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Abstract

Traffic is highly influenced by network structure and human behaviour. Small
changes in the human behaviour can lead to huge changes in the load of a
traffic network. Current transportation models do not, and most of them can-
not, research such random behaviour but always calculate a steady state. In
our multi-agent transport simulation, we frequently observe seemingly ran-
dom ”network breakdowns”, huge traffic jams that spread over a big part of
the network, making a normal traffic flow impossible. This paper describes
the investigations that were performed on the results of our large-scale multi-
agent transport simulations in an attempt to contribute to the better under-
standing of the dynamic processes in such simulations and, hopefully, better
understanding and modelling of the real-world.

1 Introduction

Much of our technological infrastructure (traffic, electricity, telephone, water)
operates on networks. Many of the phenomena on infrastructure networks
display spatio-temporal structure. For example, traffic congestion only occurs
at certain places and times; electricity is most used on very cold or very hot
days, and in specific neighborhoods; telephone networks are heavily used on
special days (e.g. Christmas) or after exceptional events (e.g. catastrophes).

Both the theory and the modelling/simulation of spatio-temporal systems
made important progress in the last decades (e.g. [1]). However, the follow-
ing two aspects differentiate infrastructure systems from “standard” spatio-
temporal systems:

(1) The spatial substrate of the dynamics of infrastructure systems is a net-
work instead of “flat” 2d or 3d space. Even though these networks are
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embedded in space, strong inhomogeneities in the network structure, such
as broad degree distribution of the nodes or their clustering, can lead to
different behaviours than more smoothly embedded structures exhibit.

(2) The “forces” behind the network usage are based on human behavioural
patterns. These are known to have long range temporal correlations for
individual behaviour even in simple situations (i.e. sending print jobs to
a printer [2], or replying to emails [3]).

In consequence, progress in “standard” spatio-temporal systems alone will not
suffice to understand infrastructure systems.

Much progress has been made in the pragmatic modelling and simulation
of aspects (1) and (2). This is particularly true for traffic [4, 5, 6, 7, 8, 9]. With
respect to “understanding”, there is a large body of work concerning traffic
flow on links (e.g. [10, 11, 12]) and a smaller body of work concerning simple
2d traffic models (e.g. [13, 14, 15]). What is missing, however, is a better
connection between the pragmatic real-world simulations and those models
which are simpler but better understood. The ultimate hope is that better
understanding leads to (even) better pragmatic real-world models, and to an
improved functioning of the system itself.

This paper attempts to contribute to this by reporting occurrences of
network breakdown in large-scale multi-agent transport simulations. These
occurrences have been observed by us for many years in different setups, but
this is the first systematic description of them. Breakdown behaviour in traffic
models that go beyond the link were in fact reported earlier [13, 14, 15]. Those
models, however, use a simple 2d geometry instead of a true network; they
have no vehicle storage capacity between the nodes; and they use periodic
boundary conditions. In contrast, the simulation model that is used for the
investigations presented here is one of the “pragmatic” real world models
mentioned earlier rather than a “minimal” model that contains nothing but
the ingredients necessary to generate the observed phenomenon. That minimal
model still needs to be found.

Although the model is not minimal, it is speculated that the following
mechanism is at work:

1. The basic “physical” dynamics consists of daily traffic in a congested
metropolitan region.

2. The simulation is run for many days in sequence (“iterations”), and the
synthetic travellers that produce the traffic can adapt from iteration to
iteration.

3. It is observed that many of these “days” traffic runs smoothly. But some-
times, traffic “breaks down”, leading to macroscopic, network-spreading
traffic jams (see Fig. 1), and only the end of the rush period can eventually
resolve them. It is speculated that the mechanism is similar to the network
breakdown mechanism displayed in simple 2d traffic models [13, 14, 15],
although the microscopic dynamics of the breakdown in true networks
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(as opposed to the flat 2d space used in those references) looks rather
different.

4. Such a network breakdown is usually caused by a microscopic fluctuation
(a queue that is a couple of vehicles longer than normal), which has macro-
scopic consequences. It is, however, observed that traffic then remains
problematic for the next couple of iterations (days), somewhat akin to an
“avalanche” [16, 17]. It is speculated that this is because of adaptation
reactions of the synthetic travellers on the following days, which disrupts
the “normal” traffic pattern. The mechanism may be similar to the “de-
cision avalanches” found in route choice experiments with real humans
[18, 19].

This paper will describe the investigations that were performed. It there-
fore consists of the following sections: Section 2 describes the simulation set-
up. Since this is not a minimal model, this section is rather long. Section 3 will
describe our observations which are discussed in Section 4. Section 5 contains
our conclusions.

2 Simulation Setup

2.1 Overview

The basic ingredients of traffic simulations are a (road) network and some
description of the traffic. In multi-agent simulations, the traffic is described
by the sum of all agents plus their individual dynamics. Every agent has zero
or more trips planned to travel from one place to another. All the trips of all
the agents describe the total traffic demand. The network consists of a set
of nodes, and of links connecting the nodes. The links can contain additional
attributes describing physical aspects of the link like the number of lanes, the
length of the link, or the maximum speed allowed on the link.

In our case, agents have at least one plan, of which exactly one is selected
and executed during the traffic simulation. A plan contains a list of activities,
and of trips connecting the activities. Activities contain information about
the location, the type of activity and the planned start and end time for the
activity. Trips contain information about the planned departure and expected
travel time, the travel mode (car, bike, public transport, . . . ), and the exact
route through the network, given by the list of nodes the agent will traverse.

As traffic simulation, we use MATSim [5], our own implementation of
a multi-agent transport simulation that is based on TRANSIMS [4]. One
scenario run consists of multiple iterations, each iteration consisting of a run
of the traffic flow simulation (sometimes also called “physical layer”) and a
run of the agent replanning process (sometimes also called agent learning, or
“mental layer”).
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Fig. 1. Visual representation of the network breakdown. Vehicles stuck in a traffic
jam are marked black.
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2.2 Traffic flow simulation (physical layer)

The traffic flow simulation is a comparatively simple so-called queue simu-
lation. This is essentially a queueing model simulation, with the important
difference that links can be full, causing spillback into upstream links. Input
parameters into the queue simulation, besides the traffic network topology,
are, for each link: free speed on the link (vehicle speed in the absence of con-
gestion), flow capacity (maximally possible exit flow), and storage capacity
(maximally possible number of vehicles on the link.) Compared with the orig-
inal version of the queue simulation [20], we now use intersections priorities
according to capacities [21], and a deterministic rather than a randomized
service rate (vehicles are served when some counter has exceeded the average
waiting time).

2.3 Agent replanning (mental layer)

During agent replanning, a fixed percentage of agents make a copy of an ex-
isting plan and modify it. In the next iteration, this modified plan is executed
and scored. Possible modifications are:

route adaption: choose different routes through the network to travel from
one activity to the next one.

time adaption: choose different activity durations and thus different depar-
ture times for trips

Additional modifications could be thought of (e.g. reordering the sequence of
activities, dropping or adding activities, choosing a different location for an
activity), but are not yet implemented. To limit the memory usage, there is a
limit of the number of plans an agent can remember. Once an agent reaches
this limit, the plan with the lowest score will be deleted.

2.4 Scoring Plans

The correct scoring of the simulated plans is crucial to the success of the
simulation. As the agents try to optimize their daily routine, the score must
reflect the dis-utilities of travel as well as the utilities of performing activities.
Minimizing the travel time by choosing an alternate departure time does not
help the agent if it arrives too early or too late at an activity location (e.g.
shop has already closed on arrival, or the agent arrives too late at work).

The utility function used is derived from the traditional utility function
based on the Vickrey bottleneck model [22, 23], but is modified to be consistent
with complete day plans:

Uplan =
∑

i

Uact,i +
∑

i

Utrav,i +
∑

i

Ulate,i (1)

The utility of performing an activity is assumed to increase logarithmically:
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Uact,i(x) = max(0, α · ln x

t0
) (2)

where x is the duration that one spends at the activity. Time spent waiting
at an activity because of arriving too early (e.g. before a shop opens) is not
included in x. We take α = βdur · t∗, where βdur is uniformly the same for all
activities and only t∗ varies between activity types. With this formulation, t∗

can be read as “typical” duration for an activity, and βdur as the marginal
utility at that typical duration:

∂Uact,i

∂x

∣∣∣∣
x=t∗

= βdur · t∗ ·
1
t∗

= βdur (3)

t0 can be seen as a minimum duration of an activity, but is better inter-
preted as a priority: All other things being equal, activities with large t0 are
less likely to be dropped than activities with small t0 (for details, see [24]).

The utilities of travelling and of being late are both seen as dis-utilities
which are linear in time:

Utrav,i(x) = βtrav · x (4)

where x is the time spent travelling, and

Ulate,i(x) = βlate · x (5)

where x is the amount of time an agent arrives late at an activity. In our
simulations, βtrav is set to -6 EUR/h, and βlate is set to -18 EUR/h.

In principle, arriving early or leaving early could also be punished. There
is, however, no immediate need to punish early arrival since waiting times are
already indirectly punished by foregoing the reward that could be accumulated
by doing an activity instead (opportunity cost). In consequence, the effective
(dis)utility of waiting is already −βdur. Similarly, that opportunity cost has
to be added to the time spent travelling, arriving at an effective (dis)utility
of travelling of βtrav − βdur. No opportunity cost needs to be added to late
arrivals, because the late arrival time is already spent somewhere else. These
effective values are the standard values of the Vickrey model [22, 23].

Because the scoring function uses monetized costs and gains, the function
could be easily extended to include tolls or other external effects.

At the end of each traffic simulation, the score for each simulated plan is
calculated. The calculated (new) score Uplan is then assigned to the plan.

2.5 Scenario

The simulated scenario is located around Zurich, Switzerland. Both the road
network and the traveller population are based on realistic data. The set of
activities, however, was reduced to “home – work/education – home” [25].
This leads to plausible morning rush hour traffic. A total of over 260’000
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agents were simulated, corresponding to all people commuting by car in the
aforementioned region.

A run was then started with the replanning set so that 10% of the agents
do route adaption and 10% do time adaption, while the others simply chose
the plan with the best score from their plan memory for simulation in the
next iteration (“base run”). After iteration 50, the percentages of agents doing
some kind of adaption is changed to 5% each to reduce fluctuations. The intial
100 iterations might, in consequence, be seen as transients, but removing them
from the analysis did not change the results. The simulation is run to 4070
iterations (more than shown in Fig. 2). This run is the basis for the main
analysis of this text.

Two additional runs were started without any replanning. The base run’s
set of plans of iteration 230 were taken as initial plans for the two additional
runs. This specific iteration was chosen because it was in the middle of a
“quiet” period. Both additional simulations were run for over 1000 iterations.

The first of these additional runs takes the whole available set of plans per
agent, but no new plans are generated (no “innovation”). In every iteration,
each agent decides which of the plans should be selected to be executed by
the traffic flow simulation, choosing according to probabilities based on the
scores of the plans (“selection only” run). The probabilities are of the form
p ∝ eβ·Sj , where Sj is the score of plan j, and β is an empirical constant. This
is similar to a logit model from discrete choice theory [26]. Behaviourally, it
corresponds to a situation where each member of the population, in every
iteration, makes a random draw out of a fixed set of several options, with
weights based on the agent’s beliefs beliefs, and the beliefs are updated every
time after the execution of the option.

The second of the additional runs only keeps the currently selected plan
of each agent, discarding all other plans. That is, in every iteration, all agents
have the same identical plans. As the traffic flow simulation uses random
numbers (e.g. to decide who may cross a node first when two vehicles arrive
at the same time), and the random seed is set to a different value in each
iteration, the results of the traffic flow simulation still vary from iteration to
iteration (“fixed plans” run).

3 Observations

As in most iterative simulations, the system first takes several iterations in
which the average agents’ score improves steadily, until it levels at some value.
But even then, the agents’ average score does not stay at that level, but has
more or less severe slumps from time to time. Fig. 2.a shows the average
agents’ score for the base run, where the slumps can be clearly seen. Fig. 2.b
shows one of those slumps in more detail, corresponding to the highlighted
region in Fig. 2.a.
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Fig. 2. The average agents’ score over the iterations

The reason for those slumps in the average score gets visible if the actual
network state is visualized. Fig. 1 shows a visual representation of the network
in three consecutive iterations at different times. While in iteration 240 only
a few minor traffic jams can be observed which have no further consequence
(“fluctuations on the micro-scale”), a major traffic jam starts building in it-
eration 241 at 7:35am in the center of the city. The tailbacks of this initial
traffic jam spread wider and wider into the network in the following minutes,
until most parts of the network are jammed. We call this situation a network
breakdown, where no more traffic is possible. In the following iteration, it-
eration 242, most agents have chosen another plan. Those agents that could
replan seem to have mostly chosen a route leading through north of the pre-
vious center of the traffic jam. The consequence is that in this iteration this
route is overloaded: Already at 7:15am, there are some severe traffic jams in
the northern part of the city, which slowly extend themselves until at 7:45am
another network breakdown can be seen.

In order to gain some quantitative understanding, a spectral analysis was
performed with the time series. Fig. 3 shows the smoothed periodogram of
the agents’ average scores, using the function spec.pgram from the software
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Fig. 3. Smoothed periodogram of the time series of the agents’ average score. The
different lines refer to different smoothing techniques, described in the text.

R [27]. The thin line uses Daniell smoothing (spans=51 in R; a variant of a
moving average), while the thick line cuts the time series in 30 pieces of equal
length, computes the unsmoothed periodogram on these pieces, and averages
the result. The result is also divided by two to offset the plots from each other.
The dashed line shows the function 1/f for comparison.

One notices an 1/f -like slope between the frequencies of 0.02 and 0.1.
This 1/f behaviour is very noticeably different from the 1/f2 behaviour of
a random walk that was, for comparison, submitted to the same treatment
(not shown). To the left of the 1/f -like slope is a peak, followed by a flat
line. To the right of the 1/f -like slope is a range with a slope that cannot be
distinguished from zero.

When comparing with the time series (Fig. 2), one may suspect the fol-
lowing:

• The nearly flat spectrum at large frequencies seems to correspond to the
single avalanches. Fig. 2.b shows one such avalanche; from Fig. 2.a one
observes that most if not all avalanches seem to have that “typical” be-
haviour. The fact that these avalanches take about 10 iterations corre-
sponds to the fact that this flat regime extends to frequencies down to
about F ≈ 0.1.

• The peak at approximately f ≈ 0.02 corresponds to the observation that
avalanches seem to happen every approximately 50 iterations. The fact
that cutting the time series into pieces does not shift the peak very much
implies that the location of the peak is probably not a finite size effect. If
this is correct, then even a much longer time series would display the same
peak, meaning that long pauses between avalanches do not happen often
enough to cause a “fat tail”. – What remains unclear in this discussion
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is if a larger traffic system (i.e. a city/region) might shift the peak to the
left.
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Fig. 4. The average agents’ score over the iterations with agents selecting from a
fixed set of plans.

4 Discussion

We explain the breakdown avalanches in traffic networks with the agents’
striving to further optimize their plans. They push the network capacities up
to the limits, so that as soon as some additional cars want to travel along the
most crowded paths, the maximum capacity is exceeded and traffic jams occur.
Because many other links are also at their limit, the initial traffic jam cannot
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Fig. 5. The average agents’ score over the iterations when only the random seed of
the traffic flow simulation changes from iteration to iteration.

be absorbed by the surrounding links, leading to the expansion of the conges-
tion until one huge traffic jam occurs in which the cars are in a deadlock. We
dub this “at the edge of chaos” [28] since on most days, the (simulated) traffic
system functions orderly, interrupted by occasional avalanches of breakdown.
It is also reminiscent of self-organized criticality [16]. Yet, the fact that there
is a peak in the spectrum implies that the documented behaviour rather has
a weakly periodic structure: A network breakdown pushes the system away
from the “critical edge” by a certain amount; it then needs a certain time to
approach the edge again; a breakdown occurs and the system is pushed away;
etc.

The fact that the avalanches are intricately connected to the learning be-
haviour of the agents can be taken from the additional runs. Fig. 4.a shows the
time series of the “selection only” run. One observes that there are one or ar-
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guably two large avalanches from iteration 272 to iteration 310, but after that,
the system remains quiet. Fig. 4.b, at higher resolution on the y-axis, shows
that the score has decreased over the initial avalanche, and is not coming back
to the initial level during the thousand iterations that were simulated.

Fig. 5 finally shows what happens if one leaves the plans fixed as in the
230th iteration, but re-runs the microsimulation with different random seeds.
One finds isolated network breakdowns that never result in avalanches.

Both additional runs together support the argument that only the learn-
ing of the agents, including the computation of new routes, triggers the fre-
quent breakdowns: The “critical” set of plans from iteration 230, without any
adaptation, keeps triggering breakdowns, but no avalanches. On the other
hand, adaptation without innovation triggers one large avalanche, after which
breakdowns are rare or non-existent. Only adaption with innovation triggers
the frequent breakdown avalanches.

Traffic network breakdowns do not only occur in models, but also in re-
ality. As mentioned in the introduction, Refs. [18, 19] discuss route choice
experiments with human subjects that display similar avalanche behaviour.
Experience shows that in some traffic system, relatively small disturbances (a
construction site, degraded weather conditions, a single accident) can have a
huge impact, clogging up the system for hours. It is therefore a bit doubtful
if time and effort should be invested to remove these effects from the simu-
lation, as traditionally is done. We expect that data to verify or falsify these
effects in the real world will become available in the future, with the increasing
deployment of “Intelligent Transport Systems (ITS)”.

5 Conclusions

It was shown that a real-world traffic model with learning iterations displays
network breakdown “avalanches”. These avalanches are separated by rela-
tively long periods of calmness in which the system operates rather smoothly.
Already during those calm periods, small scale fluctuations in the network
performance (i.e. localized jams) can be observed. Sometimes, these fluctua-
tions trigger a large scale breakdown, which, after initiated, quickly spreads
through the network. Once an iteration displays network breakdown, it is
highly likely that successive iterations also display network breakdown, lead-
ing to the above-mentioned avalanches.

The intuitive explanation for the observed phenomena is that (a) agents
optimize for themselves until the system is pushed “to its limits”; (b) the sys-
tem “fights back” not by gradual degradation but instead by erratic complete
breakdowns.

The observed results are not only of theoretical importance, but also of
practical relevance. Existing transport planning software usually calculates a
steady traffic flow distribution. These models cannot reflect the instabilities
observed in such networks. Multi-agent simulations are not yet able to give
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answers when the network is surcharged and collapses or how the erratic be-
haviour of the system could be reduced. But by looking at the simulation
history and not just analyzing one single iteration, multi-agent traffic sim-
ulations could at least help to determine how likely or how often network
breakdowns may occur.

This work was funded in part by DFG (NA 682/1-1). We gratefully ac-
knowledge significant amounts of computing time on the Beowulf cluster “sim-
ulant” provided and maintained by the Institute for Transport Research of
the German Aerospace Centre (DLR) at Berlin-Adlershof. We also thank
M. Paczuski and J. Davidsen for discussions regarding the analysis and inter-
pretation of the time series.
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