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A well-constrained estimate for the
timing of the salmonid whole genome
duplication reveals major decoupling
from species diversification

Daniel J. Macqueen1,2 and Ian A. Johnston2

1Institute of Biological and Environmental Sciences, University of Aberdeen, Tillydrone Avenue, Aberdeen AB24 2TZ, UK
2Scottish Oceans Institute, School of Biology, University of St Andrews, St Andrews, Fife KY16 8LB, UK

Whole genome duplication (WGD) is often considered to be mechanistically

associated with species diversification. Such ideas have been anecdotally

attached to a WGD at the stem of the salmonid fish family, but remain untes-

ted. Here, we characterized an extensive set of gene paralogues retained

from the salmonid WGD, in species covering the major lineages (subfamilies

Salmoninae, Thymallinae and Coregoninae). By combining the data in calibra-

ted relaxed molecular clock analyses, we provide the first well-constrained

and direct estimate for the timing of the salmonid WGD. Our results suggest

that the event occurred no later in time than 88 Ma and that 40–50 Myr

passed subsequently until the subfamilies diverged. We also recovered a

Thymallinae–Coregoninae sister relationship with maximal support. Com-

parative phylogenetic tests demonstrated that salmonid diversification

patterns are closely allied in time with the continuous climatic cooling that

followed the Eocene–Oligocene transition, with the highest diversification

rates coinciding with recent ice ages. Further tests revealed considerably

higher speciation rates in lineages that evolved anadromy—the physiological

capacity to migrate between fresh and seawater—than in sister groups that

retained the ancestral state of freshwater residency. Anadromy, which probably

evolved in response to climatic cooling, is an established catalyst of genetic

isolation, particularly during environmental perturbations (for example, glacia-

tion cycles). We thus conclude that climate-linked ecophysiological factors,

rather than WGD, were the primary drivers of salmonid diversification.

1. Introduction
Gene duplication is a primary evolutionary source of new genetic material and a

key mechanism allowing novel gene functions to evolve [1,2]. In its most extreme

form, called polyploidization or whole genome duplication (WGD), the chromo-

some complement is doubled along with all the genes. WGD occurred in the

ancient ancestors of several vertebrate, plant and fungal lineages (which are con-

sidered paleopolyploids), and many authors have suggested this may have

facilitated species diversification [2–6]. One set of theories suggests that reciprocal

loss of paralogues among diverging populations can generate mating incompat-

ibility and genetic isolation, thus promoting speciation [7,8]. While there is

experimental support for such models in yeast [9], comparative phylogenetic

tests of diversification rates during plant evolution suggest that newly formed

polyploid lineages actually undergo speciation more slowly and go extinct more

rapidly than diploids [10]. Comparative phylogenetic tests did however identify

an increase in diversification rate at the base of teleost fish evolution [11], on the

branch where WGD occurred [12], which might be considered to support earlier

hypotheses that WGD was a driving factor in the radiation of this species-rich

lineage (e.g. [13]). Nevertheless, this result is contextualized by the larger

increases in diversification rate detected in two younger lineages occurring long

after the WGD and accounting for much of extant teleost diversity [11]. Thus,
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Figure 1. The importance of considering diploidization outcomes when studying salmonid WGD paralogues. (a) Phylogenetic relationships of hypothetical species
derived from the same WGD event (asterisk). (b) Expected phylogenetic tree when diploidization resolution (DR) occurred before speciation events in the WGD
lineage. Ancestral paralogue divergence has occurred owing to the disomic inheritance of two physically separate loci. This should be reflected in two sister
clades containing paralogues (P) P1 and P2 in each species, ideally recapturing true species relationships. (c) Expected tree when DR had not occurred by the
point of speciation, and occurred separately in species 1 and the ancestor to species 2/3. (d ) Under a similar scenario to (c), but when DR never occurred in
species 1, up to four sequence variants are expected to cluster together, owing to a history of tetrasomic inheritance [14] with concerted evolution owing to
gene conversion. Under many feasible scenarios other than that in (a), it will be difficult or impossible to recover the WGD or species relationships using
phylogenetic analysis, while the molecular clock hypothesis is grossly negated [22]. Datasets that did not conform to the scenario in (b) were discarded.
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the mechanisms driving teleost diversity are complex and

cannot be credited solely to WGD [11].

The iconic and economically important salmonid fish family

is an excellent untapped vertebrate model to explore the impacts

of WGD on species diversification. All salmonids are character-

ized by an ancestral WGD [14], which occurred subsequent to

the common teleost event. Several authors have assumed that

the salmonid-specific WGD was followed by species radiation

(e.g. [15,16]) or hypothesized that it promoted speciation via

the reciprocal loss of paralogue model [17]. By contrast, com-

parative phylogenetic tests have suggested that salmonid

species richness is not particularly high among teleosts (see

[11]), which could be construed as evidence against a role for

WGD in promoting diversification. Importantly, the phyloge-

netic breadth of this past study [11] was accompanied by a

coarse sampling strategy at the family level, meaning rapid

diversification linked to WGD in salmonids has yet to be

formally disproved.

To examine any link between the salmonid WGD and sub-

sequent diversification patterns requires a confident estimate of

when the WGD occurred. A temporal range of 25–100 Ma,

proposed over 30 years ago [14], has been widely accepted,

but is clearly highly imprecise. Current advances in phylo-

genetic and molecular clock methods (e.g. [18]) should allow

a more refined estimate, although there have been limited

efforts to date. Accordingly, the overarching objective of this

study was to generate a direct and well-constrained estimate

for the timing of the salmonid WGD, allowing subsequent

patterns of lineage diversification to be empirically contextua-

lized. As salmonid evolution encompasses a well-established

and major shift in Earth’s climate (e.g. [19,20]) another aim

was to explore and interpret the temporal association between

patterns of diversification and climate change in the Northern

Hemisphere, where salmonids exclusively evolved [21].

2. Results
(a) Characterizing a whole genome

duplication paralogue dataset spanning
the salmonid phylogeny

Our main study objective required a sufficiently informative

dataset of WGD paralogues to combine in phylogenetic and
molecular clock analyses. To gain knowledge on the most

basal recognized speciation events requires data common

to the three most ancient extant lineages, defined as the sub-

families Salmoninae (salmon, trout, charr, lenok and taimen),

Coregoninae (whitefish and cisco) and Thymallinae (grayling).

A major potential pitfall to this approach is that the diploidiza-

tion process, a ubiquitous response to WGD [22], is not fully

resolved in modern salmonid genomes [14] and could have

played out divergently for different lineages (figure 1). Before

diploidization, recombination and gene conversion may occur

between loci produced by WGD, which obscures phylogenetic

reconstruction and leads to underestimation of divergence

times in molecular clock analyses (figure 1) [22]. If WGD para-

logues are selected at random in a single salmonid lineage, it is

difficult to confirm that diploidization has occurred. This limit-

ation was overcome by adherence to the strict phylogenetic

criteria laid out in figure 1, which provides an effective strategy

to identify cases where diploidization occurred in the common

ancestor to salmonid subfamilies, making subsequent branches

robust to these negative impacts.

With this approach in mind, 58 complete protein-coding

cDNA sequences were identified using bioinformatics, represent-

ing 29 paralogue pairs present in the Salmoninae that arose after

the split of salmonids from their sister taxon Esociformes and a

closely related outgroup, the Osmeriformes [23]. We successfully

sequenced 26 of these paralogue pairs (i.e. 52 genes) in represen-

tative species of the Coregoninae and Thymallinae by the Sanger

method. Phylogenetic analyses based on Bayesian (BY), maxi-

mum likelihood (ML), neighbour joining (NJ) and maximum

parsimony (MP) suggested that diploidization was completed

in the subfamily ancestor for 18 out of 26 tested paralogue data-

sets, involving 36 genes per salmonid species (see electronic

supplementary material, figures S1–S18 and text S1). As detailed

in the electronic supplementary material, by contrasting pub-

lished rates of small-scale gene duplication and subsequent

paralogue survival rates [1] with the WGD paralogue retention

rate in modern salmonids [14], we concluded that all the studied

paralogues were derived specifically from the salmonid WGD

(see the electronic supplementary material, text S2).

(b) Combined phylogenetic analyses
The WGD paralogue data were combined by concatenating

the 18 individually characterized sequence alignments. These

http://rspb.royalsocietypublishing.org/
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Figure 2. Phylogenetic analyses combining extensive and truly orthologous nuclear sequences across salmonid subfamily species provide compelling statistical
support for a sister relationship between Thymallinae (graylings) and Coregoninae (whitefish and ciscos). The presented topology was recovered in phylogenetic
analyses concatenating 36 salmonid nuclear gene orthologues representing WGD paralogue pairs. Statistical support did not fall below 0.99 at any studied node
across 12 different analyses, including ML/BY/NJ/MP methods employing protein (7222 AA) and nucleotide data (21 666 bp). This included the root of the tree
according to a BY method incorporating a relaxed molecular clock model [18]. Phylogenetic analyses contributing to this figure are presented in the electronic
supplementary material, figure S20.
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data were then used in phylogenetic analyses employing

both nucleotide and protein sequence characters (combined

data: 10 833 bp and 3611 amino acids, AA, respectively). This

step required extensive characterization groundwork and

only the pertinent data are summarized here, with more tech-

nical details being provided in the electronic supplementary

material. Because there were numerous ways to uniquely com-

bine the paralogous sequence alignments (see full material

and methods in the electronic supplementary material),

we explored how this variation impacted phylogenetic

reconstruction using extensive ML/NJ and MP analyses (see

electronic supplementary material, table S1). Within this

context, we also explored the impact that different codon

positions had on phylogenetic analysis (see electronic sup-

plementary material, figure S19). We found that using

different combinations of concatenated WGD paralogues had

a minor impact on the recovery of phylogenetic relationships,

with most associated phylogenetic signal located at the

third codon position (see electronic supplementary material,

table S1 and text S3), which evolved more rapidly than

positions 1 and 2 (see electronic supplementary material,

figure S19). However, the third codon position also contained

important phylogenetic signal of the WGD (see electronic

supplementary material, table S1 and text S3).

Next, we removed the paralogous phylogenetic signal

entirely by concatenating the 36 orthologues representing 18

WGD paralogues into a single alignment. We then performed

BY, ML, NJ and MP analyses utilizing either combined protein

(7222 AA) or nucleotide data (21 666 bp or 14 444 bp, depend-

ing on whether codon position 3 was included or excluded;

electronic supplementary material, figure S19). In all cases, a

single tree (figure 2) was recovered with all nodes receiving

more than 0.99 posterior probability support under BY and

more than 0.99 bootstrap support by the other methods.

The observed topology was congruent with results predomi-

nantly recaptured with the paralogous data, and provided

maximal support for expected phylogenetic relationships

of major teleost fish groups [23] and, within the salmonids,

for a Thymallinae–Coregoninae sister relationship (figure 2;

electronic supplementary material, figure S20).

To gain further support for the observed relationships

using independent sequence characters, we combined 13
protein-coding genes from the mitogenome and performed

additional phylogenetic analyses (see electronic supplemen-

tary material, table S2, figures S21–S26 and text S4). The

same Thymallinae–Coregoninae clade was invariably recov-

ered using BY/ML/NJ/MP with protein data (3790 AA),

whereas results combining the equivalent unsaturated

nucleotide data using the same methods provided only partial

support for this relationship (see electronic supplementary

material, table S2, figures S21–S26 and text S4).

(c) Dating the salmonid whole genome duplication
and divergence of basal lineages

With a highly robust phylogenetic model in place, we estima-

ted the timing of the salmonid WGD and earliest subsequent

speciation events, combining a random combination of

the paralogous data (10 833 bp) in a time-calibrated relaxed

molecular clock BY analysis [18]. The calibration strategy

included a key extinct salmonid fossil, †Eosalmo driftwoodensis,

a stem member of Salmoninae [24], which was used to con-

strain the lower age of the family (as done previously

[11,16,23,25]). As detailed in the electronic supplementary

material, the molecular clock hypothesis was rarely violated

in our WGD paralogue data (see the electronic supplementary

material, text S5 and table S8), despite previous reports that

evolutionary rates are often unequal among teleost WGD para-

logues (e.g. [26]). The results suggest a Late Cretaceous origin

for divergence of two paralogous clades (95 Ma; BY 95%

credibility interval: 88–103 Ma; figure 3; electronic supple-

mentary material, figure S27 and table S3). This confidence

interval reflects the average time that disomic inheritance

was initiated (figure 1) rather than the point of WGD per se;
therefore, 88 Ma should only be considered as a lower bound

for the WGD event.

The divergence between Salmoninae and Thymallinae–

Coregoninae was estimated to have occurred at 52 Ma (BY

95% credibility interval: 51–54 Ma; figure 3a; electronic sup-

plementary material, figure S27 and table S3). Thus, our

data suggest that 40–50 Myr separates the WGD from the

earliest salmonid speciation event. Our divergence times for

the salmonid crown are compatible with several previous

estimates (e.g. 49–66 [11], 52–58 [23] and 52–59 Ma [25];

http://rspb.royalsocietypublishing.org/
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rspb.royalsocietypublishing.org
Proc.R.Soc.B

281:20132881

4

 on February 26, 2014rspb.royalsocietypublishing.orgDownloaded from 
95% BY credibility internals). The split of the Coregoninae

and Thymallinae was estimated to have occurred around

40–51 Ma (figure 3a; electronic supplementary material,

figure S27 and table S3), which is compatible with the only

directly comparable study in terms of this relationship,

which gave a 95% credibility interval of 39–55 Ma [25].
(d) Salmonid species diversification
The 7580 bp mitogenome dataset was employed in an

independent relaxed molecular clock analysis using the cali-

bration strategy employed for combined WGD paralogues

(see electronic supplementary material, figure S28). This

provided a larger set of salmonid divergence dates, which

were consistent with those from the WGD paralogue analysis

(see electronic supplementary material, table S3). Nevertheless,

only 24 salmonid species had complete mitogenome sequen-

ces, meaning there was poor within-genus representation,

limiting our power to infer diversification dynamics. We thus

generated a further time-calibrated tree using cytochrome oxi-

dase 1 (CO1) sequences (1244 bp) available for 65 salmonid
species [16] (see electronic supplementary material, figure S29),

broadly representing the subfamilies and covering all salmonid

genera (37% of total species richness). This tree was employed

in a range of diversification tests, considered in light of the

evolution of Earth’s climate (figure 3).

The WGD occurred during one of the warmest periods of

Earth’s history [19], when sea levels were much higher than

today [20] (figure 3a). Lineage-through-time (LTT) plots

suggest that the overwhelming majority of extant salmonid

lineages arose relatively recently, when the world was

much cooler (figure 3a). In fact, according to these data,

most salmonid lineages arose during the last 10 Myr, with

more than 50% of species forming in the last 5 Myr

(figure 3a). This suggests that most living salmonid species

arose near the zenith of an extended period of continuous

climatic cooling, which began at the Eocene–Oligocene

boundary and culminated in Northern Hemisphere glaciation

episodes from the Late Miocene, although episodic ice sheets

may have occurred earlier in this epoch [20,28].

A constant-rates test based upon the g-statistic [29] rejected

the null hypothesis that salmonids diversified at a temporally
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constant rate (two-tailed test, p , 0.0001, g ¼ 5.14); the positive

g-statistic suggests that speciation has either increased recently

or that extinction rates were high during early salmonid evol-

ution. To explore this finding further, three survival models

(described in [30]) were fitted to the data, the first (A) assuming

constant diversification, the second (B) assuming that diversifi-

cation follows a Weibull law and the third (C) assuming that

diversification changes with a single temporal shift. Model A

was strongly rejected in favour of models B and C (x2 ¼ 18.44

and 17.35, respectively, both p , 0.0001). Model B (Akaike

weight 0.58) assumes a monotonic change in diversification

rates through time with its parameter b indicating the direction

[30]. b ¼ 0.68 in our data, suggesting the greatest rates of diver-

sification have occurred recently [30], which is consistent with

the LTT plot (figure 3a). Model C (Akaike weight 0.42) assumes

that diversification rates changed once, with a single shift at

2.7 Ma, corresponding with the onset of the Pleistocene. Thus,

model-fitting suggests that salmonid species diversification

became higher as the Earth’s climate got cooler, peaking

during the recent period where glaciation cycles were common

in the Northern Hemisphere.

Salmonid species richness is most concentrated in two

clades that independently evolved anadromy [21,27], the

physiological capacity to migrate between fresh and seawater

within the lifecycle (figure 3b). In fact, around 90% of living

salmonid species belong to one of these two anadromous

clades (figure 3b). We tested the hypothesis that anadromous

lineages had different rates of diversification in a phylogenetic

framework using the Binary State Speciation and Extinction

(BiSSE) model [31]. Using ML in BiSSE, we compared the fit

of two models, where rates of speciation (l) and extinction

(m) were either forced to be equal or allowed to vary between

ancestrally freshwater (F) and anadromous (A) states. A likeli-

hood ratio test strongly rejected the constrained model in

favour of the unconstrained model (x2 ¼ 11.4, p ¼ 0.0008).

Markov chain Monte Carlo (MCMC) sampling indicated that

both l 2 A and m 2 A were higher than l 2 F and m 2 F,

respectively (MCMC means: l 2 A ¼ 0.31, l 2 F ¼ 0.09,

m 2 A ¼ 0.14, m 2 F ¼ 0.04). The approximate 3.5-fold differ-

ence in l 2 A versus l 2 F is statistically relevant, because

the BY 95% credibility intervals do not overlap (figure 3c).

Conversely, comparing m 2 A versus m 2 F, the probability

distributions overlap widely and both include zero (not

shown). Thus, the BiSSE analysis provides clear evidence

for markedly higher speciation rates in salmonid lineages

that are ancestrally anadromous.
3. Discussion
Several recent studies have estimated key divergence times

in salmonid evolution using multi-locus molecular clock

approaches [11,16,23,25,27]. Two of these have also offered esti-

mates for the timing of the salmonid WGD, but included

no paralogue sequences in their approach, making them

wholly indirect. The first study required an explicit assumption

that the WGD was coincident with the origin of Salmonidae

(estimated at 58–63 Ma) [16]; an unreasonable premise in

light of our findings. The second study used stochastic trait

mapping along a time-dated salmonid phylogeny, suggesting

that the WGD occurred around 70–80 Ma [27]. Contrasting

these past efforts, our work incorporated extensive and

highly characterized paralogous sequences retained from the
salmonid WGD, which were devoid of problems linked to

unresolved diploidization outcomes (figure 1). Accordingly,

our credibility interval of 88–103 Ma represents the first

direct estimate for the salmonid WGD’s lower bound.

Our results also have important bearing for salmonid

systematics, where there has been long-standing ambiguity

surrounding salmonid subfamily relationships (see electronic

supplementary material, figure S30). By using extensive and

truly orthologous nuclear sequences (see electronic supplemen-

tary material, figure S20), we provide the first ever robust

maximal statistical support for a Thymallinae–Coregoninae

sister relationship (figure 2). We also recaptured weak sup-

port for the same relationship using mitogenome data (see

electronic supplementary material, table S2), which was

reported elsewhere recently [25]. Conversely, other previous

studies have either supported Salmoninae–Coregoninae or

Salmoninae–Thymallinae sister groups [16,24,27,32,33].

We were also able to robustly demonstrate a striking tem-

poral lag between the WGD and salmonid diversification

patterns (figure 3), which is not reconcilable with scenarios

where speciation was encouraged by WGD (e.g. [17]). In fact,

salmonid diversification rates have increased through time

in a manner suggesting a potential mechanistic role for clima-

tic cooling (figure 3), which probably radically altered the

ecophysiological landscape. In this respect, speciation rates

were higher in salmonid lineages that evolved anadromy

(figure 3c). This is important because anadromy is likely to

have evolved in response to climatic cooling initially. Ana-

dromy is thought to offer a selective advantage in modern

temperate latitudes because marine productivity exceeds that

of freshwater, meaning more food resources can be exploited,

culminating in higher fitness [34]. Before the Eocene–

Oligocene transition, oceans were warmer, with lower pro-

ductivity than today [35,36]. As the oceans cooled, and the

balance of productivity shifted, a selective advantage for ana-

dromy may have arisen, although, because this trait evolved

at different times in two salmonid lineages, other interacting

ecological factors were probably also important. Migratory sal-

monids show precise homing behaviour, resulting in

reproductively isolated and locally specialized populations

[37]. Coupled with the tendency of anadromous fish to dis-

perse along coastal regions and recolonize nascent riverine

systems following environmental perturbation (for example,

glaciation [38]), anadromy potentially increases scope for geo-

graphical isolation compared with pure freshwater residency

and provides greater exposure to novel niches, all of which

could be expected to increase speciation rates. This scenario

is consistent with reports that an anadromous Salvelinus alpinus
lineage repeatedly colonized nascent freshwater drainages fol-

lowing Pleistocene glacial retreat and then became frequently

genetically isolated in allopatry [39] and sympatry [40]. How-

ever, such interpretations should be considered in light of

clade-specific dynamics. For example, despite being ancestrally

anadromous, several modern Oncorhynchus species formed

before the recent glaciation period, and diversification mechan-

isms may reflect topographical drivers of genetic isolation

occurring along the Pacific coast [41].

In conclusion, the current evidence suggests that climatic

cooling and the subsequent evolution of anadromy was a

major catalyst for salmonid speciation. Conversely, there is

little available evidence supporting WGD as the primary

cause of salmonid diversification. Nevertheless, it currently

remains impossible to exclude that WGD promoted capacity

http://rspb.royalsocietypublishing.org/
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for anadromy by allowing the functional divergence of WGD

paralogues, secondarily promoting species diversification.

Additionally, the protracted nature of diploidization in sal-

monids may have augmented speciation at different times

in salmonid evolution, reinforcing genetic isolation generated

primarily by ecological mechanisms. Therefore, future work

might focus on the role of the salmonid WGD as a source

of functional novelty, or use salmonid populations poten-

tially undergoing ecological speciation [39,40,42] to test the

hypothesis that processes linked to diploidization resolution

are promoting reproductive isolation.
Proc.R.Soc.B
281:20132881
4. Material and methods
(a) Availability of complete methods and data
Complete materials and methods are given in the electronic

supplementary material.

(b) Databases and bioinformatics
Transcriptome assemblies were generated for Oncorhynchus
mykiss, Salmo salar and Coregonus clupeaformis using Sanger and

Roche 454 sequences from NCBI (http://www.ncbi.nlm.nih.

gov). We created local BLAST [43] databases for these species, as

well as Thymallus thymallus, Osmerus mordax and Esox Lucius,
incorporating all available NCBI sequences. BLASTn identified

98 sequences that were putative one-to-one orthologues in

E. lucius and O. mordax, which, in turn, were used in BLASTn

searches against NCBI and local databases, revealing 56 putative

paralogue pairs common to S. salar and O. mykiss, often rep-

resented by T. thymallus and C. clupeaformis. BLASTp searches

against NCBI identified putative orthologues from Acanthoptergii

and Ostariophysi. Comparative genomics was performed in

Ensembl (http://www.ensembl.org/).

(c) Preliminary phylogenetic analyses
Before performing sequencing experiments (see below), we scru-

tinized expectations of teleost-wide orthology and the salmonid

WGD in bioinformatics-derived sequence datasets where at

least two salmonid subfamilies were represented. Phylogenetic

analyses were performed using ML, MP and NJ in MEGA v. 5.0

[44], and a BY method in BEAST v. 1.7.4 [18]. The BY analysis

included an uncorrelated lognormal relaxed molecular clock

(ULRC) model and a Yule speciation tree prior [45]. TRACER

v. 1.5.0 was used to confirm MCMC sampling convergence in

all BEAST analyses described from this point onwards. All

sequence alignments described hereafter were performed in

MAFFT v. 7 [46]. A priori criteria for teleost-wide orthology

were based on branching patterns from a comprehensive multi-

loci phylogenetic study spanning teleost evolution [23]. Thus,

Ostariophysi was expected to split from other sequences at the

tree root, estimated under the BY approach [18]. Using compara-

tive genomics, we also demonstrated that the sequences did

not include paralogues retained from the teleost WGD [12].

The criterion for the salmonid WGD was that salmonid

sequences would form a sister group to E. lucius [23], splitting

into two paralogous clades represented by multiple species.

When T. thymallus and/or C. clupeaformis sequences branched

in one paralogous clade represented by both species of Salmoni-

nae, we designed primers targeting cDNAs in these subfamilies

(see electronic supplementary material, table S4).

(d) Animal sampling and sequencing experiments
European grayling (T. thymallus) were sampled at an Environ-

ment Agency site (Calverton Fish Farm, Nottingham, UK).
A single European whitefish (C. laveretus) was caught from the

Carron Valley Reservoir (Stirling, UK). Total RNA was extracted

separately for each species from a pool of tissues. RNA extrac-

tion, cDNA synthesis, reverse-transcription PCR, bacterial

cloning and Sanger sequencing protocols have been described

elsewhere [47]. Accession numbers for successfully sequenced

cDNAs for T. thymallus and C. laveretus (106 unique sequences;

approx. 65 000 bp) are given in the electronic supplementary

material, table S4.
(e) Phylogenetic analyses combining whole genome
duplication paralogue data

Phylogenetic analysis was performed separately on 27 paralo-

gous datasets including T. thymallus and C. laveretus sequences

obtained experimentally. As teleost-wide orthology was strongly

supported in preliminary analyses, we limited the data to include

salmonids, E. lucius and O. mordax. Criteria for inclusion in com-

bined analyses are given in figure 1. A custom R [48] script

generated and randomly sampled every possible concatenation

of 18 separate WGD paralogue alignments meeting the stated cri-

teria (produced by Dr Charles Paxton, School of Mathematics

and Statistics, University of St Andrews). This allowed us to

explore the effect of combining WGD paralogue data, where

many unique concatenation possibilities exist. Accordingly, 50

randomly sampled concatenations were employed in ML, NJ

and MP phylogenetic analyses, exploring the effect of the third

codon position on the results (see electronic supplementary

material, tables S1 and S6).

Next, 36 true gene orthologues representing the 18 WGD

paralogue pairs were combined into a single concatenation

using E. lucius and O. mordax as outgroups to both salmonid

paralogues. Phylogenetic analysis was performed employing

multiple sequence character partitions (AA, nucleotides with

all codon positions or just positions 1 and 2) using BY (BEAST)

and ML (GARLI v. 2.0) [49], employing a model identified by

Partitionfinder [50] as the best-fitting character partition

(among different proteins or genes/codon positions). As sup-

porting methods, we also performed NJ and MP analyses on

multiple sequence character partitions.
( f ) Mitogenome phylogenetic analyses
We downloaded and aligned complete mitogenome sequences

from 24 salmonid species and two esociform species, plus

O. mordax (accession numbers provided in the electronic sup-

plementary material, table S7). Regions outside protein-coding

sequences were removed, leaving an in-frame 11 370 bp align-

ment representing the products of 13 mitochondrial subunit

genes. Phylogenetic analyses were performed with AA and

nucleotide characters (either all codon positions, or just positions

1 and 2) using the best-fit Partitionfinder model partition across

proteins or genes/codon positions. ML, BY, NJ and MP phyloge-

netic analyses were performed as described for the combined

WGD paralogue data.
(g) Molecular clock, mutational saturation and
transition to transversion bias analyses

Likelihood ratio tests of the molecular clock hypothesis were

performed in MEGA v. 5.0. We reconstructed ancestral WGD para-

logue branches leading to salmonid subfamilies using Ancestors

[51] and tested differences in their clock-like behaviour with

Tajima’s test [52]. Mutational saturation was assessed by plotting

the number of differences in aligned sequence pairs against gene-

tic distance estimated under composite ML [53]. Transition to

transversion biases were estimated in MEGA v. 5.0 using ML.

http://www.ncbi.nlm.nih.gov
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(h) Joint phylogenetic and relaxed molecular
clock analysis

A calibrated BEAST analysis was performed using a randomly

selected concatenation of WGD paralogues (all codon positions,

10 833 bp). Calibration priors were set at six most recent

common ancestor nodes. Four (i.e. two per paralogous clade)

log-normally distributed priors were set based on the salmonid

fossil record [24] (M. Wilson 2012, personal communication).

The analysis was also anchored with two additional calibrations

points (from [23]), using normally distributed priors to carry

over the complete associated error. We also performed an equival-

ent ULRC analysis (i.e. with corresponding calibration priors) on

the combined mitogenome sequences (nucleotide data, codon pos-

itions 1 and 2; 7580 bp). All time-calibrated BEAST analyses were

run twice with sequences and once without sequences to confirm

the intended priors were recaptured in the MCMC sampling (see

electronic supplementary material, table S3).

(i) Tests of salmonid species diversification and
comparisons with historic climate change

A further time-calibrated BEAST tree was produced using CO1

sequences available for 65 salmonid species [16]. This was tem-

porally calibrated using four deep-branching divergence times

from the 7580 bp mitogenome tree, employing normally distrib-

uted priors spanning 95% credibility intervals. This was done

with the explicit aim to assign additional species richness

to the temporal framework estimated under the more charac-

ter-rich (and presumably more robust) mitogenome-derived

time scale. Several diversification analyses were performed
using the CO1 tree with packages available through the R

language. LTT plots were generated using phytools [54], which

was also used to perform a two-tailed constant-rates test based

on the g-statistic [29]. Analysis of temporal diversification pat-

terns was also assessed by fitting and comparing survival

models [30] in APE [55]. The BiSSE [31] analysis was performed

in DIVERSITREE [56].

Global sea-level estimates spanning 130 Ma to present were

taken from the literature [19] representing 1100 data points.

Data means and s.d. were calculated spanning 1 Myr intervals,

the first bin being 0–1 Ma.
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