
On the Essence and Initiality of Conflicts

Guilherme Grochau Azzi1[0000�0002�3740�7002], Andrea
Corradini2[0000�0001�6123�4175], and Leila Ribeiro1

1 Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
{ggazzi,leila}@inf.ufrgs.br
2 Università di Pisa, Pisa, Italy

andrea@di.unipi.it

Abstract. Understanding conflicts between transformations and rules
is an important topic in algebraic graph transformation. A conflict occurs
when two transformations are not parallel independent, that is, when af-
ter applying one of them the other can no longer occur. We contribute
to this research thread by proposing a new characterization of the root
causes of conflicts, called “conflict essences”. By exploiting a recently
proposed characterization of parallel independence we easily show that
the conflict essence of two transformations is empty i↵ they are paral-
lel independent. Furthermore we show that conflict essences are smaller
than the “conflict reasons” previously proposed, and that they uniquely
determine the so-called “initial conflicts”. All results hold in categories
of Set-valued functors, which include the categories of graphs and typed
graphs, and several of them hold in the more general adhesive categories.

Keywords: Graph Transformation · Double-Pushout · Parallel Inde-
pendence · Conflict · Critical Pair · Initial Conflict

1 Introduction

Graph transformation is a formal model of computation with an intuitive graph-
ical interpretation. Graphs are used to represent states of the system, while pos-
sible transitions are represented by transformation rules. The algebraic approach
is not restricted to a particular notion of graph: using category theory, its defini-
tions and results can be instantiated for di↵erent notions of graph (e.g. labelled,
attributed) whose categories satisfy certain axioms.

An important topic in algebraic graph transformation is the study of parallel
independence and conflicts. When two transformations are parallel independent
they may be applied in any order; if a transformation can no longer happen
after applying another, they are in conflict [5]. Understanding conflicts between
transformations and rules provides great insight into the behaviour of a transfor-
mation system. Indeed, the potential conflicts between two rules, in a minimal
context, can be enumerated by Critical Pair Analysis (CPA) and used to check
local confluence of the system [9]. This has many applications, particularly in
Model-Driven Development (e.g. [16,17,6]).

Andrea Corradini
This final publication is avaliable at Springer via https://doi.org/10.1007/978-3-319-92991-0_7

Conflict

Conflict

Essence

Conflict
Reason

Critical Pair

Essential
Critical Pair

Initial
Conflict

represented by
unique [8]

is a [8]

has unique [14]

uniquely determines [14]

represented by
unique [14]

is a
[14]

is a
[13]

represented by
unique [13]

has unique

(Def. 21)

contained in

(Theorem 32)

uniquely determines (Theorem 34)

Results proved for: Adhesive Categories SetS GraphT

Fig. 1: Overview of conflicts and their root causes,
where new concepts and results are in bold.

When two transformations are in conflict, understanding its root causes is
often di�cult. The formal characterization of conflict reasons [14] helps, but it
may include elements unrelated to the conflict and lacks a direct connection to
the definition of parallel independence. Moreover, critical pairs generated by any
two rules are numerous and often redundant, hindering the application of CPA.

An overview of the results presented in this paper and of related concepts
from the literature is depicted in Fig. 1. Based on conflict reasons, essential crit-
ical pairs were proposed as a subset of critical pairs. They were proven complete
(for the categories of graphs and typed graphs [14]), in the sense that every crit-
ical pair is the embedding of some essential critical pair into a larger context.
More recently, initial conflicts were also proposed and proven to be a complete
subset of critical pairs (in any adhesive category [13]), and were proven to exist
for the categories of graphs and typed graphs. Relations between initial conflicts
and conflict reasons were not reported, to the best of our knowledge.

In this paper, we contribute to this research thread by proposing a new
characterization for the root causes of conflicts, called conflict essences, based on
a recently proposed characterization of parallel independence [3]. In any adhesive
category with strict initial object we show that having an empty conflict essence
is equivalent to parallel independence, and that conflict essences are smaller
than conflict reasons. In categories of Set-valued functors, we show that conflict
essences uniquely determine initial conflicts. Furthermore, we identify su�cient
conditions for this to hold in any adhesive category.

The reader should be familiar with basic concepts of Category Theory and
with the dpo approach [5]. Some background notions and a motivating example
are introduced in section 2. We define conflict essences in section 3, proving im-
portant properties and comparing them to conflict reasons. In section 4 we show
that essences uniquely determine initial conflicts, and in section 5 we conclude.

2

2 Preliminaries

2.1 Algebraic Graph Transformation

In this section we briefly review the basic definitions of algebraic graph trans-
formation, according to the Double-Pushout (dpo) approach [5]. We follow the
generalization of dpo to work with objects of any adhesive category [12], which
include variations of graphs (typed, labelled, attributed), and several other struc-
tures. A more recent and detailed introduction to algebraic graph transforma-
tion is available in [8], where the theory is generalized to M-adhesive categories,
which also encompass structures like Petri nets and algebraic specifications.

We begin by reviewing the notion of adhesive category, which underlies sev-
eral other definitions, as well as some of its properties. For proofs and a detailed
discussion we refer to [12].

Definition 1 (Adhesive Category). A category C is called adhesive if (i) it

has all pullbacks, (ii) it has all pushouts along monos, and (iii) such pushouts are

van Kampen (VK) squares, which implies that they are preserved and reflected

by pullbacks [12].

Fact 2 (Properties of Adhesive Categories). Let C be an adhesive category.

1. Pushouts along monos in C are pullbacks.

2. For every object C of C, let Sub(C) be the partial order of its subobjects,

i.e. equivalence classes of monic arrows with target C, where f : A ⇢ C
and g : B ⇢ C are equivalent if there is an isomorphism h : A!B making

the triangle commute. Then Sub(C) is a distributive lattice: intersection of

subobjects is obtained as the pullback of the corresponding monos, union is

obtained from a pushout over the intersection.

We proceed by reviewing the basic concepts of dpo rewriting in an arbitrary
category C. Assumptions on C will be made explicit when needed.

Definition 3 (Rule, Match and Transformation). A rule ⇢ is a span

⇢ = L
l� K

r⇢ R, with monic l and r. We call L and R the left- and right-hand
sides, respectively, while K is called the interface. A transformation system
G is a finite set of rules.

A match for a rule ⇢ in an object G is a monic

arrow m : L⇢G. Given a match m : L!G for rule

⇢, a transformation G
⇢,m

=) H corresponds to a

diagram (1), where both squares are pushouts. In

an adhesive category, the left pushout is guaranteed

to be unique up to isomorphism, if it exists.

L K R

G D H

m

l r

k

m

0

l

0
r

0

(1)

In the technical development that follows we will use the notions of strict
initial objects and of initial pushouts [9] that we recall here.

3

Definition 4 (Strict Initial Object). An object 0 is initial in a category C
if for each object C of C there is a unique arrow !

C

: 0! C. An initial object 0
is strict if for any arrow f : X ! 0, the source X is also initial. If any initial

object is strict, all initial objects are, since they are isomorphic. Furthermore, if

0 is strict, then every arrow !
C

: 0! C is mono.

Many adhesive categories of interest, including the categories of functors
presented in the next section, have a strict initial object, but not all of them: for
example, the category of sets and partial functions is adhesive, but the initial
object is not strict [12].

Definition 5 (Initial Pushout). Given a morphism

f : X ! Y , the outer rectangle of diagram (2) is an

initial pushout (over f) when, for any pushout

1�
with monic x and y, there exist unique arrows b⇤ and c⇤

making the diagram commute. The subobject b : B!X
is the boundary of f , while c : C! Y is the context.

B U X

C V Y

b

f

0

b

⇤
x

g

f

c

c

⇤
y

1� (2)

The next two properties of initial pushouts will be useful later. For the proof
of Lemma 7 we refer to [9].

Lemma 6. In any category with a strict initial object 0,
the square of diagram (3) is an initial pushout of f if and

only if f is an isomorphism.

0 X

0 Y

id0

!X

f

!Y

(3)

Lemma 7. Initial pushouts are preserved and reflected by pushouts along monos.

That is, assuming in diagram (4) that

square

2� is a pushout with monic h
L

and h
K

, and squares

1� and

3� are ini-

tial pushouts, then there exist unique

isomorphisms b⇤ and c⇤ making the dia-

gram commute.

B X X B

C Y Y C

b

d

b

⇤

hK

f

f

b

d

c

c

⇤

hL

1� 2� 3�

c

(4)

The categories of graphs and of typed graphs, which are now introduced, are
adhesive. Thus, the theory of dpo transformation applies to those categories.

Definition 8 (Categories of Graphs). A graph G = (V,E, s, t) has sets V
of nodes and E of edges, along with source and target functions s, t : E ! V .

A graph morphism f : G! G0
is a pair of functions f = (f

V

: V ! V 0, f
E

:
E! E0) that preserve incidence, that is, f

V

� s = s0 � f
E

and f
V

� t = t0 � f
E

.

Graphs along with graph morphisms determine the category of graphs Graph.
Given graph T , called a type graph, we can view arrows g : G!T as graphs

typed over T . The category of T -typed graphs is Graph
T

= Graph # T .

Example 9. As a motivating example, we use a model of an elevator system,
which is based on the type graph of Figure 2. The system is composed of multiple
floors () and elevators (). Solid edges between floors indicate the next floor
up, while dashed edges indicate that the source floor is below the target. Solid

4

Fig. 2: Type graph and some transformation rules for an elevator system.

edges from an elevator to a floor indicate its position, while a self-loop edge of
type or indicates its direction of motion. People on a floor may request
an elevator, which is represented as a self-loop edge of type or , depending
on the direction the elevator is expected to go. People inside an elevator may
request a stop at a specific floor, which is represented by a dashed arrow from
the elevator to the floor.

Due to limited space, we present in Figure 2 only some rules, related to mov-
ing the elevator up. Only left- and right-hand sides are shown, their intersection
is the interface. The elevator should only move up when given a reason to do
so, i.e. some request involving a higher floor. The rule move-up-AS, for example,
moves the elevator up one floor given a stop request for some floor above.

Since matches are required to be injective, this rule is not applicable when
the requested floor is y. Thus, we must define another rule move-up-NS when
the stop request involves the next floor up; then the request is fulfilled and the
corresponding edge is deleted. We also depict the rules applicable when the next
floor has requested an elevator to move up (move-up-NU) or down (move-up-ND).

2.2 Categories of Set-Valued Functors

Not all results of this paper are proven in terms of adhesive categories, some rely
on categories of Set-valued functors. In this section, we show how such categories
generalize many important graph models and review some of their properties.

Definition 10 (Set-Valued Functor Category). Given category S, the cate-

gory SetS has functors S!Set as objects and natural transformations as arrows.

If t : F .! G is a natural transformation between functors F,G : S! Set and S
is an object of S, we denote by t

S

: F (S)!G(S) the component of t on S.

G = V E
s

t

(5)
It is easy to see that the category of graphs is iso-

morphic to SetG, where G is depicted on diagram (5).
A functor G : G!Set selects two sets G(V) and G(E)
as well as two functions G(s), G(t) : G(E)! G(V). A natural transformation
f : G .! G0 has two components f

V

: G(V)! G0(V) and f
E

: G(E)! G0(E),
then naturality corresponds to preservation of incidence.

5

Set-valued functors generalize graph structures, which in turn generalize graphs
and many variations (e.g. labelled graphs, hypergraphs, E-graphs) [10]. They are
also closed w.r.t. the construction of slice categories.

Definition 11. A graph structure signature is an algebraic signature ⌃
containing only unary operator symbols. A graph structure is a ⌃-algebra for

a graph structure signature ⌃. The category of algebras for a graph structure

signature is then a category of graph structures.

Lemma 12. Every category of graph structures is isomorphic to SetS for some

small, free category S.

Proof. A graph structure signature ⌃ defines a graph by taking sorts as nodes
and operation symbols as edges. Let S be the free category generated by this
graph. It is easy to see that the category of ⌃-algebras is isomorphic to SetS. ut

Fact 13. For any functor category SetS and any object C : S! Set in it, the

slice category SetS # C is equivalent to a Set-valued functor category [15].

Functor categories SetS are particularly well-behaved. They inherit a lot of
structure from Set, and many categorical concepts can be considered point-
wise for each object of S. When dealing with such concepts, we will apply set-
theoretical reasoning to SetS. Then, given X,Y 2 SetS and f : X ! Y , we will
write X, Y and f instead of X(S), Y (S) and f

S

for an implicit, universally
quantified S.

Fact 14. In any category of functors SetS, limits and colimits are constructed

pointwise for each object of S [15]. In particular, the initial object 0 of SetS is

strict, composed only of empty sets.

Fact 15. In any functor category SetS, a morphism f : X ! Z is monic (epic)

i↵ each component f
S

is injective (surjective) [15]. A pair of morphisms X
f!

Z
g Y is jointly epic i↵ each pair of components (f

S

, g
S

) is jointly surjective.

Fact 16. Given a small category S, the category of functors SetS is a topos [11].

Then it is adhesive [12] and has unique epi-mono factorisations [11].

In the context of graph transformation, we often have commutative squares
that are both a pullback and a pushout. A set-theoretic characterization will be
useful in the following. It underlies a construction of initial pushouts, which we
omit due to limited space.

Lemma 17. In any category of functors SetS, if square (6) is a pullback, then

it is also a pushout i↵ both of the following hold for any element z 2 Z.

(i) If there is no x 2 X with z = f(x), then
there is a unique y 2 Y with z = g(y).

(ii) If there is no y 2 Y with z = g(y), then
there is a unique x 2 X with z = f(x).

W X

Y Z

f

0

g

0

f

g

(6)

Lemma 18. Any category of functors SetS has initial pushouts for all arrows.

6

3 The Essence of Conflicting Transformations

An important tool for understanding the behaviour of a transformation system is
the notion of parallel independence, which ensures that two transformations don’t

interfere with each other. Essentially, if two transformations H1
t1(= G

t2=) H2

are parallel independent, then there exist transformations H1
t

0
2=) H and H2

t

0
1=)

H reaching the same state. If they are not parallel independent, it is said they
are in conflict.

Understanding the root causes of such conflicts is a subject of ongoing re-
search [14,2]. In this section, we propose a formal characterization of these root
causes and compare it to previous work. We show that our characterization has
many useful properties, including a direct connection to the definition of parallel
independence and being preserved by extension into larger contexts.

We start introducing parallel independence according to the so-called essen-

tial definition [3].

Definition 19 (Parallel Independence). A pair of transformations (t1, t2) :

H1
⇢1,m1(= G

⇢2,m2
=) H2 is parallel independent when, building the pullbacks

1�,

2� and

3� as in diagram (7), the arrows K1L2! L1L2 and L1K2! L1L2 are

isomorphisms.

3

If t1 and t2 are not parallel independent, we say they are in conflict. When

K1L2!L1L2 is not an isomorphism, we say t1 disables t2; when L1K2!L1L2

is not an isomorphism, we say t2 disables t1.

K1L2 L1L2 L1K2

R1 K1 L1 L2 K2 R2

H1 D1 G D2 H2

⇠=

2� p2p1

⇠=

3�

n1

l1r1

k1 m1 m2 k2

l2 r2

n2

g1
h1

1�

g2
h2

(7)

We refer the reader to [3] for a proof that this definition is equivalent to the
traditional one (see e.g. [8]) if diagrams are taken in an adhesive category and
rule morphisms are monic.

Example 20. Figure 3a shows a pair of parallel independent transformations
obtained by applying the rules move-up-NU and move-up-ND of Example 9 to
two di↵erent elevators. In Fig. 3b the transformations caused by the same rules
are in conflict, since the edge between elevator and floor is deleted by both rules.

A disabling occurs when some element is matched by both rules and deleted
by at least one of them, as illustrated in Example 20. Since matches are monic,

3 Since l1 and l2 are monos, this is equivalent to requiring existence of arrows L1L2!
K1 and L1L2 !K2 making the resulting triangles commute. However, this simpler
condition is not helpful for the characterization of conflicts.

7

they can be interpreted as subobjects of G and the pullback L1L2 as their
intersection. Pulling it back along l1 removes exactly the elements that would
be deleted by the transformation using ⇢1 and that are matched by m2.
In order to determine such elements, we use
an initial pushout over arrow K1L2! L1L2

(Def. 5). In fact in a functor category SetS
the context of a mono f : X ⇢ Y is the
smallest subobject of Y containing all the
elements which are not in the image of f .
This brings us to the following definition.

B1 C1

K1L2 L1L2 L2

K1 L1 G

b1

d1

c14�

q1

q2

p1

p2

m2

l1 m1

2� 1�

(8)

Definition 21 (Conflict and Disabling Essence). In any adhesive category,

let (t1, t2) : H1
⇢1,m1(= G

⇢2,m2
=) H2 be a pair of transformations.

The disabling essence c1 : C1 ⇢ L1L2 for (t1, t2) is obtained by taking

pullbacks

1� and

2� as in diagram (8), then the initial pushout

4� over q2.
The conflict essence c : C ! L1L2 is the union in Sub(L1L2) of the dis-

abling essences c1 for (t1, t2) and c2 for (t2, t1). Recall from Fact 2 that this is

obtained as a pushout over the pullback of (c1, c2).

Remark 22. The disabling and conflict essences are also subobjects of G, since
the composite m1 � p1 � c = m2 � p2 � c is a monomorphism C ⇢G.

Example 23. The disabling essences for Ex. 20 are constructed in Fig. 4. In
Fig. 4a, where transformations are independent, the essence is empty. In Fig. 4b,
where a disabling exists, the essence contains an edge from elevator to floor.

From Example 23 we may expect that an empty disabling essence is equiva-
lent to having no disabling. More generally, we can show that this holds whenever
the essence is the strict initial object, establishing a direct correspondence be-
tween conflict essences and the definition of parallel independence.

Theorem 24. In any adhesive category with a strict initial object, let (t1, t2) :

H1
⇢1,m1(= G

⇢2,m2
=) H2 be a pair of transformations. Then the disabling essence is

initial i↵ t1 doesn’t disable t2, and the conflict essence is initial i↵ t1 and t2 are

parallel independent.

Proof. The case for disabling essences follows directly from Lemma 6: the dis-
abling essence is initial if and only if q2 in diagram (8) is an isomorphism, which
means that t1 doesn’t disable t2, according to Def. 19. For conflict essences, re-
call that the strict initial object is the bottom element of the lattice Sub(L1L2).

(a) Parallel independent transformations. (b) Transformations in conflict.

Fig. 3: Examples of parallel independence.

8

Since c = c1 [c2, C is initial i↵ C1 and C2 are initial, which is equivalent to
having no disablings and thus parallel independence. ut

Another important property of the disabling essence is that it factors uniquely

through the context of the (initial pushout over) arrow K1
l1! L1. This means

that the essence only contains deleted elements, or elements incident to them.

B
l1 C

l1 C1

K1 L1 L1L2

1� cl1

h

c1

l1
p1

(9)

The next result is exploited in subsec-
tion 3.2 to relate our notion to disabling

reasons [14]. It would also be the basis for
a precise comparison of conflict essences
with the basic conflict conditions intro-
duced in [2], which is left for future work.

Lemma 25. In any adhesive category, let (t1, t2) : H1
⇢1,m1(= G

⇢2,m2
=) H2 be a

transformation pair, let c1 : C1 ⇢ L1L2 be its disabling essence and let square

1� be the initial pushout over l1 in diagram (9). Then the disabling essence of

(t1, t2) factors uniquely through the context C
l1 over l1, i.e., there is a unique

mono h : C1 ⇢ C
l1 with p1 � c1 = c

l1 � h.

3.1 Conflict Essence and Extension

The extension of a transformation into a larger context underlies the concept of
completeness of critical pairs and initial conflicts: any pair of conflicting trans-
formations is the extension of a critical pair [9,8] and of an initial conflict [13].
It ensures that checking each critical pair (or each initial conflict) for strict con-
fluence guarantees local confluence for the entire transformation system [9,8].

Definition 26 (Extension Diagram). An extension diagram over trans-

formation t : G
⇢,m

=) H and extension morphism e : G! G is a diagram (10)

(a) Disabling essence for Figure 3a. (b) Disabling essence for Figure 3b.

Fig. 4: Examples of disabling essence.

9

where m = e �m is monic and there is a transformation t : G
⇢,m

=) H defined by

the four pushout squares of diagram (11).

G H

G H

e

t

f

t

(10)

L K R

G D H

G D H

m

l

k

r

n

e

d

g

h

f

g

0
h

(11)

It was already shown that conflicts are reflected by extension [13], i.e. when
the extension of a transformation pair is in conflict, the original transformation
pair is in conflict as well. It turns out they are also preserved by extension in
categories of set-valued functors, and in particular of graphs and typed graphs.
Furthermore, conflict essences are also preserved, which means the root causes
of a conflict don’t change with extension.

Lemma 27 (Essence Inheritance). In a category of functors SetS, let (t1, t2) :
H1

⇢1,m1(= G
⇢2,m2
=) H2 and (t1, t2) : H1

⇢1,m1(= G
⇢2,m2
=) H2 be two pairs of transfor-

mations such that both extension diagrams of (12) exist for some f : G!G.

Then the transformation pairs have isomorphic

conflict and disabling essences. That is, given

the mediating morphism h
L

: L1L2⇢L1L2 be-

tween the pullback objects and the conflict (dis-

abling) essences c of (t1, t2) and c of (t1, t2),
then h

L

� c ⇠= c in Sub(L1L2).

H1 G H2

H1 G H2

f

t1 t2

t1 t2

(12)

Proof. [Disabling] Consider diagram (13) where L1L2 and L1L2 are pullback
objects for (m1,m2) and (m1,m2), respectively, and h

L

their unique mediating
morphism. Constructing the squares 2� and 1�+ 2� as pullbacks, by decompo-
sition there is a unique monomorphism h

K

making 1� a pullback. We will show
that 1� is also a pushout. Then, since initial pushouts are reflected by pushouts
along monomorphisms (Lemma 7), there is an isomorphism h

C

: C1 ! C1 be-
tween the contexts of q2 and q2, with c1 �hC

= h
L

�c1. This makes c1 and h
L

�c1
isomorphic in Sub(L1L2).

K1L2 K1L2 K1 D1 D1

L1L2 L1L2 L1 G G

hK

q2

q1

q1

q2

k

l1

k

g

f

0

g

hL

p1

p1

1�

m1

m1

2�

f

3� 4� (13)

Note that, because the left square of (12) is an extension diagram, there
exist pushouts 3� and 4� in diagram (13). Without loss of generality, assume all
vertical morphisms of (13) are inclusions, as well as h

L

and h
K

.

10

In order to show that pullback 1� is also a pushout, by Lemma 17 it su�ces
to show that (h

L

, q2) is jointly epic. We will show that every element x 2 L1L2

that is not in L1L2 must be in K1L2. That is, it must be preserved by step t1.

So assume such an x 2 L1L2 \ L1L2 and consider the two elements y1 =
m1(p1(x)) 2 G and y2 = m2(p2(x)) 2 G. These elements of G are distinct, but
identified by f . In fact, x /2 L1L2 implies that m1(p1(x)) 6= m2(p2(x)), that is,
y1 6= y2; instead, since (p1, p2) is a pullback of (m1,m2), we have m1(p1(x)) =
m2(p2(x)) which is equivalent to f(y1) = f(y2).

Since 4� is a pushout and pullback, and f(y1) 2 G has two distinct preimages
by f , it follows from Lemma 17 that f(y1) has a unique preimage by g. That
is, f(y1) 2 D1 ✓ G. Then, since 2�+ 3�+ 4� is a pullback and f(m1(p1(x))) =
f(y1) = g(f(y1)), x must have a preimage by q2. That is, x 2 K1L2 ✓ L1L2.

In conclusion, every x 2 L1L2 \ L1L2 is such that x 2 K1L2 and therefore
1� is a pushout. This implies that q2 and q2 have isomorphic initial pushouts,
making h

L

� c1 isomorphic to c1 in Sub(L1L2).

[Conflict] Follows directly from the previous point. Given the unions c and
c of c1, c2 2 Sub(L1L2) and c1, c2 2 Sub(L1L2), it is trivial to show that c � h

L

is isomorphic to c when c
j

� h
L

is isomorphic to c
j

for j 2 {1, 2}.

Corollary 28. In a category of functors SetS, assume the extension diagrams

of (12) exist. Then t1 disables t2 if and only if t1 disables t2. Furthermore, t1
and t2 are in conflict if and only if t1 and t2 are in conflict.

3.2 Comparing Reasons and Essences

Conflict essences provide some advantages over the conflict reason spans pro-
posed in [14]. In order to simplify the comparison, we introduce conflict and
disabling reasons in a slightly di↵erent but equivalent way, characterizing them
as subobjects of L1L2, the pullback object of the matches.

Definition 29 (Disabling Reason). In an adhesive category, let (t1, t2) :

H1
⇢1,m1(= G

⇢2,m2
=) H2 be a pair of transformations.

The disabling reason s1 : S1⇢L1L2 for (t1, t2) is the mediating morphism

obtained by constructing the initial pushout over l1 as in diagram (14), then the

pullbacks (o1, s12) of (m1 � cl1,m2) and (p1, p2) of the matches.

A disabling reason satisfies the conflict
condition if there is no morphism b⇤ : S1!
B

l1 making diagram (14) commute.

If s1 : S1 ⇢ L1L2 and s2 : S2 ⇢ L1L2 are

the disabling reasons of (t1, t2) and (t2, t1), the
conflict reason subobject s : S ⇢ L1L2 is

constructed as follows. If both s1 and s2 sat-

isfy the conflict condition, then s = s1 [s2
in Sub(L1L2). If only s1 satisfies the conflict

condition, then s = s1; analogously for s2.

S1

B
l1 C

l1 L1L2

K1 L1 L2

G

o1 s1

s12

b

⇤

l

0
1

bl1 cl1 p1 p2

l1

m1 m2

(14)

11

A conflict reason span is defined in [14] as the span L1
cl1�o1 S1

s12! L2 if only
s1 satisfies the conflict condition, symmetrically if only s2 satisfies it, and as a
span obtained by building a pushout over a pullback if both satisfy the condition.
The equivalence with Def. 29 follows by the bijection between spans of monos
commuting with L1

m1! G
m2 L2 and monos to L1L2, and observing that the

construction in the third case is identical to that of unions of subobjects.

Fact 30. Given morphisms L1
m1! G

m1 L2 with pullback

object L1L2, the set of spans L1
f

� S
g

⇢ L2 commuting with

(m1,m2) is isomorphic to the set of monos h : S ⇢ L1L2.

Proof. Given a span L1
f

� S
g

⇢ L2 commuting with
(m1,m2), there is a unique h making (15) commute. Since
p1�h is monic, h is also monic, thus we constructed a unique
mono corresponding to (f, g). Given monic h : S ⇢ L1L2,
we can construct the span (p1 � h, p2 � h). These construc-
tions establish a bijection. ut

S

L1L2

L1 L2

G

f

g

h

p1 p2

m1 m2

(15)

Note that the relation between disabling reasons and any condition of parallel
independence is not very direct. It has been shown that a disabling exists (in
the sense of Def. 19) if and only if the reason satisfies the conflict condition [14],
but the proof is much more involved than that of Theorem 24.

Interestingly, both Def. 29 and Def. 21 use the same operations, but in re-
versed orders. More explicitly, the disabling reason is obtained by first taking
the context of (the initial pushout over) l1, containing all elements deleted by ⇢1
(and the boundary), and then the intersection with the image of m2. Instead, the
disabling essence first restricts on the elements which are matched by both trans-
formations, and then takes the context, thus filtering out boundary elements of
l1 that are not relevant for the conflict. This suggests that disabling essences are
in general smaller than disabling reasons, as illustrated by the following example.

Example 31. The disabling reasons for Example 20 are constructed in Figure 5.
In Figure 5a, even though the transformations were independent, the reason
contains both floors. In Figure 5b, the floor y is part of the reason despite not
being involved in the conflict.

As Example 31 shows, the disabling and conflict reasons may contain ele-
ments that aren’t directly related to the conflict. In the case of graphs, these
are isolated boundary nodes [13], i.e. nodes adjacent to a deleted edge where this
deletion does not cause a disabling. A comparison with Example 23 indicates
that this is not the case for the essences.

The presence of isolated boundary nodes provides another disadvantage: ex-
tending a transformation pair may modify the disabling reason by introducing
new isolated boundary nodes, as shown in Figure 6. This cannot happen for
conflict essences, as proved in Lemma 27.

We conclude this section with a formal proof that every conflict essence is
more precise than the corresponding reason, since the former factors uniquely

12

(a) Disabling reason for Figure 3a. (b) Disabling reason for Figure 3b.

Fig. 5: Examples of disabling reason.

(a) Extension diagrams.

(b) Reason for
upper pair.

(c) Reason for
lower pair.

Fig. 6: Extended transformations with distinct disabling reasons.

through the latter. Indeed, essences are subobjects of reasons, since the unique
factoring is a monomorphism.

Theorem 32 (Precision of Essences). In any adhesive category, let (t1, t2) :

H1
⇢1,m1(= G

⇢2,m2
=) H2 be a pair of transformations with conflict (disabling) essence

c : C⇢L1L2 and reason s : S⇢L1L2. Then c ✓ s in Sub(L1L2), that is, there
is a unique monomorphism h : C ⇢ S such that c = s � h.

Proof. [Disabling] By Lemma 25, there is a unique monomorphism f : C1⇢C
l1

with p1 � c1 = c
l1 � f , where C

l1 is the context of l1. By Def. 29, the rectangle of
diagram (16) is a pullback. Then there is a unique h with p2 � s1 � h = p2 � c1.
Since p2 is monic, we have s1 � h = c1.

[Conflict] If only s1 satisfies the
conflict condition, then s = s1 by
Def. 29. In this case t1 does not disable
t2, thus by Theorem 24 c2 is the bot-
tom of Sub(L1L2), which implies c =
c1 [? = c1, and thus c = c1 ✓ s1 = s.

C1 S1 L1L2 L2

C
l1 L1 G

h

c1

f

s1

o1

p2

p1 m2

cl1 m1

(16)

The case when only s2 satisfies the conflict condition is symmetrical. If both
s1 and s2 satisfy it, then s = s1 [s2. Since c1 ✓ s1 and c2 ✓ s2, then it follows
from distributivity of Sub(L1L2) that c = c1 [c2 ✓ s1 [s2 = s. ut

13

4 Conflict Essences and Initial Conflicts

In this section we show how conflict essences can be used to characterize initial
conflicts. Although this is only proven for categories of Set-valued functors, the
characterization is stated completely in categorical terms, unlike the previous
element-based characterization in the category of typed graphs [13]. Thus, this
formulation may be applicable to other categories.

In order to curb the redundancy of critical pairs, a notion of initiality with
respect to embedding was introduced in [13].

Definition 33 (Initial Transformation Pair). Given the pair of transforma-

tion steps (t1, t2) : H1
⇢1,m1(= G

⇢2,m2
=) H2, a pair (s1, s2) : J1

⇢1,n1(= I
⇢2,n2
=) J2 is an

initial transformation pair for (t1, t2) if it satisfies both of the following.

(i) The pair (s1, s2) can be embedded into (t1, t2) as in diagram (17).

(ii) For every pair (t1, t2) : H1
⇢1,m1(= G

⇢2,m2
=) H2 that can be embedded into (t1, t2)

as in diagram (18), then (s1, s2) can be embedded into (t1, t2).

J1 I J2

H1 G H2

f

s1 s2

t1 t2

(17)

J1 I J2

H1 G H2

H1 G H2

h

s1 s2

g

t1 t2

t1 t2

(18)

Initial transformation pairs are not guaranteed to exist in any category, but
they exist in the category of typed graphs [13]. It turns out this is also true for
any category of Set-valued functors, where initial conflicts can be constructed as
pushouts of the conflict essence.

Theorem 34 (Construction of Initial Transformation Pairs). In any cat-

egory of functors SetS, let (t1, t2) : H1
⇢1,m1(= G

⇢2,m2
=) H2 be a pair of transfor-

mations with conflict essence c : C ⇢ L1L2. Then the pushout L1
n1! I

n2 L2

of L1
p1�c C

p2�c! L2 determines an initial transformation pair (s1, s2) : J1
⇢1,n1(=

I
⇢2,n2
=) J2 for (t1, t2).

Proof. We have to show that L1
n1! I

n2 L2 (i) determines a transformation
pair (s1, s2) which (ii) can be embedded into (t1, t2) via some morphism f and
(iii) can be embedded into any other pair of transformation steps (t1, t2) that is
embedded into (t1, t2) via some morphism g.

Note that (iii) follows from (ii). In fact, consider the mediating morphism
p : L1L2 ! L1L2. By essence inheritance, the conflict essence of (t1, t2) is c :
C ⇢ L1L2 with c = p � c. Then (n1, n2) is also the pushout of (p1 � c, p2 � c),
since p1 � c = p1 � p � c = p1 � c and analogously p2 � c = p2 � c. Then by (ii) the
transformation determined by (n1, n2) can be embedded into (t1, t2).

14

To prove (i) and (ii), note that (n1, n2) is jointly epic, since it is a pushout.
There is also a unique morphism f : I !G making diagram (19) commute.

Now consider the diagram (20), where (p1, p2) is the pullback of (m1,m2)
and 1� is the initial pushout of q2. From the transformation step t1, there is
also a pushout 3� + 4�, and we can construct a pullback 4�. We can also show
n1 � p1 � c1 = n1 � p2 � c1. In fact, since the conflict essence is the union of the
disablings, there is h : C1 ⇢C with c1 = c � h. Then n

j

� p
j

� c1 = n
j

� p
j

� c � h
for j 2 {1, 2}, and n1 � p1 � c = n2 � p2 � c by construction of (n1, n2).

C

L1 L2

I

G

p1�c p2�c

n1

m1

n2

m2

f

(19)

L2

C1 L1L2 I G

L1

B1 K1L2 D0
1

K1 D1

n2

c1

1�
p1

p2

2�

f

3�
4�

n1

d1

b1

q2

q1

g

f

0

k1

l1
k

0
1

g

(20)

Then, by the following lemma, 3� and 4� are pushouts in diagram (20).
Pushout 3� ensures the existence of the transformation step s1, as required by
(i). Pushout 4� ensures that s1 can be embedded into t1, as required by (ii).
The proof that a transformation step s2 exists and can be embedded into t2 is
analogous, using the disabling reason of (t2, t1). ut

Lemma 35 (PO-PB Decomposition by Disabling Essence). In any cat-

egory of functors SetS, assume that in diagram (20) the triangle and squares

1�–

4� commute and all morphisms except f and f 0
are monic. Let m1 = f � n1

and m2 = f �n2. Assume also: (n1, n2) is jointly epic; (p1, p2) is the pullback of

(m1,m2); n1 �p1 �c1 = n2 �p2 �c2; 3�+ 4� is a pushout;

2� and

4� are pullbacks;

1� is the initial pushout of q2. Then both squares

3� and

4� are pushouts.

Proof. We will show that square 3� is a pushout, which by decomposition implies
that 4� is also a pushout. Without loss of generality, assume that all vertical
morphisms of diagram (20) as well as c1 and b1 are inclusions.

By Lemma 17, it su�ces to show that every element x 2 I \ n1(L1) has a
unique preimage by G, that is x 2 D0

1 ✓ I. Since (n1, n2) is jointly epic and
x /2 n1(L1), we must have x 2 n2(L2). Thus, there is y2 2 L2 with x = n1(y2).

Now, consider f(x) 2 G. Recall that (m1, g) is a pushout and thus jointly
epic, then f(x) must be in the image of m1 or g. We will show that it is always
in the image of g, that is, f(x) 2 D1. Then, since 4� is a pullback, x 2 D0

1.

When f(x) is in the image of m1 there is y1 2 L1 with m1(y1) = f(x) =
m2(y2). Then since (p1, p2) is a pullback there is a unique z 2 L1L2 with
p1(z) = y1 and p2(z) = y2. But z cannot be in C1, otherwise we would have x =
n2(p2(c1(z))) = n1(p1(c1(z))), contradicting the assumption that x /2 n1(L1).
Thus, we must have z 2 K1L2. Then, since squares 2�– 4� commute in dia-
gram (20), we have f(x) = k1(q1(z)) 2 D1. ut

15

Note that the proof of Theorem 34 doesn’t directly depend on details of the
category of functors. Thus, it holds in any category with essence inheritance and
po-pb decomposition by disabling essence.

Conflicting transformation pairs that are themselves initial are called initial
conflicts. They provide a suitable subset of critical pairs, being complete in the
sense that any conflicting transformation pair is a unique extension of some
initial conflict [13]. We provide a simple characterization for initial conflicts.

Definition 36 (Initial Conflict). A pair of conflicting transformation steps

(t1, t2) : H1
⇢1,m1(= G

⇢2,m2
=) H2 is an initial conflict when it is isomorphic to its

initial transformation pair.

Corollary 37. In a category of functors SetS, let (t1, t2) : H1
⇢1,m1(= G

⇢2,m2
=) H2

be a pair of transformations with non-empty conflict essence. Then the following

are equivalent:

(i) (t1, t2) is an initial conflict

(ii) the conflict essence of (t1, t2) is isomorphic to L1L2

(iii) the pullback square to the right is also a pushout.

L1L2 L1

L2 G

p1

p2 m1

m2

5 Conclusions

In this paper we have introduced conflict essences as a formal characterization
of the root causes of conflicts. We have shown that, in adhesive categories, they
are empty if and only if the transformations are parallel independent, and they
are not larger than the previously proposed conflict reasons. In categories of
set-valued functors, which include the categories of graphs and typed graphs,
we have shown that essences are preserved by extension, and that they uniquely
determine initial conflicts. We have also identified two su�cient conditions for
the existence of initial conflicts in an adhesive category: essence inheritance
(Lemma 27) and po-pb decomposition by disabling essence (Lemma 35).

As future work, we intend to adapt the definitions of this paper to the Sesqui-
Pushout approach [4]. In the context of the dpo approach, we intend to apply
the conflict conditions of [2] to the essences. From a more practical perspec-
tive, it should be possible to improve the e�ciency of Critical-Pair Analysis, as
implemented by AGG [18] and Verigraph [1] by enumerating conflict essences
and initial conflicts instead of critical pairs. Furthermore, integrating this work
with constraints and application conditions [7] is important for practical appli-
cations.

Acknowledgements

The authors would like to acknowledge the brazilian agency CAPES for their
support in the form of scholarships.

16

References

1. Azzi, G.G., Bezerra, J.S., Ribeiro, L., Costa, A., Rodrigues, L.M., Machado, R.:
The verigraph system for graph transformation. In: Graph Transformation, Spec-
ifications, and Nets. LNCS, vol. 10800, pp. 160–178. Springer (2018), https:

//doi.org/10.1007/978-3-319-75396-6_9

2. Born, K., Lambers, L., Strüber, D., Taentzer, G.: Granularity of conflicts and
dependencies in graph transformation systems. In: ICGT. LNCS, vol. 10373, pp.
125–141. Springer (2017), https://doi.org/10.1007/978-3-319-61470-0_8

3. Corradini, A., Duval, D., Löwe, M., Ribeiro, L., Machado, R., Costa, A., Azzi,
G.G., Bezerra, J.S., Rodrigues, L.M.: On the essence of parallel independence for
the double-pushout and sesqui-pushout approaches. In: Graph Transformation,
Specifications, and Nets. LNCS, vol. 10800, pp. 1–18. Springer (2018), https:

//doi.org/10.1007/978-3-319-75396-6_1

4. Corradini, A., Heindel, T., Hermann, F., König, B.: Sesqui-pushout rewriting. In:
ICGT. LNCS, vol. 4178, pp. 30–45. Springer (2006), https://doi.org/10.1007/
11841883_4

5. Corradini, A., Montanari, U., Rossi, F., Ehrig, H., Heckel, R., Löwe, M.: Algebraic
approaches to graph transformation - part I: basic concepts and double pushout
approach. In: Handbook of Graph Grammars and Computing by Graph Transfor-
mations, Volume 1: Foundations, pp. 163–246. World Scientific (1997)

6. Cota, É.F., Ribeiro, L., Bezerra, J.S., Costa, A., da Silva, R.E., Cota, G.: Using
formal methods for content validation of medical procedure documents. I. J. Med-
ical Informatics 104, 10–25 (2017), https://doi.org/10.1016/j.ijmedinf.2017.
04.012

7. Ehrig, H., Ehrig, K., Habel, A., Pennemann, K.: Constraints and application con-
ditions: From graphs to high-level structures. In: ICGT. LNCS, vol. 3256, pp.
287–303. Springer (2004)

8. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Monographs in Theoretical Computer Science. An EATCS Series,
Springer (2006), https://doi.org/10.1007/3-540-31188-2

9. Ehrig, H., Habel, A., Padberg, J., Prange, U.: Adhesive high-level replacement
categories and systems. In: ICGT. LNCS, vol. 3256, pp. 144–160. Springer (2004),
https://doi.org/10.1007/978-3-540-30203-2_12

10. Ehrig, H., Heckel, R., Kor↵, M., Löwe, M., Ribeiro, L., Wagner, A., Corradini, A.:
Algebraic approaches to graph transformation - part II: single pushout approach
and comparison with double pushout approach. In: Handbook of Graph Grammars.
pp. 247–312. World Scientific (1997)

11. Johnstone, P.T.: Sketches of an elephant: A topos theory compendium, vol. 2.
Oxford University Press (2002)

12. Lack, S., Sobocinski, P.: Adhesive and quasiadhesive categories. ITA 39(3), 511–545
(2005), https://doi.org/10.1051/ita:2005028

13. Lambers, L., Born, K., Orejas, F., Strüber, D., Taentzer, G.: Initial conflicts and
dependencies: Critical pairs revisited. In: Graph Transformation, Specifications,
and Nets. LNCS, vol. 10800, pp. 105–123. Springer (2018), https://doi.org/10.
1007/978-3-319-75396-6_6

14. Lambers, L., Ehrig, H., Orejas, F.: E�cient conflict detection in graph trans-
formation systems by essential critical pairs. ENTCS 211, 17–26 (2008), https:
//doi.org/10.1016/j.entcs.2008.04.026

17

https://doi.org/10.1007/978-3-319-75396-6_9
https://doi.org/10.1007/978-3-319-75396-6_9
https://doi.org/10.1007/978-3-319-61470-0_8
https://doi.org/10.1007/978-3-319-75396-6_1
https://doi.org/10.1007/978-3-319-75396-6_1
https://doi.org/10.1007/11841883_4
https://doi.org/10.1007/11841883_4
https://doi.org/10.1016/j.ijmedinf.2017.04.012
https://doi.org/10.1016/j.ijmedinf.2017.04.012
https://doi.org/10.1007/3-540-31188-2
https://doi.org/10.1007/978-3-540-30203-2_12
https://doi.org/10.1051/ita:2005028
https://doi.org/10.1007/978-3-319-75396-6_6
https://doi.org/10.1007/978-3-319-75396-6_6
https://doi.org/10.1016/j.entcs.2008.04.026
https://doi.org/10.1016/j.entcs.2008.04.026

15. MacLane, S., Moerdijk, I.: Sheaves in geometry and logic: A first introduction to
topos theory. Springer (2012)

16. Mens, T., Taentzer, G., Runge, O.: Analysing refactoring dependencies using graph
transformation. Software and System Modeling 6(3), 269–285 (2007), https://
doi.org/10.1007/s10270-006-0044-6

17. Oliveira Jr., M., Ribeiro, L., Cota, É.F., Duarte, L.M., Nunes, I., Reis, F.: Use case
analysis based on formal methods: An empirical study. In: WADT. LNCS, vol. 9463,
pp. 110–130. Springer (2014), https://doi.org/10.1007/978-3-319-28114-8_7

18. Taentzer, G.: AGG: A graph transformation environment for modeling and vali-
dation of software. In: AGTIVE. LNCS, vol. 3062, pp. 446–453. Springer (2003),
https://doi.org/10.1007/978-3-540-25959-6_35

18

https://doi.org/10.1007/s10270-006-0044-6
https://doi.org/10.1007/s10270-006-0044-6
https://doi.org/10.1007/978-3-319-28114-8_7
https://doi.org/10.1007/978-3-540-25959-6_35

	On the Essence and Initiality of Conflicts
	Introduction
	Preliminaries
	Algebraic Graph Transformation
	Categories of Set-Valued Functors

	The Essence of Conflicting Transformations
	Conflict Essence and Extension
	Comparing Reasons and Essences

	Conflict Essences and Initial Conflicts
	Conclusions

