
Hitotsubashi University Repository

Title
An Empirical Analysis of Nikkei 225 Options Using

Realized GARCH Models

Author(s) Takeuchi-Nogimori, Asuka

Citation 経済研究, 68(2): 97-113

Issue Date 2017-04-26

Type Journal Article

Text Version publisher

URL http://doi.org/10.15057/28531

Right



An Empirical Analysis of Nikkei 225 Options Using

Realized GARCH Models

Asuka Takeuchi-Nogimori

This paper analyses whether realized generalized autoregressive conditional heteroscedasticity

（GARCH）models are useful for pricing Nikkei 225 options. This model enables us to estimate

simultaneously the dynamics of stock returns using both realized volatility（RV）and daily return data.

The analysis also examines whether realized GARCHmodels using realized kernels（RK）and realized

ranges（RR）improve the option-pricing performance. Comparing the empirical results, for call options,

EGARCH models perform better ; however, for put options, realized GARCH models with RK without

nontrading hour returns perform better than those with RV or RR.

JEL Classification Codes : C22, C52, C53

1．Introduction

One of the most important variables in option

pricing is the volatility of the underlying

asset, defined as the standard deviation of the

returns of financial assets. However, while

the well-recognized Blackand Scholes（1973）

option-pricing model assumes that financial

asset volatility is constant, it is well known

that volatility changes over time. Giving

consideration to the dynamic volatility proc-

ess in the option-pricing model is necessary to

evaluate options more accurately. Therefore,

the purpose of this paper is to evaluate option

prices using high-frequency data.

Many alternative time-series volatility

models are now available to describe the

dynamics of volatility. One traditional group

of models is autoregressive conditional heter-

oscedasticity （ARCH）-type models using

daily return data, including GARCH（general-

ized ARCH, Bollerslev, 1986）, GJR（Glosten

et al. 1993）, EGARCH（exponential GARCH,

Nelson, 1991）, APGARCH（asymmetric pow-

er GARCH, Ding et al. 1993）, and FIE-

GARCH（fractionally integrated EGARCH,

Bollerslev and Mikkelsen, 1996） models.

More recently, realized volatility（RV）mod-

els using high-frequency data have attracted

the attention of financial econometricians as

an accurate estimator of volatility. In strong

contrast, RV is merely the sum of the squared

intraday returns using high-frequency data.

Ordinarily, to specify the dynamics of RV,

time-series models are employed, including

autoregressive fractionally integrated mov-

ing average（ARFIMA）and heterogeneous

interval autoregressive（HAR）（Heterogene-

ous interval autoregressive, Corsi, 2009）

models. In addition, an extension of both

ARCH models and time-series models of RV

is included in realized generalized ARCH

（GARCH）models proposed by Hansen et al.

（2012）. These studies show that forecasts

from daily RV estimates based on intraday

returns are superior to forecasts from daily

returns only.

There is an advantage to including RV in

volatility models for forecasting. In the

results of the previous research mentioned

above, RV contains different information to

that of daily returns, because RV is an

observable volatility and is independent of

the specification of volatility dynamics such

as ARCH-type models. Accurately forecast-

ing volatility is critical in option pricing.
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In the mainstream option pricing litera-

ture, a wide range of traditional ARCH-type

models are commonly analysed. Many of

these models have already been applied to

option pricing（Bollerslev and Mikkelsen

（1999） and Duan 1995））. Some studies

applied realized volatility to option pricing.

Bandi et al.（2008）apply certain types of

RVs as described below to S&P 500 option

prices, and conducted a trading simulation.

Stentoft （2008） suggests a model that

describes volatility dynamics using RV and

latent volatility and shows it performs better

for American companiesʼ options. For HAR-

type models, Corsi and Vecchia（2013）, Jou et

al.（2013）, and Majewski et al.（2015）show

that the model successfully predicts S&P 500

option prices. Ubukata and Watanabe（2014）

predict Nikkei 225 put option prices using

both ARFIMA（X）and HAR（X）models, and

show that the ARFIMAX model performs

best. Christoffersen et al.（2014）and Chris-

toffersen et al.（2015）develop a new discrete-

time model of volatility dynamics that

contains both a GARCH component and an

RV component, and find that RV reduces the

S&P 500 index pricing errors of the bench-

mark model significantly. Therefore, this

paper analyses whether realized GARCH

models are useful for the pricing of Nikkei 225

options. The results indicate that realized

GARCH models in this analysis perform

better than either exponential GARCH

（EGARCH）or Black-Scholes（BS）models in

terms of option pricing.

Realized GARCH models have a number

of advantages over both ARCH-type models

and time-series models of RV. One advantage

is that we can simultaneously estimate the

dynamics of stock returns using both RV and

daily return data. Another advantage is that

we can adjust for the bias in RV caused by

nontrading hours. Importantly, to my knowl-

edge, relatively few studies have applied

realized GARCH models to option pricing

compared with applications to volatility

forecasting. Accordingly, this paper applies

realized GARCH models to the pricing of

Nikkei 225 options traded at the Osaka

Securities Exchange, and compares their

performance with those using EGARCH and

BS models.

As discussed, in actual markets, the

presence of nontrading hours and market

microstructure noise may cause bias in RV.

Some available methods mitigate the effect of

microstructure noise on RV, such as realized

kernels（RK）. We use RK proposed by

Barndorff-Nielsen et al.（2008）. For the bias

associated with nontrading hours, we employ

the bias-adjusted method proposed by Han-

sen and Lunde（2005）. When using a log-

linear specification, realized GARCH models

can adjust the bias in RV in the same way as

Hansen and Lunde（2005）.

An alternative way of measuring volatili-

ty is the realized range（RR）, which is based

on the sum of the difference between the

maximum and minimum prices observed

during intraday intervals. Martens and van

Dijk（2007）and Christensen and Podolskij

（2007）show that RR is more efficient than

the corresponding RV. Therefore, it is also

important to estimate realized GARCH

models with RR, and compare the results

with those of RV.

Our main findings are as follows. In

terms of option pricing, we find that realized

GARCH models with RK with an adjustment

for nontrading returns also perform better.

This suggests that it is important to mitigate

the microstructure noise on RV when we

simulate option prices using realized GARCH

models.

The remainder of the paper is structured

as follows. Section 2 describes realized

GARCH models. Section 3 describes the data

used in the analysis and discusses integrated

volatility and realized measures（RV, RK, and

RR）. In Section 4, we present the empirical
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results for realized GARCH models. Section 5

explains the method of calculating the option

prices and compares the performance of the

various option-pricing models in the analysis.

Section 6 concludes.

2．Realized GARCH models

We begin with a brief review of realized

GARCH models proposed by Hansen et al.

（2012）. Three equations characterize realiz-

ed GARCH models ; namely, the return

equation, the GARCH equation, and the

measurement equation. The return equation

is specified as

r = E ( r F)+ε, ε =  h z,

z ~ i.i.d. N (0, 1) , （1）

where r is the daily return on day t , h is the

volatility of the daily return r, E ( r F) is

the expectation of r conditional on the

information available up to day t−1, and z is

the standardized error, which follows an

independent and identically distributed nor-

mal distribution with a mean of zero and a

variance of one. In this analysis, the condi-

tional expected return is specified as

E ( r F)=r+ν  h , where r is the risk-

free rate and ν is a parameter of the risk

premium. We specify this same equation not

only for realized GARCH models but also for

EGARCH models.

The second equation specified is the

GARCH equation. We use the simplest

version, log-realized GARCH（1, 1）model

ln h = ω+β ln h+γ ln x, （2）

where x is RV1）. The error term for the

return ( r ) affects latent volatility (h )

through RV (x) in realized GARCH

models.

The third equation specified is the

measurement equation, where κ ( z ) is

known as the leverage function. This equa-

tion is specified as

ln x = ξ+ϕ ln h+κ ( z )+u,

u ~ i.i.d. N (0, σ ) , （3）

κ ( z ) = κ z+κ ( z−1) . （4）

Given Eq.（3）and Eq.（4）, RV (x ) depends on

the current value of z 2）．

The leverage function κ ( z ) expresses

the volatility asymmetry. This reflects the

well-known phenomenon in stock markets of

a negative correlation between todayʼs return

and tomorrowʼs volatility. When κ<0 and

γ>0, the volatility asymmetry is observed.

We can derive the volatility persistence

from the reduced form. More specifically, a

realized GARCH（1, 1）model composed of

Eq.（1）, Eq.（2）, and Eq.（3）implies a simple

reduced-form model for { r, h }

ln h = μ+π ln h+γw,

ln x = μ+π ln x+w−βw,

where π=β+ϕγ , w=u+κ ( z ) , μ=ω+γξ ,

μ=ϕω+(1−β ) ξ, and w is the error term in

the measurement equation. The persistence

of volatility is summarized by π=β+ϕγ.

Thus, we can calculate the volatility persis-

tence using both the GARCH equation and

the measurement equation. In this model,

volatility is stationary if π <1.

Realized GARCH models can be estimat-

ed using quasi-maximum likelihood estima-

tion. We adopt Gaussian specifications for the

error terms u and z in the return and

measurement equations, respectively, such

that the log-likelihood function is given by

l ( r , x；θ )

= −
1
2

∑


  ln h+ ε


h
+ln σ+

u


σ
  . （5）

Here, θ is all of the parameters in realized

GARCH models. See Hansen et al.（2012）for

details.

While we assume that u and z follow

normal distributions, it is well known that the

distribution of stock returns is leptokurtic. In

such a case, however, following the estima-

tion of realized GARCH models, we cannot

apply the Duan（1995）method to option

pricing（Duan（1999））. To apply the Duan

（1995）method to option pricing, we thus

adopt a Gaussian specification for z.
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3．Data

We employ Nikkei NEEDS-TICK data for

estimating realized GARCH models and

option-pricing simulations. The Japanese

certificate of deposit（CD）rate serves as the

risk-free rate. We now explain the method of

data cleaning following Ubukata and Wata-

nabe（2014）, used for the closing prices of the

Nikkei 225 stock index and the option prices.

The dataset comprises the Nikkei 225

stock index for each minute from 09 : 01 to

11 : 00 in the morning session（the closing

time for the morning session has been

extended from 11 : 00 to 11 : 30 since Novem-

ber 2011）and from 12 : 31 to 15 : 00 in the

afternoon session. On occasion, the time

stamps for the closing prices in the morning

and afternoon sessions are slightly after 11 :

00 and 15 : 00, because the recorded time

appears when the Nikkei 225 stock index is

calculated. In such cases, we use all prices up

to closing prices3）.

Nikkei 225 options traded at the Osaka

Securities Exchange are European options

exercised only on the second Friday of each

expiration month. For the most part, the

options that have a maturity of 30 days（29

days if the month includes a holiday week-

end）trade more heavily than other options

with maturities shorter or longer than 30

days. In what follows, we concentrate on

options with a maturity of 30 days. On such

days, we consider options with different

exercise prices whose bid and ask prices are

both available at the same time between 14 :

00 to 15 : 00. For each option, we use the

average of the bid and ask prices instead of

the transaction prices because transaction

prices are subject to market microstructure

noise, as suggested by Campbell et al.（1997）.

We also exclude some kinds of put options not

priced in the theoretical range from a lower

bound at P=max (0, K exp (−rτ ) ) to an

upper bound at P=K exp (−rτ ) . In sum,

the numbers of call options and put options

are 705 and 713. In more detail, the numbers

of call options for the cases of SK<0.91,

0.91≤SK<0.97, 0.97≤SK<1.03, 1.03≤

SK<1.09 and, 1.09≤SK are 197, 130,

114, 78 and 186, and, for put options, the

numbers are 138, 99, 113, 100, and 263.

3. 1 Realized measures

We begin with a brief review of integrated

volatility（IV）and RV using the following

continuous price process. We assume that the

log price process satisfies

dp ( s ) = μ ( s ) ds+σ ( s ) dW ( s ) , （6）

whereW is a standard Brownian motion, and

μ and σ are smooth time-varying（random）

functions. We let integer values of t corre-

spond to the closing time of the afternoon

session. The volatility over the interval

( t−1, t ) is then defined as

IV = ∫



σ  ( s ) ds. （7）

We refer to this as IV for day t.

RV is an empirical estimate of IV

constructed from intraday returns. For the

special case where intraday returns are

equidistant in calendar time, we define the

intraday returns as

r ( t−1+1m ) , r ( t−1+2m ) , ⋯, r ( t )

where m is the number of intraday returns.

RV for day t is defined as the sum of squared

intraday returns

RV = ∑



r ( t−1+im ) （8）

RV will provide a consistent estimator of IV.

There are two problems in calculating

RV: the first is the presence of nontrading

hours, and the second is the presence of

microstructure noise. We show that realized

GARCH models are able to adjust for the bias

associated with nontrading hours. We then

detail the method used in Barndorff-Nielsen

et al.（2008） for mitigating the effect of

microstructure noise. Following this, we

examine whether realized GARCH models
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using the bias-adjusted RV improve the

option-pricing performance by comparing the

results with those obtained using RV.

One problem in calculating RV is the

presence of nontrading hours. To calculate

RV that spans a full day, one also requires

high-frequency data for the whole day.

However, most equities trade for only a

fraction of the day. For example, the Tokyo

Stock Exchange is only open from 09 : 00 to

11 : 00（morning session）and from 12 : 30 to

15 : 00（afternoon session）. Moreover, in

Japan on the first and last trading days of the

year, the market is only open from 09 : 00 to

11 : 00. In calculating RV using the above

data, one may include returns on the

nontrading hours, but this can make RV noisy

because such returns include discretization

noise. On the other hand, if we calculate RV

as the sum of squared trading hoursʼ returns

only, RV may underestimate IV.

In terms of the bias associated with the

presence of nontrading hours,（Hansen and

Lunde（2005）consider a way to extend the

RV, which is only available for trading hours,

to a measure of volatility for the full day.

Here, RVN indicates RV without nontrading

hour returns. Their scaled estimator is

RVSC ≡ δRVN, δ=
∑



 ( r−r )

∑


RVN

,（9）

where r is the daily returns, r=
1
n
∑



r,

and δ is a consistent estimator of δ≡

E [σ ] E [RVN ] . The mean of the RVSC is

equal to the volatility of daily returns. The

abovementioned biases in RV (x ) can be

corrected with log-realized GARCH models,

and we do not need to estimate δ.

The correcting bias in log-realized

GARCH models is the same as the method of

Hansen and Lunde（2005）in Eq.（9）. When

x'=RVSC and x=RVN, a log realized

GARCH model using x' is

ln h = ω+β ln h+γ ln x', （10）

ln x' = ξ+ϕ ln h+κ ( z )+u. （11）

From ln x'=ln δ+ln x,

ln h = ω+γ ln δ+β ln h+γ ln x,

（12）

ln x = ξ−ln δ+ϕ ln h+κ ( z )+u. （13）

The constant estimates of RVSC in Eq.（10）

and Eq.（11）are different from RVN in Eq,

（12）and Eq.（13）, but other estimates of

RVSC are the same as those of RVN.

Therefore, when we estimate log realized

GARCH models, we do not need to calculate

RVSC and estimate them with RVN.

The other problem is the presence of

microstructure noise（see Campbell et al.

（1997）, Ch. 3）. When there is microstructure

noise, market microstructure noise cause

autocorrelation in intraday returns, and so

RV includes not only the variance of the

efficient price but also the variance of

microstructure noise. If there is microstruc-

ture noise, RV becomes relatively large in the

variance of the true return. That is, the bias

caused by microstructure noise increases as

the time interval approaches zero.

There are some methods available for

mitigating the effect of microstructure noise

on RV. The classic approach is to use RV

constructed from intraday returns sampled

at a moderate frequency. In practice, re-

searchers are necessarily obliged to select a

moderate sampling frequency. We calculate

realized volatilities using 1-, 3-, and 5-minute

intraday returns.

To mitigate the effect of microstructure

noise, one of the kernel-based estimators is

proposed by Barndorff-Nielsen et al.（2008）.

These estimators are called RK or flat-top

kernels. Moreover, they compared the lower

bound of parametric efficiency for some

kernels, including the cubic, 5th to 8th order,

Parzen, and modified Tukey-Hanning ker-

nels. They concluded that only the modified

Tukey-Hanning kernel, as detailed below, is

more efficient than other kernels. Therefore,

we focus on the modified Tukey-Hanning

kernel estimator. We employ the flat-top
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Tukey-Hanning kernel

TH = γ+∑



k (x ) (γ+γ) , x=

s−1
H

,

k (x ) = sin  π2 (1−x ) , （14）

γ = ∑



r ( t−1+ jm )×

r ( t−1+( j−s ) m ) ,

s= −H , ⋯, H .

Here, the nonstochastic k (x ) is a weight or

kernel function, γ represents the RV, and γ

represents the s−th autocovariance of the

intraday returns. In this analysis, we set p=2

because it is nearly efficient and does not

require too many intraday returns. More-

over, THN denotes the flat-top modified

Tukey-Hanning kernel with p=2 without

nontrading hour returns.

We estimate the asymptotically optimal

value of H using 15-minute returns and the

highest frequency 1-minute returns. See

Barndorff-Nielsen et al.（2008）for details4）.

On the other hand, Christensen and

Podolskij（2007）and Martens and van Dijk

（2007）suggest RR be used to measure daily

volatility by the sum of high-low ranges for

intraday intervals. Christensen and Podolskij

（2007） show that RR is unbiased and a

consistent estimator of IV, and five times

more efficient than the corresponding RV

based on the same sampling frequency in an

ideal world such as continuous trading with

no market frictions.

RR for day t is defined as follows. First,

∇

is defined for the i−th interval of length

on day t, for i=1, 2, ⋯, I with I=1

∇

assumed to be integer, and the price is

observed m times during the i−th intraday

interval. Then, we observe the high price

(H ) and the low price (L ) . We can

aggregate high-low ranges for intraday

intervals to obtain RR :

RR =
1
λ

∑



( ln H −ln L )

. （15）

Here, λ is the scaling factor, and is equal to

the second moment of the range of a standard

Brownian motion, λ=max E( range )

where

range = sup
 

(W−W) . （16）

Moreover, λ converges to 4 ln（2） as m

approaches ∞.

There are two problems to calculate RR.

One problem is that there is no explicit

formula of λ when m is a finite number. In

fact, RR has a downward bias caused by the

fact that the scaling factor 4 ln（2）is inappro-

priate because λ is an increasing function of

m. Then, Christensen and Podolskij（2007）

propose the simulation of λ when m is a

finite number. The other problem is that RR

may also be expected to suffer from market

microstructure noise more than RV. There-

fore, Martens and van Dijk（2007）consider a

bias-adjustment procedure, which involves

scaling RR with the ratio of the average level

of the daily range and the average level of RR.

The above two methods are the same as

the correcting bias in log-realized GARCH

models. Both procedures can be written as

RRSC = δRR.

Here, δ is a constant, so that the form of this

equation is the same as the method of Hansen

and Lunde（2005）. For the procedure by

Christensen and Podolskij （2007）, δ=

(4 ln (2) ) λ. For the other procedure by

Martens and van Dijk （2007） δ=


∑



RR



∑


RR
 where RR

 denotes the daily

range, and q is the number of the previous

trading day. Therefore, we do not need to

calculate RRSC.

We calculate RR using 3- and 5-minute

intraday ranges with λ=4 ln (2) . In addi-

tion, we cannot obtain prices for the nontrad-

ing hours, so that we denote this estimator

RRN.
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3. 2 Descriptive statistics for realized

measures

Table 1 summarizes the descriptive statistics

for daily return and the realized measures,

RV, RK, and RR. First, as shown, all the

means become larger as the sampling

frequencies increase. This is contrary to our

expectation that RV increases as the sam-

pling frequency increases because of micro-

structure noise. Nonetheless, similar results

arise in the volatility signature plots in

Hansen and Lunde（2006）and Takahashi et

al.（2009）. Therefore, we consider that this

phenomenon is because of the limited fre-

quency available for our data. Second, all the

standard deviations become larger as the

time interval increases, and this confirms that

intraday returns become noisy because of the

discretization effect as the interval increases.

These results suggest that a more precise

estimator of the true volatility may be

obtained by correcting the bias associated

with nontrading hours and microstructure

noise in RV. Third, the means of RVN and

THN are relatively lower because RVN and

THN are RV and RK only for trading hours.

4．Empirical results

We estimate realized GARCH models using

1,000 daily RV up to the day before the

options trade. The estimated period is from

May 2001 to September 2007（77 months）.

The first options start trading on May 9,

2001. We first estimate the parameters in

realized GARCHmodels using 1,000 daily RV,

RK, RR, and returns up to May 8, 2001. We

then repeat this procedure up to September

2007.

We first discuss the estimates of the

parameters in the measurement equation.

The persistence in volatility can be measured

by the estimates of π=β+ϕγ. We find this is

about 0.95, regardless of which realized

measure is used. This result exhibits the well-

known phenomenon of high persistence in

volatility. Next, the asymmetry parameters κ

are estimated to be negative for RV, RVN,

and RRN. This is also consistent with a well-

known phenomenon in stock markets of a

negative correlation between todayʼs return

and tomorrowʼs volatility, such as in Nelson

（1991）. However, the estimates of the

asymmetry parameters κ for TH and THN

are not statistically significant and negative.
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Finally, the estimate for ν is only significant

at the beginning of 2007. The implication is

that there is only a risk premium in this

period.

For example, Table 2 and Table 3 pro-

vide the empirical results for September

2007. As shown, the estimates of ξ are

negative while those for ϕ are less than one.

Consequently, all the realized measures

exhibit downward biases. While κ are

estimated to be negative for RV, RVN, and

RRN, the estimates of κ are not significant

for TH and THN.

From the results for ν, we can assume

risk neutrality. We analyse discrete daily

close-to-close returns, and we may represent

the expected return under the assumption of

risk neutrality by

r = r+ε, ε =  h z, z ~ i.i.d. N (0, 1) .

（17）

We estimate realized GARCH models using

the return equation Eq.（17）.

Under the assumption of risk neutrality,

the persistence in volatility π=β+ϕγ is

estimated to be about 0.95. The estimates of

the asymmetry parameters κ are negative

for RV, RVN, and RRN, but not significant

for TH and THN. This result is the same as

that without the assumption of risk neutral-

ity. Table 4 and Table 5 provide the estimat-

ed results for September 2007 using the risk-

neutral models.

5．Option pricing

Given the parameter estimates of realized

GARCH models obtained, we now calculate

the option prices. We begin with a brief

review of option pricing using realized

GARCH models and calculate option prices

using the risk-neutral return equation in Eq.

（17）. We then explain the details of Duan

（1995）in Section 5.1, and calculate option
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prices using Eq.（1）.

The price of a European option is equal

to the discounted present value of the

expectation of option prices on the expiration

date. For example, the prices of European call

and put options, with the exercise price K

and survival period τ, are given by

C =  1
1+r 



E [max (S−K , 0) ] ,

P =  1
1+r 



E [max (K−S, 0) ] .

（18）

Here, S is the price of the underlying asset

on the expiration date T+τ.

We cannot evaluate this expectation

analytically if the volatility of the underlying

asset follows realized GARCH models. We

instead calculate this expectation by simulat-

ing S from realized GARCH models.

The simulation procedure is as follows.

First, we set the parameters of realized

GARCH models equal to their estimates.

Next, we generate random values of z and u,

and substitute them, z, ⋯, z and u,

⋯, u, into realized GARCH models to

obtain (S 
, ⋯, S 

 ) . After that, we repeat

this procedure once. Suppose that (S 
, ⋯,

S   
 ) are simulated. Then, for variance

reduction, we use the control variates and

antithetic variates jointly. See the appendix

for details.

For comparison, we also calculate option

prices using EGARCH（1, 0）models（Nelson

（1991））and the well-known BS（Black and

Scholes（1973））models with volatility as the

standard deviation of daily returns over the

past 20 days.

To measure the option-pricing perform-

ance, we use the root mean squared error

ratio defined by
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RMSER= 


1
N

∑


 (C−C)
C ,

for call options,


1
N

∑


 (P−P)
P ,

for put options.

Here N and N are the numbers of call and

put options, and C and P are the price of the

i−th call and put option calculated from

realized GARCH, EGARCH, or BS models. C

and P are the market call and put price.

From the results of option pricing under

the assumption of risk neutrality in Table 6,

we can see that the RMSER of realized

GARCH models with THN and RV for the

put options and that of EGARCH models for

the call options are smaller than the RMSER

of the other models. These results depend on

which realized measures we use. Therefore,

we compare the RMSER of the different

realized measures.

First, the RMSER of realized GARCH

models with TH is smaller than that of those

with RV except for the RMSER of put

options using 1-minute and 5-minute intra-

day returns. The difference between RV and

TH is the presence of microstructure noise.

For TH, in calculation of the flat-top Tukey-

Hanning kernel, the effect of microstructure

noise is corrected. As a result, it is important

to mitigate the microstructure noise on RV

when we simulate option prices using realiz-

ed GARCH models.

Next, the RMSER of realized GARCH

models with THN is smaller than that of

those with TH, THN does not include the

nontrading hour returns, and, as mentioned

above, the correcting bias of log-realized

GARCH models is the same as the method of

Hansen and Lunde（2005）because we take

the log of x. In sum, THN is a more accurate
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volatility measure than TH. Although RVN

and RRN do not include the nontrading hour

returns, as is also the case for THN, they are

affected by microstructure noise.

Moreover, the RMSER of realized

GARCH models with RRN is not smaller

than that of those with RVN. Theoretically,

RRN is five times more efficient, but is

affected by the microstructure noise more

than RVN. That is, from this result, the

RRN of these data is not a more efficient

estimator than RVN, because of the micro-

structure noise.

In Table 7, for the case of SK less than

1.03, the RMSER of realized GARCH models

with THN is smaller than that of EGARCH

models except for the RMSER of the call

options using 1-minute intraday returns.

Consequently, realized GARCH models per-

form better with THN than with RV,

RVN, TH, and RRN.

Finally, the best-performing models are

realized GARCH models with THN for put

options, with more accurate volatility than
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that from other models for the following

reasons. First, in calculation of the flat-top

Tukey-Hanning kernel, the effect of micro-

structure noise is corrected. Second, THN

does not include the nontrading hour returns.

Then, taking the log of x in realized GARCH

models, the bias is corrected using the

Hansen and Lunde（2005）method. On the

other hand, the best-performing models for

put options are EGARCH models, but the

smallest RMSER of realized GARCH models

is the RMSER with THN.

5. 1 Duan convert

Regarding the option pricing, unless traders

are risk neutral, we must convert the

physical measure P into the risk-neutral

measure Q. After converting the models, we

evaluate the option prices under the risk-

neutral measure Q.

Duan（1995）makes the following as-

sumptions on Q, called the local risk-neutral

valuation relationship（LRNVR）:

・r F follows a normal distribution

under the risk-neutral measure Q,

・E [ r F] = r ,

・Var [ r F] = Var  [ r F] .

For realized GARCH models, because z

follows a standard normal distribution, the

conditional return under the physical meas-
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ure P follows

r F ~ N (E ( r F) , h F) ,

where the mean of conditional return

E ( r F) and the variance h F are

nonstochastic variables. Thus, the Duan

（1995）method can be applied to realized

GARCH models.

Under the assumptions of LRNVR, daily

returns under the risk-neutral measure Q are

represented by

r
 = r+η, η ~ i.i.d. N (0, h ) , （19）

ε
 = η+r−E ( r F) , （20）

z
 =

ε


 h
. （21）

In this study, E ( r F)=ν  h . All we

have to do for volatility is to substitute z
 in

realized GARCH models.

From the results using the Duan（1995）

method in Tabel 8, for put options, the

RMSER for realized GARCH models is

smaller than that for EGARCH or BS models

except for TH using 5-minute intraday

returns, and for call options, the RMSER for

realized GARCH models is not smaller than

that for EGARCH models. The RMSER of

realized GARCH models with TH is smaller

than that of those with RV except for TH

using 1-minute intraday returns for put

options. Next, realized GARCH models with

RVN do not perform better than RV, and

realized GARCH models with THN perform

better than RV, RVN, TH, and RRN.

These results are consistent with the results

under the assumption of risk neutrality.

In Table 9, in the case of SK less than 1.03,

the RMSER of realized GARCH models with

THN is smaller than that of EGARCH

models except for the RMSER for call options

using 1-minute intraday returns. Conse-

quently, realized GARCH models perform

better with THN than with RV, RVN, TH,

and RRN.

In addition, we compare these results

with the results in Table 6. The RMSER

using the Duan（1995）method in Table 8 is

smaller than that under the assumption of

risk neutrality in Table 6, except for put

options, RV, RNV, and RRN using 5-mi-

nute intraday returns, and for call options,

RV using 5-minute intraday returns, RVN

using 3-minute and 5-minute intraday re-

turns, and THN using 5-minute intraday

returns. Although the risk parameter ν is not

significant in the estimation results of realiz-

ed GARCH models, we do not set the risk

parameter ν equal to zero when we simulate

the option prices. Therefore, the simulated

option prices are different from those under

the risk-neutral assumption. This means that

the Duan（1995）method improves pricing

performance, even though the estimate of the

risk-premium parameter is not significant.

6．Conclusions

This paper compares the option-pricing

performance using realized GARCH and

EGARCH models. The main results are as

follows. First, from the results for put options
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assuming risk neutrality, realized GARCH

models with RK and RV perform better than

either EGARCH or BS models. However, for

call options, realized GARCH models do not

improve the results for RMSER. Without the

assumptions of risk neutrality, for put op-

tions, realized GARCH models with RK

perform better than EGARCH and BS

models ; however, for call options, EGARCH

models perform better than the other models.

Irrespective of the risk-neutrality as-

sumption, for put options, the best-

performing models are realized GARCH

models with THN（the flat-top Tukey-

Hanning kernel method without the lunch-

time and overnight returns）. From these

results, we can see that the flat-top Tukey-

Hanning kernel method improves option-

pricing performance. Therefore, option-

pricing performance improves when using

accurate estimators of IV.

Several extensions are possible. First, we

assume the risk-neutral volatility dynamics

are the same as the physical dynamics.

However, Corsi et al.（2009）, Christoffersen

et al.（2014）, and Christoffersen et al.（2010）

propose option-pricing methods when the

risk-neutral volatility dynamics differ from

the physical volatility dynamics. Barone-

Adei et al.（2008） propose a method for
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pricing options that allows for different

distributions（volatilities）under the physical

measure P and the risk-neutral measure Q.

These methods can be adapted for realized

GARCH models. Second, we did not consider

jumps in intraday returns. Barndorff-Nielsen

and Shepard（2004）and Dobrev and Szers-

zen（2010） have proposed a method to

calculate RV taking jumps into account. It

would be interesting to see whether the

option-pricing performance improves using

these realized measures. Third, we only

analyse short-term options in this paper ; we

should also simulate and analyse long-term

options. Finally, Takahashi et al.（2009）,

Dobrev and Szerszen（2010）, and Koopman

and Scharth（2011）propose realized stochas-

tic volatility models that have similar advan-

tages as realized GARCH models. These

could be compared with the performance of

realized GARCH models.
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A. Call and Put Option Prices Using Realized

GARCH Models

We calculate the call and put option prices

(C, P ) as follows.

1. We set the parameters of realized

GARCH models equal to their esti-

mates.

2. We generate random values for z and

u, and substitute ( z, ⋯, z ) and

(u, ⋯, u ) , into realized GARCH

models to obtain (S 
, ⋯, S 

 ) .
r = E ( r F)+ε, ε =  h z,

（22）

ln h = ω+β ln h+γ ln x,
ln x = ξ+ϕ ln h+κ ( z)+u,

κ ( z) = κ z+κ ( z
 −1) .

3. We substitute (−z, ⋯, −z ) and
(−u, ⋯, −u ) , into realized

GARCH models to obtain (S 
, ⋯,

S 
 ) , again.

4. We simulate BS models by substitut-

ing the same values of ( z, ⋯, z )
into

r = r−
1
2
σ +ε, （23）

ε = σz. （24）

Here, σ is the volatility measured as

the standard deviation of daily returns

over the past 20 days. We can obtain

the values of (S 
 , ⋯, S 

 ) . Then,
we simulate BS models using the same

values of (−z, ⋯, −z ) to obtain
(S 

 , ⋯, S 
 ) .

5. We repeat the above procedures l2
times. Suppose that (S 

, ⋯, S   
 )

and (S 
 , ⋯, S   

 ) are simulated.

In this paper, we set l=10,000.

6. We can calculate the option prices that

allow us to substitute (S 
, ⋯, S   

 )
into the below equations.

C
  =  1

1+r 


max (S  
−K , 0) ,

i= 1, ⋯, l,

P
  =  1

1+r 


max (K−S  
, 0) ,

i= 1, ⋯, l. （25）

Moreover, we substitute (S 
 , ⋯,

S   
 ) into

C  
 = exp (−rτ )×
max (S

  −K , 0) , i= 1, ⋯, l,
P

   = exp (−rτ )×
max (K−S

  , 0) , i= 1, ⋯, l.
（26）

Finally, we obtain (C 
 , ⋯, C   

 ) ,
(C 

 , ⋯, C   
 ) , (P, ⋯, P   )

and (P , ⋯, P    ) .
7. Using the above-simulated option pri-

ces, we calculate

ϕ =
Cov (C  ∙ 

 , C  ∙ 
 )

Var (C )
, （27）

ϕ =
Cov (P ∙ , P  ∙  )

Var (P )
. （28）

Here, C  ∙ 
 ={C 

 , ⋯, C   
 } , C  ∙ 

 =
{C 

 , ⋯, C   
 } , P

 ∙ = {P, ⋯,
P

   } and P
  ∙ = {P , ⋯, P    } .

Then, we calculate

C
  = ϕC

  
 +(C

 −ϕC
 ) ,

i= 1, ⋯, l, （29）

P
  = ϕP

  + (P −ϕP) ,
i= 1, ⋯, l. （30）

Here, C
 and P

 are the option

prices using BS（Black and Scholes

（1973））models with volatility as the

standard deviation of daily returns

over the past 20. We obtain (C
, ⋯,

C
  ) and (P

, ⋯, P
  ) .

8. Then, Eq.（18）can be calculated as the
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Notes

1） Generally, the realized GARCH ( p, q ) model

replaces Eq.（2）with

ln h = ω+ ∑



β ln h+∑




γ ln x.

We estimate only a realized GARCH（1, 1）model.

2） Hansen et al.（2012）consider leverage func-

tions that are constructed from Hermite polynomials

κ ( z ) = κ z+κ ( z−1)+κ ( z−3z )

+κ ( z−6z+3)+⋯,

and κ ( z )=κ z+κ ( z−1) .

3） In their analysis, Hansen and Lunde（2005）use

intraday returns constructed for both bid and ask

prices using the previous-tick interpolation method.

We define the overnight return as the log difference

between the first price（mid quote）of the day and the

last price（mid quote）of the preceding day.

4） From an empirical perspective, Barndorff-

Nielsen et al（2008）point out that end effects can be

safely ignored in practice, despite their important

theoretical implications for the asymptotic properties

of RK estimators. Thus, we use all samples to calculate

RK.
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