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Coherent control of the vibrational state population in a nonpolar molecule
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A coherent control scheme for the population distribution in the vibrational states of nonpolar molecules
is proposed. Our theoretical analysis and results of numerical simulations for the interaction of the hydrogen
molecular ion in its electronic ground state with an infrared laser pulse reveal a selective two-photon transition
between the vibrational states via a coupling with the first excited dissociative state. We demonstrate that
for a given temporal intensity profile the population transfer between vibrational states, or a superposition of
vibrational states, can be made complete for a single chirped pulse or a train of chirped pulses, which accounts
for the accumulated phase difference due to the ac Stark effect. Effects of a spatial intensity (or focal) averaging
are discussed.

DOI: 10.1103/PhysRevA.83.023412 PACS number(s): 33.80.Wz, 37.10.Mn, 42.50.Hz

I. INTRODUCTION

Control of a molecular process and, in particular, control
of the quantum state of a molecule is a long-standing goal
in molecular physics, chemical physics, chemistry, and, more
recently, strong-field physics and quantum information tech-
nology. Light fields generated from femtosecond laser pulses
have been tailored to manipulate the population in a molecule
to a specific target state. Applications range from the control of
the motion and shape of a wave function [1] to the control over
molecular fragments in a simple reaction [2]. Moreover, novel
quantum technologies such as ultracold chemical reactions [3],
frequency metrology of fundamental constants [4], or molec-
ular quantum bits for quantum information processing [5]
require control over the internal quantum states of a molecule.
In many of these applications it is desirable to completely
evolve the molecular system in a robust way to the desired
target quantum state.

Much progress in the preparation and manipulation of the
quantum state of neutral diatomic polar molecules [6–11] and
molecular ions [12,13] has been achieved recently. Several
experimental approaches, e.g., photoassociation of ultracold
atoms involving Feshbach resonances, spontaneous decay, and
optical schemes such as stimulated Raman adiabatic passage
(STIRAP), have been developed. Here we present a theoretical
study and results of numerical simulations exploring an
alternative method to manipulate and control the vibrational
state population in a molecule. We performed our analysis for
the simplest molecular ion, namely, the hydrogen molecular
ion. However, our results likely hold for other molecules
as well. Since H2

+ is a nonpolar molecular ion, optical
dipole transitions between vibrational states are forbidden.
Furthermore, the first excited electronic state (2pσu) is a
dissociative state, and higher electronic states are rather weakly
bound. Thus, control and manipulation of the internal quantum
state of H2

+ pose a challenge since the application of methods
such as STIRAP is limited due to the reduction in efficiency for
a transition via continuum states, e.g., molecular dissociative
states [14].

A sketch of the control scheme is shown in Fig. 1. We
consider transferring the population between two vibrational

states (ν = 0 and ν = 6 are used as an example in Fig. 1) in the
electronic ground state of H2

+ (1sσg). Both states are coupled
by an intense infrared laser pulse via multiphoton transitions
with the first excited dissociative state (2pσu). As we will show
below, the population is transferred from one vibrational state
(or a superposition of states) to the other if the photon energy
approximately equals half of the energy difference between
the two vibrational states. The transfer can be made complete
by the application of a chirped laser pulse or via coherent
accumulation using a train of chirped pulses, which takes into
account the presence of the dynamic Stark shifts.

The present scheme resembles an analogy with well-known
processes such as STIRAP [15], laser-induced continuum
structure (LICS) [16], and Raman chirped adiabatic passage
[17], but it differs in a number of characteristic features.
For example, the energy difference between the intermediate
excited state and the initial or final states is much larger
than the photon energy, and consequently, the transition via
the excited state is a multiphoton transition. Traditionally,
these kinds of coherent control schemes are based on one-
photon transitions between the states involved. Related to this
difference, the application of the present scheme is based on the
interaction with just one laser pulse, while usually two laser
pulses operating at different frequencies are often used. As
in the previous schemes, the maximum population transfer is
achieved for a certain laser frequency. Interestingly, however,
the related condition corresponds to a two-photon resonance
between the initial and the final state.

The rest of this paper is organized as follows: We first
present in Sec. II A the theoretical model for the hydrogen
molecular ion, which we used for the numerical simulations
of the population transfer between two vibrational states.
Based on the numerical results we will identify the condition
needed to maximize the population transfer in the field of
an unchirped pulse, namely, a slight detuning from the two-
photon resonance between the initial and final states. Next,
in Sec. II B, we analyze the process using a simplified model
that takes into account just two electronic states. The analysis
shows that the transfer can be made complete using a chirped
pulse, and an analytical formula for the chirp will be derived.
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FIG. 1. (Color online) Coherent control scheme for population
transfer between vibrational states of a nonpolar molecule such
as H2

+. Vibrational levels (here ν = 0 and ν = 6) of the ground
electronic state (1sσg) of H2

+ are coupled via multiphoton transitions
with the first excited dissociative state (2pσu). Efficient control
over the population transfer between the states can be achieved for
near-resonant net two-photon transitions.

In Sec. II C we verify our analytical predictions by performing
calculations using the two-state model and the full numerical
simulations for transfers between individual states as well as
superposition of states. Results of both sets of calculations are
in perfect agreement, showing the reliability of our analysis
based on the two-state model. Finally, we investigate the effect
of a spatial intensity (or focal) averaging before we conclude
with the main findings presented in this paper.

II. THEORETICAL MODELS AND RESULTS

We analyzed the control scheme using analytical
calculations and numerical simulations of the time-dependent
Schrödinger equation (TDSE). We first present the results of
our numerical simulations for the interaction of the molecular
ion with an unchirped pulse at wavelengths in the infrared.
This will lead us to an analysis of the population transfer
within a two-state model. Based on the conclusions of our
model analysis, we will then verify that the transfer can be
made complete for a chirped pulse by performing calculations
using both the two-state model and the full ab initio numerical
simulations.

A. Two-photon resonance condition

For the numerical simulations we used a two-dimensional
model of the hydrogen molecular ion in which the motion of the
electron and the motion of the protons are restricted along the
polarization direction of the external field. The Hamiltonian of
the system is given in length gauge as (Hartree atomic units,
e = m = h̄ = 1, are used throughout) [18]

H (x,R,t) = P 2

2µp

+ p2

2
+ xE(t) + 1√

R2 + αp

− 1√(
x − R

2

)2 + αe

− 1√(
x + R

2

)2 + αe

, (1)

where (P , R) and (p, z) are momentum operators and positions
of the relative coordinate of the two protons and the electron,
respectively. µp = M/2 is the reduced mass, where M = 1836

TABLE I. Energies of the first vibrational levels in the ground
electronic state of the H2

+ model used in the present study.

Vibrational State Energy (a.u.)

ν = 0 −0.776
ν = 1 −0.767
ν = 2 −0.758
ν = 3 −0.749
ν = 4 −0.741

is the mass of the proton, and αe = 1 and αp = 0.03 are
soft-core parameters [18]. E(t) = E0 cos(ωt) sin2(πt/NT ) is
the electric field of the linearly polarized laser pulse. The
corresponding TDSE was solved using the Crank-Nicolson
algorithm on a grid with spatial spacings of �R = 0.03 a.u.
and �z = 0.1 a.u.; the time step was less than �t = 0.05 a.u.
The vibrational levels in the ground electronic state of the
model were found by imaginary time propagation, and the
corresponding energies are given in Table I.

First, we performed a series of calculations in which we
prepared the H2

+ model system in the ground vibrational
state. We tried to find the optimal wavelength of the light
field for a selective population transfer into one of the excited
vibrational states. In Fig. 2 we present our results for the final
populations in the first four excited states driven by laser pulses
at λ = 9919.9 nm, λ = 5059.3 nm, and λ = 3441.0 nm. The
photon energy is equal to half of the energy difference between
the first, second, and third excited states and the ground state,
respectively. The pulse length was 10 field cycles, and the
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FIG. 2. (Color online) Final populations of the first vibrational
states due to the interaction with laser pulses at 9919.9 nm, 5059.3 nm,
and 3441.0 nm, respectively. Results of the projections to ν = 5 and
ν = 6 are below 10−13 and are not shown. The number of cycles was
10 in each simulation, and the peak intensity was (a) 1012 W/cm2 and
(b) 1013 W/cm2.
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FIG. 3. (Color online) Final population of the ν = 1 state as a
function of the laser frequency. Note that the maximum occurs for a
slight detuning � from the two-photon resonance frequency ω1,0 =
(Eν=1 − Eν=0)/2 a.u. The number of cycles was 10 in each simulation,
and the peak intensity was (a) 1012 W/cm2 and (b) 1013 W/cm2.
(c) Detuning � as a function of intensity.

peak intensity was 1012 W/cm2 [Fig. 2(a)] and 1013 W/cm2

[Fig. 2(b)].
The results show that a particular vibrational state can be

selectively excited via a (net) two-photon transition from the
initially prepared ground state. The populations in all the other
states are at least three orders of magnitude smaller compared
to the maximum excited state population. However, we observe
a transfer of population of about only 1% or even less. We
note that for long pulses we observe Rabi-like oscillations but
without surpassing the 10% level for the population in the
excited state.

Next, we present in Fig. 3 results for the population in
the ν = 1 state as a function of the laser wavelength for
two different peak intensities, 1012 W/cm2 [Fig. 3(a)] and
1013 W/cm2 [Fig. 3(b)]. The number of cycles is kept the
same as in Fig. 2. The results show that the population transfer
is maximum for a slight detuning � from the two-photon
resonance condition ω1,0 = (Eν=1 − Eν=0)/2. The detuning
is found to depend linearly on the intensity [see Fig. 3(c)].
These findings appear to hold in general, independent of the
final state, since we find the same linear dependence for the
excitation of the ν = 2 state (Fig. 4).

B. Analytical model

Based on the findings from our numerical simulations,
we would like to address the following questions: What is
the physical mechanism of this population transfer between
vibrational states in a nonpolar molecule? What are the origins
of the near-resonant two-photon condition and the detuning?
Finally, is it possible to enhance the efficiency of the population
transfer? In order to answer these questions, we developed the
following analytical model.

We assume that the photon energy is small compared to
the energy difference between the electronic states and that
the peak intensity is sufficiently small such that the state of the
molecular ion, which is initially prepared in a superposition of
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FIG. 4. (Color online) Same as Fig. 3 but for the ν = 2 state.

vibrational states of the electronic ground state (1sσg), is well
described by a superposition of the two lowest electronic states
at any time t during the interaction (in Born-Oppenheimer
approximation):

�(x,R,t) = φσg
(x,R)

∑
ν

aν(t)ψν(R)

+φσu
(x,R)

∫
dkbk(t)ψk(R). (2)

This reduction to a two-level model is justified within the range
of laser parameters considered here since we do not observe
any ionization, dissociation, or population to higher excited
states in our full numerical simulations. As we will show in
Sec. II C, the results obtained using the two-level model do
agree very well with those of the full numerical simulations.

Inserting Eq. (2) in the Schrödinger equation
i∂�(x,R,t)/∂t = H (x,R,t)�(x,R,t), multiplying by φ∗

σg

(x,R)ψ∗
ν (R) or φ∗

σu
(x,R)ψ∗

k (R) from the left, and integrating
with respect to x and R, we obtain a set of equations for the
amplitudes aν(t) and bk(t):

iȧν(t) = Eσg,νaν(t) + E(t)
∫

dkµν,kbk(t), (3)

iḃk(t) = Eσu,kbk(t) + E(t)
∑

ν

µ∗
ν,kaν(t), (4)

with µν,k ≡ 〈φσg
(x,R)ψν(R)|x|φσu

(x,R)ψk(R)〉, where the
angle brackets indicate integrations over x and R. Eσg,ν and
Eσu,k are the field-free energies of the states. Equations (3)
and (4) represent the coupling of the vibrational states in
the electronic ground state with the dissociative state. Since
we are interested in the evolution of the population in the
vibrational states, we integrate Eq. (4) with respect to time
and then substitute the result into Eq. (3) to get

ċν(t) = −
∑
ν ′

∫
dkµ∗

ν ′,kµν,k

∫ t

0
dt ′E(t)E(t ′)cν ′(t ′)

× ei�Eν′ ,k t ′e−i�Eν,k t , (5)

where cν(t) = av(t)eiEσg,ν t , with |av(t)| = |cv(t)| and �Ev,k =
Eσu,k − Eσg,ν . If the laser frequency is far off-resonant, i.e.,
�Ev,k � ω, we can assume that the electric field strength
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E(t) and cν(t) are slowly varying in time compared to the ex-
ponential term, which depends on the energy difference �Eν,k ,
and we perform the integral in Eq. (5) approximately to get

iċν(t) = −
∑
ν ′

µ2
ν,ν ′E2(t)cν ′(t)e−i(Eν′−Eν ) t , (6)

where µ2
ν,ν ′ ≡ ∫

dkµ∗
ν ′,kµν,k/�Eν ′,k . For the sake of sim-

plicity, we define Eσg,ν ≡ Eν . The temporal evolution of the
amplitude cν depends quadratically on the electric field
strengths, which gives rise to the two-photon transition
between the vibrational states observed in the numerical
simulations.

Note that the current control mechanism is based on
multiphoton transitions for which the off-resonant condition
�Ev,k � ω holds. This is the main difference between
the present mechanism for inducing transitions between
different internal states of the molecule and processes such
as LICS [16] and STIRAP [15]. For example, in STIRAP the
off-resonant condition �Ev,k � ω does not hold, and Eq. (5)
cannot be further simplified as in the present analysis.

Using the two-level approximation between an initial (νi)
and a final (νf ) vibrational state, we obtain

i

(
ċνi

ċνf

)
= −E2(t)

(
µ2

νi ,νi
µ2

νi ,νf
e−i�Et

µ2
νf ,νi

ei�Et µ2
νf ,νf

)(
cνi

cνf

)
, (7)

where �E ≡ Eνf
− Eνi

. Note that µ2
νi ,νf

�= µ∗2
νf ,νi

if �Eνi,k �=
�Eνf ,k . In general, this gives rise to a non-Hermitian Hamilto-
nian in Eq. (7) and, hence, a loss of population in the two-level
system via excitation into the dissociative state. The loss
becomes negligible if �E � �Eνi,k ≈ �Eνf ,k . This is the
case for the (low) vibrational states in H2

+; correspondingly,
we did not observe any dissociation of H2

+ in our numerical
simulations.

Transforming cνj
(t) = exp(i

∫ t

t0
E2(t ′)µ2

νj ,νj
dt ′)c̃νj

(t) (with
j = i,f ) yields

i

( ˙̃cνi
(t)

˙̃cνf
(t)

)
=

( 0 σνi ,νf

σνf ,νi
0

)(
c̃νi

(t)

c̃νf
(t)

)
, (8)

with

σνi ,νf
= −µ2

νi ,νf
E2(t) e

−i(�Et+[µ2
νi ,νi

−µ2
νf ,νf

]
∫ t

t0
E2(t ′)dt ′)

. (9)

Here µ2
νj ,νj

(with j = i,f ) represents the time-dependent Stark
shift of the vibrational state j , which results in a phase shift
between the states during the interaction with the field. A
similar result was obtained in Refs. [19,20] for transitions
between atomic bound electronic states. Also note that for
µ2

νi ,νi
= µ2

νf ,νf
Eq. (9) reduces to the standard two-level system

coupled via a two-photon transition with an electric field [21].
According to the analysis above we expect that a complete

coherent transfer of the population from one vibrational state
to the other can be achieved by designing a chirped pulse
in which the frequency variation follows the time-dependent
accumulation of the Stark phase shift as

2ω(t) t = �E t + [
µ2

νi ,νi
− µ2

νf ,νf

] ∫ t

t0

E2(t ′) dt ′

= 2(ωf,i t + δ(t)), (10)

where ωf,i satisfies the two-photon resonance condition.

In general, µ2
v,v − µ2

v′,v′ is unknown in our numerical model
as well as in an experiment. However, by using a chirped pulse
with δ(t) = a

∫ t

t0
E2(t ′)dt ′ and sweeping the constant a, we

can optimize the transition probability. We note parenthetically
that this method may also be applied to gain information about
an unknown molecular system, which we, however, will not
explore further here.

C. Population transfer with chirped pulses

In this subsection we will test our prediction that the
population transfer can be made complete for a certain chirp
of the pulse, using both the two-level model as well as full
numerical simulations. To this end, we determined the chirp
parameters for the transition from the vibrational ground state
(νi = 0) to the second excited state (νf = 2) as µ2

0,0 − µ2
2,2 =

(−2.66 ± 0.02) a.u. and µ2
0,2 = (0.255 ± 0.001) a.u. and

performed full time-dependent numerical simulations as well
as calculations using the two-level approximation for our H2

+
model system. The results of both approaches agree very well
(dashed lines in Fig. 5). The final probability of finding the
system in the excited vibrational state is, indeed, almost 100%
(exactly, 99.89%). Since the excitation probability depends
on the square area of the pulse envelope, the same result
can be achieved by a coherent accumulation of the transition
probability using a train of chirped pulses (solid lines in
Fig. 5). The delay between subsequent pulses must be such
that the phase of the initial state at the beginning of a pulse
equals the phase at the end of the previous pulse [22].

Note that our condition for the chirp parameters depends
on the temporal intensity profile, in particular the maximum
intensity [cf. Eq. (10)]. In an experiment, averaging over the
spatial intensity profile (also called focal averaging) cannot be
avoided. This results in a variation of the maximum intensity in
the temporal profiles over the focal area. In order to analyze the
effect, we have considered a Gaussian (spatial) intensity profile
with a maximum peak intensity of 1013 W/cm2 (see Fig. 6).
We determined the chirp parameters for a complete population
transfer from the vibrational ground state to the first (Fig. 6,
left) and second vibrational states (Fig. 6, right) for the peak
intensity at the center and performed TDSE simulations for a
set of peak intensities, keeping the chirp parameters the same.
As expected, the population transfer at the center is complete,
but it becomes less and less efficient as the intensity drops
toward the wings of the intensity distribution. Still, we find a
transfer of more than 73% of the population for the transition
to the first excited state and more than 50% of the population
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FIG. 5. (Color online) Population in the v = 2 state during the
interaction with a chirped laser pulse (280 cycles, dashed line) and a
train of 28 chirped pulses (10 cycles each, separated by 1 cycle, solid
line) by solving (a) two-level matrix equation (7) and (b) the TDSE.
The peak intensity of each pulse was 1013 W/cm2.
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FIG. 6. (Color online) Spatial intensity profile of a Gaussian laser
pulse (scaled to 1013 W/cm2). TDSE simulations for population
transfer to (a–c) ν = 1 using a chirped laser pulse with frequency
ω1,0 (9919 nm) and 120 cycles and (d–f) ν = 2 using a chirped laser
pulse with frequency ω2,0 (5059 nm) and 280 cycles. The results
presented in the different panels correspond to the peak intensities
labeled on the intensity profile: (a, d) 1013 W/cm2, (b, e) 6.0 × 1012

W/cm2, and (c, f) 1.3 × 1012 W/cm2. The chirp parameters were
determined to maximize the population transfer for the peak intensity
at the center of the pulse and were kept the same for all simulations.
Here w0 refers to the beam waist.

for the transfer in ν = 2 at 60% of the maximum peak intensity.
Furthermore, even in the wings of the intensity distribution the
transfer is more than 1%, which is not negligible. A similar
reduction in the control efficiency will occur for an unaligned
ensemble of molecules since the effective interaction strength
does scale with the cosine of the angle between the polarization
direction of the field and the internuclear axis.

Finally, we considered population transfer from a superpo-
sition of the first and second excited vibrational levels (ν = 1
and ν = 2) to the vibrational ground state. The results of our
numerical simulations, shown in Fig. 7, demonstrate that with
two chirped pulses with ω2,0 = 9.00 × 10−3 a.u. (5059.3 nm)
and ω1,0 = 4.59 × 10−3 a.u. (9919.9 nm) and the appropriate
chirp parameters, first the population from the second vibra-
tional state [Fig. 7(a)] and then the remaining population from
the first vibrational state [Fig. 7(b)] are transferred to the
ground state.
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FIG. 7. (Color online) Population transfer from a superposition
of the excited vibrational states ν = 1 and ν = 2 to the vibrational
ground state. (a) Population of the lowest vibrational states during
the interaction with a first chirped pulse (the same as used in Fig. 5,
ω2,0 = 9.00 × 10−3). (b) A second chirped pulse with a peak intensity
of 1013 W/cm2, 60 cycles, and µ2

0,0 − µ2
1,1 = (−1.56 ± 0.02) a.u.

interacts with the remaining superposition after a time delay of 10.8 fs.

III. CONCLUSIONS

In conclusion, we have theoretically and numerically ana-
lyzed the coherent control of the population distribution in the
vibrational states of the nonpolar hydrogen molecular ion. Our
results unveil that a selective excitation of vibrational states can
be achieved via a (net) two-photon transition using infrared
laser pulses. The transitions are accompanied by a dynamical
Stark shift, which depends linearly on the laser intensity. Using
a chirped laser pulse, the Stark phase shift can be followed,
and for a given temporal intensity profile a complete coherent
transfer can be achieved between two vibrational states of the
molecule. Looking ahead, we anticipate that the same coherent
control scheme could be applied to other nonpolar molecules
with bound or dissociative electronic states as well as to the
preparation of rovibrational states.
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