 

was more pronounced when applied to small pools. The degree of effect was highly dependent on 

the frequency of hyperchlorination, with little-to-no effect when done quarterly, moderate effect 

when done monthly, and a large effect when done fortnightly.  While fortnightly hyperchlorination 

appears to lead to significant improvement in the number of cryptosporidiosis cases in the 

community, the impact of this activity and the associated cost is unlikely to be feasible in all large 

pools. For that reason, fortnightly hyperchlorination of large pools has not been carried forward to 

the policy analysis stage.  

7.1.3. Combined contribution of model sectors 

In addition to examining the sensitivity of case notifications to changes in individual system 

components, I also examined the sensitivity of the case notification variable to changes in the output 

of the three sectors that contribute new Cryptosporidium infections to the population (i.e. secondary 

transmission sector, imported cases sector, and PAF sector). The purpose of this was to compare the 

relative contribution of different forms of transmission to the overall disease dynamics in SEQ. 

 
Figure 7.5: The sensitivity of daily number of cryptosporidiosis notification to changes in the daily 

number of new secondary infections 
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Figure 7.5 shows the change in the number of notifications of cryptosporidiosis to changes in the 

number of new secondary infections. Reducing the number of secondary infections, even to the 

point of complete elimination, has little effect on the frequency or duration outbreaks, and only a 

minor effect on the intensity of durations.  There is also no noticeable tipping point with this 

variable. 

 
Figure 7.6 Sensitivity of daily number of cryptosporidiosis notification to changes in the daily 

number of new overseas-acquired infections (OAIs) entering the community. 

Similarly, notable changes in outbreak intensity and frequency are evident when the number of 

overseas acquired infections (OIA) is adjusted (shown in Figure 7.6). Interestingly, almost no effect 

is seen on outbreak duration. This could indicate that OAIs play a significant role in starting 

outbreaks by seeding the community with infectious cases but play a lesser role in sustaining them. 

A striking threshold effect is seen when OIAs are reduced by 60%. At this level of reduction, the 

model predicts that all but one of the outbreaks would have been avoided. As well, a complete 

elimination of OAIs results in a near elimination of cryptosporidiosis cases in SEQ. This indicates 

that overseas travel is likely responsible for the endemic levels of cryptosporidiosis within the 

region.  

In contrast, the adjusting the number of cases originating from the PAF sector (shown in Figure 7.7) 

has a noticeable effect on both the intensity, frequency and magnitude of outbreaks. A 60% 

reduction in PAF-related cases causes the intensity of all outbreaks to be greatly diminished, and an 

80% reduction virtually eliminates all outbreaks. It is worth noting that while the model predicts 

that eliminating PAF-related transmission of Cryptosporidium can eliminate the outbreaks 
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experienced in SEQ, it does not eliminate cases all-together because of the presence of secondary 

transmission and overseas-acquired infections that maintain an endemic pattern of cryptosporidiosis 

cases  

 
Figure 7.7: Sensitivity of daily number of cryptosporidiosis notification to changes in the daily 

number of new infections originating from Public Aquatic Centres (PAF).  

The results of the sensitivity analysis will be used to inform the policy analysis below.  

 Policy Analysis 

7.2.1. Scenario development 

Based on the results of the sensitivity analysis, along with feedback provided by workshop and 

interview participants, the following eight scenarios were developed to simulate the effect of a 

combination of different interventions on the outbreak dynamics of cryptosporidiosis in SEQ.  The 

following variables were found to be moderately or highly influential variables during the 

sensitivity analysis and were therefore carried over to the policy analysis stage: 

Physician precautionary 
advice fraction 

Percent of symptomatic 
travellers screened out 

Percent of patrons who shower 

Fraction of positive cases 
made aware 

3-log secondary disinfection 
system 

AFR detection and proper 
management rate 

Routine hyperchlorination 
frequency 

Routine hyperchlorination 
frequency 
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Model parameters used for each scenario are provided in Table 7.5. 

 Scenario 1 – International traveller intervention 

This scenario represents an intervention targeted at screening incoming international travellers to 

identify individuals who may have been exposed to Cryptosporidium while overseas and providing 

suspected infectious cases with transmission-prevention advice. Due to the large volume of 

incoming travellers that arrive in SEQ, and the non-specific nature of cryptosporidiosis symptoms, 

this scenario assumes that only 20% of incoming travellers with symptomatic Cryptosporidium 

infections will receive this advice.  

This scenario is likely to pose several logistical and financial challenges to implement as there are 

currently no systems in place to screen incoming passengers for infectious diseases. 

 Scenario 2 – PAF infrastructure intervention 

This scenario represents an infrastructure-focused intervention that requires all public aquatic 

facilities to install a secondary disinfection system, such as a UV or ozone treatment, capable of 

rendering 99.9% of oocytes inactive (i.e. log-3 disinfection) within 7 turnovers of the pool water. 

This scenario is likely to be difficult to implement because of the high cost of these systems and 

the resultant financial burden on PAFs.  It is included to demonstrate the effects of an 

infrastructure-focused intervention, and because it is the most effective individual intervention.  

 Scenario 3 – PAF awareness intervention 

Two scenarios were created that represent the implementation of two education and awareness 

interventions targeted at the staff of public aquatic facilities  

• Scenario 3A – Faecal Accident Awareness: Scenario 3A represents the implementation of an 

operator and staff education intervention with specific focus on the operators of small 

(<250,000 litres) swimming pool. It reflects a continuation of the current management 

approach of regulating the operation of public aquatic facilities but adds specific emphasis on 

improving the capacity of PAF operators to appropriately identify and remediate faecal 

accidents that happening in and around the swimming pool. As the sensitivity analysis 

indicated that the AFR detection and management rate offered more leverage in small pools 

than large pools, this intervention is targeted primarily at small pools. A modest increase in 

the proportion of pool patrons who shower was also included in this scenario to reflect a 

minor amount of carry-over of Cryptosporidium-related knowledge from swimming pool 

operators to pool patrons that may result from more knowledgeable staff.   
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Table 7.5: Model parameters used for each policy scenario 

 

Variable 

 Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 

‘base 
case’ 

Traveller 
intervention 

 

PAF 
infrastructure 
intervention 

PAF awareness 
intervention 

Healthcare 
intervention Combined intervention 

  3A 3B 4A 4B 5A 
(3A+4A) 5B 

Physician precautionary 
advice fraction 5% (NC) (NC) (NC) (NC) 10% 

(+5%) 
30% 

(+25%) 
10% 

(+5%) 
30% 

(+25%) 
Fraction of positive cases 

made aware 43% (NC) (NC) (NC) (NC) 75% 
(+32%) 

60% 
(+17%) 

75% 
(+32%) 

60% 
(+17%) 

Percent of symptomatic 
travellers screened out 0% 20% 

(+20%) (NC) (NC) (NC) (NC) (NC) (NC) (NC) 

Percent of patrons who 
shower 15% (NC) (NC) 25% 

(+10%) 
20% 

(+5%) (NC) (NC) 25% 
(+10%) 

20% 
(+5%) 

AFR detection and proper 
management rate 30% (NC) (NC) 

SP:60% 
(+30%) 
LP:40% 
(+10%) 

SP:40% 
(+10%) 
LP:40% 
(+10%) 

(NC) (NC) 

SP:60% 
(+30%) 
LP:40% 
(+10%) 

SP:40% 
(+10%) 
LP:40% 
(+10%) 

Routine hyperchlorination 
frequency 

switched 
off (NC) (NC) (NC) Monthly (NC) (NC) (NC) (NC) 

3-log secondary disinfection 
system 

switched 
off (NC) Switched on – 

all pools (NC) (NC) (NC) (NC) (NC) (NC) 

Numbers in brackets denote change from ‘base case’ scenario 
NC: No change from ‘base case’ scenario 
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• Scenario 3B – Routine Hyperchlorination: Scenario 3B represents a strengthening of the 

current Swimming Pool and Spa guidelines with a requirement that all PAFs hyperchlorinate 

their swimming pools monthly. A monthly interval was chosen for this scenario as the 

sensitivity analysis found that quarterly hyperchlorination was not a sufficiently sensitive 

interval, and the stakeholders indicated that fortnightly or weekly hyperchlorination is 

unlikely to be feasible for many facilities in the study area. This scenario also includes 

modest increases to the rates of patron showering and faecal accident detection, which would 

likely accompany strengthen guidelines. 

It is anticipated that Scenario 3B would likely place a greater financial and resource burden on the 

operators and staff of PAFs than Scenario 3A, due to the cost associated with routinely 

hyperchlorinating a swimming pool, and the extended duration that the facility must be closed 

during treatment.  

 Scenario 4 – Healthcare interventions  

This scenario represents two interventions targeted at improving the way medical 

practitioners communicate prevention-related information to suspected and confirmed cases 

of cryptosporidiosis.  

• Scenario 4A – Post-diagnosis transmission-prevention advice: Scenario 4A is based on a 

stakeholder-proposed intervention to include transmission prevention-related advice on the 

pathology results forms that healthcare providers receive when their patient tests positive for 

Cryptosporidium. This scenario assumes that providing doctors with this information at the 

moment they are communicating the results to the patient, will result in at least 75% of 

confirmed cases receiving the correct preventative advice. This scenario also includes a 

modest increase (+10%) in the number of suspected cases who receive prevention-related 

advice prior to diagnosis. It is assumed that as medical practitioners become more familiar 

with the correct preventative advice to give to patients with confirmed Cryptosporidium 

infections, they will also begin providing this advice to patients with suspected 

cryptosporidiosis.   

• Scenario 4B – Precautionary pre-diagnosis transmission-prevention advice: Scenario 4B 

represents an intensive campaign targeted at educating medical practitioners about 

cryptosporidiosis symptoms and transmission, with the goal of encouraging them to provide 

suspected cases with transmission-prevention related advice when they first present to their 

clinic (prior to having a laboratory-confirmed diagnosis). This scenario assumes that 

providing doctors with this information will result in 30% (+25%) of symptomatic cases 
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receiving prevention-related advice prior to diagnosis. This scenario also includes a 

moderate increase (+17%) in the number of suspected cases who receive prevention-related 

advice post-diagnosis, as it is assumed that educating doctors about Cryptosporidium 

infections will also result in more laboratory-confirmed cases receiving the correct advice.  

 Scenario 5 – Combined intervention 

This scenario represents two different combined strategies using the interventions discussed 

in scenario 3 and 4. Interventions from scenarios 1 and 2 were not included in the combined 

interventions due to the high financial and logistical requirements associated with these 

strategies. 

 Scenario 5A – Faecal Accident Awareness + Post-diagnosis transmission-prevention 

advice: Scenario 5A represents a situation where both faecal accident awareness education 

at PAF (scenario 3A) and modifying the pathology results forms to include transmission 

prevention-related advice (scenario 4B) are implemented concurrently. This represents a 

combined scenario that would require a moderate amount of resource investment to achieve.  

o Scenario 5B – Strengthened PAF guidelines + Precautionary pre-diagnosis 

transmission-prevention advice: Scenario 5B represents a situation where the intensive 

campaign targeted at educating medical practitioners about cryptosporidiosis symptoms 

and transmission (scenario 4B) is implemented, as well as minor strengthening of the 

swimming pool guidelines (modified scenario 3B). This scenario includes all the 

changes listed on scenario 3B except for the monthly hyperchlorination, as that 

intervention represents a significant burden to operators of PAFs in the study area, and 

its inclusion in this scenario resulted in a negligible decrease in the number of 

cryptosporidiosis notification over the study period19. This represents a combined 

scenario that would require a higher amount of resource investment to achieve. 

 Results of the analysis of scenario simulations 

All six scenarios achieved a reduction in total number of cryptosporidiosis notifications when 

simulated over the study period (Figure 7.8). The use of secondary disinfection systems in scenario 

2 produced the greatest reduction in total cases (percent difference in total cases over study period: 

                                            
19 Including monthly hyperchlorination in scenario 5B resulted in a 0.81% reduction in the total estimated 
number of cryptosporidiosis notifications over the 10-year study period when compared to scenario 5B 
without monthly hyperchlorination.  
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48.25%), while international traveller screening (scenario 1) produced the smallest reduction 

(percent difference: -13%). 

Scenario 2 (PAF infrastructure intervention) produced the largest reduction when compared to the 

base-case scenario across all four sensitivity measures. This scenario was excluded from the 

prioritization of the strategies because it is considered too expensive to be feasible.  The main 

purpose for its inclusion is to provide a best-case scenario as a contrast with less effective 

intervention scenarios.   

In terms of days above of the non-outbreak mean, scenario 5B (combined intervention) produced 

the greatest reduction from the base-case (Table 7.6), with only an estimated 29.8% of days during 

the study period with notified cases of cryptosporidiosis over the non-outbreak mean compared to 

the base-case of 55.5% of days. Scenario 4B (pre-diagnosis advice) represented the single sector 

intervention that resulted in the greatest reduction in overall days above the non-outbreak mean. 
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Figure 7.8: Cumulative total number of cryptosporidiosis notifications over the study 
period (2007-2017) under each policy scenario 
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Table 7.6: Scenario priority based on days above the non-outbreak mean 
Priority 

order Scenario 
Days above non-outbreak mean  
Count (% diff from base case) 

 Base Case 2024  

* Scenario 2 
(PAF - Infrastructure) 975 (-70.0%) 

1 Scenario 5B 
(modified 3B + 4B) 1089 (-60.1%) 

2 Scenario 5A 
(3A + 4A) 1182 (-52.5%) 

3 Scenario 4B 
(Pre-diagnosis advice) 1269 (-45.9%) 

4 Scenario 3B 
(routine hyperchlorination) 1404 (-36.2%) 

5 Scenario 3A 
(faecal accident awareness) 1505 (-29.4%) 

6 Scenario 4A 
(Post-diagnosis advice) 1575 (-25.0%) 

7 Scenario 1 
(International travellers) 1630 (-21.6%) 

Scenario 5B (combined intervention) also produced the greatest reduction in outbreak intensity 

when compared to the base case scenario (Table 7.7). Single-sector interventions in scenario 4B and 

scenario 3B both produced greater reduction in outbreak intensity than the combined intervention in 

scenario 5A by a small margin.  

Table 7.7: Scenario priority based on outbreak intensity (amplitude) 

Priority 
order Scenario 

Outbreak intensity1 

Mean stdev 
(% difference 
base case) 

 Base Case 6.6 6.0  

* Scenario 2 
 (PAF - Infrastructure) 1.4 1.0 (-131.2%) 

1 Scenario 5B 
(modified 3B + 4B) 2.6 1.8 (-85.8%) 

2 Scenario 4B 
(Pre-diagnosis advice) 3.8 3.4 (-53.2%) 

3 Scenario 3B 
(PAF routine hyperchlorination) 4.0 2.7 (-49.4%) 

4 Scenario 5A 
(3A + 4A) 4.0 4.0 (-48.3%) 

5 Scenario 3A(PAF faecal accident 
awareness) 4.9 5.2 (-29.8%) 

6 Scenario 4A 
(Post-diagnosis advice) 5.0 4.2 (-26.5%) 

7 Scenario 1 
(International travellers) 5.3 4.5 (-22.3%) 

1 Outbreak intensity (amplitude) is measured as the difference between the peak number of daily 
cryptosporidiosis notification and number of notifications on the day prior to the beginning of the 
outbreak.  
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Both combined scenarios (5A and 5B) produced moderate decreases in mean outbreak duration 

(Table 7.8), with reductions of 22.7 days and 21.2 days respectively. A modest synergistic effect 

was produced in scenario 5A, where the combination of interventions 3A and 4A produced an 

overall reduction in mean outbreak duration of 21.2 compared to 16.9 days and 3 days respectively. 

Scenario 1 (international travellers) had a negligible impact on outbreak duration. 

Table 7.8: Scenario priority based on outbreak duration (period) 

Priority 
order Scenario 

Outbreak duration 

Mean stdev 
(% difference 
base case) 

 Base Case 157.6 73.5  

* Scenario 2 
(PAF - Infrastructure) 106.7 56.5 (-38.6%) 

1 Scenario 5B 
(modified 3B + 4B) 134.9 59.2 (-15.6%) 

2 Scenario 5A 
(3A + 4A) 136.3 65.0 (-14.5%) 

3 Scenario 3A 
(PAF faecal accident awareness) 140.7 72.7 (-11.4%) 

4 Scenario 4B 
(Pre-diagnosis advice) 141.4 69.1 (-10.8%) 

5 Scenario 3B 
(PAF routine hyperchlorination) 148.8 54.3 (-5.7%) 

6 Scenario 4A 
(Post-diagnosis advice) 154.6 70.6 (-1.9%) 

7 Scenario 1 
(International travellers) 157.0 72.5 (-0.4%) 

All scenarios, except for scenario 4A and 1, resulted in the occurrence of at least one less outbreak 

over the study period (Table 7.9). Interventions related to the operation and maintenance of PAFs 

produced the greatest reduction in the number of outbreaks, which is unsurprising as PAFs are most 

often the initial source exposure for major outbreaks. 
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Table 7.9: Scenario priority based on total number of outbreaks 

Priority 
order Scenario 

Number of Outbreaks 
Count (% diff from base case) 

 Base Case 8  

* Scenario 2 
(PAF - Infrastructure) 6 (-28.6%) 

1 Scenario 3A 
(PAF faecal accident awareness) 6 (-28.6%) 

1 Scenario 3B 
(PAF routine hyperchlorination) 6 (-28.6%) 

1 Scenario 5A 
(3A + 4A) 6 (-28.6%) 

4 Scenario 5B 
(modified 3B + 4B) 7 (-13.3%) 

4 Scenario 4B 
(Pre-diagnosis advice) 7 (-13.3%) 

6 Scenario 4A 
(Post-diagnosis advice) 8 (0%) 

6 Scenario 1 
(International travellers) 8 (0%) 

The radar plot in Figure 7.9 demonstrates the outcomes of each scenario across the four sensitivity 

measures and the estimated total number of cases over the study period. The base-case scenario is 

represented by the black exterior perimeter of the pentagon. Scenarios with values closer to the 

centre indicate greater reduction in that measure compared to the base-case scenario. This plot also 

demonstrates the degree of change that is achievable across the 5 different measures. Outbreak 

amplitude and days above the non-outbreak mean are the two measures where the greatest percent 

change from the base-case could be achieved, with maximum possible reductions of -86% and -

60%, respectively. Outbreak period and total number of outbreaks were the measure that was least 

changed by all of the interventions, achieving maximum possible reductions of only -16% and -

29%, respectively. 
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Figure 7.9: Performance of each scenario, measured in percent difference from base case (a smaller 

polygon indicates greater reduction across the five measures) 

To rank the scenarios based on overall performance two different measures were used; ‘impact 

effect’ and ‘impact symmetry’. For this study, ‘impact effect’ refers to the ability of the 

intervention(s) in each scenario to produce the greatest combined percent difference from the base 

case scenario across the five criteria of outbreak intensity, duration, frequency, days above the non-

outbreak mean, and the estimated total number of cases over the study period. To calculate the 

‘impact effect’ for each scenario, the total summed percent difference from the base case scenario 

was calculated. Table 7.10 summarized the overall performance in terms of ‘impact effect’ of the 

seven scenarios for cryptosporidiosis reduction in SEQ. 
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Table 7.10: Overall scenario priority based on ‘impact effect’ (total combined percent difference 
across all five criteria) 

Priority 
order Scenario 

Total percent 
difference across all 

measures 

   1 Scenario 5B 
(Pre-diagnosis advice + strengthened PAF guidelines) -218.4% 

   2  Scenario 5A 
(PAF faecal accident awareness + Post-diagnosis advice) -180.2% 

   3 Scenario 4B 
(Pre-diagnosis advice) -157.1% 

   4 Scenario 3B 
(PAF routine hyperchlorination) -152.9% 

   5 Scenario 3A 
(PAF faecal accident awareness) -124.2% 

   6 Scenario 4A 
(Post-diagnosis advice) -70.0% 

   7 Scenario 1 
(International travellers) -57.3% 

For this study, ‘impact symmetry’ refers to the relative performance of each scenario across all five 

criteria, compared to the best performing scenario (scenario 2: 3-log secondary disinfection 

systems). While scenario 2 is unlikely to be feasible given current conditions, it represents the ‘best 

case’ scenario in terms of what could reasonably be achieved given sufficient investment. Relative 

performance was calculated as: 

𝑅𝑅𝑅𝑅 =  �
∑� 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣

𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣�

5
� × 100 

The relative performance for each scenario across the five different measures is summed together to 

get a score of overall ‘impact symmetry’. A larger summed relative performance indicates a smaller 

deviation from the best performing scenario, which therefore indicates better overall performance 

across the five impact measures. As each of the measures are given equal weighting in this 

equation, scenarios whose impact is more symmetrical across the different measures will result in 

better score than measures that performed very well across a limited number of measures and 

moderately or poorly across the remaining measures. Table 7.11 provides a summary of the overall 

performance in terms of ‘impact symmetry’ of the seven simulated scenarios. 
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Table 7.11: Overall scenario priority based on ‘impact symmetry’ (relative performance of each 
scenario compared to the best performing scenario) 

Priority 
order Scenario 

Total percent 
difference across 

all measures 

1 Scenario 5B 
(Pre-diagnosis advice + strengthened PAF guidelines) 65.75% 

2 Scenario 5A 
(PAF faecal accident awareness + Post-diagnosis advice) 64.95% 

3 Scenario 3B 
(PAF routine hyperchlorination) 54.51% 

4 Scenario 4B 
(Pre-diagnosis advice) 50.23% 

5 Scenario 3A 
(PAF faecal accident awareness) 49.22% 

6 Scenario 4A 
(Post-diagnosis advice) 19.08% 

7 Scenario 1 
(International travellers) 15.19% 

Scenario 5B is the best performing scenario both in terms of impact effect and impact symmetry20, 

with scenario 5A also performing well across both measures. Interestingly, healthcare-related 

scenario 4B (pre-diagnosis advice) outperformed the two PAF-related scenarios in terms of total 

impact effect. It’s 4th place ranking in terms of impact symmetry is like due to it only reducing the 

number of outbreaks by one, as compared to the PAF-related interventions which had a greater 

effect on the outbreak frequency measure. Conversely, while scenario 3B (PAF routine 

hyperchlorination) had slightly lower overall impact than scenario 4B, its effect was symmetric, , 

indicating that it is likely to have a beneficial effect across more of the criteria than scenario 4B. 

Scenario 4A and 1 both performed quite poorly across both measures, indicating that they are likely 

poor investments if applied independently.  

 

 Insights and policy implications 

AS mentioned in chapter 5, the primary aim of system dynamics models is not to produce 

predictions per se, but rather to generate an expanded theory of the relationship between system 

structure and behaviour in the form of ‘insights’. In addition to ‘insights’ where the model provides 

information or an understanding that differs from currently held mental models of the system or the 

                                            
20 Recognising that the relative importance of each of the 5 criteria may not be equal, a more robust measure would be 

to weight the criteria in according to stakeholder feedback on each criteria’s relative importance prior to calculating the 

overall effect. While outside the scope of this project, this potential limitation could be addressed in future studies. 



 

176 

problematic behaviour it produces, insights can also be the identification of previously unexplored 

leverage points. In other words, while the results of the scenario analysis discussed in the previous 

section provide important information on the strength of various leverage points within the system, 

they in and of themselves are not the true results of the research.  

The following sections outline a number of ‘insights’ produce as a result of the simulation 

modelling process and discusses their broader implications from a policy perspective.  

Nature of the ‘cyclic’ pattern of cryptosporidiosis notifications in SEQ 

Prior to the commencement of this project there had been widespread speculation amongst 

stakeholders that the temporal pattern of cryptosporidiosis notifications was following a 2-3 year 

cycle (i.e. oscillating trend). This infers that the probability of a large outbreak occurring in any 

given year is not independent of previous outbreaks. The thorough search of the literature 

conducted as part of this project (detailed in section 3.1) was unable to identify evidence to support 

this theory, nor a biologically plausible explanation for this pattern of behaviour. 

The results of the model, as well as the outcome of the autocorrelation analysis, suggest that the 

apparent temporal outbreak pattern observed during the study period is not cyclic, but rather a series 

of sequential, yet independent, instances of overshoot and collapse behaviour (as shown in Figure 

7.10). Overshoot and collapse is a common behaviour observed in infectious disease outbreaks, 

where the number of cases rises exponentially while the ratio of exposed to susceptible cases who 

have infectious contact with each other is high (i.e. when R0 >1)21. At a certain threshold, the 

number of susceptible cases who have contact with infected cases (or the contaminated 

environment) will reach a point of saturation, and then fall exponentially. 

The assumption that cryptosporidiosis outbreaks are driven by a 2-3 year cyclic is likely due to the 

clustering illusion, which is a common cognitive bias of identifying the inevitable common patterns, 

clusters or trends that occur in small samples drawn from random distributions as non-random 

events (Gilovich, 1991).  

                                            
21The basic reproductive number (denoted R0) refers to the number of new infections each infectious case 

produces. When  >1, infection will continue to spread through the population. When  <1, the outbreak will 

decline and eventually cease.  
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On the other hand, the autocorrelation analysis did identify a statistically significant yearly cycle of 

notifications, supporting the hypothesis that cryptosporidiosis notifications are seasonally 

dependant.  

 
Figure 7.10: Generic structure of overshoot and collapse behaviour (source: 

Breierova (1997)) 

The implication of this insight for decision-makers is that the number of cases in previous year 

should not be viewed as in indicator of the timing or likelihood of future outbreaks, but it likely safe 

to assume that the peaks and troughs of notification will come at approximately the same time each 

year.  

Ratio of notified cased to true cases in the community 

While it is widely accepted that cryptosporidiosis, like many other acute gastrointestinal illnesses, is 

largely underdiagnosed and underreported in the community, the degree to which this is occurring 

is unclear. Knowing the degree to which this is occurring is critical for effective outbreak detection 

and management, as it is the key to establishing the true scope of the problem within the 

community. As it is nearly impossible to identify all cases within the community, public health 

surveillance systems use an ‘under-reporting’ and ‘under-diagnosis’ multiplier to estimate how 

many cases exist in the community for each case that is captured by the surveillance system.  A 

wide range of ‘under-diagnosis’ and “under-reporting” multipliers are being used for 

cryptosporidiosis in surveillance systems around the world, ranging from 7.4 in Australia, 10.4 in 

the United Kingdom, and 98.6 in the United States and New Zealand (Cressey and Lake, 2011, Kirk 

et al., 2014). The order of magnitude different between these multipliers produce vastly different 

estimates of true cases in community. Under the base case scenario, the model produces an under-

diagnosis multiplier of 8.4 (s.d.: 1.78), which is quite consistent with the multiplier that is currently 
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being used in Australia (7.4 - as reported Kirk et al. (2014)), and lends support to the idea that the 

proportion of true cases that result in disease notifications is far greater than the American/ New 

Zealand estimate would suggest.    

Larger-than expected role of overseas acquired cases in local disease dynamics 

Prior to this project, little consideration has been given to the role of imported cases in local disease 

dynamics. Studies that have identified international travel as a strong risk factor for 

Cryptosporidium infections often question or downplay its role. For example, despite identifying 

overseas travel as the risk factor with the second highest odds ratio22 in a case-control study of 

sporadic cryptosporidiosis cases in two Australian cities (Melbourne and Adelaide), the authors of 

the study concluded that the their finding of overseas travel being a strongly associated risk factor 

for sporadic cryptosporidiosis is likely due to ascertainment bias instead of a true incidence in the 

community (Robertson et al., 2002). The results of the model developed in this project support the 

finding that overseas travel is a strong risk factor for sporadic cases of cryptosporidiosis. Imported 

cases not only represent a far greater proportion of cases present in the community than expected, 

but that they also play a critical role in the local disease dynamics, by seeding local transmission. 

The role of imported cases seeding local disease transmission is not unique to Cryptosporidium 

infections, as studies have found imported cases have been responsible for outbreaks of diseases 

such as Ebola, measles and Middle East Respiratory Syndrome, Influenza, and Zika virus (Gomes 

et al., 2014, Koenig et al., 2016). 

Despite the model indicating the importance of imported cases in the local disease dynamics, the 

results of the scenario analysis suggest that screening and educating incoming passengers is a low 

leverage intervention and is not recommended.  

The larger-than expected role of overseas-acquired cases in local disease dynamics has several 

policy and research implications.  The first is that while the number of imported cases is not a 

strong policy lever, they never the less deserve attention in the management of the disease. 

Controlling the presence of these cases may not be something that can easily be done but mitigating 

their impact is potentially more achievable. Decision-makers should consciously and explicitly 

                                            
22 Overseas travel and consuming unboiled water, ice cubes or salad overseas was second only to immune 

system illness.  
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account for the fact that imported cases will likely continue to seed outbreaks in the community 

when designing interventions. 

The second implication of this insight is that attention should be paid to the drivers of disease 

dynamics both during and outside of outbreak periods. Outbreak investigations are likely to 

significantly underestimate the total number of overseas acquired cases in the community as these 

cases only make up a small percentage of cases during major outbreaks.  Therefore, sources of 

exposure identified during major outbreaks may not be representative of sources of exposure during 

non-outbreak periods because waterborne and foodborne illness outbreaks are typically investigated 

with the goal of source attribution, instead of contact tracing. The intent of source attribution is to 

identify the reservoir within the community driving the outbreak (i.e. where/what is causing the 

outbreak), rather than identifying the index case (i.e. who started the outbreak).  

Effectiveness of management techniques applied to small vs. large public swimming pools 

Several differences between the effectiveness of PAF-related interventions in small and large PAFs 

emerged during the sensitivity and scenario analysis of the model. Across nearly all PAR-related 

interventions (3-log disinfection systems, routine hyperchlorination, ARF detection and proper-

management rate), interventions targeted at small pools had a much greater effect on reducing the 

overall burden of outbreaks than those targeted at large pools. Additionally, interventions targeted 

solely at small pools were still able to achieve high overall reduction in case notifications, even in 

the absence of any interventions targeted at large pools. This finding is not surprising as small pools 

tend to be used by individuals who are at a high-risk of both transmission and exposure (i.e. 

incontinent young children who swallow a lot of water while swimming). The insight that emerges 

from this finding is that it may not be necessary to target all PAFs within the community with PAF-

related interventions to achieve an acceptable reduction in case notifications. Achieving cost 

savings by focusing interventions at all small PAF pools may still be sufficient to greatly reduce the 

burden of cryptosporidiosis in the community.     

Unexpected role of primary care in the dynamics of Cryptosporidium transmission in SEQ  

The current narrative surrounding Cryptosporidium in SEQ points to the overarching notion that 

Cryptosporidium is a ‘swimming pool problem’ or perhaps a ‘water problem’23. Unsurprisingly, 

                                            
23 Cryptosporidium is also viewed as a zoonosis problem in many regions but is not considered as such in 

SEQ due to the local urban population’s limited contact with livestock.  
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this has led to the operation and maintenance of PAFs being the main target of interventions within 

SEQ. The results of the simulation model demonstrate that cryptosporidiosis is a far more complex 

and interdisciplinary problem. 

The results of the simulation model supported the findings from chapter 5, which highlighted that 

community-level disease dynamics are associated with the interactions between people and primary 

healthcare providers. The model demonstrated empirically that if doctors provide patients with 

advice to reduce their likelihood of transmission, particularly when they first present for medical 

care, the number of new cases of cryptosporidiosis in the community will be significantly reduced.  

It was surprising to observe that healthcare-related variables, in particular medical practitioners 

providing advice to suspected (unconfirmed) cases, were higher leverage variables than many of 

those within the PAF sector.  

There is considerable evidence that interventions targeted at educating doctors lead to direct 

improvements in patient outcomes for several health problems. For example, a study assessing the 

quality of care delivered by doctors to patients who smoke found that healthcare providers who 

received training in smoking cessation, as well as reminders and prompts to provide advice to their 

patients, were more effective than doctors without the training and prompts (odds ratio 1.35) (Silagy 

et al., 1994). Similar effects were found in a meta-analysis of interventions related to immunisation 

and cancer screening (Stone et al., 2002). While smoking and gastroenteritis differ in many ways, 

they are similar in terms of the role doctors play in providing guidance to symptomatic patients. 

Targeted continuing education interventions, in conjunction with electronic reminders, may present 

a novel strategy to reduce the transmission of Cryptosporidium within the community, especially in 

high risk periods of the year. 

Rethinking the role of primary and secondary outbreak prevention in the design of 

intervention strategies  

The current goal of the public health intervention for cryptosporidiosis is primary outbreak 

prevention24  by eliminating or reducing the risk of an initial exposure to Cryptosporidium. While 

                                            
24 Definitions of primary and secondary prevention vary greatly within the field of environmental health, and 

largely depend on what is trying to be prevented (e.g. individual illness, outbreaks, etc.). For the purpose of 

this study, primary outbreak prevention refers to interventions targeted at eliminating the hazard 

(cryptosporidium) within the community, and thus preventing outbreaks from occurring. Secondary outbreak 

prevention refers to interventions targeted at containing outbreaks to reduce the magnitude of their effect.  



 

181 

primary outbreak prevention is the front line of community-level infectious disease control and 

management, the realities of cryptosporidiosis dynamics in SEQ, particularly the consistent inflow 

of imported cases, makes primary outbreak prevention difficult. Indeed, the outputs of this model 

showed that the frequency of major outbreaks was one of the least modifiable outcome measures. 

Even under the best-case scenario the frequency of outbreaks could only be reduced by up to 29%. 

The results of the model indicate that, for the most part, individuals with overseas acquired 

Cryptosporidium infections are seeding community outbreaks. The realities of globalization and 

increasing population mobility mean that the consistent flow of individuals with overseas acquired 

Cryptosporidium infections into the community is unlikely end. The implication of this is that as 

long as the importation of overseas-acquired infections remains exogenous to the system, outbreaks 

are likely to continue regardless of primary prevention efforts in the community.  

Additionally, the system exhibits delays and variability that undermine the effectiveness of 

interventions targeted at preventing outbreaks, particularly those related to public aquatic facilities. 

Complex and expensive secondary disinfection systems, often promoted as being a ‘solution’ to the 

Cryptosporidium problem, still required a significant period of time to achieve complete removal of 

oocytes in the water due to the large size of most public pools. Completed detection and 

management of ARFs as an outbreak prevention strategy is also effective, but likely unachievable 

due to the complexity and difficulty of managing busy swimming pool, particularly with a highly 

seasonal workforce. Additionally, visual detection as a means of identifying accidental faecal 

releases into swimming pool will only be possible for gross faecal contamination events. Regardless 

of the diligence or training of the swimming pool operator, small faecal leakage events are likely to 

go undetected by staff unless they are directly notified by the patron. 

The result of the scenario simulations showed that outbreak intensity was the most modifiable 

outcome measure. Interventions targeted at modify outbreak intensity are exclusively secondary 

disease prevention. These interventions acknowledge that outbreaks are inevitable and that activities 

are designed to minimise the number of people exposed to infection, which reduces the scale of an 

outbreak.   

In the context of the system in the case study, shifting from a goal of primary prevention to a goal 

of secondary prevention would require a paradigm shift. Cryptosporidium infections are typically 

self-limiting, lead to short-term incapacity, and are unlikely to be fatal. Because of this, it is 

possible that such a paradigm shift will be within the confines of what is socially acceptable public 

health practice. 
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In her seminal essay “Leverage Points: Places to Intervene in a System” Donella Meadows 

identified a hierarchy of 12 different points within complex systems, ranging from low leverage 

single variable changes, to very high leverage system-wide paradigm shifts (Meadows, 1997). The 

second highest point of leverage within a system identified by Meadows is the goal of the system, 

the driving reason for which the system exists.  She argues that shifting the goal of the system 

changed all the system components, effectively reshuffling the system. 

Shifting the goal of the cryptosporidiosis system would require the realignment of health policy 

priorities and reallocation resources. Doing so would require the state health authority to weigh the 

costs and benefits of spending public funds on enforcement versus education, as well as determine 

the degree to which the financial burden associated with Cryptosporidium management should be 

placed on the private sector. 

The current focus on preventing outbreaks has largely put the resource cost on the shoulders of PAF 

owners and operators. These interventions come at significant capital and staffing costs, yet the 

model indicates that they are likely to be of limited effectiveness. Stakeholders in the aquatics 

industry indicated that the profit margins on PAFs are typically quite small, particularly in the case 

of community pools, which raises the question about the economic feasibility of PAF owners 

independently shouldering the burden while potentially reaping limited reward (Hunter and 

Fewtrell, 2001).  Additionally, placing further emphasis or legislative requirements on PAF-focused 

interventions will likely require increased investment, by both local government and the state health 

department, on enforcement. It is widely recognised that enforcement is a crucial, yet very costly, 

element of the long-term effectiveness of public health guidelines (Costich and Patton, 2013).  

Education-focused interventions, particularly those targets at GPs, are also not without their costs. 

Studies of the effectiveness of GP education campaigns have found that active education campaigns 

that took place in multiple interventions over time were more effective at changing GP behaviour 

than passive interventions or those that occurred only once (Mansouri and Lockyer, 2007). 

However, active multi-stage interventions are likely to be more expensive than simpler passive 

education campaigns. 

Unclear threshold for action for swimming pool water quality issues 

There is widespread recognition that complete elimination of exposure to pathogens in water is not 

possible, and thus when it comes to managing the safety of water resources, a risk-based approach 

must be adopted (Fewtrell and Bartram, 2001). Figure 7.11 below shows a simplified version of an 

iterative water quality risk management framework developed by the WHO. The basic premise of 
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this framework is that the assessment of microbial risk is the starting point for the development of 

health targets, which guide risk management activities and ultimately affect public health status.  

 
Figure 7.11: Simplified risk-based water management framework (source: 

Fewtrell and Bartram (2001)) 

 The use of health targets to guide the design, implementation, and evaluation risk management 

activities is a key element of this process. As seen in Figure 7.11, health targets are not based solely 

on the absolute risk posed by the contaminant, but also on the threshold of acceptable risk. The use 

of an acceptable (or tolerable) risk threshold is especially relevant for waterborne pathogens, as 

complete elimination of pathogens from water is typically not feasible.  The NHMRC Guidelines 

for managing risk in recreational water emphasize this point stating: 

“These guidelines require that risk be reduced to a tolerable level rather than being 
eliminated altogether (complete elimination of risk is impossible). For most healthy 
people, water conforming to the guideline value will pose only a minimal increase in 

daily risk. However, water conforming to the guidelines may still pose a potential health 
risk to high-risk user groups such as the very young, the elderly and those with impaired 

immune systems.”(NHMRC, 2008) 

Assessing the combined absolute and acceptable risk posed by a water source allows decision-

makers to establish the ‘goal posts’ (i.e. health targets) for risk management activities. There are 

currently no established standards in Queensland or Australia for the acceptable risk of swimming 

pool water. The model highlights the challenges associated with the lack of this standard.   

The results of the model indicate that under the ‘base case’ scenario, cryptosporidium- infection risk 

associated with swimming pool water falls outside of Category A (very good) less than 6% of the 

time, and only in small swimming, according to the NHMRC Recreational Microbial Water Quality 

guidelines. If swimming pool water is considered comparable to other forms of recreational water, 

this would suggest that the risk associated with exposure to swimming pool water is well within the 

range of ‘tolerable/acceptable’ the clear majority of the time, even under status quo (base case) 
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conditions. Conversely, when compared to the drinking water quality tolerable risk threshold of 1 

illness per 10,000 population per year, the risk associated with swimming pools exceeds the 

tolerable risk threshold almost every year in Metro North and Metro South, and 60% of the time in 

the Gold Coast region.  

There are several policy-relevant insights associate these findings. The risk management strategy, if 

any, required to reduce the risk of cryptosporidium infection in SEQ swimming pools depends on 

whether swimming pool water is considered recreational water, drinking water, or something in 

between. If considered drinking water, the consistent exceedance of tolerable infection risk suggests 

that risk management activities are not only warranted, but necessary. If considered recreational 

water, the relative rarity of days when infection risk exceeds the tolerable risk suggests that little to 

no additional risk management activity is necessary beyond the status quo.  

It is likely that the threshold of tolerable risk is somewhere in between. Without an established 

infection risk threshold, there is no clear goal to guide risk management activities for 

cryptosporidium in SEQ. This has both economic and health implications. If an overly conservative 

risk threshold is assumed, private and public funds may be spent on unnecessary interventions.  If 

an overly relaxed risk threshold is assumed, an unacceptable number of illnesses may occur, 

affecting not only the overall health of the community, but also potentially undermining public 

confidence in both the public health service and the aquatics industry.  

The overall insight from this finding is that it is not clear whether or not the current water quality 

situation in SEQ is above or below a level of ‘tolerable’ risk threshold. Without an established 

tolerable risk threshold for swimming pool water, decision makers are left to guess whether the risk 

is sufficiently managed or not.  A secondary key insight from this finding is that it is quite possible 

that the currently status quo is below that tolerable risk threshold, and no additional action is 

required. 

 Value-added as a decision support tool 

Prior to exploring this problem using system dynamics modelling, potential leverage points for the 

effective management of cryptosporidiosis in South East Queensland were elusive due to the 

problem being plagued with high levels of problem uncertainty. After applying this method to the 

specific case of cryptosporidiosis in South East Queensland, I have identified several ways that the 

system dynamics model process helped reduce three main types of uncertainty; aleatoric 

uncertainty, epistemic uncertainty, and process (deep) uncertainty. A broader insight that emerged 

from this modelling process is the many ways that this process could add value as a decision-
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support tool by reducing the amount of uncertainty decision-makers must contend with.  The 

following section outlines how the model helps reduce each of the three main types of uncertainty. 

Aleatoric uncertainty (variability and heterogeneity) 

The system dynamics model allowed variables that are characterised by significant natural 

variability and/or heterogeneity to be parameterised with Beta-PERT. These distributions leveraged 

existing research evidence by combined values from the literature (where available) with local 

expert opinion, to identify maximum, minimum and most likely values for each uncertain 

parameter. The model also adds value by producing a graphical output for each variable, which 

makes the variability that characterises each variable more explicit to users of the model. 

Additionally, using the system dynamics model to simulate this problem allowed discrete semi-

random events, such as the timing of when an infected patron has an AFR in the pool, to be captures 

as part of wider system behaviour. When run over several iterations, the model adds value in terms 

of its ability to show decision-makers the array of potential behaviours the system can produce 

when natural variability is accounted for. 

Epistemic uncertainty (lack of information) 

The problem of cryptosporidiosis in SEQ is plagued by a lack of locally-specific decision-relevant 

knowledge and information about both the parameters in the system, and the causal relationship that 

form the architecture of the system. Traditionally, there is a tendency to omitting concepts or 

variables from decision support tools in circumstances where there is no (or insufficient) numerical 

data to discern a representative numerical value. Jay Forrester describes the problem with this 

saying: “To omit such variables is equivalent to saying they have zero effect—probably the only 

value that is known to be wrong!’’ (Forrester, 1968). 

In relation to uncertainty caused by a lack of knowledge (i.e.  ‘we roughly know’ and/or ‘we know 

what we do not know’) the system dynamics model adds value in two ways. Much like the way 

Aleatoric uncertainty can be reduced by parameterizing the model with beta-PET distributions, 

factors whose value are unknown were also parameterised with this technique, but using expert 

opinion. This allowed the assumed system structures and relationships associated with these 

variables to be captured and made explicit despite the lack of research evidence.   

Additionally, calibrating the model based on the historic behaviour of known variables allowed the 

values of variables for which there is no research evidence, such as number of asymptomatic cases 

or the probability of having an AFR given infect, to be estimated. While these estimates are not a 

substitute for local data or research evidence, the reality of decision-making is that time and 
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resources often limit the ability of this information to be collected and analysed prior to a decision 

being made. These calibrated values likely provide a substantial improvement over estimates 

produced by the mental models of decision-makers.  

Process (deep) uncertainty  

The most difficult form of uncertainty to reduce is that related to ignorance or conflicting evidence 

regarding the structure of the system itself (i.e. ‘we do not know what we do not know’ and/or ‘we 

do not know what we know’). Reducing this form of fundamental uncertainty is one of the areas 

where system dynamics modelling has the potential to have the greatest value.  

One of the key ways that the SD modelling process reduced this form of uncertainty in relation 

cryptosporidiosis in SEQ is by elucidating, capturing and integrating the mental models of 

stakeholders and actors across different sector into the model. Because of the complex nature of this 

problem, each actor holds a limited, yet unique, understanding of the interplay between and 

amongst human and environmental systems that is creating this problem. By forcing each actor to 

make their mental models explicit, and then combine the collective knowledge held within each of 

these mental models, a broader and more complete image of the problem emerged. It is through this 

process that uncertainties that were unknown were revealed. For example, the effect of physicians 

providing advice to infectious individuals, and more specifically the timing of that advice, on the 

community-level outbreak dynamics was a previously unknown relationship. Had the mental 

models of individuals in the water quality sector not been combined with those doing front-line 

public health investigations, and those of physicians, this causal relationship would have remained 

unknown. 

More broadly, the system dynamics model adds value in the way that it packages the information it 

contains. From the most basic level, the model reduces the conceptual complexity of the 

cryptosporidiosis problem by presenting a colour-coded visual map of the assumed causal structures 

that make up the problem. By making everyone’s assumptions explicit in one diagram, it creates a 

common language for discussing the problem. The model interface also communicates the nature of 

the relationships used to simulate the model in a simpler and more explicit way that can be more 

easily understood by users with varying levels of domain knowledge.  At a higher level, the model 

communicates decision-specific actionable information to about the likely outcomes of a series of 

potential future interventions. The model itself was structured in such a way that decision makers 

could design and test potential future interventions in a virtual world prior to implementing these 
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interventions (as shown in section 7.2). By presenting its results in a decision-ready format, it 

increased the value of the model as a decision-support tool.  

 Summary 

The results of the sensitivity analysis and scenario analysis discussed in this chapter highlight the 

potential usefulness of system dynamics simulation modelling in providing policy-relevant insights 

for complex environmental health problems like cryptosporidium. Key insights from the model 

include the greater-than-anticipated effect of overseas-acquired infections and the timing of advice 

provided by general practitioners on transmission dynamics. Additionally, the model highlighted 

the importance of a tolerable risk threshold on prioritising risk management activities and suggested 

the need for a paradigm shift from primary to secondary outbreak prevention. Overall, the use of 

system dynamics modelling to explore the problem of cryptosporidiosis in South East Queensland 

provided a clearer understanding of the problem by uncovering some previously unknown or poorly 

understood elements of the system.   

More broadly, insights can also be obtained from the overall process of applying system dynamics 

to a complex environmental health problem like Cryptosporidium. The modelling highlighted the 

importance of tapping into the knowledge and experience of a wide range of stakeholders when 

trying to develop a conceptual understanding of complex problems. While the idea of engaging 

stakeholders in the policy development process is not new, there is a lack of tools to facilitate this. 

The structured engagement process used in this project, particularly at the problem formulation and 

dynamic hypothesis stages, provided information that was simply not captured in traditional data 

bases and information collection channels.  

There is also an ever-growing narrative about the need for bigger and better linked datasets to 

support infectious-disease related policy and research (Moore and Blyth, 2018). The results of this 

system dynamics modelling process demonstrated how this method allows for the integration of 

non-traditional forms of evidence, such as expert opinion and incomplete datasets, into a working 

simulation model. This model was built entirely on publicly-available datasets and research 

evidence, demonstrating that it is possible to gain a detailed understanding of complex disease 

dynamics using readily available data Additionally, this highlights how system dynamics modelling 

sits at the intersection between epidemiology, data science, public health decision making. System 

dynamics models of infectious disease management can integrate fundamental theories and insights 

from epidemiology about infectious disease transmission, distribution and control, with the linked 
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datasets emerging from the field of data science, in a manner that is understandable, applicable and 

approachable to public health decision makers.  

This chapter demonstrates the potential usefulness of system dynamics modelling, not just for 

understanding cryptosporidiosis dynamics in SEQ, but also complex environmental health problems 

in general.  
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Chapter 8.   Conclusions 

The aim of this project was to develop a tool that incorporated both qualitative and quantitative 

information to help decision-makers identify the underlying environmental and social feedback 

mechanisms that contribute to the transmission of cryptosporidiosis in South East Queensland 

(SEQ), Australia.  

The qualitative systems map discussed in Chapter 5 combined mental models from actors in several 

different sectors into a collective conceptualisation of the systemic drivers of the problem. On its 

own, this system mapping exercise can support decision-makers achieve a better and more 

comprehensive understanding of the problems they are attempting to manage. The process of 

creating the causal loop diagram (CLD) served as a platform to integrate stakeholder perspectives 

into a common vision of the problem. It also helped communicate the importance of key feedback 

loops within the system that are contributing to outbreaks of cryptosporidiosis in SEQ.  

The quantitative system dynamics model simulated the system behaviour produced by the 

relationships identified in the CLD. The simulation model is an additional tool that enables decision 

makers to design, test and evaluate possible strategies to reduce the disease burden of 

cryptosporidiosis in SEQ. 

 Key findings in response to research questions 

This central aim of this project lead to the formulation of three research questions. The following 

section summarises the key findings in relation to each of the research questions. 

Research Question 1: What are the population-level drivers of Cryptosporidium transmission 

in South East Queensland, and how do these drivers dynamically interact to create the trends 

in notified cases of cryptosporidiosis observed in the region? 

A review of the academic and grey literature was conducted to obtain a comprehensive 

understanding of the current state of knowledge of the drivers of Cryptosporidium transmission in 

general, as well as in SEQ (see as discussed in Chapter 3). The list of drivers identified in the 

literature was then refined during consultations with local stakeholders. While not an exhaustive 

list, the following key population level factors were identified as contributing to Cryptosporidium 

transmission dynamics in SEQ (as presented in Chapter 5): 
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• Seasonally-driven community attendance at public aquatic facilities; 

• Hygiene-related behaviours of swimming pool patrons; 

• Person-to-person contact between infected and susceptible individuals, particularly those in 

childcare; 

• Case management and diagnostic practices of local doctors; 

• Timing, nature and quality of transmission-related preventative advice that doctors provide 

to suspected and confirmed cases of cryptosporidiosis; 

• Timing of public health response to suspected cryptosporidiosis outbreaks; 

• Attention given to cryptosporidiosis outbreaks by the media; 

• Political will to address cryptosporidiosis in the community; 

• Community knowledge and awareness of cryptosporidiosis as a problem in their 

community; 

• Public aquatic facility (PAF) operator and staff awareness of cryptosporidiosis as a problem 

in their community; 

• PAF operator and staff training with regards the management of water quality and hygiene; 

• High turnover of seasonal PAF staff; and 

• Infectious international travellers returning to the community. 

Interestingly, commonly-cited drivers of Cryptosporidium transmission, such as contaminated 

drinking water and contact with livestock, were not deemed to be relevant in the context of SEQ.  

The system dynamic simulation model (as presented in Chapter 6 and 7) identified several key 

dynamic relationships within the system that contributed to the trends in notified cases of 

cryptosporidiosis that have been observed in the region. Unsurprisingly, the timing of outbreaks 

observed in the region appears to coincide with seasonal attendance patterns at public aquatic 

facilities, which peak in the warmer summer months. Beyond this, several subtler dynamic 

relationships of importance were identified.  

The observation that the timing of when doctors provide infectious individuals with advice to 

refrain for swimming or avoiding contact with other people was found to be a key driver of overall 

dynamics was unexpected. The standard practice of providing advice upon confirmation of 

infection (post-diagnosis) rather than before testing (pre-diagnosis) was shown to be problematic.  
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This is because the delay in preventive behaviours by infectious people significantly increases the 

risk of secondary infection and contamination of pool water.  

The constant inflow of international travellers returning home with overseas-acquired infections 

was also a surprising observation enabled by the model.   The system dynamic simulation model 

showed that if the inflow of infectious international travellers was prevented/removed then there 

would be no outbreaks in SEQ because local transmission dynamics are not sufficient to maintain 

an endemic state. This finding suggests that the consistent low level of ‘sporadic’ cases of 

cryptosporidiosis in SEQ is largely associated with the influx of overseas-acquired cases that “seed” 

the larger outbreaks observed. Therefore, the interplay between overseas-acquired cases seeding 

outbreaks and the rapidity with which infections spread through public aquatic facilities, is largely 

what is causing the outbreak dynamics observed in the region. The dominance of post-diagnosis 

advice provided by doctors, which results is poor awareness amongst infectious individuals of their 

risk of transmitting their infection to others, is likely to be contributing to the intensity and 

persistence of these outbreaks.  

Research Question 2: What policies or interventions could be used to more effectively reduce 

the incidence of cryptosporidiosis in South East Queensland? 

Following the construction of the system dynamic simulation model (Chapter 6), sensitivity 

analyses were run to identify the modifiable factors within the model that had the greatest influence 

on the pattern of cryptosporidiosis outbreaks in SEQ (leverage).  

Within the healthcare sector, the proportion of infected individuals who receive pre- versus post-

diagnosis transmission prevention advice was the highest leverage variable. In the PAF sector, high 

leverage variables included the proportion of accidental faecal releases (AFR) that are detected and 

properly managed by pool staff, the frequency of routine hyperchlorination, and the use of 3-log 

secondary disinfection systems. Pre-swim showering and screening of incoming international 

travellers were also identified as leverage points with lower levels of influence. 

The high leverage variables were then used to create nine policy/intervention options (as described 

in Table 7.5).  These were then simulated using the system dynamic simulation model and ranked 

based on their effect on the dynamics of cryptosporidiosis in SEQ using 5 metrics.   The most 

effective scenario modelled the installation of 3-log disinfection systems in all PAF facilities. While 

this option had the greatest effect, it is not deemed feasible due to the high installation and running 

cost.  
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The next most effective scenario represented a campaign to educate General Practitioners about 

cryptosporidiosis symptoms and transmission, with the goal of increasing the number of suspected 

cryptosporidiosis cases receiving pre-diagnosis advice from their doctor by 25% and the number 

receiving post-diagnosis advice from their doctor 17%. This scenario also includes minor 

improvements in adherence to the existing swimming pool water quality guidelines, representing an 

increase in bather showering by 5%, and an increase in AFR detection of 10% in both large and 

small pools. 

Overall, while better pool disinfection systems would be effective in minimising cryptosporidiosis 

outbreaks, it would be difficult to impellent and enforce due to the high cost that the pool operators 

would have to bear. Better education of doctors was found to have almost the same effect on 

reducing cryptosporidiosis outbreaks. It is possible that doctor-education interventions would be 

easier to implement because the cost, which would primarily be the responsibility of the public 

sector, is likely smaller. 

Research Question 3: Can system dynamics modelling add value as a decision-support tool for 

environmental public health decision-making processes, in particular in the management of 

cryptosporidiosis in South East Queensland? 

The insights outlined in Chapter 7 provide an example of the many ways that system dynamic 

modelling has the potential to add value to decision-making processes. The first is by providing 

decision-makers with an expanded and more explicit theory of what is causing the cryptosporidiosis 

outbreak pattern observed over the last ten years.  

The systems mapping exercise identified previously unexplored causal relationships and archetypal 

behaviour that add clarity to the conceptualisation of the problem. This expanded conceptualisation 

of the problem can help to overcome policy resistance. Policy resistance is caused by our mind’s 

inability to capture and understand the array of feedback loops that exist within a system (Sterman, 

2000a). The process of describing explicit mental models and combining them with the mental 

models of others, can help overcome this common cause of policy resistance.  

The added value of the system dynamic simulation is its ability to reduce uncertainty surrounding 

the problem, particularly process uncertainty. This form of uncertainty is the most difficult to 

overcome because it is difficult for decision-makers to account for system behaviour originating 

from uncharted parts of a system. As with the systems mapping process, reducing the uncertainty 

surrounding the problem has the value of expanding a decision-maker’s understanding of the 

feedback loops driving the problem, and thus reducing the likelihood of policy resistance. The 
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system dynamic model lead to the identification of cryptosporidiosis scenarios that were not being 

targeted to currently management strategies. Moreover, the system dynamic model showed that the 

current management strategies were targeting low leverage points, and therefore where not likely to 

reduce outbreaks 

Lastly, this research demonstrated that a system dynamic model can provide actionable information 

to decision-makers. The system dynamic model was used to predict the long-term impact of a range 

of scenario on cryptosporidiosis outbreaks. Other decision-support tools, such as risk assessment, 

do not provide users with an easy way to compare the outcomes of different scenarios, nor do they 

assist in identifying potential unanticipated or indirect effects of interventions. 

 Limitations and suggestions for future research 

“all models are wrong, but some models are useful” – George E.P. Box 

Despite the comprehensiveness of this model, and the compelling nature of the results, this model is 

not perfect. Sterman (2002) expands upon the famous George Box quote, explaining it is because “a 

model is a simplification, an abstraction, a selection”. In order to create a model that is functional 

and workable, imposing boundaries on the model was necessary. The model presented in this thesis 

is a representation constrained to the boundary described at the beginning of Chapter 6 and 

represents an interpretation of the mental models of the specific stakeholders who were consulted as 

part of the model-building process. A limitation of the system dynamics modelling process is that it 

is inherently subjective, and the model’s structure and behaviour is largely based off of the feedback 

from the stakeholders who were consulted. It is possible that broader consultation with additional 

stakeholder may have resulted in a different model. Expanding the consultation process to 

additional stakeholder, particularly those in the primary healthcare sector and the aquatics industry, 

should be a focus of future research.  

Additionally, the model was not designed to capture all potential factors contributing to 

cryptosporidium transmission, but rather focused on the ones identified by local stakeholders as 

being the most important. A limitation of this is that the model’s structure is based on the 

assumption that the fundamental system structure does/has not changed during the study period and 

that the stakeholders have correctly identified the key contributors to cryptosporidium transmission. 

Because of this, the model is only valid in the context for which it was built, and the 

representativeness of the model’s findings in other geographical, temporal or contextual areas has 

not been explored. 
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Furthermore, it is important when interpreting the results of the model to keep in mind the 

overarching intention and purpose of system dynamic models. System dynamic models are 

theoretical models, meaning that their primary purpose is to explore and expand upon the theory of 

what causes problematic behaviours in a system. Conversely, the purpose of System dynamic 

models is not to be a predictive model, in that they are not designed to formulate absolute 

statements such point-estimates, or ‘predication’. Rather, they are used to explore and compare 

potential system trajectories under different policy scenarios. It is for that reason that the model 

presented in this thesis was intentionally designed such that it provided only retrospective findings. 

While system dynamics models are capable of forecasting into the future, this model was limited to 

a retrospective lens so as to not mislead users about its ability to predict the exact timing of future 

outbreaks. The limited ability of system dynamics models to produce accurate predictions of future 

behaviour is a limitation of the system dynamics modelling approach as a whole.  

A limitation of all models, including system dynamics models is that the results of the model may 

be sensitive to variations in certain model inputs and parameters. The system dynamics model 

presented in this thesis is parameterised with probability density functions to partially address this 

limitation. Nevertheless, the scarcity of locally-produced data means that it is possible that the 

model is sensitive to variables that have been calibrated to non-local data, which could lead to 

variations in the model’s results.  

An additional limitation of the system dynamics approach used in this thesis is that many of the 

functional relationships within the model are based on theory that has not been empirically tested, 

particularly in the context of South East Queensland. While great effort was made to use local data 

and evidence to support decisions related to model structure and behaviour, the paucity of local data 

meant that this was not always possible. Future empirical studies verifying the theory-based 

relationships identified in this model is necessary to confirm the model’s findings.  

The model developed in this thesis does not include economic drivers of system behaviour, nor does 

it evaluate the financial cost of any of the proposed scenarios, as this would be a very data-intensive 

exercise. Incorporating a measure of the financial and resource costs associated with each 

management scenario would be a future focus of the research as it would add an additional degree 

of decision-relevance to the model’s findings.  

This study stops short of fully capturing the final stage of Maani and Cavana’s five stage model-

building process; implementation and organisational learning (Maani and Cavana, 2007). While this 

study has shown how system dynamic modelling can support environmental health decision-
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making, additional research is needed to assess the degree to which the modelling process can lead 

to meaningful organisational learning. Such an endeavour could provide insight on ways to improve 

the consultation and engagement process for future applications of system dynamic modelling in 

this context.  

Additionally, this study did not include the implementation and evaluation phase of the 

recommended interventions. Extending this research program to implement and evaluate the 

effectiveness of the proposed scenarios would add additional insight to the effectiveness and value 

of using system dynamic modelling as a decision support tool for managing environmental health 

problems.  
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Loop 

ID 
Variables involved Key concept 

Reinforcing 

R1 Crypto cases in the community  healthy people exposed to infectious people  Crypto cases in the 

community 

Person-to-person transmission 

R2 Crypto cases in the community  Infectious swimmers in the pool  Cryptosporidium oocytes in 

the pool Healthy swimmers exposed to crypto oocytes in the pool  Crypto cases in the 

community 

Infections acquired at public 

aquatic facilities 

Balancing 

B1a 

& 

B1b 

Crypto cases in the community  People seeking medical care  suspected cases who receive 

precautionary transmission-prevention advice  People knowledgeable about transmission-

prevention strategies  (B1a: healthy people exposed to infectious people) or (B1b: Infectious 

swimmers in the pool  Cryptosporidium oocytes in the pool  Healthy swimmers exposed to 

crypto oocytes in the pool)  Crypto cases in the community 

New secondary cases (B1a) 

and swimming-related cases 

(B1b) prevented by infectious 

cases receiving transmission-

prevention advice prior to 

diagnosis 

B2a 

& 

B2b 

Crypto cases in the community  people seeking medical care  people who have been tested for 

crypto  people who test positive for crypto  people who receive precautionary advice at time of 

diagnosis  people knowledgeable about  transmission-prevention strategies  (B2a: healthy people 

exposed to infectious people) or (B2b: Infectious swimmers in the pool  Cryptosporidium oocytes 

in the pool  Healthy swimmers exposed to crypto oocytes in the pool)  Crypto cases in the 

community 

New secondary cases (B2a) 

and swimming-related cases 

(B2b) prevented by infectious 

cases receiving transmission-

prevention advice at time of 

diagnosis 
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B3a 

& 

B3b 

People who test positive for crypto  Notified crypto cases in the community  control measures 

from public health service   people knowledgeable about  transmission-prevention strategies  

(B3a: healthy people exposed to infectious people) or (B2b: Infectious swimmers in the pool  

Cryptosporidium oocytes in the pool  Healthy swimmers exposed to crypto oocytes in the pool)  

Crypto cases in the community people seeking medical care  people who have been tested for 

crypto  people who test positive for crypto 

Transmission awareness and 

prevention messaging to the 

general public 

B4a 

& 

B4b 

People who test positive for crypto  Notified crypto cases in the community  control measures 

from public health service  Doctors’ crypto awareness and knowledge  suspected cases who 

receive precautionary transmission-prevention advice  (B4a: healthy people exposed to infectious 

people) or (B4b: Infectious swimmers in the pool  Cryptosporidium oocytes in the pool  Healthy 

swimmers exposed to crypto oocytes in the pool)  Crypto cases in the community  people 

seeking medical care  people who have been tested for crypto  people who test positive for 

crypto 

Transmission awareness and 

prevention messaging to 

general practitioners 

B5 People who test positive for crypto  Notified crypto cases in the community  control measures 

from public health service  Swimming pool operator awareness of crypto in the community  

hyperchlorination of the swimming pool   Cryptosporidium oocytes in the pool  Healthy 

swimmers exposed to crypto oocytes in the pool  Crypto cases in the community people seeking 

medical care  people who have been tested for crypto  People who test positive for crypto 

Swimming pool 

hyperchlorination at the 

request of the PHS 

B6 Crypto cases in the community  people seeking medical care  suspected cases who receive 

precautionary advice people who receive precautionary advice at time of diagnosis  people 

knowledgeable about  transmission-prevention strategies   Swimming pool operator awareness of 

crypto in the community  hyperchlorination of the swimming pool   Cryptosporidium oocytes in 

Swimming pool operator 

become aware of crypto in the 

community by members of the 

general public 
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the pool  Healthy swimmers exposed to crypto oocytes in the pool)  Crypto cases in the 

community 

B7 People who test positive for crypto  Notified crypto cases in the community  control measures 

from public health service  people knowledgeable about  transmission-prevention strategies  

Public awareness of crypto within the community  Community attendance at the pools  Healthy 

swimmers exposed to crypto oocytes in the pool)  Crypto cases in the community people seeking 

medical care  people who have been tested for crypto  People who test positive for crypto 

Increased community 

awareness of crypto following 

public messaging campaigns 

leading to community 

members avoiding pools 

B8 Notified crypto cases in the community  Media attention  Public awareness of crypto within the 

community People knowledgeable about  transmission-prevention strategies  (B1a: healthy 

people exposed to infectious people) or (B1b: Infectious swimmers in the pool  Cryptosporidium 

oocytes in the pool  Healthy swimmers exposed to crypto oocytes in the pool)  Crypto cases in 

the community people seeking medical care  people who have been tested for crypto  People 

who test positive for crypto  Notified crypto cases in the community 

Media-driven public awareness 

B9 Notified crypto cases in the community  Media attention  Public awareness of crypto within the 

community Guidelines and regulations  Swimming pool operator training  swimming pool 

staff knowledge and experience  (B9a: Proper management of faecal accidents ) or (B9b: 

Effectiveness of disinfection system  Cryptosporidium oocytes in the pool  Healthy swimmers 

exposed to crypto oocytes in the pool)  Crypto cases in the community people seeking medical 

care  people who have been tested for crypto  People who test positive for crypto  Notified 

crypto cases in the community 

Media attention spurring 

political will to change policy 

B10 Swimming pool operator training  swimming pool staff knowledge and experience  Swimming 

pool operator training 

Training and staff knowledge 

and experience 
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B11 Hyperchlorination of the swimming pool   community attendance at the swimming pool   

swimming pool resources   Hyperchlorination of the swimming pool   

Financial disincentive to close 

pool for hyperchlorination  

 

 

 

 



 

214 

 

 

 

 

 

 

 

 

 

Appendix B: Model Parameters and Equations 
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PAF Sector 

Variable Unit Equation/value Ref 
New_LP_cases_by_pool 
 [PHU, Large_Pool_number]  

persons/ 
day 

SUM(New_cases_from_LP [PHU,Large_Pool_number,*] )  

new_sp_cases_by_pool  
[PHU, Small_Pool_number]  

persons/ 
day 

SUM(New_cases_from_SPs [PHU,Small_Pool_number,*] )  

AFR_LP.AFR_LP  
[PHU, Large_Pool_number, Age]  

DMNL BINOMIAL(1, AFR_per_day_in_Large_pool)  

AFR_LP.AFR_per_day_in_Large_pool 
[PHU, Large_Pool_number, Age]  

AFR/ 
day 

.Sick_swimmers_in_each_LP [PHU,Large_Pool_number,Age] 
(.Probability_of_AFR_given_infection_LP 
[Age,Large_Pool_number] 
+(.Probability_of_AFR_given_infection_LP 
[Age,Large_Pool_number]  (AFR_sensitivity_converter [Age] 
/100))) 

 

AFR_LP.Large_ARF_released 
 [PHU, Large_Pool_number, Age]  

oocytes/ 
day 

IF (AFR_LP [PHU,Large_Pool_number,Age] =1) THEN 
Oocyte_concetration_in_an_AFR [Age] ELSE 0 

 

AFR_LP.number_oocytes_per_unit_we
ight 

oocytes/ 
gram 

UNIFORM(50, 10^6) (Pintar et 
al., 
2010),(G
erba, 
2000) 

AFR_LP.Oocyte_concetration_in_an_A
FR [Age]  

 weight_of_AFR [Age] number_oocytes_per_unit_weight  

AFR_LP.oocytes_released_into_LP  
[PHU, Large_Pool_number]  

oocytes/ 
day 

SUM(Large_ARF_released [PHU,Large_Pool_number, *] )  

AFR_LP.weight_of_AFR 
[Under_5_Years_Old]  

grams TRIANGULAR(30, 50, 70) 
 

(Pintar et 
al., 2010) 

AFR_LP.weight_of_AFR 
[Over_5_Years_Old]  

grams TRIANGULAR(100, 150, 200) (Pintar et 
al., 2010) 

AFR_SP.AFR_in_Small_Pool  
[PHU, Small_Pool_number, Age]  

DMNL BINOMIAL(1,AFR_per_day_in_small_pool)  

AFR_SP.AFR_per_day_in_small_pool 
[PHU, Small_Pool_number, Age]  

AFR/ 
day 

Sick_swimmers_in_each_SP(.Probability_of_AFR_given_infection_
SP [Age,Small_Pool_number] 
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+(.Probability_of_AFR_given_infection_SP [Age,Small_Pool_number] 
 (AFR_sensitivity_converter_SP [Age] /100))) 

AFR_SP.number_oocytes_per_unit_we
ight 

oocytes/ 
day 

UNIFORM(50, 10^6,) (Pintar et 
al., 
2010),(G
erba, 
2000) 

AFR_SP.Oocyte_concetration_in_an_A
FR [Age]  

oocytes/ 
day 

weight_of_AFR [Age] number_oocytes_per_unit_weight)  

AFR_SP.oocytes_released_into_SP  
[PHU, Small_Pool_number]  

oocytes/ 
day 

SUM(Small_ARF_released [PHU, Small_Pool_number, *] )  

AFR_SP.Small_ARF_released [PHU, 
Small_Pool_number, Age]  

DMNL (AFR_in_Small_Pool [PHU,Small_Pool_number,Age] =1) THEN 
Oocyte_concetration_in_an_AFR [Age] ELSE 0 

 

AFR_SP.weight_of_AFR 
[Under_5_Years_Old]  

grams TRIANGULAR(30, 50, 70) (Pintar et 
al., 2010) 

AFR_SP.weight_of_AFR 
[Over_5_Years_Old]  

grams TRIANGULAR(100, 150, 200) (Pintar et 
al., 2010) 

Healthy_Swimmers.Daily_susceptible_
Swimmers [PHU, Age]  

persons/ 
day 

Daily_Swimming_frequency(Susceptible_swimmers [PHU, Age] 
.Seasonal_converter [Age] ) 

 

Healthy_Swimmers.healthy_adults_in_
LP [PHU]  

persons/ 
day 

susceptible_adult_swimmers [PHU] (1-percent_of_adults_using_SP)  

Healthy_Swimmers.Daily_susceptible_
Swimmers [PHU, Age]  

persons/ 
day 

.Daily_Swimming_frequency(Susceptible_swimmers [PHU, Age] 
.Seasonal_converter [Age] ) 

 

Healthy_Swimmers.healthy_adults_in_
LP [PHU]  

persons/ 
day 

susceptible_adult_swimmers [PHU] (1-percent_of_adults_using_SP)  

Healthy_Swimmers.Healthy_adults_in_
SP [PHU]  

persons/ 
day 

susceptible_adult_swimmers [PHU] (percent_of_adults_using_SP)  

Healthy_Swimmers.healthy_children_i
n_LP [PHU]  

persons/ 
day 

susceptible_child_swimmers [PHU] percent_of_children_using_LP  

Healthy_Swimmers.Healthy_children_i
n_SP [PHU]  

persons/ 
day 

susceptible_child_swimmers [PHU] (1-
percent_of_children_using_LP) 

 

Healthy_Swimmers.Healthy_People_in
_LP [PHU, Under_5_Years_Old]  

persons/ 
day 

healthy_children_in_LP [PHU]   

Healthy_Swimmers.Healthy_People_in
_LP [PHU, Over_5_Years_Old]  

persons/ 
day 

healthy_adults_in_LP [PHU]   
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Healthy_Swimmers.percent_of_adults_
using_SP 

DMNL 0.05  

Healthy_Swimmers.percent_of_childre
n_using_ LP 

DMNL 0.25  

Healthy_Swimmers.susceptible_adult_s
wimmers [PHU]  

persons/ 
day 

Daily_susceptible_Swimmers [PHU,Over_5_Years_Old]   

Healthy_Swimmers.susceptible_child_s
wimmers [PHU]  

persons/ 
day 

Daily_susceptible_Swimmers [PHU,Under_5_Years_Old]   

Healthy_Swimmers.Susceptible_swimm
ers [PHU, Age]  

persons .SUSCEPTIBLE_PEOPLE [PHU, Age] 
.Portion_of_population_who_swim [Age]  

 

Sick_swimmers.Adults_in_LP [PHU]  persons/ 
day 

(infectious_adult_swimmers [PHU] (1-PAF_Messaging 
[Large_pool] ))  (1-percent_of_adults_using_SP) 

 

Sick_swimmers.Adults_in_SP [PHU]  persons/ 
day 

(infectious_adult_swimmers [PHU] (1-PAF_Messaging 
[Small_pool] ))  (percent_of_adults_using_SP) 

 

Sick_swimmers.children_in_LP [PHU]  persons/ 
day 

infectious_child_swimmers [PHU]  (1-PAF_Messaging 
[Large_pool] )) percent_of_children_using_LP 

 

Sick_swimmers.children_in_SP [PHU]  persons/ 
day 

(infectious_child_swimmers [PHU]  (1-PAF_Messaging 
[Small_pool] ))  (1-percent_of_children_using_LP) 

 

Sick_swimmers.daily 
_infectious_swimmers [PHU, Age]  

persons/ 
day 

Infectious_swimmers [PHU,Age] 
(.Daily_Swimming_frequency.Seasonal_converter [Age] ) 

 

Sick_swimmers.infectious 
_adult_swimmers [PHU]  

persons/ 
day 

daily_infectious_swimmers [PHU,Over_5_Years_Old]   

Sick_swimmers.infectious 
_child_swimmers [PHU]  

persons/ 
day 

daily_infectious_swimmers [PHU,Under_5_Years_Old]   

Sick_swimmers.Infectious_swimmers 
[PHU, Age]  

persons (.Total_Infectious_People [PHU,Age]  
.Portion_of_population_who_swim [Age] )  (1-
"Percent_of_infectious_swimmers_who_self-exclude" [PHU,Age] ) 

 

Sick_swimmers.Messaging_Converter 
[Pool_type]  

DMNL IF Pool_messaging_time_cycle = Messaging_start_date 
AND PAF_messaging_switch = 1  
THEN  PULSE(PAF_Messaging_effectiveness, Messaging_start_date) 
 ELSE 0 

 

Sick_swimmers.Messaging_start_date DMNL 140  
Sick_swimmers.PAF_Messaging 
[Pool_type]  

DMNL DELAY1((Messaging_Converter [Pool_type] 
PAF_Messaging_Effectiveness_Decay),  
PAF_Messaging_Effectiveness_Decay) 
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Sick_swimmers.PAF_messaging_cycle_ 
period [Large_pool]  

days 365  

Sick_swimmers.PAF_messaging_cycle_ 
period [Small_pool]  

days 365  

Sick_swimmers.PAF_ 
Messaging_effectiveness 

DMNL 0.1  

Sick_swimmers.PAF_Messaging_ 
Effectiveness_Decay 

days 15  

Sick_swimmers.PAF_messaging_switch 
[Pool_type]  

DMNL 0  

Sick_swimmers.percent_of 
_adults_using_SP 

DMNL 0.05  

Sick_swimmers.percent_of 
_children_using_LP 

DMNL 0.25  

Sick_swimmers."Percent_of_infectious
_ swimmers_who_self-exclude" [PHU, 
Age]  

DMNL AWARE_INFECTIOUS_PEOPLE [Age,PHU] / 
.Total_Infectious_People [PHU,Age]  

 

Sick_swimmers.Pool_CycleStartTime 
[Pool_type] 

days INIT(TIME)  

Sick_swimmers.Pool_messaging_time_ 
cycle [Pool_type]  

days COUNTER(Pool_CycleStartTime,  
Pool_CycleStartTime+PAF_messaging_cycle_period) 

 

Sick_swimmers.Sick_People_in_LP 
[PHU, Under_5_Years_Old]  

persons/ 
day 

children_in_LP [PHU]   

Sick_swimmers.Sick_People_in_LP 
 [PHU, Over_5_Years_Old]  

persons/ 
day 

Adults_in_LP [PHU]   

Seasonal_converter 
 [Under_5_Years_Old]  

DMNL GRAPH(Time_cycle)(1.0, 0.750), (35.0, 0.750), (63.0, 0.750), (98.0, 
1.000), (126.0, 1.000), (154.0, 1.200), (189.0, 1.500), (217.0, 1.200), 
(245.0, 1.000), (280.0, 1.000), (308.0, 1.000), (343.0, 0.750), (365.0, 
0.750) 

 

Seasonal_converter  
[Over_5_Years_Old]  

DMNL GRAPH(Time_cycle)(1.0, 0.400), (35.0, 0.400), (63.0, 0.500), (98.0, 
0.750), (126.0, 1.000), (154.0, 1.100), (189.0, 1.500), (217.0, 1.200), 
(245.0, 1.100), (280.0, 1.000), (308.0, 0.750), (343.0, 0.500), (365.0, 
0.400) 

 

AFR_detected_LP  
[Large_Pool_number] 

DMNL IF (RANDOM(0,100) < 
AFR_detection_and_proper_manAgement_rate_LP) THEN 1 ELSE 0 
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AFR_detected_SP  
[Small_Pool_number] 

DMNL = IF (RANDOM(0,100) < 
AFR_detection_and_proper_manAgement_rate_SP) THEN 1 ELSE 0 

 

AFR_detection_and_proper_ 
management_rate_LP 

DMNL 30  

AFR_detection_and_proper_ 
management_rate_SP 

DMNL 30  

Contamination_LP 
 [PHU, Large_Pool_number] 

oocytes/ 
day 

IF PREVIOUS(Reactionary_hyperchlorination_LP 
[PHU,Large_Pool_number] , 0) = 1 OR 
PREVIOUS(Routine_hyperchlorination_LP 
[PHU,Large_Pool_number] , 0) = 1 THEN 0 ELSE 
(Oocytes_shed_intoLP [PHU,Large_Pool_number] 
+AFR_LP.oocytes_released_into_LP [PHU,Large_Pool_number] ) 

 

Contamination_SP 
 [PHU, Small_Pool_number] 

oocytes/ 
day 

IF PREVIOUS(Reactionary_hyperchlorination_SP 
[PHU,Small_Pool_number] , 0) = 1 OR 
PREVIOUS(Routine_hyperchlorination_SP 
[PHU,Small_Pool_number] , 0) = 1 THEN 0 ELSE 
Oocytes_shed_into_SP [PHU,Small_Pool_number] 
+AFR_SP.oocytes_released_into_SP [PHU,Small_Pool_number]  

 

Crypto_dose_in_LPs  
[PHU, Age, Large_Pool_number] 

oocytes/ 
person 
 

(oocytes_per_Litre_in_LPs [PHU,Large_Pool_number]  
(Percent_of_oocytes_viable/100)) Pool_waster_ingested_per_swim 
[Age,Large_pool]  

 

Crypto_dose_in_SPs 
 [PHU, Age, Small_Pool_number] 

oocytes/ 
person 
 

(oocytes_per_Litre_in_SPs [PHU,Small_Pool_number]  
(Percent_of_oocytes_viable/100)) Pool_waster_ingested_per_swim 
[Age,Small_pool]  

 

Daily_Swimming_frequency  
[PHU, Age] 

persons/ 
person 
/day 
 

BETA(1.5, 4.5) 0.79+0.008 (Australi
an 
Bureau 
of 
Statistics, 
2014) 

Decontamination_LP  
[PHU, Large_Pool_number] 

oocytes/ 
day 

IF Reactionary_hyperchlorination_LP [PHU, Large_Pool_number] = 1 
THEN ((Oocytes_in_the_large_pool [PHU,Large_Pool_number] /DT) 
+ (Contamination_LP-Removal_LP [PHU, Large_Pool_number] ))  
ELSE IF Routine_hyperchlorination_LP [PHU,Large_Pool_number] = 
1  
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THEN ((Oocytes_in_the_large_pool [PHU,Large_Pool_number] 
/DT)+(Contamination_LP-Removal_LP [PHU, Large_Pool_number] 
))  
ELSE 0 

Decontamination_SP  
[PHU, Small_Pool_number] 

oocytes/ 
day 

IF Reactionary_hyperchlorination_SP [PHU, Small_Pool_number] = 1  
THEN ((Oocytes_in_the_small_pool [PHU,Small_Pool_number] 
/DT)+(Contamination_SP-Removal_SP [PHU, Small_Pool_number] ))  
ELSE IF Routine_hyperchlorination_SP [PHU,Small_Pool_number] = 
1  
THEN ((Oocytes_in_the_small_pool [PHU,Small_Pool_number] 
/DT)+(Contamination_SP-Removal_SP [PHU, Small_Pool_number] )) 
 ELSE 0 

 

Disinfectant_type_switch_LP DMNL 0  
Disinfectant_type_switch_SP DMNL 0  
Dose_response_parameter 
 [PHU] 

persons/ 
oocytes/ 
day 

BETA(2.55,3.45) 0.061+0.005 (Messner 
et al., 
2001), 
(Brouwer 
et al., 
2017), 
(Ryu et 
al., 2007) 

Grams_of_faeces_shed_by_adults grams UNIFORM(0.001, 0.1)+0.1 (Gerba, 
2000) 

Grams_of_faeces_shed_by_children grams BETA(1.05, 4.95) 4.99+0.01 (Gerba, 
2000) 

healthy_swimmers_in_each_LP  
[PHU, Large_Pool_number, Age] 

persons/ 
day 

Healthy_Swimmers.Healthy_People_in_LP [PHU, Age] 
Users_in_each_LP [Large_Pool_number]  

 

healthy_swimmers_in_each_SP 
 [PHU, Small_Pool_number, Age] 

persons/ 
day 

Healthy_Swimmers.Healthy_People_in_SP [PHU, Age] 
Users_in_each_SP [Small_Pool_number]  

 

"Log-3_disinfection_LP"  
[PHU, Large_Pool_number] 

days BETA(2.47,3.53) 1.465+1.16  

"Log-3_disinfection_SP_ 
highest_risk_only"  
[Small_Pool_number] 

 UNIFORM(2,10) 
BETA(3.071,2.929) 1.12+0.58 
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New_cases_from_LP 
 [PHU, Large_Pool_number, Age] 

persons/ 
day 

Probability_of_infection_per_swim_event_LP [PHU, 
Large_Pool_number, Age] healthy_swimmers_in_each_LP [PHU, 
Large_Pool_number, Age]  

 

New_cases_from_SPs  
[PHU, Small_Pool_number, Age] 

persons/ 
day 

Probability_of_infection_per_swim_event_SP [PHU, 
Small_Pool_number, Age ] healthy_swimmers_in_each_SP [PHU, 
Small_Pool_number, Age]  

 

New_swimming_related_cases [PHU, 
Age] 

persons/ 
day 

(SUM(New_cases_from_SPs [PHU, *, Age]) 
+SUM(New_cases_from_LP [PHU, *, Age])) 
+((SUM(New_cases_from_SPs [PHU, *, Age]) 
+SUM(New_cases_from_LP [PHU, *, Age] ))  
(Swimming_cases_sensitivity_parameter/100)) 

 

Oocyst_shed_by_LP_users  
[PHU, Large_Pool_number, Age] 

oocytes/ 
day 

Sick_swimmers_in_each_LPOocytes_from_shedding_swimmers 
[PHU,Age] -  ((Oocytes_from_shedding_swimmers [PHU,Age] 0.8) 
 (Sick_swimmers_in_each_LP 
((Percent_of_patrons_who_shower_LP [Age] 
/100)+Sick_swimmers.PAF_Messaging [Large_pool] ))) 

 

Oocyst_shed_by_SP_users  
[PHU, Small_Pool_number, Age]  

oocytes/ 
day 

Sick_swimmers_in_each_SPOocytes_from_shedding_swimmers 
[PHU,Age] -  ((Oocytes_from_shedding_swimmers [PHU,Age] 0.8) 
 (Sick_swimmers_in_each_SP 
((Percent_of_patrons_who_shower_SP [Age] 
/100)+Sick_swimmers.PAF_Messaging [Small_pool] ))) 

 

oocyte_inactivation_LP  
[PHU, Large_Pool_number]  

DMNL UNIFORM(2,10) (Ryan et 
al., 2017) 

oocyte_inactivation_SP 
 [PHU, Small_Pool_number]  

DMNL UNIFORM(2,10) (Ryan et 
al., 2017) 

Oocytes_from_shedding_swimmers  
[PHU, Under_5_Years_Old]  

oocytes/ 
person 

Grams_of_faeces_shed_by_childrenoocytes_in_1_gram_of_stool 
[PHU]  

 

Oocytes_from_shedding_swimmers  
[PHU, Over_5_Years_Old]  

oocytes/ 
person 

Grams_of_faeces_shed_by_adultsoocytes_in_1_gram_of_stool 
[PHU]  

 

oocytes_in_1_gram_of_stool 
 [PHU]  

 UNIFORM(50, 10^6) (Castor 
and 
Beach, 
2004) 

Oocytes_in_the_large_pool 
 [PHU, Large_Pool_number] (t) 

oocytes Oocytes_in_the_large_pool [PHU, Large_Pool_number] (t - dt) + 
(Contamination_LP [PHU, Large_Pool_number] - Removal_LP 
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[PHU, Large_Pool_number] - Decontamination_LP [PHU, 
Large_Pool_number] )  dt 

Oocytes_in_the_small_pool  
[PHU, Small_Pool_number] (t) 

oocytes Oocytes_in_the_small_pool [PHU, Small_Pool_number] (t - dt) + 
(Contamination_SP [PHU, Small_Pool_number] - Removal_SP [PHU, 
Small_Pool_number] - Decontamination_SP [PHU, 
Small_Pool_number] )  dt 

 

oocytes_per_Litre_in_LPs 
 [PHU, Large_Pool_number]  

oocytes/ 
litre 

Oocytes_in_the_large_pool [PHU,Large_Pool_number] /LP_volume 
[Large_Pool_number]  

 

oocytes_per_Litre_in_SPs [PHU, 
Small_Pool_number]  

oocytes/ 
litre 

Oocytes_in_the_small_pool [PHU,Small_Pool_number] /SP_volume 
[Small_Pool_number]  

 

Oocytes_shed_into_SP oocytes/ 
day 

SUM(Oocyst_shed_by_SP_users [PHU,Small_Pool_number,*] )  

Oocytes_shed_intoLP  
[PHU, Large_Pool_number]  

oocytes/ 
day 

SUM(Oocyst_shed_by_LP_users [PHU,Large_Pool_number, *] )  

Percent_of_oocytes_viable DMNL BETA(3.06, 2.95) 38.9+61.1 (Schets et 
al., 2004) 

Percent_of_patrons_who_shower_LP 
[Age]  

DMNL 15  

Percent_of_patrons_who_shower_SP 
[Age]  

DMNL 15  

Pool_waster_ingested_per_swim 
[Under_5_Years_Old, Large_pool]  

Litre/ 
person 

BETA(2.26,4.66) 0.154 (Dufour 
et al., 
2006) 

Pool_waster_ingested_per_swim 
[Under_5_Years_Old, Small_pool]  

Litre/ 
person 

BETA(2.26,4.66) 0.154  

Pool_waster_ingested_per_swim 
[Over_5_Years_Old, Large_pool]  

Litre/ 
person 

BETA(2.71,4.66) 0.053  

Pool_waster_ingested_per_swim 
[Over_5_Years_Old, Small_pool]  

Litre/ 
person 

UNIFORM(0, 0.01)  

Portion_of_population_who_swim  
[Age]  

DMNL = 0.0596 (Australi
an 
Bureau 
of 
Statistics, 
2014) 
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Probability_of_AFR_given_infection_L
P [Under_5_Years_Old]  

DMNL BETA(1.44, 4.56) 0.045+0.0005  

Probability_of_AFR_given_infection_L
P [Over_5_Years_Old]  

DMNL BETA(2.77, 3.22) 0.009+0.001  

Probability_of_AFR_given_infection_S
P [Under_5_Years_Old]  

DMNL BETA(1.44, 4.56) 0.045+0.0005  

Probability_of_AFR_given_infection_S
P [Over_5_Years_Old]  

DMNL BETA(2.77, 3.22) 0.009+0.001  

Probability_of_infection_per_ 
swim_event_LP  
[PHU, Large_Pool_number, Age]  

DMNL 1-EXP(-Crypto_dose_in_LPs [PHU,Age,Large_Pool_number] 
Dose_response_parameter [PHU] ) 

(Messner 
et al., 
2001), 
(Brouwer 
et al., 
2017), 
(Ryu et 
al., 2007) 

Probability_of_infection_per_ 
swim_event_SP 
 [PHU, Small_Pool_number, Age]  

DMNL 1-EXP(-Crypto_dose_in_SPs [PHU, Age,Small_Pool_number] 
Dose_response_parameter [PHU] ) 
 

(Messner 
et al., 
2001), 
(Brouwer 
et al., 
2017), 
(Ryu et 
al., 2007) 

Reactionary_hyperchlorination_LP 
 [PHU, Large_Pool_number]  

DMNL IF AFR_LP.oocytes_released_into_LP [PHU, Large_Pool_number]  
>0  
AND AFR_detected_LP [Large_Pool_number] >0  
THEN 1  
ELSE 0 

 

Reactionary_hyperchlorination_SP  
[PHU, Small_Pool_number]  

DMNL IF (AFR_SP.oocytes_released_into_SP [PHU,Small_Pool_number] >0 
 AND AFR_detected_SP [Small_Pool_number] >0)  
THEN 1  
ELSE 0 

 

Removal_LP  
[PHU, Large_Pool_number]  

oocytes/ 
day 

IF Disinfectant_type_switch_LP = 1 THEN 
(Oocytes_in_the_large_pool [PHU,Large_Pool_number] /"Log-
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3_disinfection_LP") ELSE (Oocytes_in_the_large_pool 
[PHU,Large_Pool_number] /oocyte_inactivation_LP 
[PHU,Large_Pool_number] ) 

Removal_SP  
[PHU, Small_Pool_number]  

oocytes/ 
day 

IF Disinfectant_type_switch_SP= 2 THEN 
(Oocytes_in_the_small_pool [PHU,Small_Pool_number] /"Log-
3_disinfection_SP") ELSE IF Disinfectant_type_switch_SP = 1 THEN 
(Oocytes_in_the_small_pool [PHU,Small_Pool_number] /"Log-
3_disinfection_SP_highest_risk_only" [Small_Pool_number] ) ELSE 
(Oocytes_in_the_small_pool [PHU,Small_Pool_number] 
/oocyte_inactivation_SP [PHU,Small_Pool_number] ) 

 

Routine_hyperchlorination_frequency_
LP 

days 90  

Routine_hyperchlorination_frequency_
SP 

days 60  

Routine_hyperchlorination_LP  
[PHU, Large_Pool_number]  

DMNL PULSE (Routine_hyperchlorination_switch_LP, 
Routine_hyperchlorination_frequency_LP, 
Routine_hyperchlorination_frequency_LP)) DT 

 

Routine_hyperchlorination_SP  
[PHU, Small_Pool_number]  

DMNL PULSE (Routine_hyperchlorination_switch_SP , 
Routine_hyperchlorination_frequency_SP, 
Routine_hyperchlorination_frequency_SP)) DT 

 

Routine_hyperchlorination_switch_LP DMNL 0  
Routine_hyperchlorination_switch_SP DMNL 0  
Sick_swimmers_in_each_LP  
[PHU, Large_Pool_number, Age]  

persons/
day 

Sick_swimmers.Sick_People_in_LP [PHU, Age] Users_in_each_LP 
[Large_Pool_number]  

 

Sick_swimmers_in_each_SP  
[PHU, Small_Pool_number, Age]  

persons/ 
day 

Sick_swimmers.Sick_People_in_SP [PHU, Age] Users_in_each_SP 
[Small_Pool_number]  

 

Users_in_each_LP  
[Large_Pool_number]  

DMNL IF Time_cycle <45 OR Time_cycle>300 THEN  Seasonal_LP_users 
[Large_Pool_number,Winter] ELSE Seasonal_LP_users 
[Large_Pool_number,Summer]  

 

Users_in_each_SP  
[Small_Pool_number]  

DMNL IF Time_cycle <45 OR Time_cycle>300 THEN Seasonal_SP_users 
[Small_Pool_number,Winter] ELSE Seasonal_SP_users 
[Small_Pool_number,Summer]  
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Healthcare Sector 

Variable Unit Equation/value Ref 
faecal_testing_delay days UNIFORM(1, 5)  
faecal_testing_rate  
[Age, PHU] 

persons/ 
day 

testing_gap [Age,PHU] /faecal_testing_delay  

fraction_of_people_tested  
[Age, PHU] 

DMNL BETA(3.08, 2.91) 0.2208 (Scallan et al., 
2005),(OzFoodNet 
Working Group, 
2003), (Kirk et al., 
2014), (Vally et al., 
2009) 

fraction_of_positive_cases 
_made_aware  
[Under_5_Years_Old] 

DMNL 43  

fraction_of_positive_cases_ 
made_aware 
 [Over_5_Years_Old] 

DMNL 43  

fraction_of_tests_submitted DMNL BETA(4, 2) 0.04+0.91 (Kirk et al., 2014) 
health_seeking_fraction  
[PHU, Age] 

DMNL BETA(3.25, 2.75) 0.103 (Vally et al., 2009), 
(Scallan et al., 2005) 

healthcare_seeking_gap  
[Age, PHU] 

persons predicted_people_with_crypto_going_to_doctor [Age,PHU] -
PEOPLE_WITH_CRYPTO_AT_THE_DOCTOR [Age,PHU]  

 

healthcare_seeking_rate  
[Age, PHU] 

persons/ 
day 

healthcare_seeking_gap [Age,PHU] /treatment_seeking_delay  

microscopy_sensitivity  
[PHU] 

DMNL BETA(3.25, 2.74) 0.67+0.33 (ten Hove et al., 
2009), (Stark et al., 
2014), (Van den 
Bossche et al., 
2015), (Chalmers et 
al., 2011) 

PCR_sensitivity  
[PHU] 

DMNL BETA(3.72, 2.23) 0.139+0.8 (ten Hove et al., 
2009), (Stark et al., 
2014), (Haque et al., 
2007) 
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people_not_tested_but_aware  
[Age, PHU] 

persons/ 
day 

PEOPLE_WITH_CRYPTO_AT_THE_DOCTOR [Age,PHU]  
(1-(fraction_of_people_testedfraction_of_tests_submitted ))) 
 (physician_precautionary_advice_fraction [Age] 
/100)+(Healthcare_Messaging_effect [PHU,Age] )) 

 

PEOPLE_WITH_CRYPTO_AT_
THE_ DOCTOR 
[Age, PHU] (t) 

persons PEOPLE_WITH_CRYPTO_AT_THE_DOCTOR [Age, PHU] (t 
- dt) + (healthcare_seeking_rate [Age, PHU] )  dt 

 

PEOPLE_WITH_CRYPTO_TES
TED [Age, PHU] (t) 

persons PEOPLE_WITH_CRYPTO_TESTED [Age, PHU] (t - dt) + 
(faecal_testing_rate [Age, PHU] )  dt 

 

physician_precautionary 
_advice_fraction  
[Age] 

DMNL 5 (Attias et al., 2015) 

positive_crypto_cases [Age, PHU] persons ((PEOPLE_WITH_CRYPTO_TESTED [Age,PHU] 
testing_transition) PCR_sensitivity [PHU] ) 
+((PEOPLE_WITH_CRYPTO_TESTED [Age,PHU]  (1-
testing_transition) microscopy_sensitivity [PHU] )) 

 

predicted_aware_infectious_peop
le [Age, PHU] 

persons positive_crypto_cases [Age,PHU]  
((fraction_of_positive_cases_made_aware [Age] /100) 
+Healthcare_Messaging_effect [PHU,Age] ) 

 

predicted_people_with_ 
crypto_going_to_ doctor  
[Age, PHU] 

persons SYMPTOMATIC_INFECTIOUS_PEOPLE [PHU,Age] 
health_seeking_fraction [PHU,Age]  

 

predicted_people_with_ 
crypto_tested  
[Age, PHU] 

persons (PEOPLE_WITH_CRYPTO_AT_THE_DOCTOR [Age,PHU] 
fraction_of_people_tested [Age,PHU] )  
(fraction_of_tests_submitted) 

 

testing_gap [Age, PHU] persons predicted_people_with_crypto_tested [Age,PHU] -
PEOPLE_WITH_CRYPTO_TESTED [Age,PHU]  

 

testing_transition DMNL GRAPH(TIME)(1, 0.000), (2009, 0.000), (2010, 0.050), (2206, 
0.100), (2393, 0.150), (2571, 0.200), (2755, 0.300), (2936, 
0.500), (3102, 0.700), (3486, 0.800), (4000, 0.850) 

 

treatment_seeking_delay days BETA(1.3, 4.69)26+1 (Vally et al., 2009), 
(Scallan et al., 
2005),(Valderrama 
et al., 2009) 
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Internationally-acquired case sector  

Variable Unit Equation/value reference 
asymptomatic_returning 
[PHU, Age] 

persons/ 
day 

EXPOSED_TRAVELLERS [PHU, Age]  (1-
Rate_of_symptomatic_travellers) 

 

Daily_departures 
[Under_5_Years_Old] 

persons/ 
day 

GRAPH(TIME)  

Daily_departures 
[Over_5_Years_Old] 

persons/ 
day 

GRAPH(TIME)  

departing  
[PHU, Age] 

persons/ 
day 

Daily_departures [Age] SEQ_fraction [PHU, Age] )+((Daily_departures 
[Age] SEQ_fraction [PHU, Age] )  (Travel_multiplier/100)) 

 

EXPOSED_TRAVELLERS  
[PHU, Under_5_Years_Old] (t) 

persons EXPOSED_TRAVELLERS [PHU, Under_5_Years_Old] (t - dt) + ("high-
risk_exposure" [PHU, Under_5_Years_Old] - symptomatic_returning [PHU, 
Under_5_Years_Old] - asymptomatic_returning [PHU, Under_5_Years_Old] ) 
 dt 

 

EXPOSED_TRAVELLERS  
[PHU, Over_5_Years_Old] (t) 

persons EXPOSED_TRAVELLERS [PHU, Over_5_Years_Old] (t - dt) + ("high-
risk_exposure" [PHU, Over_5_Years_Old] - symptomatic_returning [PHU, 
Over_5_Years_Old] - asymptomatic_returning [PHU, Over_5_Years_Old] )  
dt 

 

high_risk_infection_rate 
 

DMNL UNIFORM(0, 0.014) ten Hove 
RJ et al. 
2009 

"high-risk_exposure" 
 [PHU, Age] 

persons/ 
day 

((TRAVELLERS [PHU, Age]  (1-proportion_of_low_risk_travellers [Age] ) 
 (high_risk_infection_rate))+(TRAVELLERS [PHU,Age] 
proportion_of_low_risk_travellers [Age]  
(low_risk_infection_rate)))/length_of_travel [PHU]  

 

length_of_travel 
 [PHU] 

days UNIFORM(2, 30)  

low_risk_infection_rate DMNL UNIFORM(0,  0.009) (ten Hove 
et al., 
2009) 

proportion_of_low_risk_travell
ers [Under_5_Years_Old] 

DMNL GRAPH(TIME)  

proportion_of_low_risk_travell
ers [Over_5_Years_Old] 

DMNL GRAPH(TIME)  
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Rate_of_symptomatic_traveller
s 

DMNL BETA(2.16, 3.84) 0.38+0.5 (ten Hove 
et al., 
2009) 

SEQ_fraction DMNL  [Metro_North, Under_5_Years_Old] = 0.1935 
 [Metro_North, Over_5_Years_Old] = 0.2009 
 [Metro_South, Under_5_Years_Old] = 0.2404 
 [Metro_South, Over_5_Years_Old] = 0.2282 
 [Gold_Coast, Under_5_Years_Old] = 0.1134 
 [Gold_Coast, Over_5_Years_Old] = 0.1216 

(Australian 
Bureau of 
Statistics, 
2015c) 

symptomatic_returning  
[PHU, Age] 

persons/ 
day 

(EXPOSED_TRAVELLERS [PHU, Age] Rate_of_symptomatic_travellers)  

TRAVELLERS  
[PHU, Age] (t) 

persons TRAVELLERS [PHU, Age] (t - dt) + (departing [PHU, Age] - 
returning_uninfected [PHU, Age] - "high-risk_exposure" [PHU, Age]  dt 

 

Population Sector 

Variable Unit Equation/value reference 
Asymptomatic_infection 
 [PHU, Age]  

persons/ 
day 

LATENTLY_INFECTED_PEOPLE [PHU, Age]  (1-
Probably_of_being_symptomatic_given_infection))/Incubation_Period 

 

ASYMPTOMATIC_INFECTI
OUS_ PEOPLE  
[PHU, Age] (t) 

persons ASYMPTOMATIC_INFECTIOUS_PEOPLE [PHU, Age] (t) = 
ASYMPTOMATIC_INFECTIOUS_PEOPLE [PHU, Age] (t - dt) + 
(Asymptomatic_infection [PHU, Age] + asymptomatic_returning 
[PHU, Age] - Asymptopatic_recovery [PHU, Age] )  dt 

 

Asymptopatic_recovery 
 [PHU, Age]  

persons/ 
day 

ASYMPTOMATIC_INFECTIOUS_PEOPLE [PHU, Age] /"Post-
symptom_infectious_period" 

 

daily_population_change 
 [PHU, Age]  

persons/ 
day 

regional_population-(PREVIOUS(regional_population)  

duration_of_symptoms days BETA(2.04,3.31, 4) 27+1 (Hunter et al., 
2004a), (Jokipii  
and Jokipii 
1986),(Heijbel 
et al., 
1987),(Johansen 
et al., 2015), 
(Millard et al., 
1994) 
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Exposure 
 [PHU, Age]  

persons/ 
day 

New_swimming_related_cases [PHU, Age] 
+New_person_to_person_cases [Age,PHU]  

(Jokipii  and 
Jokipii 1986), 
(Millard et al., 
1994),(Chalmers 
and Davies, 
2010) 

Incubation_Period days BETA(4.3, 3.6) 11+1  
LATENTLY_INFECTED_PE
OPLE [PHU, Age] (t) 

persons LATENTLY_INFECTED_PEOPLE [PHU, Age] (t - dt) + (Exposure 
[PHU, Age] - Symptomatic_infection [PHU, Age] - 
Asymptomatic_infection [PHU, Age] )  dt 

 

length_of_immunity days 1  
Post-
symptom_infectious_period 

days BETA(2.69,3.31) 13+1 (Jokipii  and 
Jokipii 1986) 

Probably_of_being_symptomati
c_given_infection 

DMNL BETA(2.16, 3.84) 0.38+0.5 (Okhmatovskaia 
et al., 
2010),(Soller et 
al., 2010, 
Heijbel et al., 
1987), 

RECOVERED_PEOPLE  
[PHU, Age] (t) 

persons RECOVERED_PEOPLE [PHU, Age] (t - dt) + 
(Asymptopatic_recovery [PHU, Age] + symptomatic_recovery [PHU, 
Age] - Waning_immunity [PHU, Age] )  dt 

 

RECOVERING_SYMPTIMAT
IC _INFECTIOUS_PEOPLE  
[PHU, Age] (t) 

persons RECOVERING_SYMPTIMATIC_INFECTIOUS_PEOPLE [PHU, 
Age] (t - dt) + (symptoms_waning [PHU, Age] + Relapse_recovery 
[PHU, Age] - symptomatic_recovery [PHU, Age] - Relapsing [PHU, 
Age] )  dt 

 

regional_population [PHU, 
Age]  

persons/ 
day 

GRAPH(TIME)  

Reinfection_delay days BETA(1.5,4.5) 8+2 (MacKenzie et 
al., 1995b) 

relapse_duration days BETA(1.28, 4.71) 14+1 (MacKenzie et 
al., 1995b) 

Relapse_Rate DMNL BETA(1.84, 4.06) 0.62+0.18 (Okhuysen et 
al., 
1998),(Hunter et 
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al., 
2004b),(Boehme
r et al., 
2009),(MacKen
zie et al., 1995a)  

Relapse_recovery  
[PHU, Age]  

persons/ 
day 

RELAPSED_SYMPTIMATIC_INFECTIOUS_PEOPLE [PHU, Age] 
/relapse_duration 

 

RELAPSED_SYMPTIMATIC_ 
INFECTIOUS_PEOPLE  
[PHU, Age] (t) 

persons RELAPSED_SYMPTIMATIC_INFECTIOUS_PEOPLE [PHU, Age] 
(t - dt) + (Relapsing [PHU, Age] - Relapse_recovery [PHU, Age] )  
dt 

 

Relapsing 
 [PHU, Age]  

persons/ 
day 

RECOVERING_SYMPTIMATIC_INFECTIOUS_PEOPLE [PHU, 
Age] Relapse_Rate/Reinfection_delay 

 

Returning_uninfected  
[PHU, Age]  

persons/ 
day 

((TRAVELLERS [PHU, Age] proportion_of_low_risk_travellers 
[Age]  (1-low_risk_infection_rate))+((TRAVELLERS [PHU, Age] 
 (proportion_of_low_risk_travellers [Age] )  (1-
high_risk_infection_rate))))/length_of_travel [PHU]  

 

SUSCEPTIBLE_PEOPLE 
[PHU, Age] (t) 

persons SUSCEPTIBLE_PEOPLE [PHU, Age] (t - dt) + (Waning_immunity 
[PHU, Age] + returning_uninfected [PHU, Age] + 
Daily_population_change_rate [PHU, Age] - Exposure [PHU, Age] - 
departing [PHU, Age] )  dt 
 

 

Symptomatic_infection [PHU, 
Age]  

persons/ 
day 

LATENTLY_INFECTED_PEOPLE [PHU, Age] 
Probably_of_being_symptomatic_given_infection)/Incubation_Perio
d 

 

SYMPTOMATIC_INFECTIO
US_ PEOPLE  
[PHU, Age] (t) 

persons SYMPTOMATIC_INFECTIOUS_PEOPLE [PHU, Age] (t - dt) + 
(Symptomatic_infection [PHU, Age] + symptomatic_returning [PHU, 
Age] - symptoms_waning [PHU, Age] )  dt 

 

symptomatic_recovery  
[PHU, Age]  

persons/ 
day 

(LATENTLY_INFECTED_PEOPLE [PHU, Age] 
Probably_of_being_symptomatic_given_infection)/Incubation_Perio
d 

 

SYMPTOMATIC_INFECTIO
US_ PEOPLE  
[PHU, Age] (t) 

persons SYMPTOMATIC_INFECTIOUS_PEOPLE [PHU, Age] (t - dt) + 
(Symptomatic_infection [PHU, Age] + symptomatic_returning [PHU, 
Age] - symptoms_waning [PHU, Age] )  dt 

 

symptomatic_recovery  
[PHU, Age]  

persons/ 
day 

(RECOVERING_SYMPTIMATIC_INFECTIOUS_PEOPLE [PHU, 
Age]  (1-Relapse_Rate)/"Post-symptom_infectious_period" 
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symptoms_waning  
[PHU, Age]  

persons/ 
day 

SYMPTOMATIC_INFECTIOUS_PEOPLE [PHU, Age] 
/duration_of_symptoms 

 

Waning_immunity 
 [PHU, Age]  

persons/ 
day 

RECOVERED_PEOPLE [PHU, Age] /length_of_immunity  

Public Health Sector 

Variable Unit Equation/value Ref 
Aware_diagnosed_cases 
 [Age, PHU]  

persons/ 
day 

predicted_aware_infectious_people [Age,PHU] /awareness_delay [Age] )  

Aware_imported_cases 
 [Age, PHU]  

persons/ 
day 

symptomatic_returning [PHU,Age]  
(Percent_of_sympotmatic_travellers_screened_out/100) 

 

AWARE_INFECTIOUS_PEO
PLE [Age, PHU] (t) 

persons AWARE_INFECTIOUS_PEOPLE [Age, PHU] (t - dt) + 
(Aware_diagnosed_cases [Age, PHU] + Aware_suspected_cases [Age, PHU] + 
aware_unconsulted_cases [Age, PHU] + Aware_imported_cases [Age, PHU] - 
Recovery_rate [Age, PHU] )  dt 

 

Aware_suspected_cases 
 [Age, PHU]  

persons/
day 

people_not_tested_but_aware  

aware_unconsulted_cases 
 [Age, PHU]  

persons/ 
day 

((total_symptomatic_people [PHU,Age] -AWARE_INFECTIOUS_PEOPLE 
[Age,PHU] ) Messaging_behaviour_change_proportion [PHU,Age] ) 

 

awareness_delay 
[Under_5_Years_Old]  

days BETA(1.66, 4.33)  (7-1)+1  

awareness_delay 
[Over_5_Years_Old]  

days BETA(1.89, 4.11)  (10-9)+1  

Healthcare_Messaging_ 
Converter 
 [PHU]  

person/ 
person/d
ay 

IF Time_cycle = Healthcare_Messaging_start_date AND 
Healthcare_messaging_switch = 1  THEN  
PULSE(Healthcare_Messaging_effectiveness [PHU] , 
Healthcare_Messaging_start_date)  ELSE 0 

 

Healthcare_Messaging_effect 
[PHU, Age]  

person 
/person/
day 

DELAY1((Healthcare_Messaging_Converter [PHU] 
Healthcare_Messaging_Effectiveness_Decay), 
Healthcare_Messaging_Effectiveness_Decay) 

 

Healthcare_Messaging 
_effectiveness 
 [PHU]  

person/ 
person/d
ay 

0.05  

Healthcare_Messaging days 15  
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_Effectiveness_Decay 
Healthcare_Messaging_start_ 
date 

day 140  

Healthcare_messaging_switch DMNL 0  
Messaging_behaviour_ 
change_ proportion  
[PHU, Age  

person/ 
person/d
ay 

DELAY1(Routine_Messaging_Converter [PHU] , 
Routine_Messaging_Effectiveness_Decay) 

 

Notification_Gap  
[PHU, Age]  

persons positive_crypto_cases [Age, PHU] -NOTIFIED_CRYPTO_CASES [PHU,Age]   

NOTIFIED_CRYPTO_CASE
S [PHU, Age] (t) 

persons NOTIFIED_CRYPTO_CASES [PHU, Age] (t - dt) + (notifying [PHU, Age] ) 
 dt 
 

 

Notifying 
 [PHU, Age]  

person/d
ay 

Notification_Gap [PHU,Age] /notification_delay  

Percent_of_sympotmatic_ 
travellers_ screened_out 

DMNL 0  

PH_Public_messaging_switch DMNL 1  
Recovery_rate  
[Age, PHU]  

persons/ 
day 

AWARE_INFECTIOUS_PEOPLE [Age,PHU] 
/(duration_of_symptoms+"Post-symptom_infectious_period") 

 

Routine_Messaging_Converter 
[PHU]  

person/ 
person/d
ay 

IF (Time_cycle = Routine_Messaging_start_date  
AND PH_Public_messaging_switch = 1)   
THEN PULSE(Routine_Messaging_effectiveness, 
Routine_Messaging_start_date)  ELSE 0 

 

Routine_Messaging_ 
effectiveness 

person/p
erson/da
y 

0.05  

Routine_Messaging_Effectiven
ess_ Decay 

days 15  

Routine_Messaging_start_date days 140  
total_symptomatic_people  
[PHU, Age]  

persons RECOVERING_SYMPTIMATIC_INFECTIOUS_PEOPLE + 
RELAPSED_SYMPTIMATIC_INFECTIOUS_PEOPLE + 
SYMPTOMATIC_INFECTIOUS_PEOPLE 

 

Secondary Transmission Sector 
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Variable Unit Equation/value reference 
Adult_secondary_ 
transmission_ rate 
[PHU] 

DMNL (UNIFORM(0, 0.05)) (MacKenzie et al., 
1995b) 

Avoided_cases 
[Age, PHU] 

persons/
day 

LEAKAGE OUTFLOW 
LEAKAGE FRACTION=Proportion_of_cases_avoided 
[Age,PHU]  

 

Child_secondary_transmission
_ rate 
[PHU] 

DMNL (BETA(3.19) 0.31) (Boehmer et al., 2009), 
(Heijbel et al., 
1987),(Goh et al., 
2004),  (Causer et al., 
2006) 

New_person_to_person_cases 
[Age, PHU] 

persons/ 
day 

Secondary_transmission [Age,PHU]  
 

 

New_secondary_cases 
[Under_5_Years_Old, PHU] 

persons/ 
day 

((Potential_infectors [Under_5_Years_Old,Metro_North] 
Child_secondary_transmission_rate [PHU] ) 
0.25)+((Potential_infectors [Over_5_Years_Old,  PHU] 
Adult_secondary_transmission_rate [PHU] ) 0.5) 
 

(Johansen et al., 2015), 
(Boehmer et al., 2009) 

New_secondary_cases 
[Over_5_Years_Old, PHU] 

persons/ 
day 

((Potential_infectors [Under_5_Years_Old,PHU] 
Child_secondary_transmission_rate [Metro_North] ) 
0.75)+((Potential_infectors [Over_5_Years_Old,PHU] 
Adult_secondary_transmission_rate [Metro_North] ) 0.5) 
 

(Johansen et al., 2015), 
(Boehmer et al., 2009) 

Potential_infectors [Age, PHU] persons/ 
day 

Total_new_infections [PHU,Age]   

"pre-infection_contacts" 
[Age, PHU] 

Persons/ 
day 

New_secondary_cases [Age,PHU]   

Proportion_of_cases_avoided 
[Age, PHU] 

DMNL  (AWARE_INFECTIOUS_PEOPLE [Age, PHU] 
/Total_Infectious_People [PHU,Age] ) 

 

Secondary_transmission 
[Age, PHU] 

persons/ 
day 

CONVEYOR OUTFLOW  

SUSCEPTIBLE_CONTACTE
D 
_PEOPLE 

persons SUSCEPTIBLE_CONTACTED_PEOPLE [Age, PHU] (t - dt) 
+ ("pre-infection_contacts" [Age, PHU] - 
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[Age, PHU] (t) Secondary_transmission [Age, PHU] - Avoided_cases [Age, 
PHU] )  dt 
 
TRANSIT TIME = BETA(1.7, 4.3) 40+1 
 

Total_new_infections 
[PHU, Age] 

persons/ 
day 

SUM(Asymptomatic_infection [*,*] ) + 
SUM(Symptomatic_infection [*,*] ) + asymptomatic_returning 
+ symptomatic_returning 
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