
BESICOVITCH COVERING PROPERTY FOR HOMOGENEOUS

DISTANCES ON THE HEISENBERG GROUPS

ENRICO LE DONNE AND SÉVERINE RIGOT

Abstract. We prove that the Besicovitch Covering Property (BCP) holds for homoge-
neous distances on the Heisenberg groups whose unit ball centered at the origin coincides
with a Euclidean ball. We provide therefore the first examples of homogeneous distances
that satisfy BCP on these groups. Indeed, commonly used homogeneous distances, such
as (Cygan-)Korányi and Carnot-Carathéodory distances, are known not to satisfy BCP.
We also generalize these previous results showing two geometric criteria that imply the
non-validity of BCP and showing that in some sense our examples are sharp. To put an-
other perspective on our result, inspired by an observation of D. Preiss, we prove that in
a general metric space with an accumulation point, one can always construct bi-Lipschitz
equivalent distances that do not satisfy BCP.

1. Introduction

Covering theorems are known to be among some of the fundamental tools of measure the-
ory. They reflect the geometry of the space and are commonly used to establish connections
between local and global behavior of measures. Covering theorems and their applications
have been studied for example in [5] and [9]. There are several types of covering results,
all with the same purpose: from an arbitrary cover of a set in a metric space, one extracts
a subcover as disjointed as possible. We will consider more specifically here the so-called
Besicovitch Covering Property (BCP) which originates from the work of Besicovitch ([1],
[2], see also [5, 2.8], [20], [21]) in connection with the theory of differentiation of measures.
See Section 1.1 for a more detailed presentation of the Besicovitch Covering Property and
its applications.

The geometric setting in which we are interested is the setting of Carnot groups, and
more specifically here the Heisenberg groups Hn (see Section 1.2), equipped with so-called
homogeneous distances (see Definition 1.9). Our main result in this paper, Theorem 1.14, is
the fact that BCP holds for those homogeneous distances on Hn, denoted by dα in the rest
of this paper, whose unit ball centered at the origin coincides with a Euclidean ball centered
at the origin in exponential coordinates. This gives the first examples of Carnot groups on
which one can construct homogeneous distances satisfying BCP. Moreover we have simple
descriptions of theses distances, as already said geometrically by means of their unit ball
centered at the origin, and also through an explicit algebraic expression, see (1.12).
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Any two homogeneous distances on Hn are bi-Lipschitz equivalent. Recall that two
distances d and d are said to be bi-Lipschitz equivalent if there exists C > 1 such that
C−1d ≤ d ≤ Cd. Hence, for many purposes, the choice of a specific homogeneous dis-
tance doest not matter and Theorem 1.14 is expected to have several applications. One of
them is for instance the extension to Hn of a result of J. Heinonen and P. Koskela about
quasiconformal mappings. Namely, thanks to Theorem 1.14, [11, Theorem 1.4] about quasi-
conformal mappings in Rn extends to quasiconformal mappings in Hn and allows to replace
a “lim sup” by a “lim inf” in the definition of quasiconformal mappings that suffices for
quasisymmetry (see the remark after [11, Theorem 1.4] for more details).

Another noticeable consequence of Theorem 1.14 is the validity of the Differentiation
Theorem for every locally finite Radon measure on Hn equipped with some homogeneous
distance dα (see Section 1.1 and in particular Theorem 1.5). As an application in connection
with recent developments of Geometric Measure Theory on Carnot groups, we note that
this allows to get a simplier proof of the structure theorem for finite perimeter sets in Hn

(see [7], [8]).

It was already noticed that two commonly used homogeneous distances on Hn do not
satisfy BCP, namely the Cygan-Korányi distance, also usually called Korányi or gauge
distance1 [13], and the Carnot-Carathéodory distance [22]. It turns out that the validity of
BCP depends strongly on the distance the space is endowed with, and more specifically on
the geometry of its balls. To put some more evidence on this fact and to put our result in
perspective, we also prove in the present paper two criteria that imply the non-validity of
BCP. They give two large families of homogeneous distances on Hn that do not satisfy BCP
and show that in some sense our example for which BCP holds is sharp. See Section 6, in
particular Theorem 6.1 and Theorem 6.3.

As a matter of fact, our first criterion applies to the Cygan-Korányi and to the Carnot-
Carathéodory distance, thus giving also new geometric proofs of the failure of BCP for these
distances, but is more general. It also applies to the so-called box-distance (the terminology
might not be standard although this distance is a standard homogeneous distance on Hn,
see (6.2)) thus proving the non-validity of BCP for this latter homogeneous distance as well.

Going back to the distances considered in the present paper and for which we prove
that BCP holds, Hebisch and Sikora showed in [10] that in any Carnot group, there are
homogeneous distances whose unit ball centered at the origin coincides with a Euclidean ball
centered at the origin with a small enough radius. In the specific case of the Heisenberg
groups, these distances are related to the Cygan-Korányi distance. They can indeed be
expressed in terms of the quadratic mean of the Cygan-Korányi distance (at least for some
specific value of the radius of the Euclidean ball which coincides with the unit ball centered
at the origin) together with the pseudo-distance on Hn given by the Euclidean distance
between horizontal components.

These distances have been previously considered in the literature. Lee and Naor proved
in [18] that these metrics are of negative type on Hn. Recall that a metric space (M,d) is

said to be of negative type if (M,
√
d) is isometric to a subset of a Hilbert space. Combined

1We adopt here the terminology Cygan-Korányi distance, that may not be standard, to emphasize the
fact that Cygan [4] first observed that the natural gauge in the Heisenberg groups actually induces a distance,
following in that sense Korányi [12] who also attributes this distance to Cygan.
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with the work of Cheeger and Kleiner [3] about weak notion of differentiability for maps
from Hn into L1, which leads in particular to the fact that Hn equipped with a homogeneous
distance does not admit a bi-Lipschitz embedding into L1, this provides a counterexample
to the Goemans-Linial conjecture in theoretical computer science, which was the motivation
for these papers. Let us remark that the Cygan-Korányi distance is not of negative type on
Hn.

We refer to Section 1.2 for the precise definition of our distances dα and their connection
with the Cygan-Korányi distance and the distances of negative type considered in [18].

1.1. Besicovitch Covering Property. Let (M,d) be a metric space. When speaking of
a ball B in M , it will be understood in this paper that B is a closed ball and that it comes
with a fixed center and radius (although these in general are not uniquely determined by
B as a set). Thus B = Bd(p, r) for some p ∈ M and some r > 0 where Bd(p, r) = {q ∈
M ; d(q, p) ≤ r}.

Definition 1.1 (Besicovitch Covering Property). One says that the Besicovitch Covering
Property (BCP) holds for the distance d on M if there exists an integer N ≥ 1 with the
following property. Let A be a bounded subset of (M,d) and let B be a family of balls in
(M,d) such that each point of A is the center of some ball of B. Then there is a subfamily
F ⊂ B whose balls cover A and such that every point in M belongs to at most N balls of
F , that is,

χA ≤
∑
B∈F

χB ≤ N,

where χA denotes the characteristic function of a set A.

When equipped with a homogeneous distance, the Heisenberg groups turn out to be
doubling metric spaces. Recall that this means that there exists an integer C ≥ 1 such that
each ball with radius r > 0 can be covered with less than C balls with radius r/2. When
(M,d) is a doubling metric space, BCP turns out to be equivalent to a covering property,
strictly weaker in general, that we call the Weak Besicovitch Covering Property (w-BCP)
(the terminology might not be standard) and with which we shall work in this paper. First,
let us fix some more terminology with the following definition.

Definition 1.2 (Family of Besicovitch balls). We say that a family B of balls in (M,d) is
a family of Besicovitch balls if B = {B = Bd(xB, rB)} is a finite family of balls such that
xB 6∈ B′ for all B, B′ ∈ B, B 6= B′, and for which

⋂
B∈B B 6= ∅.

Definition 1.3 (Weak Besicovitch Covering Property). One says that the Weak Besicovitch
Covering Property (w-BCP) holds for the distance d on M if there exists an integer N ≥ 1
such that CardB ≤ N for every family B of Besicovitch balls in (M,d).

The validity of BCP implies the validity of w-BCP. We stress that there exists metric
spaces for which w-BCP holds although BCP is not satisfied. However, when the metric is
doubling, both covering properties turn out to be equivalent as stated in Characterization 1.4
below. This characterization can be proved following the arguments of the proof of [19,
Theorem 2.7], see also [17].
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Characterization 1.4 (BCP in doubling metric spaces). Let (M,d) be a doubling metric
space. Then BCP holds for the distance d on M if and only if w-BCP holds for the distance
d on M .

As already said, covering theorems and especially the Besicovitch Covering Property
and the Weak Besicovitch Covering Property play an important role in many situations in
measure theory, regularity and differentiation of measures, as well as in many problems in
Harmonic Analysis. This is particularly well illustrated by the connection between w-BCP
and the so-called Differentiation theorem. The validity of BCP in the Euclidean space is due
to Besicovitch and was a key tool in his proof of the fact that the Differentiation theorem
holds for each locally finite Borel measure on Rn ([1], [2], see also [5, 2.8], [20]). Moreover,
as emphasized in Theorem 1.5, the validity of w-BCP turns actually out to be equivalent
to the validity of the Differentiation theorem for each locally finite Borel measure as shown
in [21].

Theorem 1.5. [21, Preiss] Let (M,d) be a complete separable metric space. Then the
Differentiation Theorem holds for each locally finite Borel measure µ on (M,d), that is,

lim
r→0+

1

µ(Bd(p, r))

∫
Bd(p,r)

f(q) dµ(q) = f(p)

for µ-almost every p ∈ M and for each f ∈ L1(µ) if and only if M = ∪n∈NMn where, for
each n ∈ N, w-BCP holds for family of balls centered on Mn with radii less than rn for some
rn > 0.

As already stressed, the fact that BCP holds in a metric space depends strongly on the
distance with which the space is endowed. On the one hand, with very mild assumptions
on the metric space (namely, as soon as there exists an accumulation point), one can indeed
always construct bi-Lipschitz equivalent distances as close as we want from the original
distance and for which BCP is not satisfied, as shown in the following result.

Theorem 1.6. Let (M,d) be a metric space. Assume that there exists an accumulation
point in (M,d). Let 0 < c < 1. Then there exists a distance d on M such that c d ≤ d ≤ d
and for which w-BCP, and hence BCP, do not hold.

A slightly different version of this result is stated in Theorem 3 of [21]. For sake of
completeness, in Section 8 we give a construction of such a distance as stated in Theorem 1.6.

On the other hand, the question whether a metric space can be remetrized so that BCP
holds is in general significantly more delicate. As already explained, the main result of the
present paper, Theorem 1.14, is a positive answer to this question for the Heisenberg groups
equipped with ad-hoc homogeneous distances, namely those whose unit ball at the origin
coincides with a Euclidean ball with a small enough radius.

1.2. The Heisenberg group. As a set we identify the Heisenberg group Hn with R2n+1

and we equip it as a topological space with the Euclidean topology. We choose the following
convention for the group law

(1.7) (x, y, z) · (x′, y′, z′) := (x+ x′, y + y′, z + z′ +
1

2
〈x, y′〉 − 1

2
〈y, x′〉)
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where x, y, x′ and y′ belong to Rn, z and z′ belong to R and 〈·, ·〉 denotes the usual scalar
product in Rn. This corresponds to a choice of exponential and homogeneous coordinates.

The one parameter family of dilations on Hn is given by (δλ)λ>0 where

(1.8) δλ(x, y, z) := (λx, λy, λ2z).

These dilations are group automorphisms.

Definition 1.9 (Homogeneous distance). A distance d on Hn is said to be homogeneous if
it is left invariant, that is, d(p · q, p · q′) = d(q, q′) for all p, q, q′ ∈ Hn, and one-homogeneous
with respect to the dilations, that is, d(δλ(p), δλ(q)) = λ d(p, q) for all p, q ∈ Hn and all
λ > 0.

We stress that homogeneous distances on Hn induce the Euclidean topology on Hn. This
is a non trivial fact which follows from the continuity of the dilations with respect to the
Euclidean topology together with the homogeneity of the distance as stated in Definition 1.9,
see [15] and [17].

It turns out that homogeneous distances on Hn do exist in abundance and make it a
doubling metric space. It is also well known that any two homogeneous distances are bi-
Lipschitz equivalent. See for example [6] for more details about the Heisenberg groups and
more generally Carnot groups.

The (family of) homogeneous distance(s) we consider in this paper can be defined in the
following way. For α > 0, we denote by Bα the Euclidean ball in Hn ' R2n+1 centered at
the origin with radius α, that is,

Bα := {(x, y, z) ∈ Hn; ‖x‖2Rn + ‖y‖2Rn + |z|2 ≤ α2},
where ‖ · ‖Rn denotes the Euclidean norm in Rn and we set

(1.10) dα(p, q) := inf{r > 0; δ1/r(p
−1 · q) ∈ Bα} .

Hebisch and Sikora proved in [10] that if α > 0 is small enough, then dα actually defines
a distance on Hn. More generally this holds true in any Carnot group starting from the
set Bα given by the Euclidean ball centered at the origin with radius α > 0 small enough,
where one identifies in the usual way the group with some Rm where m is its topological
dimension.

It then follows from the very definition that dα turns out to be the homogeneous distance
on Hn for which the unit ball centered at the origin coincides with the Euclidean ball with
radius α centered at the origin. The geometric description of arbitrary balls that can then
be deduced from the unit ball centered at the origin via dilations and left-translations is
actually of crucial importance for understanding the reasons why BCP eventually holds for
these distances.

On the other hand, it is particularly convenient to note that in the specific case of the
Heisenberg groups, one also has a fairly simple analytic expression for such distances whose
unit ball at the origin is given by a Euclidean ball centered at the origin. This will actually
be technically extensively used in our proof of Theorem 1.14. This also gives the explicit
connection with the Cygan-Korányi distance and the distances of negative type considered
by Lee and Naor in [18].
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Set

(1.11) ρ(p) :=
»
‖x‖2Rn + ‖y‖2Rn and ‖p‖g,α :=

Ä
ρ(p)4 + 4α2|z|2

ä1/4
for p = (x, y, z) ∈ Hn. Then, as verified in see Section 2, one has

(1.12) dα(p, q) =

√
ρ(p−1 · q)2 + ‖p−1 · q‖2g,α

2α2
.

First, note that dρ(p, q) := ρ(p−1 · q) is a left-invariant pseudo-distance on Hn that is
one-homogeneous with respect to the dilations. Next, when α = 2, ‖·‖g,2 is nothing but the
Cygan-Korányi norm which is well known to be a natural gauge in Hn. It can actually be
checked by direct computations that dg,α(p, q) := ‖p−1 ·q‖g,α satisfies the triangle inequality
for any 0 < α ≤ 2 and hence defines a homogeneous distance on Hn. This was first proved
by Cygan in [4] when α = 2. One then recovers from the analytic expression (1.12) that dα
actually defines a homogeneous distance on Hn for any 0 < α ≤ 2, giving also an explicit
range of values of α in Hn for which this fact holds and was first observed in [10] for general
Carnot groups and for small enough values of α.

Theorem 1.13. For any 0 < α ≤ 2, dα defines a homogeneous distance on Hn.

There might be other values of α > 2 such that dα defines a homogeneous distance on
the group Hn.

These distances turn out to be those considered by Lee and Naor in [18]. The authors
actually proved in [18] that d2 is of negative type in Hn to provide a counterexample to the
so-called Goemans-Linial conjecture. Let us mention that it can easily be checked that the
proof in [18] extend to the distances dα for all 0 < α ≤ 2.

Let us now state our main result.

Theorem 1.14. Let α > 0 be such that dα defines a homogeneous distance on Hn. Then
BCP holds for the homogeneous distance dα on Hn.

For technical and notational simplicity, we will focus our attention on the first Heisenberg
group H = H1. We shall point out briefly in Section 7 the non-essential modifications needed
to make our arguments work in any Heisenberg group Hn.

The rest of the paper is organized as follows. In Section 2 we fix some conventions about H
and the distance dα and state three technical lemmas on which the proof of Theorem 1.14
is based. The proof of these lemmas is given in Sections 4 and 5. Section 3 is devoted
to the proof of Theorem 1.14 itself. In Section 6 we prove two criteria, Theorem 6.1
and Theorem 6.3, for homogeneous distances on H that imply that BCP does not hold.
Theorem 1.6 is proved in Section 8.

In a forthcoming paper, in part based on some results from the present paper, we intend
to prove that on stratified groups of step 2 homogeneous distances satisfying BCP do exist
whereas such homogeneous distances do not exist on stratified groups of step higher than
3, see [17].
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2. Preliminary results

As already stressed we will focus our attention in Sections 2 to 6 on the first Heisenberg
group H = H1 for technical and notational simplicity. The modifications needed to handle
the case of Hn for any n ≥ 1 will be indicated in Section 7.

We first fix some conventions and notations. Next, we will conclude this section with the
statement of the main lemmas on which the proof of Theorem 1.14 will be based.

Recall that we identify the Heisenberg group H with R3 equipped with the group law
given in (1.7) and we equip it with the Euclidean topology.

We define the projection π : H→ R2 by

(2.1) π(x, y, z) := (x, y).

When considering a specific point p ∈ H, we shall usually denote by (xp, yp, zp) its coor-
dinates and we set

(2.2) ρp :=
»
x2
p + y2

p .

From now on in this section, as well as in Sections 3, 4 and 5, we fix some α > 0 such
that dα as given in (1.10) defines a homogeneous distance on H. Thus all metric notions
and properties will be understood in these sections relatively to this fixed distance dα. In
particular we shall denote the closed balls with center p ∈ H and radius r > 0 by B(p, r)
without further explicit reference to the distance dα with respect to which they are defined.

Remembering (1.10), we have the following properties.

Proposition 2.3. For p = (xp, yp, zp) ∈ H, we have

(2.4) dα(0, p) ≤ r ⇐⇒
ρ2
p

r2
+
z2
p

r4
≤ α2

and

(2.5) dα(0, p) = r ⇐⇒
ρ2
p

r2
+
z2
p

r4
= α2

from which we get

(2.6) dα(0, p) =

√
ρ2
p +
»
ρ4
p + 4α2z2

p

2α2
.

For a point p ∈ H, we shall set

(2.7) rp := dα(0, p) .

Using left-translations, we have the following properties for any two points p, q ∈ H,

(2.8) dα(p, q) ≤ r ⇐⇒
ρ2
p−1·q
r2

+
z2
p−1·q
r4

≤ α2

and

(2.9) dα(p, q) =

Ã
ρ2
p−1·q +

√
ρ4
p−1·q + 4 α2 z2

p−1·q

2α2
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where
ρp−1·q =

»
(xq − xp)2 + (yq − yp)2

and

zp−1·q = zq − zp −
xpyq − ypxq

2
by definition of the group law (1.7). Note that if p = (xp, yp, zp) ∈ H then p−1 =
(−xp,−yp,−zp).

Let us point out that balls in (H, dα) are convex in the Euclidean sense when identifying
H with R3 with our chosen coordinates. Indeed, the unit ball centered at the origin is by
definition the Euclidean ball with radius α in H ' R3 and thus is Euclidean convex. Next,
dilations (1.8) are linear maps and left-translations (see (1.7)) are affine maps, hence

B(p, r) = p · δr(B(0, 1))

is also a Euclidean convex set in H ' R3. This will be of crucial use for some of our
arguments in the sequel and we state it below as a proposition for further reference.

Proposition 2.10. Balls in (H, dα) are convex in the Euclidean sense when identifying H
with R3 with our chosen coordinates.

We shall also use the following isometries of (H, dα). First, rotations around the z-axis
are defined by

(2.11) Rθ : (x, y, z) 7→ (x cos θ − y sin θ, x sin θ + y cos θ, z)

for some angle θ ∈ R. Next, the reflection R is defined by

(2.12) R(x, y, z) := (x,−y,−z).
Using (2.9), one can easily check that these maps are isometries of (H, dα).

We state now the main lemmas on which the proof of Theorem 1.14 will be based.

For θ ∈ (0, π/2), a > 0 and b > 0, we set (see Figure 1)

(2.13) P(a, b, θ) := {p ∈ H; xp > a, |zp| < b, |yp| < xp tan θ}.

Lemma 2.14. There exists θ0 ∈ (0, π/4), which depends only on α, such that for all
θ ∈ (0, θ0), there exists a0(θ) ≥ 1 such that for all a > a0(θ) and for all b ∈ (0, 1), the
following holds. Let p ∈ H and q ∈ H be such that p /∈ B(q, rq) and q /∈ B(p, rp). Then at
most one of these two points belongs to P(a, b, θ).

For a > 0 and b > 0, we set (see Figure 2(a))

(2.15) T (a, b) := {p ∈ H; zp < −a, ρp < b}.

Lemma 2.16. There exists a1 ≥ 1 and b1 ∈ (0, 1), depending only on α, such that for all
a > a1 and all b ∈ (0, b1), the following holds. Let p ∈ H and q ∈ H be such that p /∈ B(q, rq)
and q /∈ B(p, rp). Then at most one of these two points belongs to T (a, b).

These two lemmas will be proved in Section 4.

For θ ∈ (0, π/2), we set (see Figure 2(b))

(2.17) C(θ) := {p ∈ H; |yp| < xp tan θ}.
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Figure 1. Two views of the region P(a, b, θ).

(a) The truncated cylinder T (a, b) (b) The conic sector C(θ).

Figure 2. The regions T (a, b) and C(θ).

Lemma 2.18. There exists θ1 ∈ (0, π/8), which depends only on α, such that for all
θ ∈ (0, θ1) the following holds. Let p ∈ H and q ∈ H be such that

zq ≤ 0 and zp ≤ 0(2.19)

ρq ≤ ρp(2.20)

q ∈ C(θ) and p ∈ C(θ)(2.21)

q 6∈ B(p, rp) and p 6∈ B(q, rq).(2.22)
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Then we have

(2.23) zq < 2 zp

and

(2.24) ρq < ρp cos(2θ).

This lemma will be proved in Section 5.

3. Proof of Theorem 1.14

This section is devoted to the proof of Theorem 1.14. Recall that we consider here the
case H = H1 equipped with a homogeneous distance dα as defined in (1.10) (see Section 7 for
the general case Hn, n ≥ 1). Recall also that due to Characterization 1.4, Theorem 1.14 will
follow if we find an integer N ≥ 1 such that CardB ≤ N for every family B of Besicovitch
balls. See Definition 1.2 for the definition of a family of Besicovitch balls.

We first reduce the proof to the case of some specific families of Besicovitch balls. In
what follows, when considering families of points {pj} we shall simplify the notations and

set pj = (xj , yj , zj), ρj =
»
x2
j + y2

j and rj = dα(0, pj). Recall that C(θ) is defined in (2.17).

Lemma 3.1. Let θ ∈ (0, π/2) and let B be a family of Besicovitch balls. Then there exists
a finite family of points {pj} such that F = {B(pj , rj)} is a family of Besicovitch balls with
the following properties. For every point pj in the family, we have

zj ≤ 0,(3.2)

pj ∈ C(θ),(3.3)

and

(3.4) CardB ≤ 2

Å
π

θ
+ 1

ã
CardF + 2.

Proof. Let B = {B(qj , tj)}kj=1 be a family of Besicovitch balls where k = CardB. Take

q ∈ ∩kj=1B(qj , tj). Set pj = q−1 · qj . Remembering that left-translations are isometries and

that, by convention, we set rj = dα(0, pj), we get that 0 ∈ ∩kj=1B(pj , rj) and dα(pj , pi) =

dα(qj , qi) > max(tj , ti) ≥ max(rj , ri) hence B′ = {B(pj , rj)}kj=1 is a family of Besicovitch
balls.

Since balls are Euclidean convex (see Proposition 2.10) and since 0 ∈ ∂B(pj , rj) for all
j = 1, . . . , k, there are at most two balls in B′ with their center on the z-axis.

Next, up to replacing the family {pj} by {R(pj)} (see (2.12) for the definition of the
reflection R) and up to re-indexing the points, one can find l points p1, . . . , pl that satisfy
(3.2), such that π(p1), . . . , π(pl) 6= 0 (see (2.1) for the definition of the projection π), and
with 2l ≥ (k − 2).

Finally, up to a rotation around the z-axis (see (2.11) for the definition of rotations) and
up to re-indexing the points, we get by the pigeonhole principle that there exists an integer
k′ such that

(
π

θ
+ 1) k′ ≥ l
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and such that pj satisfies (3.3) for all j = 1, . . . , k′. Then the family F = {B(pj , rj)}k
′
j=1

gives the conclusion. �

We are now ready to conclude the proof of Theorem 1.14 using Lemma 2.14, Lemma 2.16
and Lemma 2.18.

Proof of Theorem 1.14. We fix some values of θ ∈ (0, π/8), a > 0, and b > 0 so that the
conclusions of Lemma 2.14, Lemma 2.16 and Lemma 2.18 hold.

Next, we fix some R > 0 large enough so that

{p ∈ H; xp ∈ [0, a], |zp| < b, |yp| < xp tan θ} ⊂ U(0, R)

and

{p ∈ H; zp ∈ [−a, 0], ρp < b} ⊂ U(0, R),

where U(0, R) denotes the open ball with center 0 and radius R in (H, dα). Such an R exists
since in the above two inclusions, the sets on the left are bounded. As a consequence, we
have

(3.5) (H \ U(0, R)) ∩ {p ∈ H; |zp| < b, |yp| < xp tan θ} ⊂ P(a, b, θ)

and

(3.6) (H \ U(0, R)) ∩ {p ∈ H; zp ≤ 0, ρp < b} ⊂ T (a, b),

recall (2.13) for the definition of P(a, b, θ) and (2.15) for the definition of T (a, b).

Let us now consider a family of Besicovitch balls F = {B(pj , rj)}kj=1 where, as defined by
convention, we have rj = dα(0, pj) and where the centers pj satisfy (3.2) and (3.3). Noting

that the family {B(δλ(pj), λrj)}kj=1 also satisfies the same properties for all λ > 0, one can
assume with no loss of generality that

R = min{dα(0, pj); j = 1, . . . , k}
up to a dilation by a factor λ = R/min{r1, . . . , rk}.

Let m > 0 and M > 0 be defined as

−m := min{zp; p ∈ B(0, R)}
and

M := max{ρp; p ∈ B(0, R)}.
We will bound k = CardF in terms of the constants m, M , b and θ.

We re-index the points so that

0 < ρ1 ≤ ρ2 ≤ . . . ≤ ρk.
Let l ∈ {1, . . . , k} be such that dα(0, pl) = R. By choice of l and by definition of m and M ,
we have

ρl ≤M and −m ≤ zl .

Let j0 ≥ 1 be a large enough integer such that M cosj0(2θ) < b. Then we have l ≤ j0 + 1.
Indeed, otherwise we would get from (2.24) in Lemma 2.18 that

0 < ρ1 < ρ2 cos(2θ) < · · · < ρl cosl−1(2θ) ≤M cosj0+1(2θ) < b cos(2θ)
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and hence ρ1 < ρ2 < b. Then, by choice of R (remember (3.6)), p1 and p2 would be distinct
points in T (a, b) which contradicts Lemma 2.16.

Let j1 ≥ 1 be a large enough integer such that 2−j1m < b. Then we have k − l ≤ j1.
Indeed, otherwise we would get from (2.23) in Lemma 2.18 that

−m ≤ zl < · · · < 2k−l−1zk−1 < 2k−lzk ≤ 0

and hence |zk| < |zk−1| < 2−(k−l−1)m ≤ 2−j1m < b. Then, by choice of R (remember (3.5)),
pk−1 and pk would be distinct points in P(a, b, θ) which contradicts Lemma 2.14.

All together we get the following bound on CardF = k,

CardF ≤ log2(m/b) + logcos(2θ)(b/M) + 3.

Combining this with (3.4) in Lemma 3.1, we get the following bound on the cardinality
of arbitrary families B of Besicovitch balls,

CardB ≤ 2(π/θ + 1)(log2(m/b) + logcos(2θ)(b/M) + 3) + 2 ,

which concludes the proof of Theorem 1.14. �

4. Proof of Lemma 2.14 and of Lemma 2.16

This section is devoted to the proof of Lemma 2.14 and Lemma 2.16. We begin with a
remark that will be technically useful. Given p ∈ H and q ∈ H, we set

Ap(q) := r2
p

Ä
x2
q + y2

q − 2xqxp − 2yqyp
ä

+

Å
zq −

xpyq − xqyp
2

ã2

− 2zp

Å
zq −

xpyq − xqyp
2

ã
.

Recall that, following (2.7), we have rp = dα(0, p) by convention.

Lemma 4.1. We have q ∈ B(p, rp) if and only if Ap(q) ≤ 0.

Proof. Recalling (2.8), we have

dα(p, q) ≤ rp ⇐⇒
(xq − xp)2

r2
p

+
(yq − yp)2

r2
p

+

Å
zq − zp −

xpyq − xqyp
2

ã2

r4
p

≤ α2 .

Combining this with (2.5), which gives

x2
p + y2

p

r2
p

+
z2
p

r4
p

= α2 ,

we get the conclusion. �
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(a) The quadrilateral R(t, b, θ) (b) The disc D(t, b)

Figure 3. The surfaces R(t, b, θ) and D(t, b).

4.1. Proof of Lemma 2.14.

Lemma 4.2. There exist constants c1 > 0 and c2 > 0, depending only on α, such that, for
all θ ∈ (0, π/4), all a > 0 and b > 0 such that a2 ≥ b, we have

c1 xp ≤ rp ≤ c2 xp

for all p ∈ P(a, b, θ).

Proof. By (2.6), we always have r2
p ≥ x2

p/(2α
2). On the other hand, we can bound from

above r2
p using that tan θ < 1, since θ < π/4, and that |zp| < b ≤ a2 ≤ x2

p if p ∈ P(a, b, θ)
(see (2.13) for the definition of P(a, b, θ)). Namely, we have

r2
p =

x2
p + y2

p +
»

(x2
p + y2

p)
2 + 4α2z2

p

2α2

≤
x2
p(1 + tan2 θ) +

»
(x2
p(1 + tan2 θ))2 + 4α2z2

p

2α2

≤
2x2

p +
»

4x4
p + 4α2b2

2α2

≤ 2 +
√

4 + 4α2

2α2
x2
p .

�

For t ∈ R, b > 0 and θ ∈ (0, π/2), we set (see Figure 3(a))

R(t, b, θ) := {p ∈ H; xp = t, |zp| < b, |yp| < xp tan θ}.
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Lemma 4.3. There exists θ0 ∈ (0, π/4), which depends only on α, such that for all θ ∈
(0, θ0), there exists a0(θ) ≥ 1 such that for all a > a0(θ) and for all b ∈ (0, 1), we have

R(t, b, θ) ⊂ B(p, rp)

for all p ∈ P(a, b, θ) and all t ∈ [1, xp].

Proof. Take θ ∈ (0, π/4), a ≥ 1 > b, p ∈ P(a, b, θ), t > 0 and consider q ∈ R(t, b, θ). By
Lemma 4.1, showing that q ∈ B(p, rp) is equivalent to prove that Ap(q) is negative. Since
xq = t, we have

Ap(q) = r2
p

Ä
t2 + y2

q − 2txp − 2yqyp
ä

+

Å
zq −

xpyq − typ
2

ã2

− 2zp

Å
zq −

xpyq − typ
2

ã
≤ r2

p

Ä
t2 + y2

q − 2txp + 2|yqyp|
ä

+

Ç
|zq|+

|xpyq|+ t|yp|
2

å2

+ 2|zp|
Ç
|zq|+

|xpyq|+ t|yp|
2

å
.

Note that all terms in the last inequality are positive except −2txp, since both t and xp are
positive.

We now use the conditions |yq| < t tan θ, |zq| < b, xp > a, |yp| < xp tan θ, |zp| < b, b < 1
and tan θ < 1, since θ < π/4, to get

Ap(q) ≤ r2
p

Ä
t2 + t2 tan2 θ − 2txp + 2xpt tan2 θ

ä
+ (b+ txp tan θ)2 + 2b2 + 2btxp tan θ

≤ −2txpr
2
p + r2

p

Ä
t2 + t2 tan2 θ + 2xpt tan2 θ

ä
+ (1 + xpt tan θ)2 + 2 (1 + xpt) .

We consider now separately the case t = 1 and t = xp.

For t = 1, we bound using Lemma 4.2

Ap(q) ≤ −2xpr
2
p + r2

p

Ä
1 + tan2 θ + 2xp tan2 θ

ä
+ (1 + xp tan θ)2 + 2 (1 + xp)

≤ −2c2
1x

3
p + c2

2x
2
p

Ä
1 + tan2 θ + 2xp tan2 θ

ä
+ (1 + xp tan θ)2 + 2 (1 + xp)

≤ −2
Ä
c2

1 − c2
2 tan2 θ

ä
x3
p + 2c2

2x
2
p + (1 + xp)

2 + 2 (1 + xp) .

Hence Ap(q) ≤ −2
(
c2

1 − c2
2 tan2 θ

)
x3
p + o(x3

p) as xp goes to infinity. Thus, choosing θ small

enough so that c2
1 − c2

2 tan2 θ > 0, we get that Ap(q) ≤ 0 provided xp is large enough.

For t = xp, we use once again Lemma 4.2 and get

Ap(q) ≤ −2r2
px

2
p + r2

p

Ä
x2
p + 3x2

p tan2 θ
ä

+
Ä
1 + x2

p tan θ
ä2

+ 2
Ä
1 + x2

p

ä
≤ −c2

1x
4
p + 3c2

2x
4
p tan2 θ +

Ä
1 + x2

p tan θ
ä2

+ 2
Ä
1 + x2

p

ä
≤ −

Ä
c2

1 − 3c2
2 tan2 θ − tan2 θ

ä
x4
p + 1 + 2x2

p + 2
Ä
1 + x2

p

ä
.

Hence Ap(q) ≤ −
(
c2

1 − 3c2
2 tan2 θ − tan2 θ

)
x4
p + o(x4

p) as xp goes to infinity. Thus, choosing

θ small enough so that c2
1 − 3c2

2 tan2 θ − tan2 θ > 0, we get that Ap(q) ≤ 0 provided xp is
large enough.

All together we have showed that one can find θ0 ∈ (0, π/4), depending only on α, and for
all θ ∈ (0, θ0(α)), some a0(θ) ≥ 1, such that for a > a0(θ) and b < 1 and for all p ∈ P(a, b, θ),
we have

R(1, b, θ) ⊂ Bα(p, rp) and R(xp, b, θ) ⊂ Bα(p, rp).
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Since Bα(p, rp) is Euclidean convex by Proposition 2.10, we conclude the proof noting that
R(t, b, θ), for t ∈ [1, xp], is in the Euclidean convex hull of R(1, b, θ) and R(xp, b, θ). �

Proof of Lemma 2.14. Let θ0 ∈ (0, π/4) be given by Lemma 4.3. Let θ ∈ (0, θ0) and
let a0(θ) ≥ 1 be given by Lemma 4.3. Let a > a0(θ) and b ∈ (0, 1). Let p ∈ H and
q ∈ H be such that p /∈ B(q, rq) and q /∈ B(p, rp). Let us assume with no loss of generality
that xq ≤ xp. Then, if both p and q were in P(a, b, θ), by Lemma 4.3 we would have
q ∈ R(xq, b, θ) ⊂ B(p, rp) since xq ∈ [1, xp]. But this would contradict the assumptions. �

4.2. Proof of Lemma 2.16.

Lemma 4.4. Let a ≥ 1 and b > 0. Then for all p ∈ T (a, b), we have

r2
p ≤

b2 +
√
b4 + 4α2

2α2
|zp|.

Proof. Let p ∈ T (a, b) (see (2.15) for the definition of T (a, b)). Since 1 ≤ a < |zp| and
ρp < b, we have (recall (2.6))

r2
p ≤
|zp|ρ2

p +
»
z2
pρ

4
p + 4α2z2

p

2α2

=
ρ2
p +
»
ρ4
p + 4α2

2α2
|zp|

≤ b2 +
√
b4 + 4α2

2α2
|zp| .

�

For t ∈ R and b > 0, we set (see Figure 3(b))

D(t, b) := {p ∈ H; zq = t, ρp < b}.

Lemma 4.5. There exists a1 ≥ 1 and b1 ∈ (0, 1), depending only on α, such that for all
a > a1 and all b ∈ (0, b1), we have

D(t, b) ⊂ B(p, rp)

for all p ∈ T (a, b) and all t ∈ [zp,−1].

Proof. Take a ≥ 1 > b, p ∈ T (a, b), t < 0 and consider q ∈ D(t, b). By Lemma 4.1, showing
that q ∈ B(p, rp) is equivalent to prove that Ap(q) ≤ 0 . Since zq = t, we have

Ap(q) = r2
p

Ä
x2
q + y2

q − 2xqxp − 2yqyp
ä

+

Å
t− xpyq − xqyp

2

ã2

− 2zp

Å
t− xpyq − xqyp

2

ã
≤ r2

p

Ä
x2
q + y2

q + 2|xqxp|+ 2|yqyp|
ä

+

Ç
|t|+ |xpyq|+ |xqyp|

2

å2

− 2tzp + |zp| (|xpyq|+ |xqyp|) .
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Note that all terms in the last inequality are positive except −2tzp, assuming both t and zp
negative. We bound using Lemma 4.4 and using that the absolute value of each of the first
two components of p and q is smaller than b,

Ap(q) ≤ 6
b2 +

√
b4 + 4α2

2α2
b2|zp|+

Ä
|t|+ b2

ä2 − 2tzp + 2b2|zp|

≤ −zp + (|t|+ 1)2 − 2tzp ,

where in the last inequality we assumed that b is small enough, b < b1 for some b1 which
depends only on α.

We consider now separately the case t = −1 and t = zp. For t = −1, we need zp + 4 ≤ 0

which is true as soon as zp ≤ −4. For t = zp, we need−zp+(−zp + 1)2−2z2
p = −z2

p−3zp+1 ≤
0 which is true as soon as |zp| is large enough.

All together we showed that one can find a1 ≥ 1 and b1 ∈ (0, 1), depending only on α,
such that, for all a > a1 and b ∈ (0, b1) and all p ∈ T (a, b), we have

D(−1, b) ⊂ B(p, rp) and D(zp, b) ⊂ B(p, rp).

Recall that the set B(p, rp) is Euclidean convex by Proposition 2.10. Therefore we con-
clude the proof since D(t, b), for t ∈ [zp,−1], is in the Euclidean convex hull of D(−1, b)
and D(zp, b). �

Proof of Lemma 2.16. Let a1 ≥ 1 and b1 ∈ (0, 1) be given by Lemma 4.5. Let a > a1

and b ∈ (0, b1). Let p ∈ H and q ∈ H be such that p /∈ B(q, rq) and q /∈ B(p, rp). Assume
with no loss of generality that zp ≤ zq. Then, if both p and q were in T (a, b), by Lemma 4.5
we would have q ∈ D(zq, b) ⊂ B(p, rp) since zq ∈ [zp,−1]. But this would contradict the
assumptions. �

5. Proof of Lemma 2.18

This section is devoted to the proof of Lemma 2.18. We first fix some notations. For
z ∈ R, we set pz := (0, 0, z).

For θ ∈ (0, π/2), p ∈ H and z ∈ R, let C(z, π(p), θ) denote the two dimensional Euclidean
half cone in H ' R3 contained in the plane {q ∈ H; zq = z} with vertex pz, axis the half
line starting at pz and passing through (xp, yp, z) and aperture 2θ. See Figure 4(a).

For θ ∈ (0, π/2), p ∈ H and z ∈ R, let Q(z, π(p), θ) denote the two dimensional Euclidean
equilateral quadrilateral contained in the plane {q ∈ H; zq = z} with vertices pz, p

+
θ :=

(xp − yp tan θ, yp + xp tan θ, z), p−θ := (xp + yp tan θ, yp − xp tan θ, z) and p̌z := (2xp, 2yp, z).
Note that it is the Euclidean convex hull in H ' R3 of these four points. See Figure 4(b).

Recall (2.17) for the definition of C(θ). Note that q ∈ C(θ) if and only if (xq, yq, 0) ∈
C(0, π((1, 0, 0)), θ).

We have the following properties,

(5.1) p ∈ C(θ) and q ∈ C(θ)⇒ q ∈ C(zq, π(p), 2θ)

and

(5.2) Q(z, π(p), θ) ⊂ C(z, π(p), θ).
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(0, 0, z).

p .

θ

(a) The cone C(z, π(p), θ) containing the quadrilateral
Q(z, π(p), θ).

(0, 0, z) p̂z
.

p+
θ

.

(xp, yp, z).

p−θ

.

(b) The quadrilateral Q(z, π(p), θ).

Figure 4. The surfaces C(z, π(p), θ) and Q(z, π(p), θ).

For θ ∈ (0, π/4), we have

(5.3) C(z, π(p), θ) ∩ {q ∈ H; ρq cos θ ≤ ρp} ⊂ Q(z, π(p), θ).

This follows from elementary geometry noting that the angle between the half lines start-
ing at p+

θ and passing through pz and p̌z respectively is larger than π/2.

Lemma 5.4. There exists θ2 ∈ (0, π/2), which depends only on α, such that

Q(z, π(p), θ) ⊂ B(p, rp)

for all 0 < θ ≤ θ2, all p ∈ H \ {0} and all z ∈ R such that |z − zp| ≤ |zp|.

Proof. Recalling Proposition 2.10, we only need to prove that the vertices pz, p
+
θ , p−θ and

p̌z of Q(z, π(p), θ) belong to B(p, rp).

We have |z − zp| ≤ |zp| and, recalling (2.5) and (2.7),

ρ2
p

r2
p

+
|zp|2

r4
p

= α2

hence
ρ2
p

r2
p

+
|z − zp|2

r4
p

≤
ρ2
p

r2
p

+
|zp|2

r4
p

= α2

that is, recalling (2.8), pz = (0, 0, z) ∈ B(p, rp).

Similarly we have

(2xp − xp)2

r2
p

+
(2yp − yp)2

r2
p

+
|z − zp|2

r4
p

=
ρ2
p

r2
p

+
|z − zp|2

r4
p

≤ α2

hence p̌z = (2xp, 2yp, z) ∈ B(p, rp).
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Next, let us prove that p+
θ = (xp − yp tan θ, yp + xp tan θ, z) ∈ B(p, rp). Set

∆ :=

Ç
z − zp −

ρ2
p tan θ

2

å2

r4
p

+
ρ2
p tan2 θ

r2
p

.

We need to prove that ∆ ≤ α2. We have

∆ =
(z − zp)2

r4
p

+
ρ4
p tan2 θ

4r4
p

−
ρ2
p(z − zp) tan θ

r4
p

+
ρ2
p tan2 θ

r2
p

≤
z2
p

r4
p

+
ρ4
p tan2 θ

4r4
p

+
ρ2
p|z − zp| tan θ

r4
p

+
ρ2
p tan2 θ

r2
p

≤ α2 −
ρ2
p

r2
p

+
ρ2
p

r2
p

Ç
α2 tan2 θ

4
+ α tan θ + tan2 θ

å
where the last inequality follows from the fact that

ρ2
p

r2
p

+
z2
p

r4
p

= α2

which implies in particular that

ρ2
p

r2
p

≤ α2 and
|z − zp|
r2
p

≤ α.

Hence we get that

∆ ≤ α2 −
ρ2
p

r2
p

Ç
1− (1 +

α2

4
) tan2 θ − α tan θ

å
.

Choosing θ2 ∈ (0, π/2) small enough so that

1− (1 +
α2

4
) tan2 θ − α tan θ ≥ 0

for all 0 < θ ≤ θ2, we get the conclusion.

The fact that p−θ ∈ B(p, rp) is proved in a similar way. �

Proof of Lemma 2.18. Let θ1 = min(θ2/2, π/8) where θ2 is given by Lemma 5.4. Let
θ ∈ (0, θ1) and let p ∈ H and q ∈ H satisfying (2.19), (2.20), (2.21) and (2.22).

Let us first prove (2.23). Assume by contradiction that 2 zp ≤ zq ≤ 0. Then |zq−zp| ≤ |zp|.
HenceQ(zq, π(p), 2θ) ⊂ B(p, rp) according to Lemma 5.4. On the other hand, it follows from
(2.21), (5.1), (2.20), (5.3) that q ∈ Q(zq, π(p), 2θ) and hence q ∈ B(p, rp) which contradicts
(2.22).

Thus we have zq < 2 zp ≤ zp ≤ 0 and thus |zp − zq| ≤ |zq|. It follows from (2.21),
(5.1) and (2.22) that p ∈ C(zp, π(q), 2θ) \ B(q, rq). Finally we get from Lemma 5.4 that
p ∈ C(zp, π(q), 2θ) \ Q(zp, π(q), 2θ) and then (2.24) follows from (5.3). �
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6. Two criteria for distances for which BCP does not hold

In this section we prove two criteria which imply the non-validity of BCP. This shows
that in some sense our example of homogeneous distance dα for which BCP holds is sharp.
Roughly speaking the first criterion applies to homogeneous distances whose unit sphere
centered at the origin has either inward cone-like singularities in the Euclidean sense at the
poles (i.e., at the intersection of the sphere with the z-axis) or is flat at the poles with 0
curvature in the Euclidean sense. The second one applies to homogeneous distances whose
unit sphere at the origin has outward cone-like singularities in the Euclidean sense at the
poles. Note that the unit sphere centered at the origin of our distance dα is smooth with
positive curvature in the Euclidean sense.

6.1. Distances with ingoing corners or second-order flat at the poles. Let d be a
homogeneous distance on H and let B denote the closed unit ball centered at the origin in
(H, d).

In this subsection we shall most of the time identify H with R3 equipped with its usual
differential structure.

For p ∈ H, ~v ∈ R3, ~v 6= (0, 0, 0), and α ∈ (0, π/2), let Cone(p,~v, α) denote the Euclidean
half-cone in H, identified with R3, with vertex p, axis p+ R+~v and opening 2α.

We say that ~v ∈ R3, ~v 6= (0, 0, 0), points out of B at p ∈ ∂B if there exists an open
neighborhood U of p and some α ∈ (0, π/2) such that

B ∩ Cone(p,~v, α) ∩ U = {p}.

Let τp denote the left translation defined by τp(q) := p · q. We consider it as an affine
map from H, identified with R3, to R3 whose differential, in the usual Euclidean sense
in R3 is thus a constant linear map and will be denoted by (τp)∗. Let π̂ be defined by
π̂(x, y, z) := (x, y, 0).

For ~v ∈ R3, ~v 6= (0, 0, 0), and ε > 0, let Ω(~v) denote the set of points q ∈ ∂B such that
(τq−1)∗(~v) points out of B at q−1 and let Ωε(~v) denote the set of points q ∈ Ω(~v) such that

π̂(q) ∈ R+ ~w for some ~w ∈ Im(π̂) such that ‖~w−~v‖R3 ≤ ε (here ‖ ·‖R3 denotes the Euclidean
norm in R3).

Theorem 6.1. Assume that there exists ~v ∈ Im(π̂), ~v 6= (0, 0, 0), and ε > 0 such that
Ωε(~v) 6= ∅ for all 0 < ε ≤ ε. Then BCP does not hold in (H, d).

Proof. We first construct a sequence of points (qn)n≥0 in ∂B such that qn ∈ Ω(~v) for all

n ≥ 0 and (τq−1
k

)∗(π̂(qn)) points out of B at q−1
k for all n ≥ 1 and all 0 ≤ k ≤ n− 1.

Note that if q ∈ Ω(~v) then there exists ε(q) > 0 such that (τq−1)∗(~v + ~ε) points out of B

at q−1 for all ~ε ∈ R3 such that ‖~ε‖R3 ≤ ε(q) (note that the set of vectors that points out of
B at some point p ∈ ∂B is open).

Let us start choosing some q0 ∈ Ω(~v). By induction assume that q0, . . . , qn have already
been chosen. Let ε = min(ε(q0), . . . , ε(qn), ε) where each ε(qk) is associated to qk ∈ Ω(~v) as
above. Then we choose qn+1 ∈ Ωε(~v). We have π̂(qn+1) = λ(~v + ~ε) for some λ > 0 and
some ~ε ∈ Im(π̂) such that ‖~ε‖R3 ≤ ε. Hence, by choice of ε and of the qk’s, we have that
(τq−1

k
)∗(π̂(qn+1)) = λ (τq−1

k
)∗(~v + ~ε) points out of B at q−1

k for all 0 ≤ k ≤ n as wanted.
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Next, we claim that if q ∈ ∂B, q′ ∈ ∂B are such that π̂(q′) 6= (0, 0, 0) and that
(τq−1)∗(π̂(q′)) points out of B at q−1, then there exists λ > 0 such that d(q, δλ(q′)) > 1

for all 0 < λ ≤ λ. Indeed the curve λ ∈ [0,+∞) 7→ q−1 · δλ(q′) is a smooth curve starting at
q−1 and whose tangent vector at λ = 0 is given by (τq−1)∗(π̂(q′)). Since this vector points

out of B at q−1, it follows that q−1 · δλ(q′) 6∈ B for all λ > 0 small enough and hence
d(q, δλ(q′)) = d(0, q−1 · δλ(q′)) > 1 as wanted.

Then it follows that for all n ≥ 1, one can find λn > 0 such that for all 0 < λ ≤ λn and
all 0 ≤ k < n, one has

d(qk, δλ(qn)) > 1.

Then we set r0 = 1 and by induction it follows that we can construct a decreasing sequence
(rn)n≥0 so that

d(qk, δ rn
rk

(qn)) > 1

for all n ≥ 1 and all 0 ≤ k < n. For n ≥ 0, we set pn = δrn(qn). By construction we have

d(pk, pn) > max(rk, rn)

for all k ≥ 0 and n ≥ 0 such that k 6= n. It follows that {Bd(pn, rn); n ∈ J} is a family of
Besicovitch balls for any finite set J ⊂ N and hence BCP does not hold. �

Let us give some examples of homogeneous distances for which the criterion given in
Theorem 6.1 applies.

A first class of examples is given by rotationally invariant homogeneous distances d that
satisfy that there exists p ∈ ∂B such that (xp, yp) 6= (0, 0) and such that

zp = max{z > 0; (x, y, z) ∈ ∂B for some (x, y) ∈ R2}.
By rotationally invariant distances, we mean distances for which rotations Rθ, θ ∈ R, are
isometries (see (2.11) for the definition of Rθ).

Indeed, consider ~v = (1, 0, 0) and, for ε > 0, set

λ =

Ç
x2
p + y2

p

1 + ε2

å1/2

.

Then consider q = (λ, λε,−zp). By rotational and left invariance (which implies in particular
that d(0, q) = d(0, q−1) for all q ∈ H), one has q ∈ ∂B. On the other hand, since {(x, y, z) ∈
H; z > zp} ∩B = ∅, any vector with a positive third coordinate points out of B at q−1. In
particular (τq−1)∗(~v) = (1, 0, λε/2) points out of B at q−1. Hence q ∈ Ωε(~v).

This class of examples includes the so-called box-distance d∞ defined by d∞(p, q) :=
‖p−1 · q‖∞ with

(6.2) ‖p‖∞ := max((x2
p + y2

p)
1/2, 2 |zp|1/2)

for which the fact that BCP does not hold was not known. It also includes the Carnot-
Carathéodory distance and hence this gives a new proof of the non-validity of BCP for this
distance. See [22] for a previous and different proof.

Other examples of homogeneous distances d for which the criterion given in Theorem 6.1
applies can be obtained in the following way. Assume that B, respectively ∂B, can be
described as {q ∈ H; f(q) ≤ 0}, respectively {q ∈ H; f(q) = 0}, for some C1 real valued
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function f in a neighborhood of a point p ∈ ∂B. Then the outward normal to ∂B at some
point q ∈ ∂B is given in a neighborhood of p by ∇f(q) (here it is still understood that we
identify H with R3 and ∇ denotes the usual gradient in R3). Then Theorem 6.1 applies
if one can find a vector ~v ∈ Im(π̂), ~v 6= (0, 0, 0), such that for all ε small enough, the
following holds. There exists q ∈ ∂B such that π̂(q) ∈ R+ ~w for some ~w ∈ Im(π̂) such that
‖~w − ~v‖R3 ≤ ε and such that q−1 lies in a neighborhood of p and

〈∇f(q−1), (τq−1)∗(~v)〉 > 0

where 〈·, ·〉 denotes the usual scalar product in R3.

A particular example is given when B, respectively ∂B, can be described near the north
pole (intersection of ∂B with the positive z-axis) as the subgraph {(x, y, z) ∈ H; z ≤
ϕ(x, y)}, respectively the graph {(x, y, z) ∈ H; z = ϕ(x, y)}, of a C2 function ϕ whose
first and second order partial derivatives vanish at the origin. Indeed, in that case one can
choose for example ~v = (1, 0, 0) and for a fixed ε > 0, one looks for some q ∈ Ωε(~v) of the
form q = (λ, λε,−ϕ(−λ,−λε)) for some λ > 0. Then q−1 = (−λ,−λε, ϕ(−λ,−λε)) ∈ ∂B
lies near the north pole for λ > 0 small and we have

〈∇f(q−1), (τq−1)∗(~v)〉 = −∂xϕ(−λ,−λε) +
1

2
λε

that is equivalent to λε/2 > 0 when λ > 0 is small enough. Hence Ωε(~v) 6= ∅.
This argument applies to the Cygan-Korányi distance dg,2, and more generally to dg,α

for all values of α > 0 such that dg,α defines a distance, thus in particular for all values of
α ≤ 2. Recall from (1.11) that dg,α(p, q) := ‖p−1 · q‖g,α where

‖p‖g,α :=
Ä
(x2
p + y2

p)
2 + 4α2 z2

p

ä1/4
and that dg,2 is the Cygan-Korányi distance. Hence Theorem 6.1 gives in particular a new
geometric proof of the fact that BCP does not hold for the Cygan-Korányi distance on H,
see [13] and [23] for previous analytic proofs.

6.2. Distances with outgoing corners at the poles. Let d be a homogeneous distance
on H and let B denote the closed unit ball centered at the origin in (H, d). Set S+ :=
∂B ∩ {p ∈ H; zp > 0}.

Theorem 6.3. Assume that there exists two sequences of points p+
n ∈ S+ and p−n ∈ S+

and some a > 0 and x > 0 such that

p−n = (x−n , 0, z
−
n ), p+

n = (x+
n , 0, z

+
n ),

x−n < 0 < x+
n ,

lim
n→0

x+
n − x−n = 0,

z−n > z+
n > 0,

z+
n − z−n < −a (x+

n − x−n ),

{p ∈ H; x+
n ≤ xp ≤ x, yp = 0, zp > z+

n } ⊂ H \B.

Then BCP does not hold in (H, d).
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p+
n

p−n

Figure 5. Intersection of the xz-plane and the unit sphere at the origin of
the distance dκ,α when κ = 1 and α = 2.

The geometric meaning of the above assumptions is the following. In some vertical plane
(here we take the xz-plane for simplicity) one can find two sequences of points p+

n and
p−n , each one of them on a different side of the z-axis. Such points are on the unit sphere
centered at the origin and are converging to the north pole. The slope between p−n and
p+
n is assumed to be bounded away from zero. We further assume that at the north pole

the intersection of the sphere and the xz-plane can be written both as graph x = x(z) and
z = z(x). See Figure 5.

Theorem 6.3 applies in particular if the intersection of B with the xz-plane can be de-
scribed near the north pole as {p ∈ H; −ε < xp < ε, yp = 0, 0 < zp ≤ f(xp)} for
some function f of class C1 on (−ε, ε) \ {0} such that f ′(0−) and f ′(0+) exist and are
finite with f ′(0+) < 0. This is for instance the case of the following distances built from
the Cygan-Korányi distance, and more generally from the distances dg,α, and given by
dκ,α(p, q) := ‖p−1 · q‖κ,α with

‖p‖κ,α := κ ρ(p) + ‖p‖g,α
for some κ > 0. See (1.11) for the definition of ρ(·) and ‖ · ‖g,α. Figure 5 is exactly the
intersection of the xz-plane and the unit sphere at the origin when κ = 1 and α = 2.

Note that it follows in particular that the l1-sum of the pseudo-distance dρ with the
distance dg,α does not satisfy BCP in contrast with their l2-sum which is a multiple of the
distance dα.

Proof of Theorem 6.3. By induction, we construct a sequence of points qk = (xk, 0, zk)
such that

zk+1 < zk < 0 < xk+1 < xk and rk+1 > rk

for all k ∈ N, where rk = d(0, qk), and such that

ql 6∈ Bd(qk+1, rk+1)

for all k ∈ N and all 0 ≤ l ≤ k.

Then, we will have d(ql, qk) > max(rl, rk) for all l ∈ N and k ∈ N such that l 6= k, so that
{Bd(qk, rk); k ∈ J} is a family of Besicovitch balls for any finite set J ⊂ N. Hence BCP
does not hold.
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We start from a point q0 = (x0, 0, z0) with z0 < 0 < x0. Next assume that q0, · · · , qk have
been constructed and choose n large enough so that

rk <
xk

x+
n − x−n

,(6.4)

−a < (x+
n − x−n )

x2
k

zk < 0(6.5)

and

x0 ≤
xk

x+
n − x−n

x .(6.6)

We set

(6.7) rk+1 :=
xk

x+
n − x−n

and qk+1 := δrk+1
(p−n )−1.

Note that d(0, qk+1) = rk+1 since p−n ∈ ∂B. We have rk+1 > rk by choice of n (see (6.4)).
We also have

xk+1 = −rk+1x
−
n =

−x−n
x+
n − x−n

xk < xk .

Hence it remains to check that zk+1 < zk and that ql 6∈ B(qk+1, rk+1) for 0 ≤ l ≤ k.

Using dilation, left translation and the assumption {p ∈ H; x+
n ≤ xp ≤ x, yp = 0, zp >

z+
n } ⊂ H \B, it follows that

{p ∈ H; xk ≤ xp ≤ rk+1x− rk+1x
−
n , yp = 0, zp > zk+1 + r2

k+1z
+
n } ⊂ H \B(qk+1, rk+1).

Hence, taking into account the fact that zk < · · · < z0 and that xk < · · · < x0, to prove
that zk+1 < zk and that ql 6∈ B(qk+1, rk+1) for 0 ≤ l ≤ k, we only need to check that
x0 ≤ rk+1x − rk+1x

−
n , which follows from (6.6), and that zk > zk+1 + r2

k+1z
+
n . Using the

fact that z+
n − z−n < −a (x+

n − x−n ), (6.5) and (6.7), we have

zk+1 + r2
k+1z

+
n = r2

k+1 (z+
n − z−n )

< −a (x+
n − x−n ) r2

k+1

<
(x+
n − x−n )2 zk

x2
k

· x2
k

(x+
n − x−n )2

= zk

which gives the conclusion. �

7. Generalization to any Heisenberg group Hn

The case of Hn for n ≥ 1 arbitrary can be easily handled similarly to the case of H adopting
the following convention. For p ∈ Hn, we set p = (xp, yp, zp) where xp ∈ R, yp ∈ R2n−1

and zp ∈ R. Note that this is different from the more standard presentation adopted in
the introduction (Section 1). To avoid any confusion, the explicit correspondance between
theses two conventions is the following. If x = (x1, · · · , xn) ∈ Rn, y = (y1, · · · , yn) ∈ Rn
and z ∈ R denote the exponential and homogeneous coordinates of p ∈ Hn as in (1.7),
by denoting p = (xp, yp, zp) with xp ∈ R, yp ∈ R2n−1 and zp ∈ R, we mean xp = x1,
yp = (x2, · · · , xn, y1, · · · , yn) and zp = z. It follows that y2

p should be replaced by ‖yp‖2R2n−1

and |yp| by ‖yp‖R2n−1 where ‖ · ‖R2n−1 denotes the Euclidean norm in R2n−1.
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In particular, we get

ρp =
»
x2
p + ‖yp‖2R2n−1

and setting

P(a, b, θ) := {p ∈ Hn; xp > a, |zp| < b, ‖yp‖R2n−1 < xp tan θ}
and

T (a, b) := {p ∈ Hn; zp < −a, ρp < b},
one can easily check that Lemma 2.14 and Lemma 2.16 hold true in Hn with essentially the
same proofs.

Lemma 2.18 and its proof extend to the case of Hn setting

C(θ) := {p ∈ Hn; ‖yp‖R2n−1 < xp tan θ}
and considering the analogue of the sets C(z, π(p), θ) and Q(z, π(p), θ) (introduced in Sec-
tion 5) defined in the following way.

The set C(z, π(p), θ) is now defined as the (2n)-dimensional Euclidean half cone contained
in the hyperplane {q ∈ Hn; zq = z} with vertex pz = (0, 0, z), axis the half line starting at
pz and passing through (xp, yp, z) and aperture 2θ.

The set Q(z, π(p), θ) is defined as the (2n)-dimensional Euclidean convex hull in the
hyperplane {q ∈ Hn; zq = z} of pz, p̌z = (2xp, 2yp, z) and the (2n−1)-dimensional Euclidean
ball {q ∈ Hn; zq = z, 〈π(q) − π(p), π(p)〉R2n = 0, ‖π(q) − π(p)‖R2n = ρp tan θ}. Here π
denotes the obvious analogue of the map defined in (2.1), π : Hn → R2n, π(xp, yp, zp) :=
(xp, yp).

8. A general construction giving bi-Lipschitz equivalent distances without
BCP

This section is devoted to the proof of Theorem 1.6. The construction is inspired by
the construction given by the first-named author in Theorem 1.6 of [14] where it is proved
that there exist translation-invariant distances on R that are bi-Lipschitz equivalent to the
Euclidean distance but that do not satisfy BCP.

Proof of Theorem 1.6. Let (M,d) be a metric space. Assume that x is an accumulation
point in (M,d) and let (xn)n≥1 be a sequence of distinct points in M such that xn 6= x for
all n ≥ 1 and such that limn→+∞ d(xn, x) = 0. Set

ρn :=
n

n+ 1
d(xn, x) .

Up to a subsequence, one can assume with no loss of generality that the sequence (ρn)n≥1

is decreasing.

Let 0 < c < 1 be fixed and n0 ∈ N be fixed large enough so that

(8.1) c (n0 + 1) < n0.

Set

θ(x, y) :=

{
ρn if {x, y} = {xn, x} for some n ≥ n0

d(x, y) otherwise
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and

d(x, y) := inf
N−1∑
i=0

θ(ai, ai+1)

where the infimum is taken over all N ∈ N∗ and all chains of points a0 = x, . . . , aN = y.

Then d is a distance on M such that c d ≤ d ≤ d. This follows from Lemma 8.3 and
Lemma 8.5 below.

Next, we will prove that x is an isolated point of Bd(xn, ρn) for all n ≥ n0. More precisely,

by definition of d, we have, for all n ≥ n0,

d(xn, x) ≤ θ(xn, x) = ρn ,

hence x ∈ Bd(xn, ρn) for all n ≥ n0. On the other hand, we will prove in Lemma 8.6 that

(8.2) Bd(xn, ρn) ∩Bd(x,
ρn

n(n+ 1)
) = {x}

for all n ≥ n0.

Then let us extract a subsequence (xnk
)k≥0 starting at xn0 in such a way that

d(x, xnk
) <

ρnj

nj(nj + 1)

for all k ≥ 1 and all j ∈ {0, . . . , k − 1}. It follows from (8.2) that

d(xnk
, xnj ) > ρnj = max{ρnj , ρnk

}
for all k ≥ 1 and all j ∈ {0, . . . , k − 1} (remember that the sequence (ρh)h≥1 is assumed to
be decreasing).

Then {Bd(xnk
, ρnk

); k ∈ J} is a family of Besicovitch balls for any finite set J ⊂ N which

implies that w-BCP, and hence BCP, do not hold in (M,d). �

Lemma 8.3. We have c d ≤ d ≤ d.

Proof. By definition of θ, one has θ(x, y) ≤ d(x, y) for all x ∈M and y ∈M . It follows that

d(x, y) ≤ inf(
N−1∑
i=0

d(ai, ai+1); a0 = x, . . . , aN = y) = d(x, y).

Note that since d is a distance, one indeed has

d(x, y) = inf(
N−1∑
i=0

d(ai, ai+1); a0 = x, . . . , aN = y)

which follows from one side from the triangle inequality and for the other side from the fact
that one can considerN = 1, a0 = x and a1 = y, so that d(x, y) ≥ inf(

∑N−1
i=0 d(ai, ai+1); a0 =

x, . . . , aN = y).

On the other hand, since s 7→ s/(s + 1) is increasing, it follows from the definition of
θ(x, y) and from (8.1) that one has

(8.4) θ(x, y) ≥ n0

n0 + 1
d(x, y) ≥ c d(x, y)
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for all x ∈M and y ∈M . Hence

d(x, y) ≥ c inf(
N−1∑
i=0

d(ai, ai+1); a0 = x, . . . , aN = y) = c d(x, y) .

�

Lemma 8.5. We have that d is a distance on M .

Proof. We get from Lemma 8.3 that if d(x, y) = 0 then d(x, y) = 0 and hence x = y. Since
θ(x, y) = θ(y, x), one has d(x, y) = d(y, x). To prove the triangle inequality, let us consider
x, y and z in M and two arbitrary chains of points a0 = x, . . . , aN = z, b0 = z, . . . , bN ′ = y.
Since a0 = x, . . . , aN = z = b0, . . . , bN ′ = y is a chain of points from x to y, one has

d(x, y) ≤
N−1∑
i=0

θ(ai, ai+1) +
N ′−1∑
i=0

θ(bi, bi+1)

and hence
d(x, y) ≤ d(x, z) + d(z, y).

�

Lemma 8.6. Let n ≥ n0. Assume that 0 < d(x, y) <
ρn

n(n+ 1)
. Then d(xn, y) > ρn.

Proof. By contradiction, assume that 0 < d(x, y) <
ρn

n(n+ 1)
for some n ≥ n0 and

d(xn, y) ≤ ρn. Let ε > 0 and a0 = xn, . . . , aN = y be such that

(8.7)
N−1∑
i=0

θ(ai, ai+1) ≤ ρn + ε.

First, we claim that {ai, ai+1} 6= {xn, x} for all i ∈ {0, . . . , N − 1} provided ε is small
enough. Indeed, otherwise, with no loss of generality, we would have a0 = xn and a1 = x,
and hence

N−1∑
i=0

θ(ai, ai+1) = θ(xn, x) +
N−1∑
i=1

θ(ai, ai+1) = ρn +
N−1∑
i=1

θ(ai, ai+1) ≤ ρn + ε

which implies that
N−1∑
i=1

θ(ai, ai+1) ≤ ε .

On the other hand, (8.4) together with the triangle inequality would give

c d(x, y) ≤ c
N−1∑
i=1

d(ai, ai+1) ≤
N−1∑
i=1

θ(ai, ai+1) ≤ ε

which is impossible as soon as ε < c d(x, y).

Next, we claim that

(8.8) θ(ai, ai+1) ≥ n+ 1

n+ 2
d(ai, ai+1)
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for all i ∈ {0, . . . , N − 1}.
Indeed, first, if {ai, ai+1} = {x, xm} for some m ≥ n0, then we must have m > n.

Otherwise, since (ρh)h≥1 is decreasing, we would have ρm ≥ ρn−1. Hence we would get

ρn−1 ≤ ρm = θ(ai, ai+1) ≤
N−1∑
j=0

θ(aj , aj+1) ≤ ρn + ε

which is impossible as soon as ε < ρn−1 − ρn.

Next, if {ai, ai+1} = {x, xm} for some m > n, then, by definition of θ and remembering
that s 7→ s/(s+ 1) is increasing, we have

θ(ai, ai+1) = ρm =
m

m+ 1
d(ai, ai+1) ≥ n+ 1

n+ 2
d(ai, ai+1)

which gives (8.8).

Finally, if {ai, ai+1} 6= {x, xm} for all m ≥ n0, then it follows from the definition of θ that

θ(ai, ai+1) = d(ai, ai+1) ≥ n+ 1

n+ 2
d(ai, ai+1)

which also gives (8.8).

Now, it follows from (8.7) and (8.8) that

ρn + ε ≥
N−1∑
i=1

θ(ai, ai+1) ≥ n+ 1

n+ 2

N−1∑
i=1

d(ai, ai+1) ≥ n+ 1

n+ 2
d(xn, y)

for all ε small enough. Letting ε ↓ 0, we get that

ρn ≥
n+ 1

n+ 2
d(xn, y) ≥ n+ 1

n+ 2
(d(xn, x)− d(x, y)) ≥ n+ 1

n+ 2

Å
n+ 1

n
ρn − d(x, y)

ã
and hence

d(x, y) ≥ ρn
n(n+ 1)

which contradicts the assumptions and concludes the proof. �
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[13] A. Korányi, H.M. Reimann, Foundations for the theory of quasiconformal mappings on the Heisenberg

group, Adv. Math. 111 (1995), no. 1, 1–87.
[14] E. Le Donne, Properties of isometrically homogeneous curves, Int. Math. Res. Not. IMRN 2013, no.

12, 2756–2786.
[15] E. Le Donne, A primer on Carnot groups: homogenous groups, CC spaces, and regularity of their

isometries, preprint arXiv:1604.08579
[16] E. Le Donne, S. Rigot, Remarks about the Besicovitch covering property in Carnot groups of step 3

and higher, Proc. Amer. Math. Soc. 144 (2016), no. 5, 2003-2013.
[17] E. Le Donne, S. Rigot, Besicovitch Covering Property on graded groups and applications to measure dif-

ferentiation, to be published in J. reine angew. Math. (published on line 2016-10-11), arXiv:1512.04936
[18] J.R. Lee, A. Naor, Lp metrics on the Heisenberg group and the Goemans-Linial conjecture, 54th Annual

Symposium on Foundations of Computer Science (FOCS’06) 99–108.
[19] P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge

Studies in Advanced Mathematics, 44. Cambridge University Press, Cambridge, 1995. xii+343 pp.
[20] A.P. Morse, Perfect blankets, Trans. Amer. Math. Soc. 61 (1947) 418–442.
[21] D. Preiss, Dimension of metrics and differentiation of measures, General topology and its relations to

modern analysis and algebra, V (Prague, 1981).
[22] S. Rigot, Counter example to the Besicovitch covering property for some Carnot groups equipped with
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