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ABSTRACT 

The phosphodiesterase family is involved in a wide spectrum of diseases, including ischemic stroke. However, 
few studies have analyzed the relationship between phosphodiesterase 4D (PDE4D) and myocardial infarction 
(MI). Therefore, the aim of this research was to evaluate the association of the PDE4D gene polymorphisms with 
MI, and with cardiometabolic parameters in the Mexican population. Six polymorphisms (rs2910829, rs1423246, 
rs966221, rs4502776, rs13172481, and rs6869495) were genotyped in 1023 MI patients and 1105 healthy controls. 
A similar distribution of the six polymorphisms was observed in both studied groups. However, after evaluating 
the linkage disequilibrium, we detected a risk haplotype for MI (AGAGAA; OR = 1.148; P = 0.025). In addition, 
the polymorphisms were associated with the presence of some clinical and metabolic parameters (central obesity, 
hypertriglyceridemia, Aspartate transaminase >p75, Lipoprotein (a) >30 mg/dL, TAT >p75, fatty liver, and vita-
min D <30 ng/dL) in healthy controls. The results suggest that in the Mexican population, a PDE4D haplotype is 
associated with increased risk of developing MI, and that PDE4D polymorphisms are independently associated 
with the presence of cardiometabolic parameters. 
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INTRODUCTION 

Coronary artery disease (CAD) is an in-
flammatory and multifactorial pathology, in 
which the normal function of the vascular 
wall and endothelium is disrupted, leading to 
destabilization of a coronary atherosclerotic 
lesion, causing rupture of the plaque and sub-
sequent thrombus formation within the arte-
rial lumen, that clinically presents as a myo-
cardial infarction (MI) (Bentzon et al., 2014). 
Currently, cardiovascular disease (CVD) 
represents the main cause of morbidity and 
mortality worldwide (Laslett et al., 2012; 
Townsend et al., 2015). Furthermore, in a re-
cent national survey, it was shown that 25.5 % 
of the deaths in Mexico were attributed to car-
diac and vascular pathologies, placing this as 
the main cause of mortality (INEGI, 2018). 

The underlying pathophysiology of CAD 
is the result of a complex interaction between 
different factors (i.e., smoking habit, hyper-
tension, hyperlipidemia, diabetes mellitus, 
obesity, and a family history of CAD), that 
modified the vascular and endothelial micro-
environment (Kurtoğlu Gümüşel et al., 2014). 
Furthermore, genetic factors have been shown 
to have a pivotal role in the development of 
MI. Some genetic polymorphisms with func-
tional implications have been associated with 
the development of this pathology (Asif et al., 
2018; Barsova et al., 2015). Overall, those ge-
netic variants are involved with molecular 
pathways that are essential to vascular health. 
In these pathways, some of the key molecules 
are the phosphodiesterases (PDEs), a group of 
enzymes implicated in the response to extra-
cellular stimuli in the cardiovascular system. 
In particular, in vascular smooth muscle and 
endothelial cells, phosphodiesterase type 4D 
(PDE4D) exerts an important role through its 
participation in intracellular signaling path-
ways that modulate the concentration of cy-
clic adenosine monophosphate (cAMP), a 
secondary messenger critical to vascular 
function and health (Fertig and Baillie, 2018; 
Shao et al., 2015). 

The PDE4D gene is located in the 5q12 
region, and polymorphisms of this gene have 
been associated mainly with ischemic stroke 

and CAD in different populations, with con-
troversial findings (Fidani et al., 2007; 
Matsushita et al., 2009; Milton et al., 2011; 
Sinha et al., 2013; Wang et al., 2017). Thus, 
the aim of the present study was to investigate 
the association of PDE4D gene polymor-
phisms with MI in a large and well-
characterized Mexican mestizo cohort, a pop-
ulation with characteristic genetic back-
ground (Rangel-Villalobos et al., 2008; Rubi-
Castellanos et al., 2009; Suárez-Díaz, 2014). 
In addition, we evaluated the association of 
these variants with clinical and metabolic pa-
rameters. 

 
METHODS 

Participant selection  
In this research, participants between the 

ages of 30 and 75 years, belonging to the Ge-
netics of Atherosclerosis Disease (GEA) 
Mexican study, were analyzed. Only unre-
lated and self-reported Mexican mestizo indi-
viduals (three generations at least) were in-
cluded in the study (Villarreal-Molina et al., 
2012). A total of 1023 MI patients and 1105 
controls were included. The MI diagnosis was 
made after a symptomatology consistent with 
heart ischemia. 

The control group comprised participants 
without clinical manifestations of CAD and 
no familial history of premature CAD, who 
were enrolled through brochures posted at pri-
mary care centers (López-Bautista et al., 
2018). Participants with congestive heart fail-
ure, liver renal, thyroid, or oncological dis-
ease were excluded.  

In order to confirm that population strati-
fication was not a bias or a confounding factor 
in the study, we previously determined a 
panel of 265 ancestry informative markers 
(AIMs) distinguishing Amerindian, Euro-
pean, and African ancestry. After performing 
this ancestry analysis (Rodríguez-Pérez et al., 
2018; Posadas-Sánchez et al., 2017a), the re-
sults showed a similar distribution in the 
AIMs frequencies with no statistical signifi-
cance between the study groups. 

The study complies with the Declaration 
of Helsinki and Institutional Review Board 
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approval by the National Institute of Cardiol-
ogy “Ignacio Chávez” (number 15-915). All 
participants approved and provided written 
informed consent. 
 
Demographic, clinical, metabolic, and  
anthropometric variables assessment  

All participants answered standardized 
and validated questionnaires to obtain demo-
graphic information, nutritional habits, physi-
cal activity, smoking habit, alcohol consump-
tion, pharmacological treatment, and familial 
medical history (Baecke et al., 1982; 
Hernández-Avila et al., 1998).  

As part of the GEA Study Cohort, the clin-
ical, demographic, anthropometric, and meta-
bolic variables, have been described in detail 
in our previous reports (Rodríguez-Pérez et 
al., 2018; Posadas-Sánchez et al., 2017b). 
 
Genetic analysis  

Genomic DNA was extracted from pe-
ripherical blood samples using a conventional 
method (Lahiri and Numberger, 1991). The 
polymorphisms included in the study 
(rs966221 (ID: C___2820039_10), 
rs4502776 (ID: C_____60862_10), 
rs13172481 (ID: C____119508_10), 
rs6869495 (ID: C____408428_10), 
rs1423246 (ID: C___1999757_10), and 
rs2910829 (ID: C___2820061_10) were gen-
otyped with Taqman probes on a 7900 RT-
PCR (real time - polymerase chain reaction) 
equipment, with manufacturer’s indications 
(ThermoFisher, CA, USA). 
 
Statistical analysis 

For the statistical analysis, the program 
Statistical Package for the Social Sciences 
(SPSS, version 24.0) was used. The data was 
analyzed according to its distribution, it was 
expressed as means ± standard deviation (± 
SD) or medians and interquartile ranges [25-
75] as required, then it was analyzed with the 
Student t test or Mann-Whitney U as required. 
Categorical variables were reported as 

absolute frequencies and proportions and 
analyzed using Chi-square test. Furthermore, 
the Chi-square test with two degrees of 
freedom was used to analyze the Hardy-
Weinberg equilibrium. In addition, with the 
aim to establish the genetic associations of the 
different genotypes with the disease, we 
performed a multivariate logistic regression 
analysis considering six models: additive, 
dominant, recessive, heterozygote, co-
dominant 1, and co-dominant 2. These 
inheritance models have been described 
previously (Rodríguez-Pérez et al., 2018). All 
models were adjusted by age, gender, body 
mass index, smoking habit, and type 2 
diabetes mellitus. Logistic regression analysis 
was performed to assess the association of the 
polymorphic sites with metabolic parameters 
under different inheritance models adjusted 
for age, gender, and body mass index. 
Additionally, Bonferroni’s method was made 
in order to considering multiple comparisons 
of the analyzed variables in each 
polymorphism. A p-value of <0.05 was 
considered to be statistically significant.  

Furthermore, linkage disequilibrium (LD, 
D´) estimations between polymorphisms and 
haplotype reconstruction were performed us-
ing Haploview (Broad Institute of Massachu-
setts, USA).  
 

RESULTS 

Study subjects 
A total of 1105 controls without evidence 

of subclinical atherosclerosis [coronary artery 
calcium (CAC) score = 0] and 1023 patients 
with the diagnosis of MI were included in the 
study. Distribution of clinical, demographic, 
anthropometric, and metabolic parameters are 
shown in Table 1.  
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Table 1: Demographic, clinical, and biochemical variables in the studied groups 

 Myocardial  
infarction patients 

(n=1023) 

Control 
(n=1105) 

P 

Body mass index (kg/m2) 
Age (years) 
Waist circumference (cm) 
Males (%) 
Diastolic blood pressure (mmHg) 
Systolic blood pressure (mmHg) 
Subcutaneous adipose tissue (cm2) ᵟ 
Total adipose tissue (cm2) ᵟ 
Visceral adipose tissue (cm2) ᵟ 
Adiponectin (µg/mL) 
Aspartate transaminase (UI/L) 
Alanine transaminase (IU/L) 
Glucose (mg/dL) 
Uric acid (mg/dL) 
Homeostasis model of insulin resistance 
Obesity (%) 
Current smoking (%) 
Hypertension (%) 
Metabolic syndrome (%) 
Hyperinsulinemia (%) 
Insulin resistance (%) 
Type 2 diabetes mellitus (%) 
Total cholesterol >200 mg/dl (%) 
Cholesterol low-density lipoprotein- 
cholesterol ≥130 mg/dL (%) 
Hypertrigliceridemia (%) 
Non-high-density lipoprotein cholesterol 
>160 mg/dL (%) 
Hypoalphalipoproteinemia (%) 
Hypoadiponectinemia (%) 
Lipoprotein (a) ≥30 mg/dL (%) 
C-Reactive Protein ≥3 mg/L (%) 

28.2 [26.0-31.1] 
54 ± 8 
97 ± 10 

83.1 
72 [66-78] 

116 [106-127] 
244 [192-310] 
424 [338-523] 
169 [130-216] 
5.2 [3.2-8.0] 
26 [22-31] 
26 [19-36] 
94 [87-118] 
6.4 [5.5-7.4] 
4.7 [3.3-7.2] 

34.4 
11.5 
67.4 
58.4 
66.4 
73.0 
35.7 
19.8 

 
16.0 
57.2 

 
19.1 
67.5 
58.0 
12.5 
20.6 

27.9 [25.4-30.8] 
51 ± 9 
94 ± 11 

41.1 
71 [65-77] 

112 [104-122] 
286 [218-367] 
432 [347-534] 
139 [104-179] 
8.2 [5.1-13.0] 

25 [21-30] 
24 [18-34] 
90 [84-97] 

2.4 [4.4-6.4] 
3.8 [2.6-5.5] 

30.2 
22.7 
19.5 
38.3 
52.1 
54.1 
9.7 
36.6 

 
29.7 
47.2 

 
27.9 
51.9 
42.7 
8.7 
26.6 

  0.006ˤ 
<0.001● 
<0.001● 
<0.001¥ 
  0.013ˤ 
<0.001ˤ 
<0.001ˤ 
  0.206ˤ 
<0.001ˤ 
<0.001ˤ 
  0.001ˤ 
  0.010ˤ 
<0.001ˤ 
<0.001ˤ 
<0.001ˤ 
  0.001¥ 
<0.001¥ 
<0.001¥ 
<0.001¥ 
<0.001¥ 
<0.001¥ 
<0.001¥ 
<0.001¥ 
 
<0.001¥ 
<0.001¥ 
 
<0.001¥ 
<0.001¥ 
<0.001¥ 
  0.094¥ 
<0.001¥ 

Continues variables are described as mean ± standard deviation or median [interquartile range].  
● Student’s t-test 
ˤ U Mann Whitney test 
¥ Chi-Square test  
ᵟ 992 patients with myocardial infarction and 1083 controls were included. 
 
 
 
Association and haplotype analysis of 
PDE4D (rs2910829, rs1423246, rs966221, 
rs4502776, rs13172481, and rs6869495) 
polymorphisms with MI 

All polymorphic sites were in Hardy-
Weinberg equilibrium. A similar distribution 
of the six polymorphisms studied was ob-
served in both groups (data not shown). Five 
out of the six polymorphisms studied 
(rs2910829, rs4502776, rs13172481, 
rs6869495, and rs1423246) showed linkage 

disequilibrium. Ten haplotypes were con-
structed, and one of them associated signifi-
cantly with increased risk for MI, (AGAGAA; 
OR= 1.148; P= 0.025) (Table 2). 
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Table 2: Haplotype analysis of the PDE4D gene polymorphisms 

 
rs

29
10

82
9 

rs
96

62
21

 

rs
45

02
77

6 

rs
13

17
24

81
 

rs
68

69
49

5 

rs
14

23
24

6 

OR 95 % CI P* 

H1 A G A G A A 1.148 1.017- 1.295 0.0254 

H2 G A A G A A 0.874 0.736- 1.038 0.1268 

H3 G A G C G G 0.898 0.706- 1.142 0.3842 

H4 G A A G A G 0.874 0.683- 1.119 0.2885 

H5 G A G C A G 0.948 0.710- 1.266 0.7206 

H6 G G A G A A 1.014 0.743- 1.383 0.9269 

H7 A G G C G G 0.973 0.694- 1.363 0.8755 

H8 A G A G A G 1.045 0.736- 1.484 0.8032 

H9 A G G C A G 0.810 0.536- 1.223 0.3195 

H10 A A A G A A 0.998 0.641- 1.553 0.9952 

* P-value unadjusted 
 
 
 
Association of the polymorphisms with  
biochemical and metabolic parameters 
The effect of the PDE4D polymorphisms on 
different biochemical and metabolic parame-
ters was explored separately in the MI pa-
tients and controls (CAC score = 0). In the MI 
patients, after Bonferroni’s method, the data 
was not statistically significant (data not 
shown). On the other hand, in the control 
group, rs6869495 was associated with lower 
risk of central obesity (OR= 0.188, P recessive= 
0.030; OR= 0.207, P co-dominant 2= 0.048), hy-
pertriglyceridemia (OR= 0.702, P additive= 
0.024; OR= 0.659, P dominant= 0.015; OR= 
0.663, P heterozygote = 0.024; OR= 0.656, P co-

dominant 1= 0.021), and aspartate transaminase 
p75 (OR= 0.680, P additive= 0.018; OR= 

0.645, P dominant= 0.015; OR= 0.662, P heterozy-

gote= 0.030; OR= 0.653, P co-dominant 1= 0.024). 
Furthermore, rs2910829 was significantly as-
sociated with lipoprotein (a) 30 mg/dL (OR= 
0.523, P additive= 0.009; OR= 0.441, P dominant= 
0.012; OR= 0.289, P co-dominant 2= 0.039), and 
rs966221 with TAT p75 (OR= 0.513, P reces-

sive= 0.032 OR= 0.475, P co-dominant 2= 0.028). 
In addition, rs1423246 was associated with 
lipoprotein (a)  30 mg/dL (OR= 0.413, P ad-

ditive= 0.005; OR= 0.353, P dominant= 0.005; 
OR= 0.394, Pco-dominant 1= 0.015), and fatty 
liver (OR= 0.505, P recessive = 0.035). Moreo-
ver, rs4502776 was associated with vitamin D 
30 ng/dL (OR= 0.701, P additive= 0.036). All 
models were adjusted for age, gender, and 
BMI. This data are shown in Table 3. 
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Table 3: Association of the PDE4D polymorphisms with clinical and metabolic anomalies in the control 
group 

SNPs and  
clinical  
variable 

                  N (Genotype frequency)             Minor  
                                                                    allele  

                                                                    frequency 

Inheritance 
model 

OR  
[95 % CI] 

P**

       
rs6869495        
 AA AG GG     
Central obesity       

No (n=208) 161 (0.774) 39 (0.188) 8 (0.038) 0.132 Recessive 0.188 [0.053-0.668] 0.030 
Yes (n=897) 681 (0.759) 201 (0.224) 15 (0.017) 0.129 Co-dominant 2 0.207 [0.058-0.742] 0.048 

        
Hypertriglyceridemia    Additive 0.702 [0.540-0.912] 0.024 

No (n=583) 425 (0.729) 144 (0.247) 14 (0.024) 0.148 Dominant 0.659 [0.489-0.883] 0.015 

Yes (n=522) 417 (0.799) 96 (0.184) 9 (0.017) 0.109 Heterozygote 0.663 [0.489-0.900] 0.024 
     Co-dominant 1 0.656 [0.483-0.891] 0.021 
Aspartate transaminase p75       

No (n=648) 486 (0.750) 147 (0.226) 15 (0.023) 0.136 Additive 0.680 [0.517-0.893 0.018 
Yes (n=457) 354 (0.775) 95 (0.207) 8 (0.018) 0.121 Dominant 0.645 [0.476-0.875] 0.015 

     Heterozygote 0.662 [0.483-0.907] 0.030 
     Co-dominant 1 0.653 [0.476-0.895] 0.024 
        
rs2910829        
 AA AG GG     
Lipoprotein (a) ≥30 mg/dl       

No (n=597) 200 (0.335) 284 (0.476) 113 (0.189) 0.427 Additive 0.523 [0.342-0.800] 0.009 

Yes (n=57) 30 (0.526) 22 (0.386) 5 (0.088) 0.231 Dominant 0.441 [0.254-0.765] 0.012 
     Co-dominant 2 0.289 [0.109-0.769] 0.039 
        
rs966221        
 GG GA AA     
Total adipose tissue p75       

No (n=509) 176 (0.346) 233 (0.458) 100 (0.196) 0.425 Recessive 0.513 [0.312-0.841] 0.032 
Yes (n=574) 226 (0.394) 266 (0.463) 82 (0.143) 0.374 Co-dominant 2 0.475 [0.276-0.816] 0.028 

        
rs1423246        
 AA AG GG     
Lipoprotein (a) ≥30 mg/dl       

No (n=597) 271 (0.454) 258 (0.432) 58 (0.114) 0.313 Additive 0.413 [0.249-0.687] 0.005 
Yes (n=57) 40 (0.702) 15 (0.263) 2 (0.035) 0.167 Dominant 0.353 [0.195-0.638] 0.005 

     Co-dominant 1 0.394 [0.212-0.753] 0.015 
        

Fatty liver       
No (n=735) 3487 (0.473) 298 (0.405) 89 (0.121) 0.324 Recessive 0.505 [0.307-0.830] 0.035 
Yes (n=343) 163 (0.475) 156 (0.455) 24 (0.070) 0.297    

        

rs4502776        

  AA AG GG     
Vitamin D <30 ng/dL       
No (n=132) 71 (0.535) 49 (0.372) 12 (0.093) 0.276 Additive 0.701 [0.523-0.941] 0.036 
Yes (n=973)     599 (0.616) 323 (0.332) 51 (0.053) 0.218    

** All models were adjusted by age, gender, and body mass index, and Bonferroni’s method was ap-
plied. 

 

 
DISCUSSION 

In the present study, the association of six 
PDE4D polymorphisms with the risk of de-
velopment of MI in the Mexican-Mestizo 

population was analyzed. In addition, the as-
sociation of these polymorphisms with cardi-
ometabolic parameters in controls was re-
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ported. None of the polymorphisms were in-
dependently associated with MI; however, 
one haplotype (AGAGAA) was associated 
with an increased risk of developing MI. In a 
previous study, Gretarsdottir et al. (2003) per-
formed a genome-wide association study in 
an Iceland population (864 patients with is-
chemic stroke and 908 controls), finding a 
strong association with some PDE4D gene 
polymorphisms (rs966221, rs12153798, 
rs12188950, rs702553, rs2910829, and 
rs1396476), and microsatellite markers. Ad-
ditionally, they reported haplotypes that were 
associated with risk and protection for stroke; 
with G0 being the most relevant haplotype, 
composed of SNP45 (rs1288950) and the 
short tandem repeat (STR) AC008818-1. 
Matsushita et al. (2009) analyzed the same six 
PDE4D polymorphisms reported by Gretars-
dottir et al. (2003) in two large cohorts of pa-
tients with ischemic stroke, one cohort with 
1112 patients and 1112 controls from Kyu-
shu, Japan, and the other with 1711 patients 
and 1786 controls from BioBank Japan. In 
this study, no association with stroke was 
found in these Japanese populations. On the 
other hand, Fidani et al. (2007) analyzed 97 
ischemic stroke patients and 102 controls in a 
Greek population, and showed the same asso-
ciation of haplotype G0, that was previously 
reported by Gretarsdottir et al. (2003). 

Our results are consistent with the reports 
of Gretarsdottir et al. (2003) and Fidani et al. 
(2007) concerning the association of one hap-
lotype with the risk of developing MI. In ad-
dition, our data are in line with the report by 
Matsushita et al. (2009) because no associa-
tion with the polymorphisms rs966221, and 
rs2910829 was detected in our patient group. 

Sinha et al. (2013) studied two polymor-
phisms (rs966221 and rs2910829) in 100 pa-
tients diagnosed with CAD and 100 controls 
from India. They did not directly detect asso-
ciation with the disease; however, they re-
ported linkage disequilibrium (D’ = 0.646) 
between these two polymorphisms. Addition-
ally, they detected the association of both pol-
ymorphisms with hypertriglyceridemia. 
Sinha’s results must be carefully analyzed, 

due to the D’ =0.646 and the small sample 
size of the studied groups.  

Recently, Wang et al. (2017) performed a 
case-control study in the Chinese Han popu-
lation, analyzing four PDE4D polymor-
phisms in 610 patients with ischemic stroke 
and 618 controls. They established an 
association of rs966221 with risk for ischemic 
stroke; this latter finding opposes our results. 
The risk analysis of PDE4D polymorphisms 
with different components of the CVD has 
shown different associations according to the 
ethnicity of the studied groups. Thus, the ge-
netic heterogeneity between populations 
might be responsible for the controversial re-
sults reported in the current literature (Rosand 
et al., 2006). It is important to consider that 
that the majority of previous studies of 
PDE4D polymorphisms were performed in 
Caucasian or Asian populations; thus, those 
results do not always provide information that 
applies to the Mexican population. 

On the other hand, when we analyzed both 
groups independently (MI patients and con-
trols) with just the control group, five poly-
morphisms were associated with some meta-
bolic parameters and cardiovascular risk fac-
tors. Currently, few studies of PDE4D have 
analyzed the association between the geno-
type and risk factors related to MI.  

In this sense, Gretarsdottir et al. (2003) 
evaluated the association of alleles and haplo-
type with factors classically associated with 
stroke (i.e., CAD, peripheral artery occlusive 
disease, diabetes mellitus, hypercholesterole-
mia, and hypertension), and the authors did 
not find any risk factor associations. Contra-
dictory, those findings were not consistent 
with the results of an Indian population with 
CAD, in which two polymorphisms 
(rs966221, and rs2910829) were associated 
with hypertriglyceridemia (Sinha et al., 
2013). Regarding this, we detected various as-
sociations related to lower risk in the control 
group, suggesting that these polymorphisms 
may confer protection against the presence of 
these metabolic abnormalities and cardiovas-
cular risk factors.  
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Another important point to consider is that 
MI includes complex mechanisms that in-
volve not only changes at the DNA level, but 
also at the epigenetic, post-transcriptional, or 
post-translational level, or may involve alter-
native splicing modifications (Duan et al., 
2018; Rodríguez-Pérez et al., 2016). 

Some limitations should also be consid-
ered, which include the inherent limitations of 
a cross-sectional study and the inherent sur-
vival bias in which only MI patients that sur-
vive and arrived to the hospital were ana-
lyzed. However, we consider that the present 
study has important strengths which include a 
large cohort of Mexican individuals with and 
without MI; we have a highly superior num-
ber of patients compared to previous studies 
(Fidani et al., 2007; Sinha et al., 2013; Wang 
et al., 2017).  For the control group, only sub-
jects with CAC score = 0, as evaluated 
through a computed tomography, were ana-
lyzed; thus, in the control group there were no 
cases of participants with subclinical athero-
sclerosis. Population stratification was not bi-
ased as an important confounder factor, as the 
proportions of Caucasian, Native American 
and African ancestries were similar in both 
study groups. To the best of our knowledge, 
none of the polymorphisms studied had been 
previously analyzed together to assess the risk 
of PDE4D gene with MI. 
 

CONCLUSION 

In summary, our results suggest that none 
of the analyzed polymorphisms of PDE4D 
were independently associated with MI. How-
ever, one haplotype was associated with risk 
(AGAGAA) for MI. Thus supporting the role 
of haplotype susceptibility as a marker for MI 
in our population. Furthermore, it was shown 
that different polymorphisms of this gene 
were associated with metabolic parameters 
and cardiovascular risk factors in the Mexican 
population. 
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