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ABSTRACT 

This paper proposes a process based on learning analytics and 

recommender systems targeted at making suggestions to students 

about their remote laboratories activities and providing insights to 

all stakeholders taking part in the learning process. To apply the 

process, a log with requests and responses of remote experiments 

from the VISIR project were analyzed. A request is the setup of 

the experiment including the assembled circuits and the 

configurations of the measuring equipment. In turn, a response is 

a message provided by the measurement server indicating 

measures or an error when it is not possible to execute the 

experiment. Along the two phases of analysis, the log was 

analyzed and summarized in order to provide insights about 

students’ experiments. In addition, there is a recommendation 

service responsible for analyzing the requests thus returning, in 

case of error, precise information about the assembly of circuits or 

configurations. The evaluation of the process is consistent in what 

regards its ability to afford recommendations to the students as 

they carry out the experiments. Moreover, the summarized 

information intends to offer teachers means to better understand 

and develop strategies to scaffold students’ learning. 
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1 Introduction 

The evolution of technology has been promoting in recent decades 

new approaches to education, being supported mainly by the 

internet, remote learning, interactive learning and e-learning. All 

these possibilities give students a broader view of the 

fundamentals in a particular subject by increasing understanding 

and making knowledge more systematic [1]. In engineering 

education, many resources are available, among them, calculus 

classes, hands-on laboratories, simulations and remote 

laboratories, i.e. important resources in the training of students.   

Traditionally, experimental work has been developed in 

laboratories. However, the increased number of higher education 

students in the last decades has put pressure on the physical 

structures and lab resources. To overcome this issue, researchers 

have developed computational simulations and remote 

laboratories, enabling the expansion of educational boundaries. 

According to [2], remote laboratories are nowadays an important 

tool for teaching and learning, mainly in engineering. In addition, 

the authors mentioned that such potential intends to leverage 

students’ learning beyond hands-on classes.  

In order to foster the students’ learning process, this scenario 

opens new perspectives. Regarding e-learning systems, the data 

produced by students through the interaction with remote 

laboratories and simulations can be gathered and analyzed. 

Therefore, areas such as Learning Analytics (LA) and 

Recommender Systems (RS) have been promoting support. 

Learning Analytics (LA) is a relevant tool to foster students’ 

learning experiences, proving suggestions to leverage their 

performance on e-learning activities. It provides clues or insights 

to improve teachers’ classes. LA is a knowledge discovery 

paradigm and as such can help all stakeholders taking part in the 

learning process to understand its potential and interconnections 

[3]. Applying LA techniques from data collected in e-learning 

environments creates opportunities to foster the educational 

context by providing recommendations to students and teachers. 

In this regard, Recommender Systems (RS) can provide 

suggestions to scaffold students’ performance during their 
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learning activities. Traditionally, RS analyze historical 

interactions to suggest items to users [4][5]. Despite their origin 

from e-commerce, the evolution of RS is impacting many other 

areas such as e-learning, supporting students in choosing courses, 

subjects, learning materials or activities [6]. Another possibility is 

to apply the RS principles thus offering means to scaffold 

students’ performance in remote laboratory activities.     

This paper proposes a process based on LA and RS to assist 

students in their remote lab activities with two main goals. The 

first one refers to collecting data from student interaction via 

remote experimentation environments and analyzing such data to 

offer clues and insights to stakeholders in the educational context. 

The second one refers to producing recommendations that can 

enhance students’ performance in learning activities. Section 2 

introduces the background of the study. Section 3 presents the 

proposed process. Section 4 shows the experimental design. 

Section 5 presents the results, the scenario analysis, as well as a 

general discussion about the process. Finally, section 6 draws 

conclusions. 

2 Background 

2.1 Remote Experimentation 

Calculus classes and hands-on laboratories are still the main 

traditional educational resources in the students’ learning process. 

Calculus classes in engineering education are generally more 

abstract and methodic when dealing with mathematics and 

knowledge about the class topics [7]. Hands-on laboratories 

enable students to acquire more complex competences and so 

strengthen the relation between theory and practice, leading to the 

achievement of haptic skills and instrumentation awareness 

[7][8][9]. Simulation is another important engineering education 

resource. As stated by [10], it is suitable to make clear to students 

that such a resource is a simulation of reality, avoiding any kind 

of problem between real and virtual worlds. However, some 

authors [11][12] state that simulations are complementary to 

calculus classes and hands-on laboratories.  

Remote laboratories represent an evolution in the learning 

process affording real experiments with real experimental 

apparatuses. Even without the students’ presence, remote 

laboratories demand space and devices. Notwithstanding, such a 

feature leverages ways to carry out experiments by increasing 

frequency and places [9]. The last-mentioned authors also state 

that in this modality experiments are shared thus extending the 

functionalities of hands-on laboratories. Therefore, remote 

laboratories are complementary tools that impact the students’ 

learning process by sharing some advantages of hands-on and 

computer simulations. Through remote laboratories, students can 

deal with real apparatuses and have the possibility to acquire 

learning experience beyond the classroom [13]. However, as 

remote labs are linked to real equipment in specific situations, 

availability may bring about some problems. In this way, remote 

labs and also simulation labs are useful tools commonly used to 

complement other teaching resources [9][14]. 

2.2 Learning Analytics 

Learning is a topic with a wide impact on peoples’ lives, and 

nowadays there is an attempt to accommodate ways mainly based 

on technology to boost students’ performance. In addition, as 

stated by [15], learning is highly distributed taking into account 

space, time and media. Such a fact generates a high volume of 

data about students’ interactions as well as about the learning 

process. In this context, regarding students’ behavior, learning 

analytics (LA) has become a valuable learning tool by attempting 

to impact their performance positively. 

Among the many definitions of Learning Analytics, one of the 

most cited is “the measurement, collection, analysis, and reporting 

of data about learners and their contexts, for purposes of 

understanding and optimizing learning and the environments in 

which it occurs” [16]. LA has its basis from business intelligence 

(BI) concepts, which have been appropriated by education 

institutions [17]. Other fields supporting LA, according to [18], 

include web analytics, educational data mining, and recommender 

systems.  

Primarily focused on the capture and report of data by 

educational administrators and the performance enhancement of 

educational institutions, learning analytics also achieved an 

operational perspective aiming to provide tools targeted at a better 

understanding of students’ experiences. 

2.3 Recommender Systems 

Since mid-1990s, Recommender Systems (RS) have become a 

relevant research field [4][5][19]. RS intend to provide 

suggestions mainly in situations where there is a great volume of 

options once such situations may pose difficulties for the user 

[20]. RS start through the collaborative filtering approach and 

currently promote support for a wide range of research areas and 

applications. 

This kind of system is suitable for both the user and the service 

provider once it has the ability to assist in choosing items, making 

the task more enjoyable and tending to deliver results that are 

more appropriate. Based on these arguments, [21] state that “the 

purpose of RS is to generate valid recommendations for items that 

may be of interest to a set of users”. As mentioned by [22], an 

“item” refers to something tangible or a digital object, such as a 

product, a service, or a process within the scope of 

recommendation of an RS to the user considering their interaction 

with some media. According to [23], “item” is the general term 

that designates what the system recommends to users. In the 

literature, there are several RS approaches, among the most 

common: content-based filtering (CBF), collaborative filtering 

(CF), and hybrid filtering [24][25]. More recently, RS have taken 

advantage of semantic web technologies and knowledge 

representation to properly deal with the overload of information, 

heterogeneous data sources and knowledge domain [26] [27]. 

Many are the applications and areas in which RS promote 

support. In the educational context, for instance, e-learning 

recommender systems have evolved since the 2000s based on the 

development of traditional e-learning systems [6]. These systems 
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intend to support students in their choices about courses, subjects 

or learning activities, helping them to achieve better performance. 

3  The Proposed Process  

This section describes the proposed process considering the 

context of learning analytics and recommender systems. It aims to 

analyze the data generated from the interaction of students with a 

remote experimentation environment and produce suggestions that 

can help them carry out the experiments. It intends to provide 

ways to scaffold students’ performance on remote 

experimentation. Figure 1 shows the process flow in which a 

student performs experiments and, depending on the 

configurations, receives further information. Section 4 details the 

elements that compose an experiment. 

 

Figure 1: Overview of the proposed process. 

The process comprises four phases consisting of logging, 

recommendation service, log analysis, and data analysis. It starts 

by students configuring and performing the experiments. All 

settings about the experiment are sent to the server, which stores 

them in a log file as a request. In addition, the server invokes a 

recommendation service. The service, then, using a domain 

ontology, creates an instance with the parameters of the 

experiment and initiates an inference verifying whether the 

request is correct or not. In the negative case, the service suggests 

a more detailed list of errors. Such errors represent a response that 

is sent back to the remote lab interface, enabling students to check 

their settings and carry out necessary changes. Responses, 

whether correct or not, are logged by the server. 

The other two phases occur in the backend. The log analysis 

phases focus on monitoring the log file composed of requests and 

responses by performing the inspection from time to time. The 

request and response structures will be detailed in Section 4. Each 

log entry is analyzed and persisted in the database in order to 

facilitate future analysis about the students’ achievements. 

Similarly, the data analysis phase intends to synthesize the log 

information from the database in a new summarized database. The 

database keeps the statistics that describe the experiments, such as 

the amount of experiments, the frequency of use of components 

and instruments, the most common errors as well as information 

relating students and experiments. All the information is 

distributed by periods of time. The summarized database aims to 

provide clues and insights for teachers about difficulties faced by 

the students. Furthermore, it allows highlighting the possible 

causes of deficiency in specific subjects, guiding teachers toward 

improvements in both theoretical and hands-on classes. 

3.1 Support Structures 

A given experiment is characterized by a set of components and 

settings being evaluated by the server that provides a response. 

Both request and response are stored in a log file. From this, a log 

analysis is carried out by collecting each entry and persisting it 

into a database in order to evaluate students’ performance and to 

provide stakeholders with information about the learning process. 

To clarify this matter, a database model was developed, as 

illustrated in  

Figure 2.  

 

Figure 2: Database model to support analysis in the remote 

experimentation context. 

The main table represents the experiment and is called 

Experiment. Each experiment is an arrangement of circuits and 

equipment settings regarding one or more of the following 

equipment: Multimeter, Function Generator, Oscilloscope, and 

DC Power. In addition, there are two basic types registered into 

Type table, request and response. After experiment 

configurations, the student can perform an experiment being 

characterized as a request. From that, the remote experimentation 

server analyzes the request to determine if all settings were 

correctly entered. In the affirmative case, all the measurements 

carried out are returned, thus enabling results to be presented 

through the interface.  
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After the request or response registration, the 

Experiment_Type relationship table is fulfilled, allowing storing 

the information on which circuits were used and configured, 

which equipment was configured for the experiment and which 

parameters were defined. The Experiment_Type_Circuit table 

keeps circuits defined in the experiment taking into account the 

set of circuits available in the Circuit table.  

Another part of the model represents all possible equipment 

configured in the experiment. The 

Experiment_Type_Equipment has the function to store such 

equipment. Also, this table is related with the 

Experiment_Type_Equipment_Parameter, which stores all 

settings associated with a particular equipment and experiment. 

Equipment and Parameter tables represent the list of equipment 

and parameters, respectively. 

In addition, during an experiment, the Server may identify 

errors. In this case, the relation between a specific error and a 

response is stored in the Experiment_Type_Error table. Table 

Error stores the list of errors that the experiments can produce. 

To support the process as a whole, a domain ontology is used. 

The ontology represents the knowledge base with the rules that 

make it possible to determine whether a given experiment has an 

error, as well as what type of error. Figure 3 displays the ontology 

that represents a multimeter. 

 

Figure 3: Domain ontology used in the analysis of the 

experiments and suggestion of possible errors. 

The ontology is composed of a set of classes in which the 

Experiment and Output classes are the principal ones. The 

Experiment class allows defining an instance through a set of 

properties. The instance represents a request made by the student 

relating it with instances already defined in the VoltageSource, 

Assembly, and Selector classes. Using this information and 

through a reasoning process, it is possible to determine whether 

the output represents an error or not. In case of error, the Server 

gets a more detailed message and thus can send it to the remote 

lab interface as a suggestion, enabling student evaluation. 

4 Experimental Design 

The evaluation of the proposed process was carried out using data 

from the VISIR project. In order to better describe the 

experimental design, both the VISIR project and the log are 

detailed. 

4.1 Remote Experimentation 

The Virtual Instruments Systems In Reality (VISIR) project 

focuses on the subject of circuit theory and practice, providing 

support to the area of Electrical and Electronics Engineering. 

Remote experimentation as a complementary approach to 

other educational strategies, such as calculus classes, hands-on 

labs, and simulations, provides an additional means to foster 

students’ skills.  

A VISIR remote lab installation from the Polytechnic of Porto 

- School of Engineering (ISEP) is used to interact with the 

physical panels and components. Using the remote 

experimentation environment, the student is able to assemble the 

circuits and set up all measurement parameters for a particular 

experiment. Figure 4 shows an example of configuration and 

measurement. 

 

Figure 4: Example of a VISIR remote experimentation 

environment.  

4.2 Data 

After assembling the circuits and settings of the measurement 

parameters for a particular experiment, the student is supposed 

execute it. When doing so, the server receives the request and 

performs all the checks and calculations, providing a response 

with the measurements. If any problem is identified, an error 

message is provided; however, without informing the specific 

type of error. Both the request and the response generated by the 

server are then logged. 

For the present work, a copy of the VISIR logs from the ISEP 

we used. The log has 545.152 records (requests or responses) 

from 2010-07 to 2018-03. Responses can indicate errors as well. 

As already mentioned, an entry in the log consists of a request 

or a response. The request contains all the settings stablished by 

the student through the interface, and the response contains all the 

measurements calculated by the server. If the settings are 

misconfigured or put the physical lab equipment at risk, a general 

error is produced and sent back to the remote lab interface. Figure 

5 shows a fragment of the log considering a request. 
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<protocol version="1.3"> 

  <request sessionkey="d689237e8da24d93c406c6be22945d39"> 

    <circuit> 

      <circuitlist> 

           W_X DMM_VHI A9 

           W_X DMM_VLO A6 

           R_X A6 A10 1k 

    </circuitlist> 

    </circuit> 

    <multimeter> 

      <dmm_function value="resistance"/> 

      <dmm_resolution value="3.5"/> 

      <dmm_range value="10"/> 

    </multimeter> 

    .... Other configurations ... 

  </request> 

</protocol> 

Figure 5: Fragment of the log file taking into account a 

request message.  

The log entry representing a request stores all the components 

with the positions in the breadboard being identified by the 

<circuitlist> element.  

Furthermore, when the student selects and configures a 

measurement instrument, for instance a Multimeter, the values 

used for that are kept by the <multimeter> element. In the remote 

lab interface, other instruments are also available, such as 

Function Generator, an Oscilloscope, and a DC Power, being 

these resources available for simultaneous use. 

5 Results and Analysis 

This section summarizes the main results achieved regarding the 

data analysis and recommendation phases, as shown in the process 

described in Section 3. 

5.1 Data Analysis 

The data in the log is composed of 545,152 entries, being 50% 

requests and 50% responses. Each entry represents an interaction 

carried out by students (requests) or the messages provided by the 

server (responses). Considering the 272,576 requests made by 

students from the interface of the remote laboratory, 238,949 

(87.66%) had a correct answer, that is, after the evaluation, the 

server sent back a response with the result of the measurements. 

The remaining responses provided by the server, 33,627 

(12.34%), represent measurement errors. Of these, 22,970 

(68.71%) refer to previous requests also with error. In the current 

version of VISIR, the response error is generic and is only 

reported when the equipment is put at risk. 

Each request belongs to the context of a remote lab session in 

which the student sets up a given experiment and sends it to the 

server. During the session, components and parameters can be 

adjusted, enabling multiple experiment submissions. A total of 

37,645 distinct sessions were identified, averaging 7.24 requests. 

Finally, a distribution analysis of the types of instruments used 

in the remote experiments is shown in Figure 6. Multimeter is the 

most used instrument with 79.46%, followed by DC Power, 

Function Generator and Oscilloscope with 78.64%, 48.83, and 

47.52%, respectively. 

 

Figure 6: Distribution of the instruments used in the 

experimentation requests.  

5.2 Recommendation Approach 

In this phase, the requests are analyzed in order to provide 

suggestions about the remote experimentation. Once the server 

receives the request, it accesses the recommendation service.    

The recommendation service receives the request parameters 

containing information on the configuration of the circuits and the 

measurement equipment. After that, it fulfills an instance of the 

Experiment class in the domain ontology using object properties. 

Figure 7 shows an instance of an experiment named 

Experiment_1. 

 

Figure 7: Instance of an experiment named Experiment_1.  

An experiment instance must be associated with some instance 

of VoltageSource, Assembly, and Selector classes. It occurs 

through hasVoltageSource, hasAssembly, and hasSelector 

properties, respectively.  The example in Figure 7 shows an 

experiment instance related to instances VS_Yes (values can be 

“VS_Yes” or “VS_No”), Parallel (values can be “Series” or 

“Parallel”) and Selector_Resistance_Ohm (values can be V- 

“Selector_Resistance_V-”, V~ “Selector_Resistance_V~”, A- 

“Selector_Resistance_A-”, A ~ “Selector_Resistance_A~”, Ω 

“Selector_Resistance_Ohm” or OFF). 

After relating VoltageSource, Assembly, and Selector 

classes, it is possible to start the inference process in order to 

determine whether errors are present or not in the configuration. 

Taking into account the relationships between instances of 

classes, there are 24 output possibilities. Figure 8 presents two 

rules based on first-order logic promoting support to inference. 
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Rules:  

hasVoltageSource(?x, VS_Yes), hasAssembly(?x, Parallel), 

hasSelector(?x, Selector_Resistance_Ohm) -> hasOutput(?x, 

Type_AD) 

hasVoltageSource(?x, VS_Yes), hasAssembly(?x, Parallel), 

hasSelector(?x, Selector_Voltage_V-) -> hasOutput(?x, 

Type_AB) 

Figure 8: Examples of rules analyzed during inference 

process. 

According the above figure, the first rule evaluates the 

conditions and returns a Type_AD output. The output instance 

shows an error and has an associated message, i.e. “Resistance 

reading with the circuit in tension”. On the other hand, the second 

rule returns a Type_AB output instance that represents a possible 

and correct configuration.  

At last, based on the recommendation service returns, the 

server composes the final message representing an error or not by 

returning it to the remote lab interface. Figure 9 shows an example 

considering the first rule. The server also records the response in 

the log file for analysis. 

   

Figure 9: Example of a VISIR remote experimentation 

environment with response message.  

6 Conclusion 

Increasingly, education have been bringing new challenges that 

require the combination of strategies, approaches and tools toward 

a sustainable vision. Thus, the implementation of remote 

laboratories promotes ways to overcome some limitations faced 

by hands-on laboratories and simulations. This paper proposed a 

process based on learning analytics and recommender systems in 

the context of remote experimentation. The evaluation of the 

proposal considered an experiment log of student interactions in a 

remote lab made available by the VISIR project.  

Experiment log analyses can reveal relevant information about 

the difficulties faced by students and, based on that, offer ways for 

teachers to enhance their classes in an attempt to scaffold 

students’ learning. Regarding the total requests, 12.34% have 

responses with error associated. This indicates acceptable figures 

since, at first, in addition to the theoretical and practical classes, 

there is a learning curve about the remote experimentation 

environment. However, 68.71% of the total errors are due 

previously committed errors. This indicates that a correct 

definition of errors and presentation to students, rather than 

generic messages may improve their performance. Additionally, 

correlating students’ errors to the course module being taken 

could provide additional information to understand the students’ 

learning process in the remote experimentation context. 

In the current version of the log, when the server evaluates a 

request as an error, just a general message is recorded, without 

reporting a specific type. In this sense, the proposed process uses 

a domain ontology to provide a knowledge base in order to clearly 

typify the response error. The ontology is still a fragment of the 

required knowledge to map all the possible errors. However, it 

allows an initial overview on how to offer a better response to the 

students, keeping detailed information in the database for future 

analysis. 

These results are initial but consistent regarding the proposed 

process. Knowing the main errors occurred during the 

experiments and allowing them to be returned to students are key 

to leverage students’ performance and help teachers improve their 

classes. 

The development of this paper resulted in a process toward a 

better understanding of the difficulties faced by students in remote 

experimentation environments. Moreover, it provides a clear 

identification of errors and their correlation with remote 

experimentation activities, so teachers and other stakeholders in 

the learning process are offered valuable information. 
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