Downloaded from orbit.dtu.dk on: Apr 23, 2019

DTU DTU Library

i

Scalable Streaming Multimedia Delivery using Peer-to-Peer Communication

Poderys, Justas

Publication date:
2019

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Poderys, J. (2019). Scalable Streaming Multimedia Delivery using Peer-to-Peer Communication. Technical
University of Denmarik.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

e Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
¢ You may not further distribute the material or use it for any profit-making activity or commercial gain
e You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.


http://orbit.dtu.dk/en/publications/scalable-streaming-multimedia-delivery-using-peertopeer-communication(944f0b83-fd07-49ea-8245-28093e883082).html

PhD Thesis

=
—
—

i

Scalable Streaming Multimedia Delivery using Peer-
to-Peer Communication

Justas Poderys

Supervised by: Jose Soler, PhD, and Prof. Lars Dittmann, PhD

. )‘ i
b & gt

pi—ef




Cover image: ©hermione13/ 123RF Stock Photo. Print license acquired.

Technical University of Denmark
Department Photonics Engineering
Jrsteds Plads 343

2800 Kgs. Lyngby

DENMARK

Tel: (+45) 45 25 63 52

Fax: (+45) 45 93 65 81

Web: fotonik.dtu.dk

E-mail: info@fotonik.dtu.dk



Contents

Abstract vii
Resumé ix
Preface Xi
Acknowledgments Xiii
List of Publications XV
List of Figures XVii
List of Tables XXi
Glossary XXiii
1 Introduction
1.1 Thesis Organization. . . . . ... ... ... ......... 2
2 One-to-Many Communication 5
2.1 Network-Layer Multicast Communication . . . . . . ... ... .. 6
2.2 Application Layer Multicasting . . . . .. ... ... ... ... 8
2.3 Application Layer Multicast Protocols Operation. . . . . ... .. 18
2.4 SUMMArY . . . . . 27
3 Peer-to-Peer Client Structure 29
3.1 Peer-to-Peer Streaming Software Client Structure . . . . . . .. 30
3.2 TrackerInterface . . . . . ... ... ... 30
3.3 Peerlinformation. . . ... ... ... ... ... . 31
3.4 DataStorage. . ... ... ... . ... 31
3.5 DataRequesting. ... ...... ... . ... ........... 32

3.6 DataSending . ....... ... .. ... . ... ... 32



iv Contents
3.7 FlowControl . . ... ... ... .. . ... ... 33
3.8 DataReceiving . ... ... ... . ... ... ... ... ... 33
3.9 Multimedia Streaming . . . . .. . ... ... L 34
3.10 Multimedia Streaming Quality-of-Service Parameters . . . . . . 39
341 Summary . ... 41

4 Dataplane Congestion Control 43
41 Relatedwork . . . . . ... ... 44
42 LEDBAT Protocol . . ... ... .. ... .. ... .. .. ..... 45
4.3 Experimental LEDBAT Parameters Investigation . . ... .. .. 47
4.4 Using Boosted LEDBAT with PPSPP . . . . . .. ... ... ... 51
45 IntegrationResults . ... ... ... ... L. 53
4.6 Summary and Discussion . . .. ... .. ............. 55

5 Data-Requesting Algorithms 57
5.1 Requesting Algorithms in Literature . . . . . . ... ... ... .. 57
5.2 Data-Requesting Algorithm . . . . . .. ... ... ... ..., 59
5.3 Experimental Algorithm Evaluation . . . . ... ... ... ... .. 61
5.4 Summary . . . . ... e 66

6 External Peers Ranking 67
6.1 Methods of evaluating nodes inthe Internet . . . . . . ... ... 68
6.2 Introduction to the ALTO Protocol . . . . . . ... ... ...... 72
6.3 ALTO Data-routing CostMetrics . . . . ... ... ......... 74
6.4 ALTO Server and Experimental Setup . . . ... ......... 78
6.5 ExperimentalResults . . . ... ... ................ 82
6.6 Summary . . . . ... 85

7 P2P Communication Over Wireless Connections 89
7.1 Wi-FiPeerto-Peer .. ... ... ... ... ... . ... . ..., 90
7.2 Adapting PPSPP for streaming over Wi-FiP2P . . . . ... . .. 92
7.3 PPSPP ProtocolChanges . . . ... ................ 93
7.4 Feasibilitystudy . .. ... ... .. 95
7.5 ExperimentalSetup . . ... ... ... .. ... ... ... ... 97
7.6 Evaluation Results — Start-upTime . . . . . ... ... ... .... 98
7.7 Evaluation Results — Playback Continuity . . . .. ... ... .. 100
7.8 In-train Multimedia Streaming . . . . . ... ... L Lo 101
7.9 In-train Streaming ExperimentSetup . . . . . ... ... ... .. 103
7.10 In-train Streaming — Start-up Time . . . . . . ... ... ... .. 104
7.11 In-train Streaming - Playback Continuity . . . . ... ... .. .. 106

7A28ummary ... e 106



Contents v

8 P2P Communication in the Long Term Evolution Networks 109
8.1 LTE Networks Primer . . . . .. ... ... ... .. ........ 109
8.2 Edge Cachinginthe Literature . .. .. ... ... .. ... ... 111
8.3 Edge Caching Proposal . ... ................... 112
8.4 Performance Evaluation . . ... .. ... .. ... ..... 115
8.5 Extending Edge-caching Solution for P2P Communication . .. 117
8.6 P2P Solution Experimental Evaluation . . . ... ... ... ... 120
8.7 Conclusions . . ... ... ... 121

9 Work Summary and Future Outlook 123

A PPSPP Messages 127
A.1 Handshake procedure . .. ... .. ... ... .. ... ..... 127
A.2 Datarequestingandexchange ... ................ 128
A.3 Peers information requesting and exchange . . . . . . ... ... 129

B TCP Congestion Control Mechanism 131

Combined Bibliography 133



Vi




Abstract

Peer-to-Peer (P2P) refers to a communication paradigm, where each communication peer
can act as a client and as a server. In P2P communication, information is disseminated
from an information source to all the clients. At the same time, as information is stored in
the client’s device, the clients become an information source to other clients as well.

The origins of modern P2P communication are closely linked to file distribution. The
first P2P communication programs that were widely adopted were used primarily to share
non-streaming data, such as music recordings, films, games, and computer programs.
However, with streaming multimedia gaining a larger and larger share of the global
Internet data traffic (soon envisioned to reach 80%), P2P communication is seen as a
viable method to reduce the communication load on the streaming multimedia servers.
By employing P2P communication along with distributed multimedia content delivery
networks (CDN), high-quality multimedia data can be delivered to a larger number of
users using the same amount of servers infrastructure.

This thesis investigates how P2P communication can be used to distribute streaming
multimedia among multiple users. Specifically, it investigates how different algorithms,
running in the Peer-to-Peer Streaming Peer Protocol (PPSPP) client, impact the start-
up time and playback continuity of multimedia streams. As P2P communication is a
cooperative process, this thesis investigates how requests for outstanding data should be
divided among the connected peers to achieve high streaming continuity. During P2P
multimedia streaming, in addition to receiving data from a multimedia server, clients
also receive data from other peers. This thesis investigates how the Low Extra Delay
Background Transport (LEDBAT) protocol can be tuned for use with P2P multimedia
streaming while at the same time ensuring that the Internet connections of the connected
peers are not congested. This thesis also presents ways to integrate P2P multimedia
streaming with communication peers ranking provided by the Application Layer Traffic
Optimization (ALTO) protocol.

The final two chapters of this thesis are dedicated to performance measurement of P2P
multimedia streaming over different wireless communication technologies. This work
investigates how P2P multimedia streaming can be performed over the Wi-Fi Peer-to-Peer
connections. It also investigates methods of placing multimedia caches in the Long
Term Evolution (LTE) network base-stations, along with possibilities of implementing

vii



Viii Abstract

Peer-to-Peer communication using the same LTE infrastructure.



Resumeé

Peer-to-Peer (P2P) henviser til et kommunikations paradigme, hvor hver kommunikations
deltager kan opfgre sig som en klient eller en server. I P2P kommunikation bliver
informationen spredt ud fra en informations kilde til alle klienter. Pa samme tid, fordi
informationen er gemt i klientens enhed, vil klienterne blive informationskilder til andre
klienter.

Oprindelsen af moderne P2P kommunikation er tet forbundet med fildistribution.
Fgrst blev de vidt udbredte P2P kommunikationsprogrammer primert brugt til at dele ikke-
streaming data, som for eksempel musik, optagelser, film, spil og computerprogrammer.
Men fordi streaming multimedier optager en stgrre og stgrre del af den globale internetdata
trafik (forudsagt til at na 80%), bliver P2P kommunikation set som en realistisk metode til
at reducere kommunikationsmzangden pa streaming multimedie serverne. Ved at benytte
P2P kommunikation sammen med distribuerede multimedie Content Delivery Networks
(CDN), kan multimediedata af hgj kvalitet sendes ud til et stgrre antal brugere, nar der
bruges den samme stgrrelse serverinfrastruktur.

Denne afhandling undersgger hvordan P2P kommunikation kan bruges til at dis-
tribuere streaming multimedier blandt et stgrre antal brugere. Specifikt undersgges
hvordan forskellige algoritmer, som kgrer Peer-to-Peer Streaming Peer Protocol (PPSPP)
klienten, pavirker opstartstiden og playback kontinuiteten af multimedie strgmme. P2P
kommunikation er en samarbejdende proces, derfor undersgger denne afhandling hvordan
forespgrgsler fra udefrakommende data skal opdeles blandt de forbundne deltagere, for
at opna en hgj streaming kontinuitet. Under en P2P multimedie streaming modtager
klienterne ikke kun data fra en multimedie server, men ogsa fra andre deltagere. Denne
athandling undersgger hvordan Low Extra Delay Background Transport (LEDBAT)
protokollen kan forbedres til brug sammen med P2P multimedie streaming, mens den
péa samme tid ikke vil overstrgmme internet tilslutningen hos de forbundne deltagere.
Denne afhandling prasenterer ogsa forskellige muligheder til at integrere P2P multimedie
streaming med kommunikation deltagernes rang, givet ved Application Layer Traffic
Optimization (ALTO) protokollen.

De sidste to kapitler i denne afhandling er tilegnet to ydelses malinger af P2P mul-
timedie streaming over forskellige tradlgse kommunikationsteknologier. Dette arbejde
undersgger hvordan P2P multimedie streaming kan udfgres over Wi-Fi P2P forbindelser.
Der undersgges ogsa metoder til at anleegge mutimedie caches i Long Term Evolution
(LTE) netvaerks basestationer, sammen med muligheder for at implementere P2P kommu-



X Resumé

nikation over den samme LTE infrastruktur.



Preface

This dissertation presents a selection of the research work conducted during my PhD
studies from April 1, 2015, until March 31, 2017, under the supervision of Associate
Professor Jose Soler, and Professor Lars Dittmann. It is submitted to the Department of
Photonics Engineering at the Technical University of Denmark in a partial fulfillment of
the requirements for the Doctor of Philosophy (PhD) degree.

This PhD project started initially as an Industrial PhD project together with company
MOSAIQQ Denmark. It was converted to an academic PhD project from March 1, 2016.
The work was done in the Networks Technologies and Service Platforms group at the
Department of Photonics Engineering at the Technical University of Denmark (DTU),
Kgs. Lyngby.

Justas Poderys
Copenhagen, 2018

Xi



Xii




Acknowledgments

I would like to take the opportunity to thank some of the people who made this work
possible. First and foremost, I would like to thank my parents. Without you, none of this
would be possible. I would also like to extend my gratitude to both of my supervisors -
Jose Soler and Lars Dittmann. They always had my back in all ups-and-downs of the last
three years.

This thesis would not have been completed without the help of fellow PhD students.
Matteo Artuso, Jahanzeb Farooq, Angelos Mimidis, Jakob Thrane, Line Hansen, Artur
Pilimon, Andrea Marcano, Eder Zaballa, Cosmin Caba, and others - thank you for your
support. I would also like to extend my thanks to all the great colleagues that I got to
know from DTU Fotonik.

Last, but not least, I want to say thank you to my wife Laura. Your continuous love
and support (especially during the last weeks of writing) made my journey to the end of
this PhD project much more enjoyable. Without you I would be stuck in the academia
forever.

xii



Xiv




List of Publications

This PhD project resulted in 7 peer-reviewed publications, presented in international
conferences and journals.

1. Poderys, Justas; Farooq, Jahanzeb; Soler, José.
“A Novel Multimedia Streaming System for Urban Rail Environments Using Wi-Fi
Peer-to-Peer Technology”.
Published in: Proceedings of 2018 IEEE 87th Vehicular Technology Conference.
IEEE, 2018.

2. Poderys, Justas; Artuso, Matteo; Lensbgl, Claus Michael Oest ; Christiansen,
Henrik Lehrmann; Soler, José.
“Caching at the Mobile Edge: a Practical Implementation”.
Published in: IEEE Access, Vol. 6, 2018, p. 8630 - 8637.

3. Poderys, Justas; Sunny, Anjusha; Soler, José.
“Implementing Resource-aware Multicast Forwarding in Software Defined Net-
works”.
Published in: Proceedings of the 6th World Conference on Information Systems and
Technologies (WorldCist’ 18). Springer, 2018. (Advances in Intelligent Systems
and Computing).

4. Poderys, Justas; Farooq, Jahanzeb; Soler, José.
“A multimedia streaming system for urban rail environments”.
Published in: Communication Technologies for Vehicles. Springer, 2017. p. 41-53
(Lecture Notes in Computer Science, Vol. 10222).

5. Poderys, Justas; Soler, José.
“Evaluating Application-Layer Traffic Optimization Cost Metrics for P2P Multime-
dia Streaming”.
Published in: Proceedings of 25th Telecommunications forum. IEEE, 2017.

6. Poderys, Justas; Soler, José.
“Streaming Multimedia via Overlay Networks using Wi-Fi Peer-to-Peer Connec-
tions”.

XV



XVi List of Publications

Published in: Proceedings of 19th IEEE International Symposium on Multimedia.
IEEE, 2017.

7. Poderys, Justas; Soler, José.
“Using relational databases to collect and store discrete-event simulation results”.
Published in: Proceedings of 30th annual European Simulation and Modelling
Conference. 2016.



List of Figures

1.1

1.2

1.3

2.1

2.2

2.3

2.4

2.5
2.6

2.7
2.8

Global Consumer Internet Traffic forecast. Traffic amount by traffic
type for 2016-2021. Based ondatafrom[1].. . . . . ... ... ...

Data flows between the users and streaming multimedia servers of
CDN . . .

The main topics discussed in this thesis and the corresponding chap-

Two methods to multicast data in IP networks. A—Physical network
layout; B—Data flows in network layer multicasting; C—Data flows in
application layer multicasting. . . . . ... ... ... ... ......

Parent node selection process in the Overcast ALM protocol. "A"—
Arriving node (RN) contact the source node. "B", "C"—Arriving node
goes down the data distribution tree evaluating the nodes. "D"—
Arriving node positions itself as a child node of the R1 node. . . . .
A 2-dimensional CAN space divided between 11 nodes. Numbers in
the figure indicate the node’s identifier. The dashed line indicates the
direction of data transfer. The solid line indicates the path taken by
data to travel fromnode 2tonode 8. . . . . ... ... ... ... ..
A CAN space after node 12 joins the space by splitting the area
previously occupiedbynode 1. ... ... .. ... ... .. .....
Messages flooding as used during multicasting in the CAN space. .
Operation stages of the Peer-to-Peer Streaming Peer Protocol. "A"
— During normal operation, data is sent from the source node (S) to
relay nodes (R) and between the relay nodes; "B" — An arriving (RN)
node contacts the Tracker node (Tr) to learn about other nodes in
the group; "C" — The arriving node starts exchanging data with other
nodesinthegroup. . . . ... .. ... ... ... L.
Operation states of Application Layer Multicast Protocols . . . . . .
Service Operation sub-states. . . . . . ... .. ... .........

12

14

15
16

18
18
22

XVii



xviii

List of Figures

2.9

3.1
3.2
3.3
3.4
3.5

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

Possible relocation places (indicated with subscript P) for a relocating
relay node (RR). "A" — Switch sibling, "B" — Switch one-hop. "C"
— Switch two-hop. "D" — Switch any. Adapted from BTP protocol
specification [37]. . . . . . . ... 24
Block diagram of the PyPPSPP client . . . . ... ... .. ... .. 30
AsequenceoflandPframes.. . . .. ... ... ... ... ..... 35
Frame sizes of the VP8 test video used in this thesis. . . . . .. .. 36
Bufferingconcepts . . . . ... ..o 38
Example of buffering in YouTube. . . . .. .. ... .......... 38
CWND calculation algorithm in LEDBAT sender . . ... ... ... 46
Two computers connected with a communication link containing two

buffers. Propagation and processing delays are constant in this com-

munication link. . . . . ... 46
Average link utilization for different CWND multiplier values and num-
ber of TCP/LEDBAT connections. Targetdelay =40ms. . . . . . .. 49
Average link utilization for different CWND multiplier values and num-
ber of TCP/LEDBAT connections. Targetdelay=80ms. . . . . . . . 49
Average link utilization for different target delay values and number of
TCP/LEDBAT connections. CWND multiplier=0.5. . . . . . ... .. 50
Average link utilization for different target delay values and number of
TCP/LEDBAT connections. CWND multiplier=0.75 . . . . ... ... 50
Average link utilization for different target delay values and number of
TCP/LEDBAT connections. CWND multiplier=0.95 . . . . ... ... 51
Data flow from client A to the internet would yield to the data flow from
client A to client B if both clients would use BLBT. . . .. ... ... 52
PC1 requests PC2 to switch to BLBT. PC2 does so only if at least one
of the other connections is notusing BLBT. . . . ... .. ... ... 52

4.10 Test network topology. Users are divided into 3 groups, each con-

nected to an access router. Each access router is connected to two
core reouters. Core routers connect to multimedia servers and traffic
generation servers. . . . . ... 53

4.11 Average observed start-up time for different arrival patterns, user

population sizes and background traffic levels. Numbers in the legend
indicate number of users. Average Queuing delay=26 ms. . .. . . 54

4.12 Average observed start-up time for different arrival patterns, user

population sizes and background traffic levels. Numbers in the legend
indicate number of users. Average Queuing delay=46 ms. . . . . . 54

4.13 Average observed Playback Continuity Index for different arrival pat-

terns, user population sizes and background traffic levels. Numbers in
the legend indicate number of users. Average Queuing delay=26 ms. 55



List of Figures Xix
4.14 Average observed Playback Continuity Index for different arrival pat-
terns, user population sizes and background traffic levels. Numbers in
the legend indicate number of users. Average Queuing delay=46 ms. 55
5.1 Data chunks selection algorithm integrating ALTO cost metrics . . . 61
6.1 Network node coordinates establishment using GNP protocol with 3
landmarknodes. . . . . . . ... 69
6.2 Finding the closest node using Meridian protocol . . . . ... .. .. 70
6.3 Two communication paths traversing different number of autonomous-
systems. . ... 71
6.4 An example of a European-wide network’s PIDs hierarchy. . . . .. 72
6.5 A fragment of a network map used in experiments. . . . . ... ... 73
6.6 ALTO routing cost requestandresponse. . . . .. .......... 75
6.7 ALTO end-point property service used to discover end-points providing
movie cache services. . . . . . . ... ..o 76
6.8 Block diagram of ALTO server implementation . .. ... ... ... 79
6.9 Topology of thetestnetwork . . . . .. ... ... ... ... ...... 80
6.10 Data chunks selection algorithm integrating ALTO cost metrics . . . 81
6.11 Average start-up time in Live and VoD use-cases with different back-
ground data trafficlevels. . . . . . ... ... ... ... ... .. ... 82
6.12 Playback Continuity Index (PCI) for each cost-metric based on number
of users, usage scenario and background traffic levels. . . . .. .. 84
6.13 Average number of data messages received by users based on the
communications peer location, use-case and cost metric. . . . . . . 85
6.14 Average number of messages received from the streaming server. . 85
6.15 A subjective take on two technologies discussed next by a NASA-
engineer-turn-cartoonist. © CC-BY-NC, Randall Munroe, xkcd. com/
1865/ o e 88
7.1 A smartphone with Wi-Fi P2P support can connect to the Wi-Fi
Access-Point and another Wi-Fi P2P device simultaneously. 91
7.2 Communication model of the multimedia streaming system. Each
user device performs functions of Wi-Fi P2P GO and client devices.
Arrows indicate P2P member-of relationship. . . . .. ... ... .. 92
7.3 The protocol stack of three devices performing multimedia streaming
over Wi-Fi P2P connections . . . . ... ................ 93
7.4 The process of data distribution from the multimedia source to all
connectedclients. . . . . ... .. 94
7.5 Duplicate concurrent connections between two hand-held devices.
Each device is a GO and a client at the same time. Arrows indicate
member-of relationship. . . . ... ... ... ... . ... 95


xkcd.com/1865/
xkcd.com/1865/

XX List of Figures

7.6 Baseline evaluation scenarios. Arrows indicate data transfer direction.
7.7 Average observed data transfer speeds in base-line testing.
7.8 Data chunks selection algorithm . . . . . ... ... ... ... ...
7.9 Average VoD and Live start-uptime . ... ... ... ... ....
7.10 Distribution of the average node start-up time based on multimedia
type, initial buffer, forward download window sizes and number of
users. Legend values show number of users / window size. . . . . .
711 PClinLiveand VoD use-cases . ... ... ..............
7.12 Playback Continuity Index based on multimedia type and the forward
download window size. . . . . .. ... ... ...
7.13 Methods of delivering data connectivity to the passengers: (A) us-
ing a direct cellular connection for each user, (B) using one cellular
connection for the train that is shared with other users using Wi-Fi.
7.14 An overview of the proposed multimedia streaming system. . . . . .
7.15 Graphical description of in-train streaming experiment setup. . . . .
7.16 Average observed user start-up times. Numbers in the parentheses
in the legends indicate the starting users population. . . . . . . . ..
7.17 Average observed Playback Continuity Index (PCl). Numbers in the
parentheses in the legends indicate the starting user population.
Dashed lines indicate the chosen performance threshold. . . . . . .

8.1 The main elements of the LTE network, relevant to the work presented
inthethesis. . . . ... ... .. ... . ... ..
8.2 LTE userplane protocolsstack. . . ... ................
8.3 The logical architecture of the proposed edge-caching solution.
8.4 Protocol stack in the cache server with an integrated GTP-U gateway
andHTTPserver. . . . . ... . . . .. . . ..
8.5 Physical components used to implement the edge-caching system
profotype. . . . . . . ..
8.6 Test results of prototype edge-caching solution. UE - User equipment,
EPC - Evolved Packet Core, CDN - Content Delivery Network. Error
bars indicate one standard deviation. . . . . .. ... ... ... ...
8.7 Components of LTE based P2P communication system . . . . . . .

A.1 PPSPP Handshake messages sequence. . . . ... .........
A.2 PPSPP Data exchange sequence. . . . ... ... ..........
A.3 PPSPP Peer information exchange sequence. . ... ... ... ..

B.1 Congestion window size of TCP protocols during various connection
states. © GPLv3 Fleshgrinder / Wikimedia . . . .. ... ... ...

96
96
98
99

99
100
101
102
103

104

105

107

110
111
113

114

116

118
119

127
128
129



List of Tables

2.1
2.2
2.3

4.1

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8

8.1

Tree-based structured ALM protocols . . . . . .. ... ... ..... 9
Tree-based unstructured ALM protocols . . . . . ... ... ... .. 10
Mesh-based ALM protocols . . . . ... ... ... ... ....... 11
LEDBAT evaluation experiment parameters . . . . .. ... ... .. 48
Data-requesting algorithm test parameters . . . . . ... ... ... 62
Start-up time, seconds (15users) . . . . .. .. ... . ... ..... 63
Start-up time, seconds (30wusers) . . . . .. ... ... ... ... .. 63
Start-up time, seconds (45 users) . . . . .. ... ... 63
Playback Continuity Index (15users) . . . ... ... ... ... ... 64
Playback Continuity Index (30 users) . . . . .. ... ... .. .... 64
Playback Continuity Index (45 users, Exponential Arrival) . . . . . . 64
Playback Continuity Index (45 users, Flash Arrival) . . . . . ... .. 65
LTE P2P communication test-bed testingresults . . . . . . ... .. 121

XXi



XXii




Glossary

3GPP 3rd Generation Partnership Project.
ACK Acknowledgment.

ALM Application Layer Multicast.

ALTO Application Layer Traffic Optimization.

AP Access-Point.

AS Autonomous System.

BBU Baseband Unit.

BHL Backhaul.

BS Base Station.

CIDR Classless Inter-Domain Routing.
COTS Commercial Off-The-Shelf.
C-RAN Cloud-Radio Access Network.
CAGR Compounded Annual Growth Rate.
CBTC Communications-Based Train Control.
CCMN Content-Centric Mobile Network.
CDN Content Delivery Network.

CN Core Network.

CSS Cascading Style Sheets.

CWND Congestion Window.

xxiii



XXiv

Glossary

D2D Device-to-Device.

DNS Domain Name System.
ELM Extreme Learning Machine.
eNodeB Evolved Node B.

EPC Evolved Packet Core.

EPS Evolved Packet System.

E-UTRAN Evolved-Universal Terrestrial Radio Access Network.

FHL Fronthaul.

GTP-U GTP User.

HetNet Heterogeneous Network.

HTML Hypertext Markup Language.

HTTP Hypertext Transfer Protocol.

ICN Information-Centric Networking.

IETF Internet Engineering Task Force.
IGMP Internet Group Management Protocol.
IP Internet Protocol.

ISP Internet Services Provider.

JSON JavaScript Object Notation.

LBE Lower-than-Best-Effort.

LEDBAT Low Extra Delay Background Transport.
LI Legal Interception.

LTE Long Term Evolution.

MEC Mobile Edge Caching.

MME Mobility Management Entity.

NDO Named Data Object.

OS Operating System.



Glossary XXV

OSI Open Systems Interconnection.

OWD One-Way Delay.

P2P Peer-to-Peer.

PCEF Policy and Charging Enforcement Function.
PCI Playback Continuity Index.

PCRF Policy and Charging Rules Function.
PDCP Packet Data Convergence Protocol.
PDN-GW Packet Data Network Gateway.

PID Provider-defined Identifier.

PPSPP Peer-to-Peer Streaming Peer Protocol.
QoE Quality of Experience.

QoS Quality-of-Service.

RAN Radio Access Network.

REST Representational State Transfer.

RTT Round-Trip Time.

S-GW Serving Gateway.

SNMP Simple Network Management Protocol.
TCP Transport Control Protocol.

UDP User Datagram Protocol.

UE User Equipment.

URL Uniform Resource Locator.



XXVi




CHAPTER 1

Introduction

Internet video delivery is by far the largest type of global consumer internet traffic. It
encompass such video services as short videos delivery (i.e. YouTube), long videos
delivery (i.e. Netflix), live Internet video, and Internet video for TV. It is also expected to
continue growing for the foreseeable future (see Figure 1.1).

Global Consumer Internet Traffic

T T T T

&
= 200,000 |- |
¥ =
E"; L
s
S 100,000 | i
>
el
[=
o

0 - .

L L L L L L
2016 2017 2018 2019 2020 2021

1 Internet Video 1 Web, Email, and Data
[ 10Online Gaming File Sharing

Figure 1.1: Global Consumer Internet Traffic forecast. Traffic amount by traffic type for
2016-2021. Based on data from [1].

In order to deliver high-quality streaming multimedia to its clients, multimedia content
providers typically use Content Delivery Networks (CDN). CDN consists of a number
of servers (CDN Nodes), distributed among different client networks. When a client
requests multimedia data, for example by visiting a news website, multimedia is delivered
to the user from the CDN node closest to the user, as shown in Figure 1.2a. Only if the
network lacks its own CDN node, or the node does not have the required content, the
client connects to the CDN node present in another network.

As the amount of Internet video traffic grows, so does the requirements for the number
CDN nodes in the networks. Hence, the operators of the CDNs are forced to look for



1.1

2 Chapter 1. Introduction

7 e
VR VR CDN
[ NetworkB [ . Network C /J Network 1 Nodes @ Network C

,/7\( ‘ ‘ [ /| Network D ’/7\(7 [ ‘ ;/ ] J|Network D
\/j F ) \ / /«:
[ Network A J & é NclworkA /L/ . ./

—~ S~ BN\

(a) The clients in the Network A lack (b) By using P2P communication, users
a local CDN node and connect to CDN can receive multimedia from other users
nodes in other networks via the Internet that have already downloaded it, in addi-
Exchange Point (IXP). tion to receiving it from CDN nodes.

Figure 1.2: Data flows between the users and streaming multimedia servers of CDN

alternative methods of multimedia data delivery that allow delivering of high-quality
multimedia by utilizing less CDN nodes. One such possible method is a Peer-to-Peer
(P2P) communication-based streaming servers offload.

When a user performs P2P-assisted multimedia streaming, it download multimedia
data from the streaming server. Once the data is downloaded, it is made available to other
users, making the user act as a streaming server as well. This brings a number of benefits.
The load on the streaming servers is reduced, because users acquire parts of the data from
other users, as shown in Figure 1.2b. In addition to reducing the load on the streaming
servers, using the P2P communication for multimedia streaming can reduce the load on
the inter-network links as well. This is achieved by performing data exchange between
the users in the same network, rather than between the users from the different network.

In order to achieve the above described benefits, a number of different algorithms
and protocols run in a P2P communication client. This thesis investigates how these
algorithms and protocols affect the Quality-of-Service of streaming multimedia. This
thesis investigates congestion control, work distribution, and peers ranking algorithms.
The results presented in this thesis were obtained by performing experiments using real
devices and emulated networks.

Thesis Organization

This thesis is organized by following the generic-to-specific structure. The main content is
divided into 7 main chapters, as shown in Figure 1.3. Chapter 2 provides an introduction
of the one-to-many (multicast) communication model. It also provides a survey of 55
different P2P communication protocols, and a generic description of different stages
of P2P client operation. Chapter 3 is dedicated to describing a Peer-to-Peer Streaming



1.1. Thesis Organization 3

Peer Protocol (PPSPP) client used throughout the thesis. The same chapter is also
used to describe the methods to quantify the Quality-of-Service parameters of streaming
multimedia.

The work continues by describing three internal processes of the client. The methods
and protocols used for congestion control are described in Chapter 4. It also describes how
the parameters of Low Extra Delay Background Transport protocol were tuned for use
with multimedia streaming. By using P2P communication, clients request data from other
clients in addition to requesting data from the streaming multimedia server. Chapter 5
describes algorithms that govern how much data is requested from different peers. The
quality of streaming multimedia depends on the quality of the connections between the
peers. Chapter 6 describes how the Application Layer Traffic Optimization service can
be integrated in P2P communication to rank the peers based on the different connection
parameters.

Protocols Survey
(Ch. 2)

PPSPP Client (Ch. 3)
Congestion Data Peers
M Control Requesting || Ranking ]
(Ch. 4) (Ch. 5) (Ch. 6)
Wi-Fi Long Term
Peer-to-Peer Evolution
(Ch.7) (Ch. 8)

Figure 1.3: The main topics discussed in this thesis and the corresponding chapters.

The last two chapters are dedicated to two different wireless communication technolo-
gies. Chapter 7 describes an extension to the Wi-Fi standard, called Wi-Fi Peer-to-Peer,
and how it can be used to form ad-hoc networks that are used to stream multimedia.
Finally, Chapter 8 describes a work done on investigating the possible changes to the
Long Term Evolution (LTE) networks to place streaming content caches closer to the
users and enable P2P communication over the mobile base-stations.






CHAPTER 2
One-to-Many Communication

Historically, the only group communication method supported by Internet Protocol (IP)
networks was broadcast communication. A network host utilizing broadcast commu-
nication sends data to all hosts within a network’s broadcast domain. However, using
broadcast communication has certain limitations. First, it delivers data to all hosts within
a broadcast domain without a method for opting-out from receiving such information.
Second, broadcast communication spans only a single broadcast domain. Two hosts,
separated by a router and hence being in two different broadcast domains, will not be able
to receive broadcast information from one another.

In order to enable a more efficient one-to-many communication model, the Internet
Engineering Task Force (IETF) defined methods for sending data to multiple hosts by the
means of multicast communication. By implementing a multicast communication model,
network hosts can indicate willingness to receive information sent to a group of hosts.
Each such group is identified by a group address and hosts willing to receive information
sent to the group can join and leave it at any time.

The multicast communication model solves two main problems faced by broadcast
communication—it allows to efficiently use network resources and for hosts to only
receive information they are interested in. However, while it is widely used in individual
networks, multicast communication was never broadly adopted in the Internet [2]-[4].
Some of the issues that prevented widespread adoption were local significance of the
groups, scaling issues with multicast data routing protocols and their interoperability,
and lack of Quality-of-Service (QoS) management features when operating over multiple
networks in different administrative domains.

Based on the end-to-end systems design approach[5], several researchers proposed to
move multicast data duplication, group establishment and management function from the
network layer to the application layer of the OSI model[6]. This approach is called Appli-
cation Layer Multicast (ALM) and provides an alternative to network-layer multicasting.
Until recently, a significant number of different application layer multicasting protocols
have been proposed[7], [8]. Most of them target a narrow application area, such as file
transfer or multimedia streaming. By doing so, ALM protocols move away from the "one
size fits all" approach used in network layer multicasting, to the specialized "one protocol
per application" used in the application layer multicasting.

Services utilizing ALM protocols are actively researched and some are already in
widespread use. Peer-to-peer streaming of video content using ALM is proposed as

5



2.1

6 Chapter 2. One-to-Many Communication

a solution for next generation delivery of TV programs[9]. The music distribution
program "Spotify" used ALM during early, high-growth period [10]. Another well-known
ALM protocol used for file distribution is BitTorrent[11], [12]. Operating systems are
also starting to use ALM protocols to distribute updates to users. The latest version
of Microsoft’s operating system (Windows 10) is using ALM as a default method for
update distribution[13]. The interest in ALM systems may continue to increase due to
the standardization of device-to-device communication over Long Term Evolution (LTE)
mobile networks (based on "3GPP revision 12"[14] and beyond).

Next, this chapter contains a short summary of the main features of the network layer
multicasting. It is followed by a detailed description of the functioning of application
layer multicast protocols, based on the survey of 56 different protocols.

Network-Layer Multicast Communication

Network layer multicasting[15] is a method to implement group-based communication in
the IP data networks. When a computer device joins a multicast group, it receives all data
sent to the group. To send data to the multicast group, computer devices address the data
using the multicast group’s IP address. Upon receiving data addressed to the multicast
group, a first-hop router ensures that it is routed and duplicated as needed to all members
of the indicated group.

Network layer multicast groups are identified by class D IP address space (range from
224.0.0.0 to 239.255.255.255)[15]. When a network device joins the multicast group, it
can choose to receive all data sent to the multicast group (called any-source multicast),
or only the data sent by a specific member (called source-specific multicast)[16]. The
taxonomy used to indicate the network-layer multicast groups consists of a two IP addresse
tuple: (S, G). The first member of a tuple (S) indicates the IP address of the source of
the data and the second member (G) is a class D IP address of the multicast group. In
the any-source multicast groups, the first member of the tuple can be replaced by "*",
indicating that the member of the multicast group would like to receive data from all the
senders.

There are two separate protocol areas in the network layer multicast network: the
client access and the multicast data routing. Consider a sample network shown in panel
"A" of Figure 2.1. The access area is between the end-user devices (computers and the
video server) and the first-hop router, indicated by solid lines in the figure. The multicast
data routing area is between the multicast enabled routers, indicated by the dashed lines
in the figure. Panel "B" of the figure illustrates data flows (solid lines) from the video
server to all clients in the network using network layer multicasting. Two main features
of the network layer multicast are visible here: first, all data traverses each link only once,
and second, routers duplicate data as it is being sent over the network.

Protocols operating in the client access area allow devices to control the membership
of the multicast groups. Internet Group Management Protocol (IGMP) [17] is used



2.1. Network-Layer Multicast Communication 7

Physical Network

Application L. Multicast| Network L. Multicast

Figure 2.1: Two methods to multicast data in IP networks. A—Physical network layout; B—
Data flows in network layer multicasting; C—Data flows in application layer multicasting.



2.2

8 Chapter 2. One-to-Many Communication

to control membership of the multicast groups in the IPv4 networks and the Multicast
Listener Discovery [17] (MLD) protocol is used to control membership of the multicast
groups in the IPv6 networks. When a device wants to join, query or leave a multicast
group, it sends an IGMP or MLD message which is processed by a first-hop router on
the sending device’s network. Ethernet switches can monitor IGMP or MLD messages
traversing the switch to further optimize multicast data delivery in what is called IGMP
snooping[18].

Protocols operating in the multicast routing area ensure that the data sent to the
multicast group is delivered to all routers with a member of that group connected to them.
Protocols in this area are divided into two groups. In the first group are the protocols that
implement full routing protocol functionality. Among the examples of such protocols are
Distance Vector Multicast Routing Protocol[19], Multicast Open Shortest Path First[20]
and Multiprotocol Border Gateway Protocol[21]. In the second group are the protocols
that utilize unicast routing information for multicast data delivery, and are called Protocol
Independent Multicast (PIM) protocols. Examples of such protocols are PIM Dense
Mode[22], PIM Sparse Mode[23], Source Specific PIM[24] and Bidirectional PIM[25].

Application Layer Multicasting

An alternative method to implement data multicasting in the IP networks is ALM. ALM
is an umbrella term for several groups of protocols that provide data multicasting using
unicast network connections. ALM protocols create direct connections between the
members of the multicast group and so they follow the peer-to-peer (P2P) communication
paradigm and are referred to as 3rd generation P2P protocols[26].

There are two main differences between the application layer data multicasting and
network layer multicasting identified by a number of researchers[7], [8], [27], [28]. First,
in application layer multicasting, data duplication is happening on the end-user device (i.e.
computer, mobile phone) in contrast to the network layer multicasting, where network
devices (i.e. routers) are responsible for data duplication. Second, the same data in
network layer multicasting traverses any link between network layer devices only once.
In application layer multicasting, the same data will traverse links between the network
layer devices (i.e. between routers or routers and computers) at least once. This is because
data is duplicated on the user’s device, so it has to be delivered first to the user’s device
(1st pass over a link between the user and router) and then potentially replicated to one
or more other users (2nd and further passes over a link between the user and the router).
These differences are illustrated in Figure 2.1. Panels "B" and "C" show application layer
data flows from the video server to client computers using network layer and application
layer multicasting respectively. As shown in panel "B", data flows are split in the routers
and only one copy traverses each link. Compare this with the data flows shown in panel
"C", where the same data from the video server is distributed to users using application
layer multicasting. Here, data is duplicated in the end-user devices and might traverse the



2.2. Application Layer Multicasting 9

same link more than once, as it is being sent to and from user computers.

The logical structure that is formed by the data flows between the user devices in
application layer multicasting is governed by the application layer multicast protocol. The
ALM protocols are responsible for governing how users join and leave multicasting groups
and how data delivery is organized. As explained later in the chapter, there are several
classes of ALM protocols. While network layer multicasting protocols are standardized
by the Internet Engineering Task Force (IETF), most ALM protocols are non-standardized.
The only exception to this is "Peer-to-Peer Streaming Peer Protocol" standardized by
the IETF in 2016. The following overview of the protocols is based on the descriptions
of 55 different ALM protocols, grouped into three classes as explained in the section
"Classification of ALM protocols", and given in Tables 2.1-2.3.

Table 2.1: Tree-based structured ALM protocols

Protocol Name Year Optimized for
OVERCAST [29] 2000 Files Distribution
YOID [30] 2000 General
HBM [31] 2001 General
ALMI [32] 2001 General
OTBCP [33] 2001 General
AMCAST [34] 2001 General
SPREADIT [35] 2001 AV Streaming
COOPNET [36] 2002 AV Streaming
BTP [37] 2002 General
HMTP [38] 2002 General
NICE [7] 2002 Data Streaming
ZIGZAG [39] 2003 AV Streaming
OMNI [40] 2003 AV Streaming
PST [41] 2003 Data Streaming
RELAYCAST [42] 2003 General
RITA [43] 2003 | VOD/ AV Streaming
OSTREAM [44] 2004 AV Streaming
PROBASS [45] 2005 AV Streaming
NHAG [46] 2005 AV Streaming
CHUNKYSPREAD [47] 2006 | VOD / AV Streaming
UM [48] 2006 General
ISLAND MULTICAST [49] | 2009 General
TURINSTREAM [50] 2010 | VOD / AV Streaming
EAGLEMACAW [51] 2014 VOD




10 Chapter 2. One-to-Many Communication

Table 2.2: Tree-based unstructured ALM protocols

Protocol Name Year Optimized for
CAN]J[52] 2001 | General Distribution

BAYEUX [53] 2001 General
DTP [54] 2002 General
SCRIBE [55] 2002 General
BORG [56] 2003 General

SPLITSTREAM [57] | 2003 AV Streaming

THAG [58] 2005 Data Streaming

Application layer multicast (ALM) protocols are classified into several distinct groups
based on how the peers participating in the data distribution are organized. A survey
of peer-to-peer overlay network schemes by Eng Keong et al.[7] identifies two main
classes of ALM protocols: Structured and Unstructured. A survey of peer-to-peer live
video streaming schemes by Zhang & Hassanein[8] classifies ALM protocols first into
tree-based and mesh-based schemes. ALM protocol surveys by Hosseini et al.[27] and
Tan et al.[28] group protocols into tree-first and mesh-first classes. This chapter follows
the classifications proposed by Eng Keong et al. and Zhang & Hassanein. All covered
ALM protocols are first grouped into the tree-based and mesh-based groups. The tree-
based ALM protocols are further divided into structured and unstructured protocols. This
chapter explains the core differences between the three main types of ALM protocols
(tree-based unstructured, tree-based structured and mesh-based) by analyzing examples of
each protocol type. Names of the ALM protocol referenced in this chapter are indicated
using SMALL CAPS and references protocols listed in the Tables 2.1-2.3.

2.2.1 Tree-based unstructured protocols

The tree-based unstructured ALM protocols operate by organizing the nodes participating
in the data distribution into a logical tree structure. Each node (except the source node)
has a parent node and zero or more children nodes. The number of children nodes that
each node has can be limited by the design of the ALM protocol.

The distribution of data follows the tree structure. As the data becomes available in
the source node at the root of the tree, the data is duplicated to all children nodes of the
source node. Upon receiving the data from the source node, all children nodes duplicate
the data to the children nodes of their own. This process is repeated until the data is
delivered to all the nodes in the distribution tree.

In some cases (i.e. CHUNKYSPREAD, COOPNET and SPLITSTREAM), an ALM
protocol can build more than one parallel data distribution tree. Consider a system used
to distribute audio/video (A/V) data encoded using Multi Description Encoding (MDC).
Each description can be used to decode the A/V data, albeit with lower quality than could
be possible by using more descriptions. An ALM protocol can distribute each description



2.2. Application Layer Multicasting 11

Table 2.3: Mesh-based ALM protocols

Protocol Name Year Optimized for
RMX [59] 2000 Data Streaming
GOSSAMER / SCATTERCAST [60] | 2000 Data Streaming
SSOO0 [61] 2002 General
NARADA [19] 2002 General
ESMPCVM [62] 2004 AV Streaming
CHAINSAW [63] 2005 Data Streaming
COOLSTREAM [64] 2005 | VOD/ AV Streaming
GRIDMEDIA [65] 2005 AV Streaming
COOLSTREAMING+ [66] 2007 AV Streaming
PRIME [67] 2007 | VOD / AV Streaming
R2 [68] 2007 AV Streaming
SUBSTREAM TRADING [69] 2008 AV Streaming
BITTORRENT [11] 2008 Files Distribution
FASTMESH [70] 2009 AV Streaming
LAYERP2P [71] 2009 AV Streaming
MTREEBONE [72] 2010 AV Streaming
SPANC [73] 2010 AV Streaming
TREECLIMBER [74] 2010 AV Streaming
OLIVES [75] 2014 AV Streaming
P2PWEBRTC [76] 2014 AV Streaming
TRANSIT [77] 2014 General
HOPES [78] 2015 AV Streaming
CYCLON [79] 2015 AV Streaming
PPSPP [80] 2015 | VOD/ AV Streaming

over a different distribution tree, this way increasing the overall system’s resiliency
to failing nodes. To further illustrate the functioning of the tree-based unstructured
protocol, consider OVERCAST[29] protocol. OVERCAST is a single source ALM
protocol designed for bandwidth optimized data distribution. As such, it optimizes the
data distribution tree for the maximum bandwidth from the nodes to the source node at
the expense of end-to-end delivery latency.

Overcast is a self-organizing protocol without a centralized control. When a new node
wants to join the data distribution tree, it must obtain the IP address and connect to the
source node. The IP address of the source node can be entered by a user using graphical
user interface or by some kind of registry service. Once the new node contacts the source



12 Chapter 2. One-to-Many Communication

node, it starts the process of choosing the parent node as shown in Figure 2.2. The process
of selecting the parent node consists of a number of rounds until the best candidate is
found. At the first step (panel A), the bandwidth to the source node (indicated by S) from
the new node (indicated by RN) is measured. Then, as long as bandwidth difference is
no more than 10%, the bandwidth to the source node through each of the children of the
source node is measured (as shown in panel B). This process of bandwidth measurement
continues as long as possible while trying to put the new node as far away from the source
node as possible (panel C). Eventually, the bottom of the data distribution tree will be
reached, or all candidates will have insufficient bandwidth to the source node. Once the
best node is found, the new node becomes the child node of that node (panel D).

Figure 2.2: Parent node selection process in the Overcast ALM protocol. "A"—Arriving
node (RN) contact the source node. "B", "C"—Arriving node goes down the data distribu-
tion tree evaluating the nodes. "D"—Aurriving node positions itself as a child node of the
R1 node.

The measurement of bandwidth in the Overcast protocol is done by measuring the
time of 10 Kbytes data transfer from the new node to the source node. If two nodes have
transfer time within 10% of each other, a traceroute hop distance is used as a tie-breaker.
Nodes participating in the Overcast data distribution system periodically reevaluates
its position in the data distribution tree. It does so by measuring the bandwidth to the
source node to its current sibling nodes, parent and grandparent nodes. If the measured
bandwidth to the root does not decrease, the node performing the measurement will try to
relocate under one of its siblings. Alternatively, a node might relocate under the parent
or grandparent nodes if that increases the available bandwidth to the source node. To
prevent the nodes from relocating too often, a hysteresis bandwidth value can be used as a
relocation step.

The last two cases to consider are the actions of the node when a node fails or leaves
the system. If the parent node fails and stops relaying data, the child node contacts the
grandparent nodes and tries to relocate under it to receive the data. If the grandparent
node is also unresponsive, the node will continue contacting nodes up the distribution tree
until it reaches the source node. If the parent node decides to leave the data distribution
tree, it informs the children nodes (if any) to relocate one layer up to the grandparent



2.2. Application Layer Multicasting 13

node.

2.2.2 Tree-based structured protocols

The tree-based structured ALM protocols tightly control the organization of the peers
and distribute the data stored in the system among the peers to achieve high data queries
efficiency. The placement and access of data stored in the structured system is usually
based on the use of Distributed Hash Tables (DHT). In such systems, data is stored in
the form of key, value, where the key is a unique random identifier used to identify a
certain piece of data (value) stored in the system. In structured systems, the main function
of the ALM protocol is to map the keys used to identify the data to the nodes storing
this data and to route the requests to access or change the data between the participating
nodes. Since the structure of the nodes formation is tightly controlled, the data distribution
implicitly follows the tree form.

Next, this section presents CAN [52] protocol to illustrate the working of the tree-
based structured protocol. The core of CAN design is virtual d-dimensional Cartesian
space on a d-torus. All nodes participating in the multicast communication are assigned
parts of this d-dimensional space. Consider an example of 2-dimensional space, as shown
Figure 2.3. There are 11 nodes, each occupying a varying size of the 2-dimensional space
and numbered from 1 to 11. This 2-dimentional coordinate space is used to store data
having a form of key, value. All nodes know the IP addresses of the other nodes that
they share a border with. The nodes self-organize themselves and implement unicast and
multicast communication using the rules described next.

All data stored in the CAN space is accessed using the key value identifying the
requested data. To retrieve the data having a key value of K, a deterministic hash function
is applied to the key, that maps K value to the coordinates xK, yK. If the coordinates are
within the area occupied by a node originating the request, it means that the data is stored
on the node itself and can be accessed directly. If the point XK, yK is not in the area
occupied by the node originating the request, it needs to route the data access request to
the node storing the data. The request and data routing is done along the straight line path
from the node requesting the data to the coordinates where the data is stored. For example,
refer to Figure 2.3, where node 2 tries to access the data stored in the area occupied by
node 8. To do so, it routes the data access request to its immediate neighbor along the
dashed line from 2 to 8. Upon receiving the request from 2, member 5 uses the same
procedure to route the data request to member 7. Member 7 then routes the data access
request to member 8 using the same approach.

Using CAN routing paradigm, in a d-dimensional space divided into n equal parts, the
average message routing path length is (d/4)(n1/d). At the same time, all nodes maintain
2d number of neighbors. As the number of nodes occupying d-dimensional CAN space
grows, the state that each node has to maintain grows at a rate of O(nl1/d) [52].

Whenever a node wants to join a CAN space, it randomly generates a point having
coordinates R = xR, yR. It then routes the request to join the CAN space to the node



14 Chapter 2. One-to-Many Communication

11

10 2

Figure 2.3: A 2-dimensional CAN space divided between 11 nodes. Numbers in the figure
indicate the node’s identifier. The dashed line indicates the direction of data transfer. The
solid line indicates the path taken by data to travel from node 2 to node 8.

occupying the area containing the coordinate R. Upon receiving the request to join the
CAN space, the node already occupying the space containing the point R splits the space
in half and transfers all the data contained in the new area to the joining node. Consider
the example shown in Figure 2.4. Here a new node 12 joined the CAN space by splitting
the area previously occupied by node 1. Once the new node receives all the data located in
its new area from the node that previously occupied it, it needs to inform the neighboring
nodes about its presence. The new node does so, by sending a soft state update message to
all the neighbors acquired from the previous area owner. Whenever a node wants to leave
the CAN space, it follows the reverse of the join process. First, the leaving node transfers
all the data located in its area to one of its neighbors. Then once the transfer is complete,
the node owning a now enlarged area informs all the neighbors about the area change.

Multicasting in CAN is done by flooding a message to all members of the CAN space.
In the case that not all members of a CAN space are members of a multicast group, a new
instance of CAN space is created containing only the members of the multicasting group.
Once this new group is established, multicast messages are flooded throughout the group.
Flooding of messages in the CAN space can be implemented using several approaches.
A naive approach would be for each member of the CAN space to flood the message to
all of its neighbors. While easy to implement, this approach results in nodes receiving
multiple copies of the same message. In [52], the authors propose a message flooding
scheme that reduces the number of duplicate messages that multicast group members
receive. The proposed scheme works as follows:



2.2. Application Layer Multicasting 15

9 1 12
11
10 2
6 3
5
8 7 4

Figure 2.4: A CAN space after node 12 joins the space by splitting the area previously
occupied by node 1

1. The initial node, originating the message destined to all other nodes, sends it to all
of its neighbors;

2. The rest of the nodes that receive the message from their neighbor, which abuts it
along dimension i, forwards the message to the neighbors with which it abuts along
dimensions 1-(i-1). They also forward the message to the neighbors on the opposite
side to that from which it received the message;

3. A node does not forward a message along a particular dimension if that message has
already traveled more than half of the total distance possible along that dimension.
This restriction prevents messages from looping back around the space.

4. All nodes cache the sequence numbers of all messages transmitted, as not to forward
the messages it has previously received.

An example of messages flooding using the above rules is shown in Figure 2.5. Here
a node number 2 floods a message to all other members of the CAN space as indicated by
the lines representing the sent messages. From the example, it is clear, that this approach
does not fully eliminate the possibility of duplicate messages. To estimate the number
of duplicate messages, authors of the algorithm ran the simulations in 2-6 dimension
CAN space with 16 384 nodes. "In all cases, over 97% of the nodes receive no duplicate
messages and amongst those nodes that do, virtually all of them receive only a single
duplicate message" [52].



16 Chapter 2. One-to-Many Communication

“— “— —>
i

«— <——| 2 |
v | v

“— —>

Figure 2.5: Messages flooding as used during multicasting in the CAN space.

2.2.3 Mesh-based protocols

Mesh-based ALM protocols form the third main class of the ALM protocols. Mesh-based
protocols do not organize nodes into any specific logical form. Due to this reason mesh-
based protocols are also sometimes called swarm-based protocols, because all nodes
participating in the data distribution form a swarm with arbitrary interconnections. During
the mesh-based protocol operation, data is "split into chunks of fixed size (in bytes or
in seconds). Peers form neighboring relationships and advertise their bit-maps, which
describe the chunks they have to neighbors and exchange missing chunks"[8].

As there is no strict logical structure and the peers exchange information about
available data with arbitrary other peers, mesh-based protocols are more resilient to data
flow interruption during peers churn (arrival and leaving). The lack of logical structure
and requirement for the nodes to request the outstanding chunks made early mesh-based
protocols (i.e. BITTORRENTT(11]) unsuitable for live video distribution. Further work
on the outstanding chunks scheduling schemes [81], [82] allowed mesh-based protocols
to be used for live video streaming as well. This section continues with the analysis
of Peer-to-Peer Streaming Peer Protocol (PPSPP) [80], a mesh-based ALM protocol
standardized by the Internet Engineering Task Force.

In the following, messages exchanged during a PPSPP client operation are described;
a graphical description with messages’ structure is also given in Appendix A. The PPSPP
is "specifically targeted towards streaming audio/video content and optimizes time-till-
playback" [80]. It is a mesh-based protocol that supports two types of operation: when
peers request missing chunks and when the missing chunks are pushed towards the peers
missing them. To prevent malicious users from tampering with the distributed content,



2.2. Application Layer Multicasting 17

PPSPP supports signing content with a cryptographic hash that is a root hash in a Merkle
hash tree [83] built from the content being distributed. It allows the peers to verify if the
downloaded data is genuine (originated by the trusted source) or injected into the system
by the malicious user.

During the normal operation of PPSPP protocol shown in panel "A" of Figure 2.6, the
source peer (indicated by S) is streaming data to a set of receiver peers (indicated by R).
As soon as new data becomes available in the source node, the source node advertises
new data to the connected peers by sending "HAVE" messages. When a receiver node
learns about new data available at the connected peer, it sends a "REQUEST" message
requesting this data from the peer having it (in this case the source node). When the node
receives a "REQUEST" message, it replies to it with the requested data in a "DATA"
message. Responding node may optionally include "INTEGRITY" message to verify
the authenticity of the data contained in the "DATA" message. Whenever a receiver
node receives the "DATA" message, it authenticates the content in the message (if the
authentication is enforced) and advertises the availability of the new data to its connected
peers by sending a "HAVE" message.

A new node joins a data PPSPP based data distribution by contacting a tracker node.
The tracker node acts as a kind of registry, maintaining a list of the active node in each
swarm, identified by a swarm ID. In PPSPP, each data channel or file has its own swarm
ID, and one peer can participate in multiple swarms at the same time. After establishing
a connection to the tracker, the new node registers with the tracker using peer-to-peer
streaming protocol tracker specification[84] and receives contact information (IP address
and port) of peers already in the swarm. This process is shown in panel "B" of Figure 2.6.
Here, the new node (indicated by RN) contacts the tracker node (indicated by RT). The
tracker responds with contact details of three nodes already in the swarm (indicated
by dashed lines). The new node proceeds to connect to the nodes received from the
tracker (as shown in panel "C" of Figure 2.6). To establish a connection, the new peer
sends a "HANDSHAKE" message, to which the nodes already in the swarm reply with
"HAVE" messages. From this point, data is exchanged between the nodes as explained
above. To leave the swarm, a node sends "HANDSHAKE" message to the connected
peers indicating that it is leaving the swarm and deregisters from the tracker using tracker
specification.

As a node is participating in the PPSPP based data distribution, it can try to connect
to other members of the swarm, in addition to the nodes received from the tracker during
the initial communication. To do so, a node can either request the contact details of
other nodes from the tracker node (as during the initial communication) or from already
connected peers. When the second option is used, a node sends "PEX_REQ" peer request
message to the connected peers. Upon receiving this message, a peer replies to the sender
with a "PEX_RES" message, listing the contact details of the nodes, known to the replying
peer.



2.3

18 Chapter 2. One-to-Many Communication

Figure 2.6: Operation stages of the Peer-to-Peer Streaming Peer Protocol. "A" — During
normal operation, data is sent from the source node (S) to relay nodes (R) and between
the relay nodes; "B" — An arriving (RN) node contacts the Tracker node (Tr) to learn
about other nodes in the group; "C" — The arriving node starts exchanging data with other
nodes in the group.

Application Layer Multicast Protocols Operation

This section introduces a model created to describe the operation states of application
layer multicast (ALM) protocols. The model is generic and can be applied to all three
kinds of ALM protocols described in this article. The model is expressed as a finite state
machine (FSM) and is shown in Figure 2.7. The remainder of this section contains a
discussion of each state of the FSM using examples from the surveyed ALM protocols.
Names of the ALM protocol referenced in this section are indicated using SMALL CAPS
and references protocols listed in Tables 2.1-2.3. All ALM protocols start operating in
the "Service Discovery" state and transition through the remainder of the states during a
normal operation.

Service
Teardown

Service
Operation

Service
Initialization

Service
Discavery

Figure 2.7: Operation states of Application Layer Multicast Protocols

The "Service Discovery" state is an initial operating state of all ALM protocols. In
this state, a node running an instance of ALM protocol learns the address of a special
node, called the rendezvous point (RP), which acts as the initial point of contact for all
arriving nodes. Once the address of the RP is known and connection to it is established,
the arriving node transitions to the "Service Initialization" state. Until then, the actual
functions performed by the RP are not important for the arriving node. The RP can



2.3. Application Layer Multicast Protocols Operation 19

be a dedicated node, or its function can be provided by a node which is the source
node or a relay node at the same time. In single source systems (i.e. OVERCAST,
ZIGZAG), it is common to combine functions of the RP and the source node in a single
node. An alternative approach is to have the RP function provided by a dedicated node,
which is neither the source node nor the relay node (i.e. in BITTORRENT, HBM,
CHUNKYSPREAD, PPSPP). In systems, where the RP functionality is implemented in a
dedicated node, it is called a "Tracker" node[11], [80].

There is no single way to discover the address of the RP node. Several ALM protocols
(i.e. ALMI, SSOO, NICE, CHUNKYSPREAD) assume that the address of the RP node
is learned using the methods outside of the scope of the ALM protocol. These methods
might be the graphical user interface used by user to enter the address (i.e. in BITTOR-
RENT, ALMI) or a link clicked in the web-site (i.e. TREECLIMBER, SPREADIT).
BITTORRENT and YOID support using specially crafted uniform resource identifiers
(URD) to locate the RP and a specific data distribution group. In the case of YOID,
URIs have a form of "yoid://server.tld/channel: 123", where "yoid" is a service identifier,
"server.tld" is a hostname of the RP node and "channel:123" indicates the name of the
data group and the port the client should connect to. In the case of BITTORRENT, URIs
can be provided by a "Magnet-URI" framework[85]. The structure of the URI is similar
to that of YOID, but the service identifier is set to "magnet" and the remaining part is set
to a hash of data identifying the RP and the distributed file.

Not all ALM protocols provide a method to enter or discover the RP address. Some
ALM protocols, such as the one used for Microsoft Windows 10 updates distribution[13]
use the addresses preconfigured during the software development. Finally, the RP address
can be distributed in an organization using a directory service[86] as proposed in ALMI
protocol.

2.3.1 Service Initialization
Once the connection to the RP is established, a node running ALM protocol transitions to
the "Service Initialization" state. In this state, the arriving node learns about other nodes
participating in the data distribution, establishes connections with them and carries out
any other actions required to perform protocol initialization. The arriving node transitions
to the "Service Operation" state when it is ready to start data reception and distribution.
The actions performed during the service initialization are specific to ALM protocol
type and ALM protocol design. In unstructured mesh-based protocols (i.e. NARADA,
BITTORRENT, ESMPCVM, PPSPP, COOLSTREAMING, COOLSTREAMINGH+), the
main objective of the arriving node is to learn the addresses of other nodes participating in
the data distribution. It does so by "registering" [80] with the RP according to the protocol
specification. In the case of PPSPP, the arriving nodes register with the RP by following
the "Peer-to-Peer Streaming Tracker Protocol"[84]. Once the addresses of other nodes in
the mesh-based protocol are known, the arriving node starts making connections to these
nodes and follow the handshake procedure defined by the ALM protocol. Further learning



20 Chapter 2. One-to-Many Communication

of participating nodes’ addresses can be implemented using gossip based protocols like
SCAMP [87] as used in MTREEBONE.

Service initialization in unstructured tree-based protocols is a more elaborate process
due to the requirement for the arriving node to select the parent node. To find the parent
node, the arriving node must build a list of candidate nodes and then find the most suitable
candidate from this list. These two actions can be done either sequentially or concurrently.

In THAG and RITA protocols, the arriving node identifies its position in the network
using coordinate finding and network "landmarking" systems such as GNP [88] or Vi-
valdi[89]. The arriving node then uses its landmark information with a small number
of round-trip time (RTT) measurements to locate the logically close-by node from the
already active nodes that will become a parent node.

An alternative method to network coordinates or landmark measurement is to measure
network parameters to the potential parent nodes directly. In this approach, the arriving
node starts measuring bandwidth (i.e. OVERCAST), RTT (i.e. PROBASS, NHAG, DTP),
number of network hops (i.e. OVERCAST) or other parameter to the parent node at the
root of the tree. It continues going down the data distribution tree recursively until the
suitable candidate is found. Once the parent node is found, the arriving node establishes
itself as the child node of the chosen parent node.

Certain protocols (i.e. YOID, OTBCP, OLIVES) use the node’s IP address prefix
and possibly netmask information to determine if the potential parent is logically close
to the arriving node. This approach works based on the fact, that it is possible to query
the public regional internet registries for the ranges of IP addresses blocks assigned to
the Internet Service Providers. Then the potential parent with an address in the same IP
addresses block as the arriving node is preferred to the parents with an address in other IP
address blocks.

Nodes in tree-based protocols can be further grouped into groups or clusters. Each
parent with its children can be considered a single cluster or nodes at the same level in
the distribution tree can be considered as a cluster. Protocols like HMTP, SPREADIT,
P2PWEBRTC, TREECLIMBER, ZIGZAG and NICE perform parent selection based on
the cluster size. The new arriving node joins the first cluster that has the capacity to accept
a new node. If no such cluster is found, a new cluster is formed either by creating a new
cluster containing the new node or by splitting an already existing cluster.

Finally, in addition to recursive or distributed parent selection schemes, some protocols
perform centralized parent node selection. In COOPNET, GRIDMEDIA, FASTMESH
and ISLANDMULTICAST the RP node is responsible for selecting a parent node for
each arriving node. To select the best parent node, the RP might require the arriving node
to perform measurement of RTT to other nodes and return the results for final selection.
While ALM protocol performing centralized parent node selection might appear not
as scalable as protocols performing distributed selection due to the RP being a single
point of failure, according to GRIDMEDIA authors "measurement results of practical
application show that the workload of RP server keeps at low level with more than 15,000
simultaneous online users and thus our approach provides a considerable system capacity"



2.3. Application Layer Multicast Protocols Operation 21

[65]. In another real-life application, authors of COOPNET observed that "at its peak,
there were 18,000 nodes in the system ant the rate of node arrivals and departures were
1000 per second. (The average numbers were 10000 nodes and 180 arrivals and departures
per second)" [36].

2.3.2 Service Operation

An instance of the ALM protocol running in a node transitions to the "Service Operation”
state once the node is ready to receive data and distribute it to other nodes. The protocol
instance will stay in this state until either user decides to leave the data distribution
group or the data distribution stops (i.e. at the end of the live TV show). Two actions
are performed by a protocol instance in this state. First, data is being received and
potentially relayed to other nodes. Second, a node might try to reconfigure by making a
new connection to other nodes in mesh-based protocols, or changing its position in the
data distribution tree in tree-based protocols. This section will present the details on how
the data is being distributed first, and then will detail how the ALM protocols perform
reconfiguration.

Data distribution in tree-based ALM protocols is more straightforward than in the
mesh-based protocols. In the tree-based unstructured protocols, upon receiving data from
the parent node, each node makes a copy of the data for local consumption and then sends
the copies of received data to all of its children nodes. An ALM protocol might change its
data duplication strategy based on the priority of data being transmitted. In PST protocol,
each data piece accepted by the instance of the protocol carries a priority value. Then,
based on the priority value, accepted data is distributed between the nodes in the group
either using Minimum Spanning Tree (MST) or Shortest Path Tree (SPT) formation.

Tree-based structured ALM protocols route data using a local routing table maintained
by each node. Since the structure formed by the participating nodes is well-defined (i.e.
n-dimensional space in CAN, 2-dimensional Cartesian space in DTP or circular space
in PASTRY) each node needs to maintain only a small routing table with the addresses
of members that are "nearby". BAYEUX uses a system similar to the longest prefix
matching[90] used in the IP network instead of using geometrical space. In BAYEUX,
each node has a numeric ID number and maintains local multi-level routing tables. "A
node N has a neighbor map with multiple levels, where each level represents a matching
suffix up to a digit position in the ID. A given level of the neighbor map contains a number
of entries equal to the base of the ID, where the ith entry in the jth level is ID and location
of the closest node which ends in i’ + suffix(N, j - 1)"[53]. For example, to route a
message to the node with hexadecimal ID "12ABC", a message would transition through
the nodes having these IDs: "****C" - "****BC" - "**ABC" - "*2ABC" - "12ABC",
where * represents any character. This way the number of entries kept by each node in its
routing table is reduced.

Data in the mesh-based protocols is distributed in the group by exchanging data
availability messages between the nodes. In its simplest case, each node constantly



22 Chapter 2. One-to-Many Communication

informs connected nodes about the data available at the node. If a connected node detects,
that an advertising node has a piece of data that the receiving node does not have — this
missing data is requested from the advertising node. If the data being distributed is real-
time, then each node might maintain a window of interest, instead of storing all the data.
This approach is used in CHAINSAW, PPSPP, PRIME, COOLSTREAMING protocols. In
addition to nodes requesting data from the connected nodes (pulling data), some protocols
provide means for nodes to push data to the connected nodes. COOLSTREAMING+ and
GRIDMEDIA support such hybrid mode of operation to faster distribute less-requested
(rarer) data pieces or to minimize the messaging load between two nodes.

Data between the nodes in the data distribution group can be delivered using either
UDP [91] or TCP[92] protocols. In ALM protocols, used to deliver streaming audio
and video data, UDP protocol might be used together with an additional congestion
control algorithm to provide equal bandwidth sharing with other application running on
the same computer. Among such congestion control mechanisms used are TFRC[93]
(used by GRIDMEDIA, OLIVES, COOLSTREAMING), RAP [94] (used by OLIVES)
and LEDBAT [95] (used by PPSPP).

As the data transfer conditions in the Internet change over time, each node running
the instance of an ALM protocol needs to adjust its position in the data distribution group.
The process governing this change is shown in Figure 2.8. First, each node at periodic
intervals reevaluates, whether the adjustment is needed. If adjustment is not needed, the
node continues to receive and potentially relay data until another reevaluation occurs. If,
during reevaluation, it is deemed that reconfiguration is needed, the instance of ALM
protocol will try to reconfigure the node’s position and then will transition to the wait
state, restarting the whole process. Next, two sections describe the actions taken by the
ALM protocols during reevaluation and reconfiguration. It is important to note that during
these states, the node continues to receive the data and potentially relay it to other nodes.

Service Operation State

aluate

Reconfigure

Figure 2.8: Service Operation sub-states.



2.3. Application Layer Multicast Protocols Operation 23

2.3.3 Reevaluation State

A node running an instance of ALM protocol periodically enters the reevaluation state to
determine if the current position in the data distribution group is optimal. The evaluation
is based on the data type that is being distributed. An ALM protocol optimized for real-
time streaming media distribution will aim to minimize delay and jitter (delay variation).
A protocol used to distribute time insensitive data might aim to maximize the overall
bandwidth or aim to exchange data "fairly"—-that is, to maintain a constant ratio of data
uploaded to the neighbor node with data downloaded from the same node.

Protocols like OTBCP, NICE, BTP, HMTP use round-trip time measurement to
neighbor nodes to estimate the utility of the current position in the data distribution group.
YOID additionally tracks the amount of data loss observed in each node—-a parameter
called "lossprint". Lossprints are periodically exchanged between the children nodes and
the parent node to establish where the loss is happening. If the lossprint of the child node
is similar to that of the parent, this means that the data loss is happening "above" the
parent node in the data distribution tree. In such a case, a parent node is responsible for
reconfiguration and not the child node.

Overcast is optimized for time insensitive data distribution, so it is using the same
method as to find the parent node during joining procedure — by transferring 10 Kbytes
of data to the source node through evaluated node. OTBCP also can use throughput to
evaluate the utility of nodes placement.

ZIGZAG and R2 protocols aim to perform "fair" data distribution. ZIGZAG calculates
the ratio of the node’s degree (number of connection to other nodes) to its bandwidth
capacity and to keep this value equal among the connected peers. R2 protocol operates by
splitting media stream into number of a concurrent substreams. When evaluating potential
peer nodes, R2 protocol instances exchange the substream maps indicating the availability
of individual substreams in each node in a process called "substream exchange". If both
nodes detect that each has a substream other is missing, a connection is formed in the
reconfiguration state.

2.3.4 Reconfiguration state

An instance of ALM protocol running in a network node enters the reconfiguration state
when it observes during the reevaluation state that some data transmission parameters (i.e.
bandwidth, delay, ratio of exchanged traffic) are not meeting the preset threshold. Once
the reconfiguration is completed, an ALM protocol instance goes back to the "wait" state
(Figure 2.8) until the next reevaluation starts. The actions taken by the ALM protocol
instance during the reconfiguration stance are explained next.

Mesh-based protocols do not maintain a preset logical form between the members of
the data distribution group. As such, during the reconfiguration, mesh-based protocols
might disconnect connections to current neighbor nodes and try to make connections to
new nodes. BITTORRENT and LAYEREDP2P periodically replace the least contributing
peers with new ones. The list of potential peers is obtained either from already-connected



24 Chapter 2. One-to-Many Communication

nodes or from the RP node. NARADA follows a similar approach, but instead of com-
paring contribution by connected neighbors, it compares the routing tables of potential
neighbor nodes. Then, based on calculated utility, it drops current connections and makes
new ones.

Reconfiguration in tree-based ALM protocols is more complicated due to the strict
logical structure maintained by the nodes. Reconfiguration is more straightforward in the
centralized tree-based protocols (i.e. ALMI, ISLANDMULTICAST), because there is
a single entity responsible for maintaining tree structure and preventing tree partitions
and loops from forming. Additionally, ISLANDMULTICAST aims to build minimum-
diameter degree-bounded spanning tree using an approach proposed in [34].

In tree-based ALM protocols using distributed reconfiguration (where nodes can
relocate independently), each node can perform relocation in the data distribution tree as
shown in Figure 2.9, adapted from the BTP protocol specification. A relocating node in
the tree-based protocol can relocate anywhere, as long as it is not relocating under a node
located below the relocating node in the data distribution tree, as that would create a loop
in the data distribution tree.

A B C D

Figure 2.9: Possible relocation places (indicated with subscript P) for a relocating relay
node (RR). "A" — Switch sibling, "B" — Switch one-hop. "C" — Switch two-hop. "D" —
Switch any. Adapted from BTP protocol specification [37]

Tree-based ALM protocols using distributed nodes employ several approaches to
prevent loops from forming during relocation. Using YOID as an example, each member
maintains a rootpath—a list of nodes from the maintaining node to the source node. A
node then never accepts a relocation request from a node present in a rootpath. When a
node successfully relocates, it distributes its new rootpath down the distribution tree. A
unique approach of using Bloom filters [96] is employed by CHUNKYSPREAD to detect
and avoid loops.



2.3. Application Layer Multicast Protocols Operation 25

Reconfiguration in ALM protocols, which maintain grouping of nodes, is usually
used to keep the size of the group within certain bounds. SSO, ZIGZAG and NICE allow
members to move between the groups, split groups or create new groups to maintain
protocol defined group size. MTREEBONE is unique in the way that it moves nodes from
the leaves of the tree towards the center (called "treebone") after a certain time that the
node has been active in the group. It reflects the observation that "a node’s age partially
reflects its stability" [72] and more stable nodes should be in the backbone of the data
distribution tree. The other objectives of tree-based ALM protocols during relocation
are to form a priority based minimum spanning tree (PST) and a minimum diameter
degree-bounded spanning tree (AMCAST, ISLANDMULTICAST).

2.3.5 Service Teardown

The final state in the lifetime of the ALM protocol instance is "Service Teardown". While
in this state, the leaving node will take actions, required for gracefully leaving the data
distribution. During the graceful service teardown, two major scenarios can be identified.
In the first, the source node stops generating the data and all members will eventually
leave the group. This happens, for example, during streaming of a movie. At the end
of the movie, the source node will stop streaming data and all the nodes will leave. In
the second scenario, a single node decides to leave the data distribution group, while the
data distribution continues. Since the ALM protocols form cooperative data distribution
systems, the departure of a single node must be handled specifically, as described in this
section. One last remaining scenario is of ungraceful departure when a node crashes. This
outcome is analyzed from the point of view of the nodes remaining in the data distribution
group.

The teardown of data distribution service in tree-based unstructured ALM protocols
requires special action from the leaving and possibly from the remaining nodes. If a node
is not acting as a relay (it is a leaf node in the data distribution tree), it can leave at any
time, without affecting the remaining nodes. Otherwise, the children nodes of the leaving
node must relocate into the new position in the data distribution tree. The relocation can
happen with the help of centralized entity (the RP node), which directs the children nodes
of a leaving node to the new positions (i.e. in COOPNET, ESMPCVM, PROBASS). If
the centralized approach is not used, each children node is responsible for finding its new
position. It is done by re-running the join procedure (i.e. in NICE, ZIGZAG, HMTP),
or by each node going up the data distribution tree and trying to relocate under each
node, until a suitable new parent node is found (i.e. in OVERCAST). TURINSTREAM
periodically exchanges keep-alive messages between the nodes. These messages contain
"information about the peer free slots and information on its subtree" [50]. By using this
information, a child node of the departing parent can quickly relocate.

The departure of the node in the tree-based structured ALM protocol is more straight-
forward than in tree-based unstructured protocol. Since the logical structure is clearly
defined by the protocol specification, it is enough for a leaving node to inform the remain-



26 Chapter 2. One-to-Many Communication

ing nodes (i.e. in CAN, BAYEUX, BORG). If the ALM protocols were used to distribute
the data located in the nodes, a leaving node might transfer data located on the node to
some other node remaining in the system (i.e. in CAN).

The leaving of the node in the mesh-based protocols is most straightforward out of
the three types. As there is no strict logical structure, nodes can leave at any time, without
adversely affecting data distribution. A leaving node might inform other connected nodes
about its intention to leave (i.e. in PPSPP, COOLSTREAMING, BITTORRENT). A
leaving node might also contact the RP node to upload the statistical information about
the amount of data transferred while the node was active (i.e. in BITTORRENT).

Regardless of the ALM protocol type, nodes employ some kind of mechanism to track
the liveliness of other nodes in the data distribution group. Most of the ALM protocols
surveyed exchange heart-beat (HB) messages between the connected nodes (i.e. in NICE,
ESMPCVM, TURINSTREAM, SPREADIT). In the mesh-based ALM protocols, periodic
messages about available content can serve the function of HB messages (TFRC or BM
messages in COOLSTREAMING, HAVE messages in PPSPP). If a node stops receiving
HB messages from the connected node for a certain amount of time, that node is deemed
to have departed and connection to it is closed by the ALM protocol. In the tree-based
protocols, such ungraceful departure might cause the data distribution tree to reconfigure,
as explained previously.

Several approaches can be taken to minimize the data flow interruption when the
parent node is leaving. The first approach, as used in COOLSTREAMING, is for the
leaving node to continue forwarding the data for some time before it leaves the data
distribution system. When a user wants to leave the data distribution group (for example
by closing the application), the ALM protocol can send out messages to the children nodes,
requesting them to relocate immediately. Then, after some grace period, the leaving parent
node will stop forwarding the data. Any children nodes not relocated by that time will
experience data delivery interruptions. However, it was shown in [64] that this approach
works well and the grace period does not have to be long.

The second approach to minimize the data delivery interruption is for all nodes to
always maintain a backup parent node [43]. Using this approach (i.e. in RITA), each node
has the main parent node and at the same time a standby parent node. In the case of the
main parent node leaving, the node will be able to quickly relocate to the pre-determined
backup parent node. The only requirement is for the backup parent node to not have the
main parent node in its "rootpath" (list of nodes up the data distribution tree to the source
node). While this approach does not eliminate the possibility that both main and standby
parents will leave at the same time, it lowers the possibility of interruptions with minimal
efforts from the data distribution system.



24

2.4. Summary 27

Summary

For along time, network layer multicasting was the only method to implement multicasting
data delivery in IP networks. Since being introduced, application layer multicasting (ALM)
protocols provide an alternative method to achieve multicasting data delivery. While
suffering from sub-optimal bandwidth usage compared to network layer multicasting,
application layer multicasting protocols provide a number of benefits to its users. First
and foremost, ALM systems work on any network infrastructure and do not require
any special hardware or software support. Secondly, ALM systems do not require any
configuration from the end-user, providing the real plug-and-play user experience. Thirdly,
ALM systems can be tuned and tweaked for specific usage scenarios, be it real-time video
distribution or file sharing, and support the reliable data transfer natively. Finally, ALM
systems work well across network boundaries, not being confined to a single administrative
domain.



28




CHAPTER 3
Peer-to-Peer Client Structure

A software implementing peer-to-peer communication protocol is called a software client.
Among the most well-known clients implementing Peer-to-Peer (P2P) communication
protocols are uTorrent, implementing the BitTorrent protocol, and Microsoft Windows Up-
dater, implementing Microsoft’s proprietary P2P communication protocol. Several other
popular programs that until recently had P2P communication capabilities are Spotify[10]
and Blizzard Updater[97].

While there is a number of P2P communication clients available for files transfer,
there are none in widespread use that are designed specifically for multimedia streaming,
even though there are at least 28 different P2P multimedia streaming protocol proposals
(c.f. Tables 2.1-2.3). Such the situation, when there is no widely adopted P2P streaming
client, allowed to select the protocol for further experimentation based on the desirable
protocol features. As the only protocol designed specifically for multimedia streaming
and adopted by IETF, Peer-to-Peer Streaming Peer Protocol was selected as the protocol
that will be used for experimentation.

In order for the Peer-to-Peer Streaming Peer Protocol (PPSPP) to be considered for
standardization by IETF, a reference protocol implementation had to be provided. This
reference implementation, written in C language, is available online under the name
libswift project[98]. However, in order to have more freedom in design decisions,
it was decided to not use the reference implementation for experiments, but rather to
make an independent protocol client implementation. The client implemented for this
thesis is called PyPPSPP (Python PPSPP), and the source-code of the client is available
online (github.com/justas-/PyPPSPP) under the open-source license. It must
be noted that during the development of PyPPSPP client, the reference 1ibswift
implementation was used to verify that the protocol is implemented correctly. It was done
by having two different clients (PyPPSPP and 1ibswift) connect to each other and
transfer data.

The first part of the rest of this chapter present a functional description of all the
main functional blocks of PyPPSPP client. Each block description consists of a brief
introduction of the function performed and algorithms implemented. Most of the algo-
rithms implemented in these block are discussed in more detail further in this thesis. The
second part of this chapter discusses the specific challenges of streaming multimedia
over computer networks. This chapter ends with a short overview of the methods used to
quantify quality of multimedia streaming and description of quality evaluation methods
used in the rest of the thesis.

29


github.com/justas-/PyPPSPP

3.1

3.2

30 Chapter 3. Peer-to-Peer Client Structure

Peer-to-Peer Streaming Software Client Structure

The structure of the PyPP SPP client software is shown in Figure 3.1. Each block in the
figure is responsible for a single function of a client. Colored lines are used to indicate
different data flows. Blue lines show control data exchanged between the tracker server
and the client. Red lines indicate control data exchanged between the clients. Finally,
green lines indicate multimedia data flows in the client and between the different clients.
Each functional block in the client is implemented as a class with a well-defined interface.
Such a design allows to easily replace any single class (implementing specific protocol)
with a different class, without affecting the rest of the client.

Peer
Data Storage Peers Information 4&»
Peer
A
U S T N T
<«“—>
Data Data Data Tracker Tracker
Sending | | Receiving Requesting Interface Control
v 1 1
Flow-Control

¢ v \

To other To tracker
peers server

Figure 3.1: Block diagram of the PyPPSPP client

Tracker Interface

In a typical P2P network, the main function of the tracker server is to inform the arriving
client about other clients sharing the same information in the network. Due to this reason,
establishing a connection to the tracker server is one the the first actions that the P2P client
performs after starting. In the PyPPSPP client, the connection between to the tracker
server uses Transport Control Protocol (TCP), and an application-specific protocol in the
application layer. Alternatively, some other well known tracker protocols are BitTorrent
Tracker Protocol[99] and PPSPP-TP[84].

A tracker interface block in the client is used to establish the connection to the tracker
and to perform data exchange between the Peers Information block and the tracker server.
Upon establishing a connection, the tracker server will provide control-data containing



3.3

3.4

3.3. Peer Information 31

information about the multimedia file and list of IP addresses of other clients. The list
of users must not be up-to-date or full, for as long as at least some users known to the
tracker server are active. The remaining users can then be learned from the connected
users using the peer-exchange mechanism of PPSPP protocol.

The connection to the tracker is not required for the client to function. However,
keeping the connection open is beneficial, because the tracker server informs all connected
clients when a new client arrives.

Peer Information

In order for the PyPP SPP client to function properly, it must maintain certain information
about other peers. Connectivity information (IP address and port number) of other peers is
learned over the tracker connection. Other information is collected directly from the peers,
by making a TCP control connection to them. This connection to other peers is shown
using a red line in Figure 3.1. Control connection to other peers is used to exchange initial
connectivity information and to periodically inform other peers about multimedia data
available locally and to request data available at the remote peers. The full handshake
sequence with the handshake message contents is shown in Appendix A.

Data Storage

Once the multimedia data is downloaded to the client, it is stored in the data-storage block.
The main function of the block is to hide the implementation details of the underlying
storage method. The actual data can be stored in multiple locations. For example, it can
be stored in the computer’s disk-drive (if multimedia should be available after streaming),
or in random access memory (RAM), in case multimedia data will be discarded after
rendering. The access of data stored in the storage block is implemented by identifying
each unique data piece (chunk) by its ID number. The size of the data piece can vary: in
PPSPP (an in PyPP SPP) the default size is 1KB, but any other size can be used as well.
For example, in the case of BitTorrent, each piece is between 32KB and 16MB in size.
Choosing the size of the data piece is a compromise between overhead (smaller pieces
have more overhead for the same underlying file size) and efficiency (smaller pieces can
fit into a single IP packet without fragmentation).

Another function of the data storage block is constant discarding of already rendered
data. This is done in order to reduce the amount of storage space used. For example, a
client with a limited amount of storage space might not want to keep the whole stream in
its memory. To limit the amount of used space, a client can maintain a discard window,
indicating how many chunks it will keep in the memory after playback before discarding
them. The size of a discard window (if used) is exchanged during the handshake process,
and it allows other peers to track what pieces each client possesses.



3.5

3.6

32 Chapter 3. Peer-to-Peer Client Structure

Data Requesting

As already described in chapter 2, P2P communication can be pull-based, or push-based.
In case of pull-based communication, each peer is responsible for tracking and requesting
missing data chunks from the connected peers. As the PPSPP protocol is pull-based, the
function of requesting information from the connected peers is implemented in the Data
Requesting block.

The Data Requesting block runs an algorithm used to divide a set of all missing
data chunks and send requests to the connected peers for the required parts. For the
algorithm to run correctly, it must track the chunks available locally (by interfacing with
data storage block), and chunks available in each of the known peers (by interfacing with
the peer information block). The goal of an algorithm running in the data request block
can be adjusted based on the type of information being transmitted. For offline files, the
algorithm might optimize for the fastest overall delivery of the file. However, in case
of multimedia streaming, the algorithm must track the playback position of multimedia
stream, and optimize request, so the playback buffer is not depleted. Furthermore, a
requesting algorithm might also implement a feature of aiming for fair division of work
between the connected peers (to request approximately equal amount of information
from each peer). Chapter 5 discusses this function in detail and presents several different
algorithm implemented in PyPPSPP and other P2P communication software.

Data Sending

As described in the previous section, every peer constantly requests missing data pieces
from peers advertising their availability. The process of fulfilling these requests is
implemented in the data sending block. During its operation, the data sending block
receives data requests and if data is available, sends the requested chunks to the requesting
peer.

It is important to note that not all requests will be fulfilled. During normal peer
operation (ignoring erroneous or malicious requests), two situations can occur when the
received request will not be fulfilled. First, if a client is configured to maintain a discard
window (described in the section on data storage), it is possible that some data chunks will
be discarded before the request for them arrives. In such a case, the request for no-longer
existing chunks is ignored. Second, if a data sending algorithm is configured to maintain a
specific ratio between sent and received data chunks, then requests for data can be ignored
in order to achieve the required data sending and receiving ratio. If a required ratio is not
met, a peer trying to maintain a required ratio will send a choke message to the remote
peer. It is used to informing the remote peer that all further requests for data will be
ignored until an unchoke message is sent.

The processing of data requests can follow several queuing disciplines. The most
straightforward, and least computationally-intensive method is to process the requests in



3.7

3.8

3.7. Flow Control 33

first-in-first-out (FIFO) manner. This approach is used in all the experiments described in
this work. However, several alternative methods can also be implemented. One feasible
alternative could include a priority queue. Requests coming from peers that upload more
data, could be served first as a reward. Another feasible alternative could consider a
sorted queue. This way, requests for "older" data (having lower sequence numbers) would
be processed first. Such a processing discipline would improve the playback continuity
of other peers at the expense of local peers computational resources, used to constantly
maintain a sorted queue.

In the data-plane, the flow-control block interfaces with the data storage and flow
control blocks. Once the required data pieces are retrieved from the data storage block,
they are delivered to the flow-control block for sending. Depending on the method of flow
control (described next), this interface to flow-control block can be internal or external.

Flow Control

Conventional applications typically use the User Datagram Protocol (UDP) or TCP as a
transport protocol for communication. While UDP is a minimalistic, message-oriented
protocol providing optional data integrity control, TCP provides reliable, ordered stream-
based data transmission. However, as summarized here and later explained in detail in
Chapter 4, P2P communication has unique requirements. P2P communication requires
error-free data delivery, but it can deal with erroneous packets in the application layer. As
data shared in P2P systems are typically split into multiple pieces, ordered delivery in not
required or can also be achieved in the application, instead of transport, layer. Finally,
early P2P-based file exchange application were aggressive bandwidth users[100] as they
used UDP to send and receive data without any congestion control. To reduce the impact
of a P2P application on network bandwidth, a number of lower-than-best-effort conges-
tion control protocols were proposed[100]. The proposed protocols ensured that P2P
application would use all the bandwidth available to the user, but would reduce the send-
ing rate, as soon as another application started using the user’s connection concurrently.
The PyPPSPP client uses Low Extra Delay Background Transport (LEDBAT)[95] as a
congestion control protocol. Chapter 4 describes specific challenges of using LEDBAT
for congestion control when streaming multimedia and proposes solutions to overcome
these challenges.

Data Receiving

The data receiving block is the simplest of all covered blocks in terms of function
performed. During the operation of a client, and based on configuration parameters, the
data receiving block performs two functions: data integrity checks and generation and
sending of acknowledgement packets.



3.9

34 Chapter 3. Peer-to-Peer Client Structure

Data integrity checks performed by the block are used to ensure that the received data
was received error-free. Errors in the data can be introduced either by using an unreliable
data transmission protocol (for example UDP), or by malicious users. In the case of the
PPSPP protocol used in this work, the validity of data is checked by the help of data
hashing. As each shared multimedia stream is identified by its Merkle Tree Hash[83],
even a single changed bit will result in failure to compute a hash. Since PPSPP support
peak hashes functionality, a client can verify the validity of as little as a single chunk of
data, without waiting for the full file to be downloaded.

The second function performed by the data receiving block is generation of acknowl-
edgement (ACK) packets. When the PPSPP client is used together with unreliable UDP
protocol, ACK packets are used to indicate a successful reception of a data chunk from a
sending peer. Furthermore, when the PPSPP client is used with the LEDBAT congestion
control algorithm, ACK packets are extended with a ACKed packet reception timestamp.
This timestamp is then used by the sending peer to monitor the queuing delay. The
algorithm used to estimate the queuing delay and infer the presence (or lack thereof) of a
congestion is described in detail in Chapter 4.

To reduce the load on the network, in terms of both packets-per-second and bandwidth,
the sending of ACK messages can be delayed. The data receiving block can implement
delayed ACK functions. When enabled, a client acknowledges the reception of more
than one data chunk with a single ACK packet. While this function is implemented in
the PPSPP client used in this work, the delayed ACK functionality was not used in the
experiments. This was done mainly to have more precise measurements of a queuing delay.
Furthermore, as all experiments were performed using a networks emulator, network
bandwidth and sent packets count were not the limiting factors.

Multimedia Streaming

The first P2P clients to be widely adopted (such as Napster, eMule and Kazaa) were
designed to distribute non-streaming data files. Among the most popular types of files
distributed using early P2P software were music files, software packages and movies.
Distributing such data was easy, because the shared file could be split into multiple small
pieces, and these pieces would be downloaded or uploaded between the peers as requested.

However, distributing streaming data using P2P communication is much more difficult.
This is mainly due to the temporal characteristics of streaming data. These characteristics
can be summed up using the following requirements:

1. once the playback of streaming data has started, multimedia data must be delivered
before the playback can be performed;

2. in order to provide high Quality-of-Experience for the viewer, streaming multimedia
should not be interrupted;



3.9. Multimedia Streaming 35

3. if a live recording is being streamed, data can not be delivered to the viewers before
it has been produced.

The remaining part of this section will focus on the characteristics of multimedia data
that are relevant to the process of multimedia streaming and in the scope of the three
requirements given above.

3.9.1 Multimedia Data and its Encoding

As name suggests, multimedia files typically (but not always) consist of several different
medias—sound, video and text. In order to reduce the bandwidth of each media, it is
typically compressed before transmission. A device or software tool that is used to
compress multimedia data is typically referred to as a codec. Some of the well-known
audio codecs are MPEG2 Layer 3 (MP3), Vorbis and FLAC. Similarly, in order to reduce
the bandwidth of video data, it can be compressed using the codec such as MPEG4, H.264
and VPS.

A multimedia stream compressed using a codec is divided into a number of data
frames. The amount of frames depends on the length of the multimedia stream and the
frame-rate — the amount of data frames produced from each second of multimedia stream.
Typical and most widely used frame-rates are 24, 25 and 30 frames per second (fps);
however, much higher frame-rates (up to thousands of frames per second) are possible
and used in scientific applications or action movies.

Depending on the type of codec, the produced frames can be independent (using
inter-frame encoding), or linked (using intra-frame encoding). Codec producing inter-
frame encoded streams (such as Motion JPEG), encodes each frame as an independent
picture. In order to decode such a stream, the decoder decodes and displays (renders)
each frame independently, without maintaining any state data between the frames. This
makes inter-frame encoding algorithms easy to implement in both encoder and decoder.

I
¢ frame

Figure 3.2: A sequence of I and P frames.

A Vel Vel Vel

I
frame

P
frame

P
frame

P
frame

The second group of codecs exploit the similarity between the frames in a process
called intra-frame encoding. An intra-frame encoded stream will produce at least two
types of frames, with some elaborate encoding schemes producing as many as four
different frame types. For example, two main frame types used by the H.264/MPEG-4
codec are I-frames (intra-coded picture) and P-frames (predicted picture). An I-frame
typically encodes a full picture, just like in the inter-frame codec. However, by exploiting
the fact that each frame is very similar to the previous one, P-frames will encode only a



36 Chapter 3. Peer-to-Peer Client Structure

difference from the previous frame. This allows to significantly reduce the bandwidth of
the video stream while maintaining high picture quality.

In order to see the difference between the size of I and P-frames, consider Figure 3.3.
The figure plots a size of each frame in a VP8-encoded video clip. I-frames are plotted in
orange and in the whole video clip there are 5 I frames, with an average size of 29412
Bytes. In addition, there are 505 P-frames (plotted in blue), with an average size of 6035
Bytes.

30000

25000

20000

Size, Bytes

15000

0
FRga AERAREAARYHAERERLIARYRE
ARAER FRRARARAMAFERRITIFIIRERER

BRAMIRERsnSAARIRE ' AAIREEIRSAA
5 X

oo oA uow - e Mo
Time, s

£
~
n

w0
w
THHAAAAEER

Figure 3.3: Frame sizes of the VP8 test video used in this thesis.

Such multimedia data sources have several unique challenges when being streamed
using P2P communication. First, the bandwidth required to deliver multimedia stream
varies due to the large differences in the sizes of data frames. In the given example,
the I-frames are on average 4.9 times larger than the P-frames. High variability in the
required bandwidth means that the congestion control algorithms have to react quickly to
the changing bandwidth demands. As typical P2P communication users are connected
using "last-mile" technologies (such as DLS, FFTx, LTE, etc.) that are more prone to
congestions[101], the need for fast acting congestion controls are further increased.

Second, because decoding the P-frames depends on the preceding I-frame being
available, the playback of the multimedia stream will depend on timely delivery of the
I-frames. Taking the video clip shown in Figure 3.3 as an example, none of the P-frames
during the first 12 seconds of the video will be decodable, without first having received an



3.9. Multimedia Streaming 37

initial P-frame.

In conventional streaming from a single streaming server, this does not pose a problem,
because ordered and error free data delivery can be performed with the help of transport
layer protocols, such as TCP. In P2P communication, requests for data are spread between
a number of (potentially unreliable) distributed users. Should a user that received a request
for data pieces containing a P-frame become offline, the playback will halt until the fact
that user is gone is detected and another user sends the required data pieces.

All multimedia streaming experiments described in this thesis used VP-9 encoded
multimedia stream, consisting of I- and P-frames. However, it is important to discuss
several alternative encoding schemes — mainly layered coding and multiple description
coding.

Multimedia streams encoded using layered coding[102] generate data divided into
the base layer and a number of enhancement layers. Data in the base layer is required to
render the multimedia stream. Data in enhancement layers are optional; however, applying
each enhancement layer improves the quality of the rendered multimedia. Similarly to
the layered coding, multiple description coding also encodes multimedia data to multiple
data streams. However, in contrast to layered coding, multiple description coding does
not produce a base layer. Any single data stream produced in multiple description coding
can be used to render multimedia stream. Increasing the number of data streams in the
rendering process increases the quality of multimedia.

While both layered and multiple description coding could be used with P2P multimedia
streaming, experiments were done with single description coding mainly due to two
reasons. First, using single description coding allows the system to be simplified — it
is enough to optimize data delivery of a single stream instead of tracking data delivery
of multiple layers or descriptors. The second reason is related to the quality-of-service
parameters used to evaluate multimedia streaming performance in this thesis. As will
be described later in this chapter, this thesis uses objective parameters to evaluate P2P
multimedia streaming performance. Using layered coding or multi-description coding
would introduce a subjective measurement of the picture quality of multimedia streaming,
increasing the complexity of the work and reducing the possibility of making protocol-
level adjustments in response to the quality of the multimedia stream.

3.9.2 Multimedia Data Buffering
In order to minimize the impact of data availability on the continuity of multimedia
playback, multimedia data is typically buffered before being rendered. The following
section discusses several important data buffering concepts that are later used to evaluate
the Quality-of-Service of streaming multimedia.

Multimedia playback buffer can be modeled as a queue data structure, as shown in
Figure 3.4. Panel A in the figure shows a playback buffer before the playback has started.
In the given example, the buffer contains up to NV data chunks. New data chunks are being



38 Chapter 3. Peer-to-Peer Client Structure

filled from the bottom towards the top. Once the buffer is filled to the playback start start
threshold (9 chunks in the given example), the playback starts.

Downloaded Downloaded
chunks chunks
Upfront
Request
TRk 7 Playback threshold
" start Churk 220
threshold
kD <: - Playback
position
Chunk 150 1
Clunk2
Chunk 1 Chunk 100
Playback Playback
buffer buffer
A) Before the start of B) During the
playback playback

Figure 3.4: Buffering concepts

Panel B of Figure 3.4 shows the same buffer during the multimedia playback. During
the playback, data pieces are removed from the bottom of the buffer. Throughout the
rendering process, two indicators are tracked in the buffer. The playback position indicates
which data piece is currently used for the playback. The upfront request threshold indicates
the level of the buffer that will be maintained by requesting data chunks from other peers.
In the given example, the upfront request threshold is 70 data chunks, meaning that the
client will try to request up to th 220th chunk. An example of upfront request threshold
can be seen in a screen-shot of the YouTube player shown in Figure 3.5.

Il » o) 040/249

Figure 3.5: Example of buffering in YouTube.

Here, the red area in the playback indicator shows the current playback position (40
seconds). The white area shows the amount of data already downloaded, and finally the
grey area indicates part of the time-line, which is yet to be downloaded.

The choice of upfront request threshold is a compromise between the need to have
continuous playback and effective usage of bandwidth. The higher threshold value will
allow to mask the interruption in the data downloading process. However, having too
much data downloaded when the user decides not to continue the playback means that the
bandwidth used to download that data was wasted.



3.10

3.10. Multimedia Streaming Quality-of-Service Parameters 39

Multimedia Streaming Quality-of-Service Parameters

This thesis deals with the optimization of multimedia streaming using P2P communication
technologies. In order to evaluate the improvement of the quality of the multimedia
streaming service, there is a need to quantify such improvements. The following section
will present possible methods of multimedia quality evaluation and present two parameters
used in the remainder of the thesis.

There are basically two categories of multimedia quality assessment methods[103]:
subjective methods that involve people as observers and evaluators, and objective methods
that use mathematical models to estimate the quality of multimedia.

In subjective quality assesment methods, groups of people are given the task of
evaluating the perceived quality of multimedia. Such evaluation is typically carried out in
the controlled environment using standardized testing methods. Among the most well-
known subjective evaluation methods is International Telecommunication Union’s (ITU)
Mean Opinion Score (MOS) test[104]. During this test, a group of observers evaluate
rendered multimedia using the 5-point absolute category rating (ACR) scale. In the ACR
scale, the perceived multimedia is given a quality score from 1 (Bad) to 5 (Excellent).
MOS score is obtained by averaging individual ACR ratings of observers.

While subjective quality testing provides the most accurate results in terms of quality
perceived by humans, these test are impractical to carry out and repeat. In order to provide
simplified and repeatable testing, methods from the objective testing group can be used.
These methods are based on mathematical models (such as Root Mean Square Error or
Pearson Correlation) to evaluate the quality of multimedia. Per ITU recommendations,
objective techniques are grouped into 5 groups[103], [105]:

1. media-layer models, only utilizing audio and video samples to estimate quality;

2. parametric packet-layer models, using only packet-layer information (headers) to
estimate quality;

3. parametric planning models, employing encoding and network parameters to esti-
mate quality;

4. bitstream-layer models, predicting quality from encoded bitstream and packet-layer
data;

5. hybrid models, predicting quality information using one or more of the above-
mentioned methods;

In order to properly select a method used to evaluate the quality of streaming mul-
timedia, it is important to consider how multimedia will be delivered, and what is the
multimedia playback model. In this thesis, multimedia is always delivered using a reliable
delivery method. As such, all multimedia data available at the multimedia source will
be delivered to the multimedia consumer. Furthermore, since reliable delivery methods



40 Chapter 3. Peer-to-Peer Client Structure

are used, multimedia is not altered during the transmission. Due to the above-mentioned
reasons, quality estimation methods using pixel data cannot be used.

In order to estimate the quality of the multimedia streaming service, where multi-
media data is not altered, several different quality models are proposed[106]. Instead of
measuring difference in picture quality, these models measure the multimedia delivery
parameters influencing perceived quality-of-service. Some of the parameters measured by
these models ([107]-[110]) are:

1. multimedia stalling length;

2. multimedia stalling frequency;

3. number of multimedia stalls;

4. average stalling length per segment;
5. bitcount of the stalling segment;

6. initial buffering length;

In order to evaluate the performance of multimedia streaming, the experimental results
presented in this thesis use multimedia stalling length and initial buffering lengths as
streaming quality parameters. In accordance with other works in the field ([65], [66],
[81]), the value of stalling length is expressed as a ratio, called the Playback Continuity
Index (PCI). Using the PCI expressed as a ratio instead of an absolute value allows direct
comparison between multimedia clips of different lengths.

The value of PCI is calculated as a ratio between the number of frames rendered in
time and the number of all attempts to render the frames. For example, consider a video
stream of 100 frames encoded with 25 fps frame-rate. The rendering engine operates at
a fixed speed, trying to render a frame every 0.04 seconds. Every time it successfully
renders a frame, it increases the number of frames rendered and the number of render
attempts. Every time there is not enough data to render a frame, only the number of
attempts is increased. Taking the example stream, if the rendering engine successfully
rendered 80 frames and missed 20 frames (of total 100 attempts), the PCI values would
be 0.8. If all frames were rendered on time, the PCI value would be 1.

This calculation assumes that the decoder does not skip the unavailable frames, but
rather waits for them to be available, following the implementation of the multimedia
streaming sites, such as YouTube and others.

The calculation of the initial buffering time is more straightforward. In this work, the
initial buffering time is calculated as a time period from the moment the client software is
initialized and connected to the tracker server, and the time the first frame is rendered.



3.11

3.11. Summary 41

Summary

As with all network communication protocols, a software implementing a protocol is
required in order to use it. This chapter presents a structure and a functional description
of a P2P communication client implementing PPSPP protocol. This clients was used to
perform all P2P communication experiments presented in this thesis.

As with most programming tasks, choosing a protocol and selecting a client required
numerous compromises. The selection of P2P streaming protocol was made easier by
the fact, that PPSPP is the only P2P multimedia streaming protocol standardized by the
IETF. A choice to implement a client rather than use a reference implementation provided
by the PPSPP protocol designers was based on the premise that it is easier to extend a
well-understood client, rather than a client implemented by other people.

This section presents the main functional blocks of the client, along with the descrip-
tions of tasks performed by each block. Dividing the client into function-specific blocks
allowed to perform single-function-specific experiments without impacting the other
function. For example, such architecture of the client allows to test different congestion
control schemes (see Chapter 4), data-requesting algorithms (see Chapter 5), and peer
ranking schemes (see Chapter 6).

Since the main goal of the client used in this thesis was to explore the methods of
P2P-based multimedia streaming, the final part of this chapter deals with the specifics of
streaming multimedia and quantifying the quality parameters of streaming multimedia
delivery. Here, the parameters chosen to do performance measurement were selected to
be in-line with the parameters used in other works in the field.



42




CHAPTER 4
Dataplane Congestion Control

Early P2P communication software used UDP as a transport layer protocol for user-plane
data transmission. Since UDP is a simple transport layer protocol providing only port-
based multiplexing and (rudimentary) error checking, a side effect of using early P2P
communication software was "total" congestion of user’s communication link. Most of
the early P2P communication tools were used to download files (in contrast to streaming
multimedia). However, downloading files without congestion control reduced the QoS of
other network applications running on a computer. For example, browsing the Internet
(which is done using TCP protocol) was nearly impossible simultaneously with a P2P
files transfer.

One way to reduce congestion of a user’s internet connection would be to use TCP
as a transport layer protocol for P2P communication as well. However, TCP provides a
number of functions that are not required in a P2P communication system, such as ordered
messages delivery, error correction in transport layer, and stream based communication.
Furthermore, with TCP being a connection-oriented protocol, it is not a suitable transport-
layer protocol choice for a highly dynamic systems, such as P2P communication.

All the above issues lead to the creation of Lower-than-Best-Effort (LBE) transport
protocols. These protocols are designed to result in lower bandwidth usage in a bandwidth-
limited communication link, when the link is shared with TCP data flows. Among the
several proposed and IETF standardized LBE protocols is LEDBAT. LEDBAT is designed
to track one-way delay of communication link and adjust the sending rate accordingly
with the aim of yielding to the TCP data flows sharing the same communication link. A
standard compliant PPSPP protocol implementation must use LEDBAT as a congestion
control mechanism.

However, as will be shown later in the chapter, using the recommended LEDBAT
configuration values can result in a sub-optimal multimedia streaming QoS, when used to
stream multimedia via PPSPP. In order to improve the quality of multimedia streaming
when using PPSPP and LEDBAT, this work proposes a number of changes to both
protocols.

This chapter is structured as follows: Section 4.1 describes LBE protocols in general,
and Section 4.2 is used to describe LEDBAT protocol in particular. Section 4.3 is used
to describe the experiments performed to discover how different LEDBAT protocol
parameters impact data transmission speeds in links shared with a varying number of
other data flows. Section 4.4 provides details how PPSPP protocol client was integrated

43



4.1

44 Chapter 4. Dataplane Congestion Control

with LEDBAT and how LEDBAT parameters are dynamically adjusted in response to the
streaming QoS. Section 4.5 provides experimental evaluation of the proposed method of
dynamic LEDBAT parameters adjustment and the discussion.

Related work

Lower-than-best-effort (LBE) protocols aim to achieve a lower data sending rate than a
standard TCP when sharing a bottleneck link. It should be noted that LBE must not be a
specific protocol. TCP protocol with a congestion control mechanism different from that
of standard TCP can also be used as an LBE protocol.

According to [100], based on the methods used to achieve LBE behavior, LBE
protocols can be grouped into the following groups:

1. Delay-based protocols. These protocols achieve LBE behavior by measuring the
end-to-end delay and adjusting sending the rate based on the measured delay.

2. Non delay-based protocols. These protocols achieve LBE behavior by other means
than measuring the end-to-end delay. Standard TCP congestion control is a non
delay-based algorithm, which reduces the sending rate by reacting to loss of data.

3. Upper-layer protocols. These protocols can run "on-top" of other protocols and
adjust the sending rate in the application layer, based on some observations of the
system functioning.

4. Network-assisted approaches. These approaches require changes in the network
infrastructure along the data path to work. For example, active queue management
(ACQ) and IntServ/DiffServ based prioritization can be used to achieve LBE
behavior.

TCP Vegas[111] is one of the first delay-based protocols that exhibits LBE behavior
when compared to a standard TCP. It uses Round-Trip Time (RTT) measurements to
calculate the expected throughput and then compares it to the actual throughput. The
congestion window size is then adjusted linearly, based on the ratio of expected and
observed speeds. When TCP Vegas is sharing a congested link with the standard TCP, in
some cases TCP Vegas flows can be fully spaced-out by the standard TCP.

Other protocols that modify the standard TCP congestion avoidance algorithm to
exhibit LBE behavior are TCP Nice[112] and TCP Low Priority[113]. To avoid being
spaced out from a link by the standard TCP, TCP Nice halves its Congestion Window
(CWND) at most once per RTT when Acknowledgment (ACK) loss occurs. For as long
as no losses occur, TCP Nice follows TCP Vegas for congestion avoidance, by performing
linear CWND adjustment. In contrast to both TCP Vegas and TCP Nice, TCP Low Priority
uses One-Way Delay (OWD) instead of RTT measurements to detect congestion.



4.2

4.2. LEDBAT Protocol 45

Other TCP based protocols using delay measurements to achieve LBE behavior are
Sync-TCP[114], New Vegas[115], FAST TCP[116], and CODE TCP[117].

One of the non-delay based protocols is 4CP[118]. Instead of using delay measurement
to gauge the delay, it counts the number of loss events and adjusts its CWND based on the
number of loss events. During a severe congestion, the congestion window is reduced to
some predefined value. Once the sending rate is reduced, instead of increasing the actual
congestion window, 4CP is increasing an alternative congestion window (while keeping
the actual congestion window at low value). Only when this alternative congestion window
reaches a predefined threshold, does the actual congestion windows starts increasing.

An upper-layer approach to achieve LBE behavior is based on the monitoring of all
flows leaving specific application. In the case of Background Intelligent Transfer Service
(BITS)[119] that a specific application is the whole operating system. By measuring
the total amount of data traffic originating from the computer, BITS tries to infer when
the load is historically low, and schedule background file transmissions to occur at these
periods.

LEDBAT Protocol

A specification of PPSPP protocol stipulates that a protocol client must use LEDBAT as a
congestion control mechanism. The following chapter provides a brief description of the
protocol. For reference, a brief description of TCP’s congestion control mechanism is
given in Appendix B.

LEDBAT uses a "scavanger” congestion control mechanism. It tries to use as much of
bandwidth as is available. At the same time, it is designed to yield quickly to other data
flows sharing the congested communication link. This makes LEDBAT well-suited for
background data transfer applications, used to transfer large files (Apple is using a variant
of LEDBAT for OS updates delivery[120]).

LEDBAT uses a congestion window to control the amount of data sent into the network
in one RTT. The size of CWND can be tracked in bytes or packets. In addition, each
data segment transmitted over the network using LEDBAT is prefixed with a time-stamp,
which is used to measure the OWD. Upon receiving a packet, a receiver calculates the
delay as a difference between the local time and a time-stamp in the data packet. The
calculated delay value is then sent back to the sender in the ACK packet.

On the sender side, LEDBAT uses the algorithm shown in Figure 4.1 to calculate the
CWND. Here, the target is a maximum queuing delay that LEDBAT can introduce in
the network and GAIN determines the rate of CWND adjustment in response to queuing
delay changes.

The above algorithm is divided into three parts. The first part is concerned with
tracking of queuing delays and ensures that stale delay data is removed when no data
transfers are taking place. The second part is a linear controller, adjusting the CWND
value with regards to a difference between the observed and target delays. Finally, the



46 Chapter 4. Dataplane Congestion Control

function ON_ACK(ack)
update_base_delay(ack.delay)
update_current_delay(ack.delay)

queuing_delay < FILTER(current_delays) — min(base_delays)
of f_target + (TARGET — queuing_delay)/TARGET

cund < cwnd + GAIN x of f_target x bytes_acked x M SS/cwnd
MAX_cwnd < flightsize+ ALLOWED_INCRFEATE « MSS

cwnd < min(cwnd, M AX _cwnd)
cwnd < maz(cwnd, MIN_CWND x MSS)
flightsize < flightsize — bytes_acked

end function

Figure 4.1: CWND calculation algorithm in LEDBAT sender

third part constrains the CWND value to be in the range from MIN_CWND * MSS and
MAX_CWND.

The method of one-way queuing delay calculation is explained using Figure 4.2. Here,
a sender and a receiver are connected using a communication link having two queues
(buffers). The sum data transmission delay will consist of three integral parts: propagation
delay, processing delay and queuing delay. The first two parts (propagation delay and
processing delay) are considered here to be constant and unique for each communication
link, and the only variable part is the queuing delay.

= Constant processing delay Constant processing delay -
Variable queuing delay Variable queuing delay

(01 (0]
;ﬁ/ — /RSN

Constant propagation Constant propagation Constant propagation
delay delay delay

Figure 4.2: Two computers connected with a communication link containing two buffers.
Propagation and processing delays are constant in this communication link.

In order to calculate the queuing delay, when only a sum delay is known, the following
procedure is used. First, a base delay is calculated as a minimum value over several
measurements. This base delay will be considered to be equal to the sum of propagation
and processing delays. Once the base delay is known, then queuing delay can be calculated
as a difference between the observed delay value and the base delay. It should be noted
here that it is not required for clocks on the sender and receiver sides to be synchronized.
Since the difference, and not the absolute value, is taken, any difference in clock times



4.3

4.3. Experimental LEDBAT Parameters Investigation 47

cancels out when calculating queuing delay.

When a data loss (buffer overflow) occurs, LEDBAT uses the following formula to
calculate new CWND value:

cwnd + min(cwnd, mazx(cund * 0.5, MIN_CWND x MSS))

It implements the multiplicative decrease part of congestion control (divides the
CWND value by half), while at the same time ensuring that it does not fall bellow the
minimal value.

If no ACKs are received within the Congestion Timeout Window (CTO), it is taken
as an indication that either extreme congestion is occurring, or there is a significant RTT
change. In both cases, the CWND is reduced to a single MSS value and the CTO value is
doubled:

cwnd + 1x MSS

CTO «+2xCTO

From the protocol description above, it can be seen that the size of the CWND is
influenced by four factors. First and foremost, CWND will be influenced by the ratio
of the target and actual delays. Second, the size of CWND will be clamped by the
MAX_cwnd value, which is directly related to the current flight-size (number of bytes or
packets sent and not yet acknowledged). Third, when a loss occurs, the size of CWND
will be reduced by a factor of 2. Finally, during a significant RTT change, that size of
CWND will be reduced to MSS.

In order to adjust the "aggressiveness" of the LEDBAT protocol with regards to other
data flows sharing a bottleneck link, two parameters can be changed—the target delay and
the CWND reduction factor used when data-loss occurs. The MAX_cwnd value depends
more on the flight-size, which is influenced by the connection speed. Finally, the extreme
congestion occurs rarely, and hence the CWND should not be set to MSS very often. This
conclusion was also observed during the experiments.

Experimental LEDBAT Parameters Investigation

As mentioned earlier in the chapter, all specification-compliant PPSPP clients must
use LEDBAT for congestion control. However, the specification of LEDBAT proposes
protocol configuration values that make LEDBAT data flows yield to other data flows.
This has a negative impact on the quality of multimedia streaming, as is shown later in the
experimental evaluation section. Furthermore, experiments in this chapter are designed
with the notion that the user streaming multimedia (in contrast to downloading it) prefers
to see an uninterrupted multimedia stream. For this reason, a number of experiments were
performed to investigate how LEDBAT protocol parameters can be tuned to make it more
suitable (i.e. yield less to other data flows) for use with multimedia streaming.



48 Chapter 4. Dataplane Congestion Control

In order to investigate how target queuing delay and the CWND reduction factor
influences the data transmission speed, a number of experiments were performed, as
described next. The experiments used the following setup. Two computers were connected
via a router using Ethernet connections, thus forming a dumbbell network topology. The
router was used to perform bandwidth limiting using token-bucket bandwidth shaping.
The token-bucket bandwidth shaper was configured to achieve an average 10 Mbps data
transfer rate.

Each of the two computers ran iPerf3[121] software to generate traffic sent over the
TCP connections. At the same time, both computers ran custom software, having identical
functionality to iPerf3, but using LEDBAT to transfer data. The source code of the test
software and the LEDBAT protocol, both implemented in Python3, are available un-
der free and open-source license at https://github.com/justas-/pyledbat.
Table 4.1 lists the remaining test parameters.

Table 4.1: LEDBAT evaluation experiment parameters

Name Values
Computers OS Kernel Linux 4.4.0-116-generic
Number of TCP data-flows 0;1;3;5
Number of LEDBAT data-flows 1;5; 10
TCP flows speed 2 Mbps; Unlimited
Target Delay 10 ms; 20 ms; 40 ms; 80 ms;
On loss multiplier 0.5;0.75;0.98
Average link delay 0 ms; 20 ms; 40 ms; 60 ms; 100 ms
One test duration 60 seconds

Tests with all combinations of these parameters were repeated 5 times. This resulted
in a testing campaign consisting of 7200 tests.

4.3.1 Evaluation Results
The results of the experimental evaluation using two computers and a hardware router are
split into two parts. The first part shows the utilization of the link by LEDBAT data flows
based on the fraction of CWND that is reduced when data loss is detected. Figure 4.3
shows the results when the LEDBAT target delay is 40 ms, and Figure 4.4 shows the
results for the target delay of 80 ms. Each figure differs by the number of concurrent
TCP and LEDBAT data flows between the source and destination. In all figures, the link
utilization is shown based on the 10 Mbps link.

The results show four main outcomes. First, the utilization of the link by LEDBAT
data flows is higher, when the CWND multiplier is higher. This is an expected result,


https://github.com/justas-/pyledbat

4.3. Experimental LEDBAT Parameters Investigation 49

Link utilization Link utilization Link utilization
NumTCP=1; NumLBT=1 NumTCP=5; NumLBT=5 NumTCP=5; NumLBT=10
081 —e— CWNDx0.5 [] 08| —o— CWNDx0.5 |] 08 —e— CWNDx0.5 ]
——CWNDx0.75 —e— CWNDx0.75 —e— CWNDx0.75
CWNDx0.95 CWNDx0.95 I CWNDx0.95
0.6 H 06f 8

0.2 4 02

0 I I I D I I I I L 0 I I I I I I
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60

Delay, ms Delay, ms Delay, ms

Figure 4.3: Average link utilization for different CWND multiplier values and number of
TCP/LEDBAT connections. Target delay = 40 ms.

Link utilization Link utilization Link utilization
NumTCP=1; NumLBT=1 NumTCP=5; NumLBT=5 NumTCP=5; NumLBT=10
T T T T T T T T T T T T T T
08 —e— CWNDx05 || 08[ —— CWNDx0.5 |1 08 i
—e—CWNDx0.75 —e— CWNDx0.75
CWNDx0.95 CWNDx0.95
0.6 4 06 4 0.6 B
0.4 0.4} -4 041 B
0.2 4 02f o2 —e— CWNDx0.5 |
—e— CWNDx0.75
— CWNDx0.95
0 I ! ! I I 0 I ! I ! I ! 0 I ! ! T T T
10 20 30 40 50 60 10 20 30 40 50 60 10 20 30 40 50 60
Delay, ms Delay, ms Delay, ms

Figure 4.4: Average link utilization for different CWND multiplier values and number of
TCP/LEDBAT connections. Target delay = 80 ms.

because using a higher CWND multiplier implies a slower decay of CWND value, when
data loss occurs. This results in higher data sending rate.

Second, when the link is shared by two connections (one LEDBAT and one TCP),
LEDBAT data flow yield to TCP data flow. Even when the loss multiplier is 0.95 (only
5% reduction of CWND on data loss), LEDBAT takes no more than 60% of total link
bandwidth. However, when a number of connections is higher (5 TCP connections and 5
or 10 LEDBAT connections), TCP flows yield to LEDBAT data flows.

Third, in all experiments, the share of LEDBAT bandwidth peaks when the queuing
delay is about 18 ms. As the queuing delay increases further, the share of bandwidth used
by LEDBAT decreases. However, the same applies to the TCP data flows as well.

Finally, the results indicate that using a higher target queuing delay value (80 ms vs
40 ms) allows to obtain a larger share of the link’s bandwidth.

The second part shows the share of link bandwidth used by LEDBAT data flows
for different LEDBAT target queuing delay values. Figure 4.5 shows the results for a



50 Chapter 4. Dataplane Congestion Control

CWND multiplier of 0.5; Figure 4.6 shows the results for a CWND multiplier of 0.75;
and Figure 4.7 shows the results for a CWND multiplier of 0.95. As with previous results,
each subfigure shows the results for a different number of TCP and LEDBAT connections.

Link utilization
NumTCP=1; NumLBT=1

Link utilization
NumTCP=5; NumLBT=5

Link utilization
NumTCP=5; NumLBT=10

0.8 —o— Target=10ms | | 0.8 —o— Target=10ms | | 081 —o— Target=10ms | |
—o— Target=20ms —o— Target=20ms —o— Target=20ms
—&— Target=40ms —o— Target=40ms —o— Target=40ms
0.6 - —o— Target=80ms || 0.6 —o— Target=80ms || 0.6 —o— Target=80ms ||
—
/A N
/ ~~ ~
0.4 0.4 4 04f /) — e E
/s / - —
/ -
e
021 0.2 402 )/ B
[/

Figure 4.5: Average link utilization for different target delay values and number of

I I il s T 8
10 20 30 40 50 60
Delay, ms

I I I I I I
10 20 30 40 50 60
Delay, ms

TCP/LEDBAT connections. CWND multiplier=0.5

Link utilization
NumTCP=1; NumLBT=1

Link utilization
NumTCP=5; NumLBT=5

I I I I I I
10 20 30 40 50 60
Delay, ms

Link utilization
NumTCP=5; NumLBT=10

T T T T T T T T T
0.8} —o— Target=10ms || 08 —o— Target=10ms || 08 —o— Target=10ms ||
—o— Target=20ms —&— Target=20ms —&— Target=20ms
—o— Target=40ms —o— Target=40ms —o— Target=40ms
06 —o— Target=80ms || 0.6 —o— Target=80ms ] 0.6 —o— Target=80ms |
0.4 0.4 -4 041 B
0.2 0.2 4 021 B
0 0 . . . . I . I . I I

8= g 8
30 40 50 60
Delay, ms

Delay, ms

. .
10 20 30 40 50 60
Delay, ms

Figure 4.6: Average link utilization for different target delay values and number of
TCP/LEDBAT connections. CWND multiplier=0.75

The results shown above closely follow the already-discussed results describing the
impact of CWND multiplier on the bandwidth share. However, two outcomes must be
noted. First, when a link is shared by only two connections, LEDBAT flow still yields
to the TCP flow, event when a target queuing delay is large. Second, when data flows
operate over links with high delays and high delay variability (such as mobile broadband
connections, c.f. Chapter 8), a high target delay parameter does not guarantee that most of
the link will be used by LEDBAT data flows. For example, consider the second subfigure
in Figure 4.6. Here, when a delay variability is high (simulated queuing delay of 60ms),
LEDBAT flows with target delays ranging from 10 to 80 ms use no more than 22% of link
bandwidth. For comparison, when a simulated queuing delay is 18 ms, LEDBAT data
flows can use up to 62% of the link’s bandwidth.



4.4

4.4.

Using Boosted LEDBAT with PPSPP

Link utilization
NumTCP=1; NumLBT=1

Link utilization
NumTCP=5; NumLBT=5

Link utilization
NumTCP=5; NumLBT=10

0.8

0.6

0.4

0.2

T T T
—e— Target=10ms
—&— Target=20ms

—e— Target=80ms

—&— Target=40ms | |

0.8

1 06

1 04

4 02

T T T
—e— Target=10ms
—o— Target=20ms
—e— Target=40ms
—o— Target=80ms

0.8

0.6

0.4

—o— Target=10ms
—&— Target=20ms
—o— Target=40ms
|~ Target=80ms

! n
10 20 30 40 50 60
Delay, ms

I I L
10 20 30 40 50 60

Delay, ms

I I I
10 20 30 40 50 60

Delay, ms

Figure 4.7: Average link utilization for different target delay values and number of
TCP/LEDBAT connections. CWND multiplier=0.95

Using Boosted LEDBAT with PPSPP

Once the experiments using two computers were completed, a second set of experiments
was designed to test the performance of multimedia streaming using different LEDBAT
configuration values. For these tests, two sets of LEDBAT parameters were used, referred
here as conventional LEDBAT (CLBT) and boosted LEDBAT (BLBT). The boosted
LEDBAT used a target delay of 80 ms, which is under the 100 ms maximum value
recommended in [95]. The boosted LEDBAT also used 0.75 as a value of CWND
reduction fraction.

Initially, the experiments were envisioned in a way that all clients would use BLBT.
However, using BLBT for all clients in a P2P system would be unfair. This stems from the
fact that the user deriving the benefits of using BLBT and the user bearing the costs are
not the same. For example, consider a situation where there are only two clients (A and
B) and a multimedia streaming server, as shown in Figure 4.8. Client A starts streaming
before Client B. When client B arrives, it can request data from both client A and the
multimedia server. If both users were using BLBT, then all data flows from client A to
the Internet (but not client B) would yield to the data-flows from from client A to client B.
This way, client B would be deriving benefits (increased streaming QoS) at the cost of
client A’s data flows to the Internet.

One of the possible ways to solve this issue is to dynamically switch between CLBT
and BLBT. This is illustrated using the example given in Figure 4.9. In the figure, PC1
starts experiencing sub-par streaming quality (Playback Continuity Index < 0.9). In
response, it sends a request to all connected peers to switch to BLBT. One of the peers
that receives this request is PC2. Before granting the requests and switching to BLBT for
connection between PC2 and PC1 it checks all other outgoing connections from PC2. If
at least one connection is not using BLBT, it indicates that the PC2’s network link is not
congested, and the request to switch to BLBT is granted.

The evaluation of multimedia streaming performance was performed in a virtual



52 Chapter 4. Dataplane Congestion Control

Multimedia
Server

Client A Client B

Figure 4.8: Data flow from client A to the internet would yield to the data flow from client
A to client B if both clients would use BLBT.

Requesting
Client

Checked
Connection

Figure 4.9: PC1 requests PC2 to switch to BLBT. PC2 does so only if at least one of the
other connections is not using BLBT.

environment using the CORE networks emulator [122]. CORE divides the workstation
running experiments into a number of virtual instances. Each instance represents one
user performing multimedia streaming. In all experiments, the multimedia recording is a
1280x720 (HD 720p) video clip encoded with a VP8 codec having a bit-rate of 2 Mbps.

The tests used the test network topology adapted from an industry’s whitepaper [123]
and shown in Figure 4.10. The test network consists of three multimedia servers, a set of
access and core routers and three groups of users. The tests were conducted with 5, 10,
and 15 users in each user network. The links between the devices were provisions with
25 Mbps of bandwidth.

To make test conditions realistic and to vary the network utilization, the experiments
were conducted using different background data traffic levels. In the base scenario ("No



4.5

4.5. Integration Results 53

Traffic"), no background data traffic was used. The normal data-traffic level ("Low
Traffic") was obtained from recent research [124], indicating that 95% of home-users
transfer up to 64.27 MB of data during their 15 min peak usage interval. The share
between the download and upload traffic was 85% to 15% [125]. In the high background
traffic scenarios ("High Traffic"), background data traffic levels were doubled.

In the tests, two user arrival patterns were used. In the "Exponential" arrival tests, user
inter-arrival time followed the exponential distribution with a mean of 5 seconds and the
value limited to 10 seconds. In the "Flash" arrival scenarios all users started sequentially,
one-by-one.

Traffic
Server Tracker
Server
Multimedia

Core
Routers
Traffic
Server

Access Routers User networks

<//°//> //nl’l> //ﬁ ’l'> //ﬁ//>é€)
ég &E’ @

Figure 4.10: Test network topology. Users are divided into 3 groups, each connected to an
access router. Each access router is connected to two core reouters. Core routers connect
to multimedia servers and traffic generation servers.

Integration Results

The average start-up time comparison, when using conventional and boosted LEDBAT
are shown in Figure 4.11-4.12. The results show that by using boosted LEDBAT, the
average start-up time can be reduced by 26.3% when the average queuing delay is 26
ms, and by 24.8%, when the average queuing delay is 46 ms. In addition to significantly
lowering the start-up time, it is important to note, that the start-up time was lowered in all



Start-up time, s

Start-up time, s

15

10

o

[

54 Chapter 4. Dataplane Congestion Control

experiments. The reduction can be seen in all three background traffic levels, during both
types of user arrival patterns and queuing delays.

Avg. Queuing delay=26ms, Exponential arrival Avg. Queuing delay=26ms, Flash arrival
Il Il Il Il

Start-up time, s

B 5

15 Normal 30 Normal 45 Normal 15 Normal 30 Normal 45 Normal
77115 Boosted 1177130 Boosted 45 Boosted NN NN 777115 Boosted 771130 Boosted 45 Boosted

T T T T T T
No Traf. Low Traf. Heavy Traf. No Traf. Low Traf. Heavy Traf.

Figure 4.11: Average observed start-up time for different arrival patterns, user population
sizes and background traffic levels. Numbers in the legend indicate number of users.
Average Queuing delay=26 ms.

Avg. Queuing delay=46ms, Exponential arrival Avg. Queuing delay=46ms, Flash arrival
Il

I I L - 25 -

i 20 1 i
P
i 4% 151 i
=
3
- ‘5 10 -
7
15 Normal 30 Normal 45 Normal 5 NN N 15 Normal 30 Normal 45 Normal
7115 Boosted 777130 Boosted 45 Boosted NN NN 777115 Boosted 771130 Boosted 45 Boosted
T T T 0 = s T T
No Traf. Low Traf. Heavy Traf. No Traf. Low Traf. Heavy Traf.

Figure 4.12: Average observed start-up time for different arrival patterns, user population
sizes and background traffic levels. Numbers in the legend indicate number of users.
Average Queuing delay=46 ms.

The average observed PCI when using conventional and boosted LEDBAT are shown
in Figure 4.13-4.14. By using boosted LEDBAT, the average PCI can be increased
by 0.3%, when the average queuing delay is 26 ms, and by 4.7%, when the average
queuing delay is 46 ms. The biggest improvement of PCI by 5.2%, was observed in the
experiments with an exponential user arrival pattern and 46 ms average queuing delay.

In contrast to the start-up time evaluation results discussed previously, the increase
of the playback continuity can be observed only when the queuing delay is large, and
the users arrival pattern has a negligible influence. This cause of this is the way TCP
and LEDBAT operated in the data-links with high latency. TCP data-flow sending rate is




0.8

0.6

0.4

Playback Continuity Index

0.2

0.8

0.6

0.4

Playback Continuity Index

4.6

4.6. Summary and Discussion 55

significantly reduced when operating in high latency links. At the same time, this latency
is lower than a target queuing delay of LEDBAT (which is 80ms here), meaning that
LEDBAT’s congestion window size and the sending rate is not reduced.

Avg. Queuing delay=26ms, Exponential arrival Avg. Queuing delay=26ms, Flash arrival
Il Il Il Il
i 1 i
5
=
1= 08f 8
z
El
1 £ 06 B
=
=]
9}
| L i
gl 0.4
fe)
15 Normal 30 Normal 45Normal | | & 0.2 N N 15 Normal 30 Normal 45 Normal | |
*115 Boosted =~ 30 Boosted 45 Boosted ~~+315 Boosted i~ 30 Boosted 45 Boosted
Nl I T — s 0 N I — = =n = nan
No Traf. Low Traf. Heavy Traf. No Traf. Low Traf. Heavy Traf.

Figure 4.13: Average observed Playback Continuity Index for different arrival patterns,
user population sizes and background traffic levels. Numbers in the legend indicate
number of users. Average Queuing delay=26 ms.

Avg. Queuing delay=46ms, Exponential arrival Avg. Queuing delay=46ms, Flash arrival
I I I I
i 1k
3
1. 08F
2
El
15 06
=
1)
O
B ,§ 041l
=]
NN AN NN N B [ N A N
15 Normal 30 Normal 45 Normal = 15 Normal 30 Normal 45 Normal
NN *>3115 Boosted =+ 30 Boosted 45 Boosted N +715 Boosted =130 Boosted 45 Boosted
Rl == el f2 R e aas s ensnll
No Traf. Low Traf. Heavy Traf. No Traf. Low Traf. Heavy Traf.

Figure 4.14: Average observed Playback Continuity Index for different arrival patterns,
user population sizes and background traffic levels. Numbers in the legend indicate
number of users. Average Queuing delay=46 ms.

Summary and Discussion

The specification of LEDBAT requires all protocol-compliant implementation to use
LEDBAT as a congestion control protocol. However, the LEDBAT configuration values,
suggested by its specification, are meant for non-intrusive background data transfer
services. The work presented in this chapter investigated the possible changes to the




56 Chapter 4. Dataplane Congestion Control

standard LEDBAT configuration values in order to make LEDBAT more suitable for
multimedia streaming.

As LEDBAT is implemented in the application layer, it makes it easy to experiment
with different configuration values or to change values in real time. The test results
described in this chapter indicate that both the start-up time and playback continuity
can be increased by dynamically changing the target queuing delay value and CWND
reduction fraction. While the decrease in the start-up time is experienced in all scenarios,
the increase of the playback continuity is seen only in the tests with large simulated
queuing delays. While further testing is required using real (instead of emulated) clients,
the results show that the the highest benefit of using boosted LEDBAT would be for users
having Internet connection with high and varying latency, such as mobile broadband.

The tests described in this chapter switched between two sets of LEDBAT parameters.
The switch to a faster and more "aggressive" version of LEDBAT was triggered by a fall
in the playback continuity level. It remains an open question for further experimenta-
tion, if even higher playback continuity values can be achieved by adjusting LEDBAT
configuration values continuously.



5.1

CHAPTER 5

Data-Requesting Algorithms

P2P-assisted streaming is a cooperative communication system. When users download
data, they make the downloaded data available for other users to download from them
as well. By doing so, they reduce the communication load on the multimedia streaming
server. In addition, they potentially reduce the communication load on the network itself,
because connection to another user might traverse fewer network links than a connection
to the streaming server.

The way a single client distributes data requests is governed by the data-requesting
algorithm. In the simplest case, when there is a single user and a streaming server, all
requests are sent to the server. However, the situation is more complex when there are
several other users. The data-requesting algorithm must divide the requests based on the
availability of data at each client.

The policy of distributing data requests depends on data being shared and the design
goals of the algorithm. When P2P communication is used to share non-streaming data,
such as program files, the goal might be to maximize the overall download speed. Another
goal might be to ensure the highest availability of data by downloading the rares data
pieces first.

In the case of streaming multimedia, the goals are different. While the overall speed is
important, it is equally important to ensure uninterrupted delivery of data to prevent buffer
underruns and consequentially multimedia rendering stalls. Achieving short start-up time
is also important when designing a data-requesting algorithm. In the following chapter,
a data-requesting algorithm for use with the PyPPSPP client is proposed. Different
configurations of the proposed algorithm is tested in the simulated network to find the
most optimal configuration.

The rest of this chapter is structured as follows: Section 5.1 presents some of the
design goals of data-requesting algorithms used in other P2P communication clients.
Section 5.2 presents the proposed algorithm. The results of the experimental evaluation
and the discussion is given in Section 5.3. The chapter concludes with the summary in
Section 5.4.

Requesting Algorithms in Literature

There are several different data-requesting algorithms proposed and analyzed for use
in P2P communication systems. This section provides a brief overview of selected

57



58 Chapter 5. Data-Requesting Algorithms

algorithms based on their relevance or widespread use.

BitTorrent was originally designed for fast and efficient files transfer. The data-
requesting algorithm used in BitTorrent ([126], [127]) was tuned specifically for this
purpose. It combines three different policies, as described next.

The majority of the data pieces are downloaded using the rarest first policy. This
policy ensures that the client selects pieces located in the least number of other peers.
This policy allows to "spread" the file fastest among the users. This policy also aims to
maximize the overall data transfer speed. The more peers have the piece, the higher the
sum data transfer rate (over all peers) will be. Finally, the rarest first selection policy
reduces the chance that some small number of data pieces will be missing, preventing the
file from being completely downloaded.

The BitTorrent protocol aims for users to upload as much data as they download
(i.e. to be fair and prevent free-riding). However, when new users starts downloading
a file, they do not have anything to contribute with. For this reason, at the start of the
file download, random pieces will be selected. This is because rare pieces (as would be
selected by the rarest first policy) tend to be slower to download.

Finally, before the end of the download process, the client transitions into the end-
game mode. When only several pieces are missing (typically 5), the request for these
pieces are sent to several peers simultaneously. As soon as all the pieces are downloaded,
the outstanding requests are canceled. While this approach can waste some bandwidth, it
is usually not much.

The BitTorrent’s data-requesting algorithm works especially well for files. However, it
is not well-suited for multimedia streaming. By trying to download the rarest pieces first,
a client often experiences playback buffer underruns, which cause stalling of multimedia
playback. One way of improving the selection algorithm was proposed in [81], called
BitTorrent Streaming (BiToS).

BiToS works by dividing all the outstanding data pieces into two sets — a high priority
set (pieces required soon) and the remaining pieces set. The size ratio of the sets can vary.
Then during the multimedia streaming, chunks are selected either from the high priority
set (with probability p), or from the low priority set (with probability 1 — p). Pieces in
the high priority set are downloaded sequentially, and pieces from the remaining set are
downloaded using the BitTorrent’s rarest first policy.

The experimental evaluation of the BiToS method discovered that the best results are
obtained when p = 0.8. In such configuration, the playback continuity index was 0.97,
compared to 0.82, when BitTorrent’s conventional algorithm was used.

The ideas behind the BitTorrent and BiToS algorithms can be found also in the
algorithms provided by the libswift project. Libswift is a reference implementation of the
PPSPP protocol. However, the PPSPP protocol itself does not define the data selection
algorithm.

Libswift provides 4 different algorithms[128], called pickers:



5.2

5.2. Data-Requesting Algorithm 59

1. Sequential picker. This algorithm downloads data pieces sequentially with a small
amount of randomization.

2. Live picker. This algorithm is designed for use with Live streaming data. It
downloads data pieces sequentially. However, it starts not at the beginning of the
stream, but at the point the client "tunes-in" into the live stream.

3. Rarest-first picker. This picker implements the rarest-first strategy as described
previously.

4. Video-on-Demand (VoD) picker. This picker divides the multimedia stream into
three ranges using different thresholds. The highest priority (closest to the playback
point) set is downloaded sequentially, the other two sets are downloaded using the
rarest-first strategy.

Based on the findings from the above papers, BiToS algorithm would be a good choice
for use in the PyPPSPP client. However, BitTorrent operates on a chunks with the size
ranging from 32 KB to 16 MB, while the PyPPSPP client operates on 1 KB size chunks.
Porting the BiToS algorithm to PyPPSPP would significantly increase the algorithm
run-time. The number of data chunks for the same size multimedia file in PyPPSPP is 32-
16384 times larger than in BitTorrent due to the smaller chunk size. Calculating "rareness”
of each chunk would be resource prohibitive. Due to this reason, the proposed algorithm
described next omits the rareness calculation and operates sequentially exclusively at
around the multimedia playback point.

Data-Requesting Algorithm

The following section describes an algorithm implemented in the PyPPSPP client that
sends requests to other peers to send multimedia data to the requesting peer. Before
discussing the actual algorithm, this section describes relevant information and terms used
in the algorithm description.

As described previously in Chapter 3, information shared using PPSPP protocol
is divided into chunks. Chunks can have different sizes between different protocol
implementations, but all clients must use the same chunk size when communicating in the
swarm. PPSPP implementation used in this thesis used 1 KB data chunks. All chunks are
numbered sequentially, starting at 0.

Each client maintains a set (data structure) containing chunk numbers that the client
has already downloaded. Every client advertises the contents of this set periodically to
connected peers via the HAVE messages. Additionally, each client maintains two sets for
each connected member. The first set (have set) contains chunks numbers that the remote
peer advertises (via the aforementioned HAVE messages). The second set (outstanding
set) contains chunk numbers that the client requested from the remote peer, but has not
received yet.



60 Chapter 5. Data-Requesting Algorithms

When a data chunk is received by a client and it passes the integrity verification (if
performed), the following actions take place. The chunk number is removed from the
outstanding set of the peer that sent the chunk. Then the same chunk number is added to a
clients set containing chunks present locally. At some time in the future, the client will
update the HAVE messages it sends with information about the just-received chunk.

The data-requesting algorithm can maintain (if configured) two chunk selection
windows, which limit what chunks can be requested. If the client is configured to discard
chunks after playback (has the discard window), then the data-requesting algorithm will
not request chunks that have a smaller number than the number of the chunk being
rendered now less the discard window. In the same way, if the client is configured with
the forward downloading window, then no chunks will be requested that have a number
higher than the chunk number being rendered now plus the download forward window
value.

Finally, some chunk sets can be calculated on-demand by the client each time they
are needed. In order to get a set of all requested but not received chunks, a logical union
operation is performed on all outstanding sets of connected peers.

5.2.1 Algorithm Implementation

The pseudo-code of the data-requesting algorithm, as implemented in the PyPPSPP client
is shown in Figure 5.1. The algorithm can be divided into several blocks, each described
next.

At the start of each algorithm run, a set of all outstanding chunks (set_all_outstanding)
is computed. This is done by looping over the peers list and applying union operation on
the each peer’s outstanding chunks set. This outstanding chunks set is calculated only
once at the start of the run, and then later is only updated by adding chunks requested
during an algorithm run.

Once the set of outstanding chunks is calculated, the algorithm shuffles the local
peers list. Since the algorithm will be looping over the peers list, by shuffling the list
beforehand, an imperfect (but satisfactory) load sharing is performed among the peers.
The algorithm continues by evaluating each peer in the now shuffled peers list.

The evaluation starts by comparing the cardinality (number of items) of the peer’s
outstanding set to a threshold value (THRESH_OUTSTANDING). If the number of out-
standing chunks is higher than a threshold, the peer is ignored in this algorithm run, and
the algorithm continues with the next peer.

If the number of outstanding chunks is less than a threshold, the algorithm computes
a set of candidate chunks (peer_candidates), that the peer has and the client might
be interested in having. This is done by subtracting the set of chunks already available in
the client from the set of chunks that the peer has. The resulting set is further reduced, by
removing all chunks that are already outstanding. The resulting set is filtered twice, by ap-
plying the discard window and forward download values. The resulting set (required)
contains the chunk numbers that the client might try to request.



5.3

5.3. Experimental Algorithm Evaluation 61

function REQUEST_DATA
for peer in peers_list do
set_all_outstanding < set_all_outstanding + peer.outstanding_chunks
end for

shuffle(peers_list)
for peer in peers_list do
if peer.set_outstanding.lenght > THRESH_OUTSTANDIG then
continue
end if

peer_candidates <— member.set_have - client.set_have - set_all_outstanding
required < filter(peer_candidates, discard_wnd)
required < filter(required, forward_wnd)

if len(required.length > THRESH_REQUEST) then
required.sort()
set_req < required[0:THRESH_REQUEST]
peer.request(set_req)
set_all_outstanding < set_all_outstanding + set_req
else
peer.request(required)
set_all_outstanding < set_all_outstanding + required
end if
end for
end function

Figure 5.1: Data chunks selection algorithm integrating ALTO cost metrics

The final part of the algorithm ensures that the number of chunks requested from
the peer is less than the request threshold (THRESH_REQUEST). If the cardinality of the
required set is less than a request threshold — this whole set is requested from the peer. If
the cardinality is more than the threshold value, then up to the threshold value of lowest
numbered chunks is requested. Finally, the set of all outstanding chunks is extended to
include the just-requested chunks.

Experimental Algorithm Evaluation
As can be seen from the description of the algorithm, it tries to spread the load among the

clients, by not requesting more than THRESH_REQUEST number of chunks from each
client. Furthermore, it does not increase the amount of chunks outstanding by the client,



62 Chapter 5. Data-Requesting Algorithms

if the number of outstanding chunks is already above THRESH_OUTSTANDING.

The goal of the experimental evaluation is to measure how the start-up time and the
PCI changes based on the values of the above-mentioned thresholds. In order to do so, the
experiments reused the setup described in Section 4.4. The only change from the initial
setup was the omission of test with no background traffic. Furthermore, all clients used
the boosted LEDBAT scheme, as described in Chapter 4.

The summary of the test parameters are give in Table 5.1

Table 5.1: Data-requesting algorithm test parameters

Name Values
Number of clients 15; 30; 45
Background traffic levels Low traffic; Heavy traffic
Clients arrival pattern Flash; Exponential
THRESH_REQUEST values 100; 200; 300; 400
THRESH_OUTSTANDING values 50; 150; 250; 350
Number of repetitions 5

Here it should be noted that in the experiments, the THRESH_OUTSTANDING value
was never higher than the THRESH_REQUEST value. For example, in the experiments
using 200 as a THRESH_REQUEST value, THRESH_OUTSTANDING was set to 50
and 150.

5.3.1 Evaluation Results

The average start-up times observed during the experiments are shown in Tables 5.2-5.4.
The tables indicate an average observed start-up time, based on the background traffic
level. "Req" (rows) and "Out" (columns) indicate request threshold and outstanding
threshold values used in the data-requesting algorithm. In the start-up time observations,
the pattern of users arrival had negligible influence (< 1% difference from the average),
hence only the average values for both arrival patterns are shown.

The results indicate that the start-up time is influenced by both the requesting and
outstanding threshold values. In all experiments, higher threshold values directly corre-
spond to longer-start-up times (the possible reasons are discussed later). The only two
exceptions to this observation are experiments with low traffic levels and threshold values
of 100/50. In these two cases, the start-up time is longer than the start-up time of a client
using larger algorithm thresholds. This might indicate, that in certain cases, the smaller
threshold value is actually not beneficial.

The results also clearly show that the increase of the background traffic levels has a
negative effect on the start-up time. The start-up times in the tests with high background
traffic levels are on average longer by 10% (for clients using small threshold values).



5.3. Experimental Algorithm Evaluation 63

Table 5.2: Start-up time, seconds (15 users)

Traffic Low Heavy
g;l(tl 50 150 250 350 50 150 250 350
100 9.50 10.40
200 10.46 | 10.11 11.01 | 1043
300 10.71 | 12.83 | 12.74 11.15 | 11.50 | 12.76
400 11.20 | 11.30 | 12.93 | 13.88 | 11.42 | 11.56 | 13.61 | 15.28

Table 5.3: Start-up time, seconds (30 users)

Traffic Low Heavy

Out 50 150 250 350 50 150 250 350
Req

100 8.50 11.66

200 | 9.05 | 10.67 11.02 | 12.20

300 | 9.49 | 11.49 | 11.99 10.12 | 11.85 | 13.31

400 | 9.32 | 10.56 | 12.74 | 1450 | 11.14 | 12.28 | 14.02 | 15.80

Table 5.4: Start-up time, seconds (45 users)

Traffic Low Heavy
l(l):(tl 50 150 250 350 50 150 250 350
100 10.14 11.05
200 8.81 | 11.16 11.66 | 14.74
300 9.34 | 11.34 | 13.04 11.93 | 14.95 | 17.38
400 923 | 11.42 | 12.85 | 14.62 | 13.19 | 15.75 | 16.57 | 19.52

However, the increase of the number of users has a much smaller effect on the start-up
times. The average start-up times of all threshold combinations are 11.56, 10.86 and
11.16 seconds, for 15, 30 and 45 users respectively. All the values are within £ 3% of the
average. This indicates that the number of users has a negligible influence on the start-up
time.



64 Chapter 5. Data-Requesting Algorithms

Table 5.5: Playback Continuity Index (15 users)

Traffic Low Heavy

l(i)::lc; 50 150 | 250 | 350 | S0 150 | 250 | 350
100 1.00 0.99

200 0.99 | 0.99 0.98 | 0.99

300 0.99 | 0.98 | 0.98 098 | 0.99 | 0.97

400 0.97 | 098 | 097 | 0.98 | 098 | 0.96 | 0.97 | 0.97

Table 5.6: Playback Continuity Index (30 users)

Traffic Low Heavy

Out 50 | 150 | 250 | 350 | 50 | 150 | 250 | 350
Req

100 | 0.99 0.99

200 | 0.99 | 0.99 0.99 | 0.99

300 | 0.99 | 098 | 0.99 0.99 |1 0.99 | 0.98

400 | 098 | 098 | 0.98 | 0.98 | 0.99 | 0.97 | 0.97 | 0.97

Table 5.7: Playback Continuity Index (45 users, Exponential Arrival)

Traffic Low Heavy

Out 50 | 150 | 250 | 350 | 50 | 150 | 250 | 350
Req

100 | 0.85 0.84

200 | 0.84 | 0.88 0.84 | 0.86

300 | 0.80 | 0.85 | 0.82 0.79 | 0.80 | 0.81

400 | 0.82 | 0.80 | 0.81 | 0.84 | 0.77 | 0.74 | 0.76 | 0.77

The average observed PCI values are shown in Tables 5.5-5.7. All the tables indicate
the average observed PCI, based on the threshold values and the background traffic levels.
The users arrival pattern had a smaller than 1% impact on the average PCI value in the
experiments with 15 and 30 users, and hence the results are averaged for both arrival
patterns. The results for experiments with 45 users are shown separately for both user



5.3. Experimental Algorithm Evaluation 65

Table 5.8: Playback Continuity Index (45 users, Flash Arrival)

Traffic Low Heavy

g::l 50 150 | 250 | 350 | S0 150 | 250 | 350
100 0.77 0.75

200 0.79 | 0.78 0.74 | 0.73

300 0.75 | 0.74 | 0.76 0.71 | 0.73 | 0.74

400 0.74 1 073 | 0.73 | 0.74 | 0.70 | 0.70 | 0.71 | 0.73

arrival patterns in Tables 5.7 and 5.8.

The results show that for both 15 and 30 user experiments, the number of users has no
significant impact on the PCI values. The impact of the background traffic levels on the
PCI value is also not significant. Throughout all 15 and 30 user experiments, the average
PCI value decreased by 0.005 in experiments with the higher background traffic level.

The results of the experiments with 45 users indicate larger differences in the PCI
values based on the traffic levels, users arrival pattern and threshold levels. The average
PCI value falls by 0.07 when users arrive in the flash pattern, compared to the exponential
arrival. The increase of the background traffic levels lowers the PCI value by 0.04 and
0.03 in exponential and flash arrival scenarios respectively. Finally, the results of the
45 users experiments clearly show that the highest PCI values are obtained when the
outstanding chunks threshold values is 200 or less.

5.3.2 Discussion

The results described above indicate that the best results in terms of both start-up time and
playback continuity are achieved when the size of of requests is small. This result might
seem counter-intuitive. In the conventional communication systems, a smaller number of
larger requests is usually preferred to larger number of smaller requests. This applies to a
wide array of examples, from Ethernet adapters and routers to Web servers.

However, smaller requests are beneficial in P2P-assisted streaming systems in general,
and for the tested system in particular. In general, by using smaller request sizes, the
communication load is shared among more users. For every client, the number of data
chunks that it requests up-front from the current playback position is limited by the
forward download window. For a fixed size window, a smaller request threshold size
means that the same amount of required chunks (forward download window size) is
divided among a larger number of peers. This in turn increases the chances that the data
will be requested from the peers that are "closer". This is further explored in Chapter 6,
where peers are ranked based on the network connection quality before requesting data.



54

66 Chapter 5. Data-Requesting Algorithms

The increase in streaming quality when the data request size is small is also influenced
by the implementation of the client. The PyPPSPP client is a single-threaded program.
Furthermore, it fulfills data requests in first-in-first-out method. When the data requests
are large, the client program spends more time fulfilling the request. As the program is
single-threaded, other tasks, such as requesting data for client’s own consumption, and
processing of other data requests must wait until the completion of data sending. Overall,
working with larger request sizes results in lower overall performance.

Summary

This chapter presents a data-requesting algorithm used in the PyPPSPP client. Data-
requesting algorithms are used to divide the data requests among the communication peers
- that is among the streaming multimedia server and other users. This chapter presents the
different data-requesting policies, as implemented in the data-requesting algorithms used
in BitTorrent, BiToS, and libswift software.

The algorithm proposed for use in PyPPSPP is extensively tested in different network
conditions, including different user population sizes, background traffic levels and user
arrival patterns. The results showed that the proposed algorithm achieves the highest
playback continuity and the lowers start-up times when the request size is small. The
possible reasons for this are identified and discussed.

While the proposed algorithm ensures high playback continuity, start-up times could
still be improved. Presently, an average start-up time of about 10 seconds is too large for
widespread deployment. Methods to reduce this time are left for future research. However,
starting the streaming immediately from the streaming server and then connecting to other
users might be one viable option. Another might be to use different data request threshold
sizes, based on the fact whether the playback of multimedia started or not.



CHAPTER 6
External Peers Ranking

Ranking of potential communication peers is important in numerous networking applica-
tion areas. Clients of Content Delivery Networks (CDNss) can use ranking to find the best
CDN node. Players in multiplayer games can use peers ranking to either join the server
closest to them, or to form a players group consisting of players having approximately
the same communication latencies. Finally, P2P communication can use peers ranking to
request information from the peers with favorable connection conditions.

Generally, peers ranking can be performed by the peers themselves, or by a special
external peers ranking service. Typically, when performed by the peers themselves, peers
ranking is performed by evaluating the communication RTT (by using a ping-like tool),
number of intermediate hops (by using a traceroute-like tool), or by evaluating the length
of an AS-path (detailed in the next section).

When ranking is performed by an external third-party service, a client requesting
ranking will receive either the address of the best peer, or some kind of (abstract) com-
munication cost value assigned to each potential peer. Providing the address of the best
communication peer is widely used in the Internet during the Domain Name System
(DNS) lookup. For example, consider trying to resolve an IP address for the domain
google.com. This will be done by discovering the Web servers closest to the requesting
user, and then returning the IP addresses of the closest peers in the DNS reply.

The following thesis chapter explores how the external peers ranking can be used by
P2P communication systems. The goal of such ranking is to perform better than random
communication peers selection, and thus improve the performance of multimedia stream-
ing. The ranking of peers is performed by the Application Layer Traffic Optimization
(ALTO) server. As described in more detail further in section 6.2, ALTO is an IETF
standardized protocol for exchanging information about network topology and the cost of
reaching end-points in the network. The evaluation of ALTO was performed in a virtual
network using a prototype implementation of the ALTO server.

In the remaining part of the chapter, the methods of communication peers ranking are
discussed in section 6.1. The description of the ALTO protocol is given in section 6.2. The
methods used to derive the ALTO cost values are described in section 6.3. The description
of the prototype implementation of the ALTO server is given in section 6.4, along with the
description of the experimental setup. The results of experimental evaluation the influence
of ALTO on the performance of multimedia streaming is given in section 6.5. The chapter

67



6.1

68 Chapter 6. External Peers Ranking

concludes with the final remarks in section 6.6.!

Methods of evaluating nodes in the Internet

Peers ranking is an important part of P2P communication. Requesting data from peers that
are "close" in the network allows to receive required data faster, and with less interruptions.
However, peers evaluation and ranking is not a trivial task.

A naive method to rank peers is to evaluate each one individually. There are many
ways this can be done—for example, by measuring a data transmission RTT, the number
of intermediate hops, or using some other metric. While this approach can be used in
networks with a small number of hosts, this is not scalable in large networks. If symmetric
data-connection conditions are assumed (which is not always the case in the Internet),
nodes must perform N (NN — 1) /2 evaluations in a network of N nodes.

One way to reduce the amount of information required to evaluate the nodes is to
assign coordinates (a set of numbers) to each node. Then, connection conditions between
two nodes can be approximated using a distance function over the value of coordinates
of the nodes. In a system of N peers, the distances to all peers can be computed by
maintaining N sets of records, each D numbers large (where D is a number of coordinates
space dimensions), taking O (N * D) amount of space. Compare this with N(N — 1)/2
individual distances and O(N?) amount of space used in naive approach, where each
actual measurement is maintained.

One of an earliest protocols, designed to assign coordinates to the nodes in the network,
is GNP[88]. In GNP, each node is assigned a coordinates value in an N-dimension
coordinates space. Then, quality of a connection is estimated using distance between the
nodes’ coordinates. The bigger the distance — the worse the estimated connection quality.

GNP coordinates of the network nodes are determined by measuring the ping times
between the nodes and a set of special landmark nodes. Landmark nodes are special nodes,
placed throughout the network, that are used as a reference for all coordinate calculations.
The coordinates of the landmark nodes themselves are determined by measuring the ping
times between all the landmark nodes, as described next.

For an example, refer to Figure 6.1. Here, the Euclidean 2D space is used for nodes
placement. The landmark nodes are shown using the red color and the remaining two
client nodes are show using the green. At the start of GNP operation, the landmark nodes
measure ping delays between themselves (indicated with black dashed arrows). These
measurements produce a matrix, where each entry represents a round trip time between
the landmark nodes represented by column and line indexes. Once the RTTs matrix is
obtained, some function is used to assign the coordinate values to each node, so that the
error between the nodes distance and the actual measured ping-time-delay is minimized.
One of the possible functions to obtain the coordinates values might be Simplex Downbhill,
as proposed in [129].

IContents of this chapter is based on the paper 5 from the thesis publication list.



6.1. Methods of evaluating nodes in the Internet 69

Hi[X4;Y 4]

H,[Xs;Y 5]

Figure 6.1: Network node coordinates establishment using GNP protocol with 3 landmark
nodes.

The network nodes follow the same procedure to obtain their coordinates. First, they
measure the ping times to a set of landmark nodes, as shown using solid black arrows
between the nodes and landmarks in the above figure. Then, they use the same function
as used by the landmark nodes to assign a coordinates value that minimizes the error
between the distance to the landmark node and the related ping delay. Finally, once all
nodes have coordinates values assigned, the parameters of a connection between two
nodes can be estimated using a distance between the coordinates of the nodes. This is
shown as a blue dashed line in the above figure.

An extended and decentralized version of the network coordinates system is proposed
in a protocol called Vivaldi[89]. In Vivaldi, same as in the GNP, all nodes are assigned
coordinates, and the connection quality is modeled as the distance between the coordinates.
Furthermore, as in GNP, Vivaldi also uses ping RTT measurements to calculate the
coordinate values.

However, instead of being static, coordinate values in the Vivaldi protocol are dynamic.
The Vivaldi coordinate system is modeled as a system of physical mass-springs, where
each pair of nodes is linked using a mechanical spring. Then, when assigning coordinate
values to the nodes, the goal is to assign such a value that the force extended to the nodes



70 Chapter 6. External Peers Ranking

by the springs is in equilibrium and the system is still.

When the initial coordinates are calculated and the system is in equilibrium, any
further RTT measurement will cause a change in the coordinates relative to both: the new
measured value and the sum force of all springs "connected" to the node.

While the previous two proposals focused on distributed assigning coordinates to the
nodes and finding a distance between the nodes to calculate connection parameters, other
proposals suggest a more centralized approach. For example, Meridian[130] protocol can
be used to find the closest Meridian node to any chosen target node in the network.

Meridian works as follows: each Meridian node tracks RTTs to a set of other Meridian
nodes. Based on the RTT value, nodes are grouped into different groups. Each group can
be visualized as a concentric circle, centered on the Meridian node as shown in Figure 6.2.
The radius of all concentric circles increases exponentially.

Figure 6.2: Finding the closest node using Meridian protocol

Finding the closest Meridian node to some target node works as follows. The client
(shown as a red dot in the above figure) sends a request to find the closest Meridian node
to the target (green node in the same figure) to a randomly chosen Meridian node (central
node in the above figure). The central Meridian node measures the RTT to the target
node. Then it relays the request to find the closest node to all other known Meridian
nodes in the circle having the radius larger than the measured value (the same circle that
encompasses the target node). Upon receiving this request, each Meridian node performs



6.1. Methods of evaluating nodes in the Internet 71

the measurement and relays the request further on. The process stops when no Meridian
node can find a relay closer to the target node. In the above example, the closes node is
the blue node, which is found after a single relay.

All the above mentioned methods use RTT to estimate connection quality. However,
several works in the field propose to use the length of the Autonomous System (AS)-path
to rank the network nodes [131]-[134]. This method is based on the fact, that all nodes in
the Internet can be mapped to the unique networks they belong to and identified by the
AS number. Then, any path in the Internet between two nodes can be mapped to a list of
traversed networks, identified by their corresponding AS numbers. For example, consider
Figure 6.3.

Figure 6.3: Two communication paths traversing different number of autonomous-
systems.

Here, a node in network AS1 communicates with nodes in the networks with AS
numbers 3 and 4. Consequently, AS-path to node in network 3 is AS1-AS2-AS3, and
AS1-AS2-AS3-AS4 to the node in network 4. While this method is easy to implement, it
is not as accurate as other discussed methods. By using the AS-path alone for connection
estimation, the conditions of the traversed networks (such as available bandwidth and
congestions) are ignored.

A network node performing evaluation using the above methods must either perform
several measurements (to calculate coordinates), or to maintain a network topology
database and then perform route tracing to determine intermediate network hops. These
methods might not be suitable for highly dynamic situations, like P2P communication,
where network nodes churn might be large. Furthermore, using the above listed methods
removes the opportunity for the network operator to influence the decisions. This is a
big drawback, because the network operator has much better knowledge of its internal
network. The remaining part of the chapter will explore the idea of delegating the ranking
of communication peers to a network operator by utilizing the ALTO protocol.



6.2

72 Chapter 6. External Peers Ranking

Introduction to the ALTO Protocol

ALTO is a data exchange protocol standardized by IETF. The goal of the ALTO protocol
is to provide a standardized messages syntax and vocabulary that can be used to exchange
abstract information about computer networks. ALTO protocol messages are exchanged
between an ALTO protocol client and the ALTO server.

ALTO protocol specification provides a list of services that an ALTO server must
provide. The only mandatory service is the Map Service encompassing Network Map and
Cost Map sub-services. Optional services include Map-Filtering, Endpoint Property, and
Endpoint Cost services. As the ALTO protocol is used to provide information about the
network, all the above listed services use the concept of Provider-defined Identifier (PID)
to identify network locations. A single PID is used to identify a collection of network
endpoints. When used in large networks, PIDs can form hierarchical topologies. For this,
consider the example shown in 6.4. Here, a PID representing a European-wide IP network
is divided into three country-wide PIDs. Each country-wide PID is in turn divided into
PIDs representing each Internet exchange point. Other PIDs, not shown in the figure, can
also be present in the network.

PID: LINX PID: LONAP
PID: IP-UK

PID: DE-CIX PID: ECIX
PID: IP-Germany

PID: AMS-IX PID: NL-IX

PID: IP-Netherlands
PID: IP-Europe

Figure 6.4: An example of a European-wide network’s PIDs hierarchy.

Each PID references a range of endpoint addresses. In a general case, any addressing
method can be used (for example ATM VPI/VCI or IP), however for the use-case described
in this chapter, IPv4 addresses are used.



O 0 N N R W N =

22
23
24

6.2. Introduction to the ALTO Protocol 73

Once an ALTO server administrator creates a hierarchy of PIDs representing a network
topology, then this information can be accessed using the Network Map service. In order
to request a network map, a client makes a Representational State Transfer (REST) request
to the ALTO server, to which the server replies with a JavaScript Object Notation (JSON)
encoded network map. An example, showing a partial network map used for experiments
described later, is shown in listing 6.5.

"network-map": {
"adslam-4": {
"ipv4d": [

"192.168.4.0/24"

b
"core—-dc": {
"ipv4d": [
"192.168.240.0/24",
"192.168.245.0/24"

b
"adslam-2": {
"ipv4d": [
"192.168.2.0/24"

}V
"meta": {
"tag": "5feceb66ffc86£38d952786c6d696c79c2dbc239¢—
dd4e91b46729d73a27fb57e9",
"resource-id": "network-map"

Figure 6.5: A fragment of a network map used in experiments.

The network map shown above contains three PIDs (adslam-4, adslam-2, core-dc),
with two PIDs encompassing a single IP network each, and one PID (core—-dc) encom-
passing two networks. Meta information in a network map is used to uniquely identify
each map and its version.



6.3

74 Chapter 6. External Peers Ranking

Similarly, an ALTO client can make a request to an ALTO server to get a cost value
of sending data either from one PID to another, or from one IP address to another. The
cost value here defines some abstract cost of sending data one way. The cost can be
dimensionless, or can represent actual monetary cost, delay, composite load or any other
provider-defined metric. The ALTO standard does not define any method to derive the
cost value, leaving this choice to the ALTO server operator. An example of data-routing
cost lookup and the associated response is given in listing 6.6.

In the above example, a request is made to get a data-routing cost, using a numerical
"hops-path" metric from IP address 192.168.245.2 to addresses 192.168.3.2
and 192.168. 3. 4. The response contains a reference to the network-map, which was
used to calculate the data-routing cost values. The response also contains the cost-map,
indicating data routing costs of 25 and 32 to the two destination addresses respectively,
indicating that sending data to IP address 192.168. 3. 2 is preferred over sending data
to IP address 192.168.3.4. A discussion on the methods to derive and interpret cost
values is given in Section 6.3.

In addition to evaluating the connections between two endpoints in the network, the
ALTO server can be used to discover information about endpoints in the network using
the Enpoint Property service. To do so, an ALTO client sends a network property request
to the ALTO server. The request contains a list of end-points and a list of the properties
of the indicated end-points that the client is interested in. Upon processing the request,
the ALTO server responds with a cross-product of all requested end-points with their
properties. In addition to learning about end-point properties, the end-point discovery
service can be used to discover end-points as well. An example end-point discovery
request and response is given in listing 6.7.

In the above example, a client sends a request to discover all end-points known to
the ALTO server (indicated by IP address 0.0.0.0). The client is interested in two
properties — the PID of the end-point and the presence of the st ream—cache property.
After receiving the response, the client knows the IP addresses of two streaming cache
servers in the network in addition to the PIDs assigned to them. The information about the
PIDs can be used to rank two possible cache servers based on the connectivity conditions
to them by utilizing the already-described Cost Map service. The use-case of locating
streaming multimedia cache servers is further explored in Chapter 8, where it is used to
discover the address of the multimedia streaming server located in the mobile network
base-station.

ALTO Data-routing Cost Metrics

As already described, the ALTO protocol specification does not define a method to derive
the data-routing cost metric. Some of the works discussed previously proposes to use the
length of an AS-path between the source and destination PIDs as a cost metric. However,
using the AS path’s length alone does not take into account the conditions of the networks



= = Y R I

22
23
24
25
26
27
28
29
30
31
32
33
34

6.3. ALTO Data-routing Cost Metrics 75

REQUEST :
{
"cost-type" : {
"cost-mode" : "numerical",
"cost-metric" : "hops-path"
} 14
"endpoints" : {
"srcs": ["ipv4:192.168.245.2"],
"dsts": [
"ipv4:192.168.3.2",
"ipv4:192.168.3.4"

RESPONE :
{
"meta" : {

"dependent-vtags" : [{
"resource—-id": "network-map",
"tag": "S5feceb66ffc86£38d952786c6d696c79c2dbc239dd+

4e91b46729d73a27£fb57e9"

1

"cost-type" : {

"cost-mode" : "numerical",
"cost-metric": "hops-path"

}I

"cost-map" : {
"ipv4:192.168.245.2": {

"ipv4:192.168.3.2": 25,
"ipv4:192.168.3.4": 32
}

Figure 6.6: ALTO routing cost request and response.



76 Chapter 6. External Peers Ranking
1 REQUEST:
2 A
3 "properties" : [
4 "networkmap.pid",
5 "priv:stream-cache"
6 J 4
7 "endpoints" : [ "ipv4:0.0.0.0"]
8 }
9
10 RESPONE:
1A
12 "meta" : {
13 "dependent-vtags" : [{
14 "resource-id": "network-map",
15 "tag": "S5feceb66ffc86£38d952786c6d696c79c2dbc239dd+>
4e91b46729d73a27fb57e9"
16 }]
17 b g
18 "endpoint-properties": {
19 "ipv4:10.10.2.33" : {
20 "network-map.pid": "PID-mov-123",
21 "priv:stream-cache": "1"
22 I
23 "ipv4:10.10.4.12" : {
24 "network-map.pid": "PID-mov-321",
25 "priv:stream-cache": "1"
26 }
27 }
28}

Figure 6.7: ALTO end-point property service used to discover end-points providing movie

cache services.

(i.e. congestions, delays). The following section proposes three methods to derive the
data-routing cost-value based on the topology and status of the network. The proposals

are evaluated according to the following criteria:

e Relative accuracy. The cost metric should reflect the network’s topology and load
conditions. The metric should also change when the network state changes.



6.3. ALTO Data-routing Cost Metrics 77

e Calculation complexity. The cost metric should quickly calculate to allow short
ALTO server response times.

e Cacheability. The cost metric, once calculated, should be stored in the server’s
memory to prevent recalculation.

e Interoperability. The cost metric should be calculated in a way that allows a
composite metric (metric for data path crossing several networks) to be calculated.

The first proposed metric derives the data-routing cost value from the number of
routers along the data-path. This approach follows the routing metric used in the RIP
routing protocol [135], albeit without the 15 hops limit. The routing cost metric is
increased by 1 for each router that the data passes between the source and destination
addresses. This method is referred to as Hops-Routing-Cost (HRC).

The second metric derives the cost value from the Interior Gateway Protocol (IGP)
used in the ISP’s network. Experiments in this work use Open Shortest-Path First (OSPF)
as an IGP protocol, and the cost value is calculated by following the OSPF protocol
specification [136]. This metric is referred as Ospf-Routing-Cost (ORC).

The third metric derives its cost value from the end-to-end available bandwidth along
the data-path [137]. The value of the cost metric is equal to the smallest available single
link’s bandwidth in the links that data traverses along the data-path and is referred to as
Path-Residual-Bandwidth (PRB). For the first two metrics, a path with a lower metric
value is preferred to a path with a higher value. For the PRB metric, the relation is the
opposite: a path having a higher value is preferred to a path having a lower value.

Among the three metrics, PRB most accurately reflects the current network conditions,
as it is derived directly from the network link load values. The ORC metric is less accurate,
as it takes into account only the provisioned link capacities and not the actual load. The
HRC is the least accurate, because it indicates only the number of crossed routers.

When an ALTO server is deployed in networks with a simple topology, the ORC
metric is the easiest to calculate. It can be done by looking up the value in the first router
having a full routing table (routes to all network prefixes) along the data path. In complex
networks (networks with multiple OSPF areas), the ALTO server will have to trace the
full path between the source and destination addresses. This is due to the fact that routers
have a full view of only the OSPF area they are operating in. Deriving the HRC value
is more computationally demanding, as it requires the ALTO server to always trace the
complete data path from the source address to the destination address. When the ALTO
server has routing data from all routers in the network, the HRC value can be calculated in
linear time, because the shortest-path is already computed by the routers. Calculating the
PRB requires the most resources: in addition to tracing the data path between the source
and destination addresses, the ALTO server has to lookup the provisioned link capacities
and calculate the average links’ load.

Caching of the calculated data-routing cost values is an important consideration in
ALTO servers handling a high number of user queries. An operator of an ALTO server



6.4

78 Chapter 6. External Peers Ranking

might want to re-use the calculated cost value, when the data path is between the PIDs,
for which cost was calculated recently. Once calculated, the ORC and HRC values can be
cached for as long as there are no network topology changes and load-based routing is
not used. However, the PRB cost value is valid only for a short time. The value changes
when the next observation of network links utilization is completed.

The current version of the ALTO protocol does not define the interface between
ALTO servers running in different ISP networks [138]. At the same time, it is worth
considering, how each of the different cost metrics would interoperate, once the interface
is standardized. The HRC metric is the easiest to interoperate with, since it is derived
strictly from the network’s topology. When a data-path crosses several ISP networks, the
composite metric is the sum of individual metrics from each ISP’s network. In a similar
manner, the PRB composite metric is equal to the minimal value of all metrics in each ISP
network. Of the three metrics, the ORC is the least interoperable due to two reasons. First,
not all networks use OSPF as their IGP, and other widespread IGPs (e.g., IS-IS, EIGRP)
have incompatible cost metrics. Second, the cost value of each OSPF link is derived as a
ratio with the reference bandwidth [136]. As different network operators can use different
reference bandwidth values, the ORC values from different networks can not be directly
compared.

ALTO Server and Experimental Setup

In order to evaluate the proposed methods to derive data-routing cost value, a prototype
ALTO server was implemented.> The block diagram of the prototype ALTO server is
shown in Figure 6.8.

For evaluation purposes, the server maintains test network topology (described later)
in the topology database. The topology is represented as a bidirectional graph, where
vertices represent network devices and directed edges — links between the devices. In
addition to the topology database, the server also maintains information about routing
data and links load. This information is maintained in the Network Routing and Load
Database. In addition to the routing information snap-shots, load information is stored as
a time-series, allowing implementation of complex data analysis.

The server communicates with other network elements through two external interfaces.
An infrastructure interface is used to connect to other network devices, such as switches
and routers. For evaluation purposes, this interface connected with data collection agents
running in the virtual network devices used for testing, using application-specific protocol.
However, other protocols, such as Simple Network Management Protocol (SNMP)[139]
could also be used.

Handling of ALTO protocol queries is implemented through the ALTO REST interface.
Upon receiving a request, the server validates the syntax of the request in the REST

2Source-code available online at github.com/justas—/PyALTO


github.com/justas-/PyALTO

6.4. ALTO Server and Experimental Setup 79

4} ALTO protocol Queries
% ALTO Server

ALTO REST Interface |

v

ALTO protocol service

v

Infrastructure
Interface
Topology  Network -
Database Routing & Load {}Rou‘ung & Load
Database Queries

Figure 6.8: Block diagram of ALTO server implementation

interfaces and forwards it to the protocol service for processing. Once the response’s
computation is done, it follows the reverse path to the client.

Tests to evaluate the different cost metrics were carried out in an emulated environment,
using the CORE network emulator. During all tests, users performed a P2P-assisted
download of a 5 minute video (HD720p, 2 Mbps codec bit rate) originating from the
multimedia server.

The test network topology was adapted from an industry’s whitepaper [123] and is
shown in Figure 6.9. The test network contains 96 user-nodes divided into 16 groups
(PIDs) of 6 nodes. In the tests, user-nodes are connected to the network using Digital
Subscriber Line (DSL) technology. This is done by connecting each group of users to a
Digital Subscriber Line Access Multiplexer (DSLAM), which in turn is connected to a
Broadband Network Gateway (BNG). Every BNG is connected to two DSLAMS, and
all BNGs are connected in a ring topology. Data flows from users are always routed
via BNGs, and DSLAMs act purely as layer-2 data concentrators. Links between the
users and DSLAMs were provisioned with 10 Mbps capacity, and links between the
DSLAMs and BNGs were provisioned with 30 Mbps capacity, giving the DSLAMs an
oversubscription ratio of 1:2. This allows the experiments to emulate the congestion
conditions in the access network. The remaining links were provisioned with 100 Mbps
capacity.

Two BNGs have direct connections to the core router and background-traffic generat-
ing servers. The core router is connected to an additional traffic generating server, the
ALTO server and a multimedia streaming server. The traffic servers are used to generate
background data flows to the user-nodes in the network, and the multimedia server acts as



80 Chapter 6. External Peers Ranking

Ring of 8 BNGs With 2 DSLAMs

=g Traffic ALTO
. server =
i \ /ﬂl server
Core % S Traffic
router, v\ﬂl server
ﬁl Multimedia
Traffic B gerver
server
User DSLAM
nodes

Figure 6.9: Topology of the test network

a source of multimedia data.

The PPSPP and ALTO specifications do not define how the ALTO-provided cost-
metric should be integrated into the P2P data download scheduling algorithm. Due to
this, the algorithm shown in Figure 6.10 is proposed. The algorithm works as follows:
in the experiments, PPSPP clients maintain a list of objects, representing other users
participating in the P2P data exchange. Once every second, a timer running in the PPSPP
software client calls "request_data" function. The function takes a list of peers, ordered
by the ALTO cost-metric, as a parameter. This function tries to request up to 500 data
pieces from each member, while ignoring those members that have more than 350 data
pieces requests already outstanding.

6.4.1 Test Scenarios
This work considers Video-on-Demand (VoD) and Live usage scenarios in varying network
conditions. In the VoD scenarios, the multimedia server has all multimedia data available
at the start of each experiment; in the Live scenarios, the multimedia server is producing
multimedia data during the experiment. While the scenarios are identical from the point
of view of the client receiving multimedia (experiments do not consider fast-forwarding
multimedia), the scenarios differ in how much data each client can buffer before rendering
it. In the Live scenarios, clients can request only the data that the multimedia streaming
server produced. In VoD scenarios, a client always try to maintain a received-data buffer
of 1500 data chunks.

To make test conditions realistic and to vary the network utilization, the experiments
were conducted using different background data traffic levels. In the base scenario



6.4. ALTO Server and Experimental Setup 81

function REQUEST_DATA (alto_ordered_peers_list)
for peer in local_peers_list do
set_all_outstanding += peer.outstanding_chunks
end for
for peer in alto_ordered_peers_list do
if len(peer.set_outstanding) > 350 then
continue
end if
chunk_candidates = peer.set_have
- set_i_have
- set_all_outstanding
if len(chunk_candidates) > 500 then
peer.request_data(chunk_candidates[0:500])
set_all_outstanding += chunk_candidates[0:500]
else
peer.request_data(chunk_candidates)
set_all_outstanding += chunk_candidates
end if
end for
end function

Figure 6.10: Data chunks selection algorithm integrating ALTO cost metrics

("traffic-0"), no background data traffic was used. The normal data-traffic level ("traffic-
1") was obtained from recent research [124], indicating that 95% of home-users transfer
up to 64.27 MB of data during their 15 min peak usage interval. The share between
the download and upload traffic was 85% to 15% [125]. In the high background traffic
scenarios ("traffic-2"), background data traffic levels were doubled.

The experiments described here were performed using conventional TCP and not
LEDBAT as a congestion control mechanism. Due to this reason, the threshold values in
the above algorithm are different from those discussed in the earlier chapters.

All experiments were conducted by sweeping the number of P2P multimedia streaming
users from 10 to 50 with a step of 10 users. To increase the statistical validity, all
experiments were repeated 5 times and results averaged. A set of experiments not using
ALTO, and performing random peers selection, were used as a reference case when
evaluating ALTO.

