
On the Essence of Parallel Independence for the
Double-Pushout and Sesqui-Pushout Approaches

Andrea Corradini1( ), Dominique Duval2, Michael Löwe3, Leila Ribeiro4,
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Abstract. Parallel independence between transformation steps is a ba-
sic notion in the algebraic approaches to graph transformation, which is
at the core of some static analysis techniques like Critical Pair Analy-
sis. We propose a new categorical condition of parallel independence and
show its equivalence with two other conditions proposed in the literature,
for both left-linear and non-left-linear rules. Next we present some pre-
liminary experimental results aimed at comparing the three conditions
with respect to computational e�ciency. To this aim, we implemented
the three conditions, for left-linear rules only, in the Verigraph system,
and used them to check parallel independence of pairs of overlapping
redexes generated from some sample graph transformation systems over
categories of typed graphs.

1 Introduction

Graph transformation is a well-developed computational model suited to de-
scribe the evolution of distributed systems. System states are represented by
graphs, and rules typically describe local changes of some part of the state. One
central topic in the theory of graph transformation, first addressed in [21,12],
has been the identification of conditions that guarantee that two transformation
steps from a given state are independent, and thus can be applied in any order
generating the same result. This is known as the Local Church-Rosser Problem,
that is presented in the following way in [8]:

Find a condition, called parallel independence, such that two alternative
transformation steps H1

⇢1(= G
⇢2=) H2 are parallel independent if and

only if there are transformation steps H1
⇢2=) X and H2

⇢1=) X such
that G

⇢1=) H1
⇢2=) X and G

⇢2=) H2
⇢1=) X are equivalent.
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This final publication is avaliable at Springer via https://doi.org/10.1007/978-3-319-75396-6_1



The “equivalence” just mentioned informally means that the rules ⇢1 and ⇢2
consume the same items of G in the two transformation sequences. A formal
definition, based on the classical shift equivalence, can be found in Section 3.5
of [8]. The above statement fixes a standard pattern for addressing the Local
Church-Rosser Problem in the various approaches to algebraic graph transfor-
mation: first, a definition of parallel independence for transformation steps has
to be provided, next a Local Church-Rosser Theorem proves that given two par-
allel independent transformation steps from a given graph, they can be applied
in both orders obtaining the same result (up to isomorphism).

The e�cient verification of parallel independence is important for the anal-
ysis of graph transformation systems. It is needed for example in Critical Pair

Analysis, a static analysis technique originally introduced in term rewriting sys-
tems [15] and, starting with [20], widely used also in graph transformation and
supported by some tools [22,9]. It relies on the generation of all possible critical

pairs, i.e. pairs of transformation steps in minimal context that are not paral-
lel independent, which can be used to prove local confluence or to provide the
modeler with all possible conflicts between transformation rules. E�cient paral-
lel independence verification could also be exploited by partial-order reduction
techniques in tools supporting model checking of graph transformation systems,
like groove [14].

In the first part of the paper we discuss three definitions of parallel indepen-
dence proposed for the classical Double-Pushout Approach (dpo) [11], and also
applicable to the richer setting of the Sesqui-Pushout Approach (sqpo) [7], which
extends dpo by allowing also the specification of cloning or copying of items.
The third of such definitions is new, and we claim that it captures the essence of
parallel independence, being simpler than the other ones. We exploit the third
condition as a pivot in proving that all presented conditions are equivalent.

In the second part of the paper we report on some experimental evaluations of
the complexity of verifying parallel independence according with the three condi-
tions. They have been implemented in Verigraph, a framework for the specifica-
tion and verification of graph transformation systems written in Haskell, under
development at the Universidade Federal do Rio Grande do Sul [9]. Since the
current version of Verigraph does not support Sesqui-Pushout transformation,
only left-linear rules are considered in the evaluation. After describing the basic
data structures used in Verigraph to model categorical constructions, we discuss
the implementation of the three equivalent conditions and compare the time
e�ciency of verifying them on a collection of test cases. The newly proposed
condition turns out to be the in most cases the most e�cient.

The reader is assumed to be familiar with the dpo approach and with typed
graphs [8]. Some background notions are introduced in Section 2. In Section 3 we
introduce the three conditions for parallel independence, and Section 4 is devoted
to the proof of their equivalence. The Verigraph system is presented in Section 5,
which also describes how the parallel independence conditions were implemented.
Experimental results are described and analysed in Section 6. Finally, Section 7
presents concluding remarks.
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2 Background

In order to fix the terminology, let us recall the standard definition of Double-
Pushout [11] and Sesqui-Pushout transformation [7] in a generic category C.
Conditions on C will be introduced when needed.

Definition 1 (Double-Pushout transformation). A rule ⇢ = (L
l K

r!
R) is a span of arrows in C. Rule ⇢ is left-linear if l is mono, right-linear if r
is mono, and linear if both l and r are monos. A match for rule ⇢ in an object

G is an arrow m : L! G. If the diagram in (1) exists in C, where both squares

are pushouts, then we say that there is a dpo transformation step from G to H

via (⇢,m), and we write G
⇢,m

=) H. In this case we call the pair (⇢,m) a redex in

G, and K
n! D

g! G a pushout complement (poc) of K
l! L

m! G. We write

G
⇢

=) H if G
⇢,m

=) H for some match m for ⇢ in G.

L

m

✏✏

Kl

oo

r

//

n

✏✏

R

q

✏✏

G Dg

oo

h

// H

(1)

Therefore if (⇢,m) is a redex in G we know that ⇢ can be applied to match m
in G. In Diagram (1), K is called the interface and D the context.

In most presentations of the dpo approach, suitable conditions are imposed
to guarantee a form of determinism, i.e. that if G

⇢,m

=) H and G
⇢,m

=) H 0 then H
and H 0 are isomorphic. This is often achieved by requiring rules to be left-linear,
because in several categories of interest (as in adhesive categories [16]) if l is

mono then the pushout complement of K
l! L

m! G is uniquely determined (up
to isomorphism) if it exists, and thus also object H is unique up to iso by the
universal property of the right-hand side pushout.5

Sesqui-Pushout transformations were proposed in [7] as a little variation of
dpo ones, able to guarantee the above form of determinism by the very definition.
The only di↵erence with respect to dpo is the property that the left square of
(1) has to satisfy. We first recall the definition of final pullback complement.

Definition 2 (final pullback complement). In Diagram (2), K
n! D

g! G

is a final pullback complement (fpbc) of K
l! L

m! G if

5 In non-adhesive categories stronger conditions might be necessary. For example, in
the category of term graphs (which is not adhesive but just quasi-adhesive [6]), two
non-isomorphic pushout complements may exist for a monic l, while uniqueness is
ensured by requiring l to be a regular mono, i.e. the equalizer of a pair of parallel
arrows. It is worth recalling here that every adhesive category is quasi-adhesive, and
that in an adhesive category all monos are regular [16].
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1. the resulting square is a pullback, and

2. for each pullback G
m L

d K 0 e! D0 f! G

and arrow K 0 h! K such that l�h = d, there
is a unique arrow D0 a! D such that g�a = f
and a � e = n � h.

L

m

✏✏

Kl

oo

n

✏✏

K 0
h

oo

e

✏✏

d

ww

G Dg

oo D0
a

oo

f

gg

(2)

Definition 3 (Sesqui-Pushout transformation). Under the premises of Def-

inition 1, we say that there is a sqpo transformation step from G to H via (⇢,m)
if the diagram in (1) can be constructed in C, where the left square is a final

pullback complement of K
l! L

m! G and the right square is a pushout.

The final pullback complement of two arrows is characterised by a universal
property, and thus it is unique up to isomorphism, if it exists. Therefore sqpo

transformation is deterministic in the above sense also for non-left-linear rules.
Furthermore, as discussed in [7], in an adhesive category every dpo transforma-
tion for a left-linear rule is also an sqpo transformation, and thus sqpo rewriting
can be considered as a conservative extension of dpo transformation.

Along the paper we shall often use some well-known properties of pullbacks:

Fact 1 (composition and decomposition of pullbacks) 1. In the diagram

on the left if squares (a) and (b) are pullbacks, so is the composed square:

•
PB (a)

✏✏

//

=
''•

PB (b)
✏✏

// •
✏✏

• //

=
77

• // •

•
PB (c)

✏✏

=
''

// •
✏✏

//

PB (d)

•
✏✏

• // • // •

2. In the diagram made of solid arrows above on the right, if square (d) and

the outer square are pullbacks, then there is a unique arrow (the dotted one)

such that the top triangle commutes and square (c) is a pullback.

The following definition will be useful in the following.

Definition 4 (reflection). Given objects X, Y , Z and arrows f : X ! Z, g :

Y ! Z we say that f is reflected along g if the pullback object of Y
g! Z

f X is

isomorphic to X, as in square

1� or, equivalently, if there is an arrow h : X ! Y

such that Y
h X

id! X is the pullback of Y
g! Z

f X, as in square

2�.

X 0 ⇠= //

✏✏

1�

X

f

✏✏

Y g

// Z

X id //

h

✏✏

2�

X

f

✏✏

Y g

// Z

Note that such an arrow h : X ! Y , if it exists, is necessarily unique. In this

case we also say that f is reflected along g by h.

4



Intuitively, this means that g is an isomorphism when restricted to the image
of f . If objects are concrete structures like graphs, then every item of the image
of f in Z has exactly one inverse image along g in Y . The following facts are
easy to check by properties of pullbacks.

Fact 2 (some properties of reflection) 1. Arrow f : X ! Z is reflected

along g : Y ! Z i↵ there exists an arrow h : X ! Y such that for all pairs

of arrows m : W ! Y and n : W ! X, if g �m = f � n then h � n = m.

2. If g is mono, then f is reflected along g i↵ there exists an arrow h : X ! Y
such that f = g � h.

We will use as running example the following sqpo graph grammar, based
on the category of graphs typed over the left graph of Fig. 1.

Type Graph

Nat

1
2
3
4

Initial Graph Send

GetDataReturn

LoadClone

Fig. 1. Graph grammar for clients and servers

Example 1 (sqpo graph grammar for clients and servers). The graph gram-
mar of Fig. 1 represents clients (computers) obtaining data (documents) from
servers via messages (envelopes). In the model, data nodes represent subsets of
{1, 2, 3, 4} (elements of type Nat), which are initially stored in servers. Arrows
represent locations and references. Loops in messages are used to ensure that
only one data node is loaded at each time. Clients transmit messages to servers
via rule Send. Messages are loaded with a cloned version of a data node via
rule LoadClone, with a dotted line being used to represent the cloning e↵ect.
It is worth recalling that all edges from the cloned data node to numbers are
also cloned as a side-e↵ect of sqpo rewriting. Rule Return transmits messages
with data back to clients. Finally, rule GetData deletes a message, placing the
data node directly into the client node. Rules are presented by showing only
the left- and right-hand sides: the interface is their intersection for all rules but
LoadClone, which is shown in detail in Fig. 2.

3 Conditions for parallel independence

Parallel independence is a property that can be satisfied or not by two (dpo
or sqpo) transformation steps from the same object G, like in the situation
depicted in Diagram (3), where we have two redexes (⇢1,m1) and (⇢2,m2) and

transformation steps G
⇢1,m1=) H1 and G

⇢2,m2=) H2.
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R1

q1

✏✏

K1
r1

oo

l1
//

n1

✏✏

L1

m1

!!

L2

m2

}}

K2
l2

oo

r2
//

n2

✏✏

R2

q2

✏✏

H1 D1
h1

oo

g1

// G D2
g2

oo

h2

// H2

(3)

In the framework of the classical dpo approach, parallel independence was
formulated in a categorical way [12,11,8] by requiring that each match factorizes
through the context of the other transformation step. That is, there must exist
the two dotted arrows of Diagram (4) so that the resulting triangles commute,
i.e., g1 � m2d = m2 and g2 � m1d = m1. However, as shown explicitly with a
counterexample in [4], this condition only works for dpo and sqpo with left-
linear rules. For sqpo with non-left-linear rules the commutativity of the two
triangles is not su�cient, but it is necessary to require the stronger condition
that m1 is reflected along g2 by m1d, and symmetrically for m2.

R1

q1

✏✏

K1
r1

oo

l1
//

n1

✏✏

L1

m1

!!

m1d

''

L2

m2

}}

m2d

ww

K2
l2

oo

r2
//

n2

✏✏

R2

q2

✏✏

H1 D1
h1

oo

g1

// G D2
g2

oo

h2

// H2

(4)

Indeed, this is the condition of parallel independence that arose by addressing
the Local Church-Rosser Problem in more general approaches where rules can
be non-left-linear, like Reversible Sesqui-Pushout [10] and Rewriting in Span
Categories [19]. We call this condition the standard one.

Definition 5 (Standard Condition). Two redexes (⇢1,m1) and (⇢2,m2) as

in Diagram (3) satisfy the Standard Condition of parallel independence (std-
pi for short) if the matches are reflected along the contexts, that is, if there

are arrows m1d : L1 ! D2 and m2d : L2 ! D1 such that the two squares in

Diagram (5) are pullbacks.

L1
oo

idL1

m1

✏✏

L1

m1d

✏✏

G D2g2oo

L2 idL2
//

m2d

✏✏

L2

m2

✏✏

D1 g1 // G

(5)

Note that in most categories of interest, if the rules are left-linear then also
morphisms g1 : D1 ! G and g2 : D2 ! G are mono. This holds either by Lemma
2.2 of [7] for the sqpo approach or, for the dpo approach in (quasi-)adhesive
categories, because in such categories pushouts preserve (regular) monos [16].
Therefore in these cases by Fact 2(2) two redexes satisfy condition std-pi if and
only if they satisfy the more familiar condition of Diagram (4), i.e., there are
arrows m1d and m2d making the two triangles commute.
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Example 2 (the standard condition for parallel independence). Figure 2 shows a
pair of parallel dependent redexes with rules LoadClone and Send, detected by
the standard condition. Here and in the following, as a convention, we denote a
pullback object (like D1L2) by concatenating the names of the cospan sources
(D1 and L2 in this case), leaving implicit their morphisms to the common target
(G). The conflict arises because the node cloned by LoadClone is used by Send,
so the e↵ect of Send after the application of LoadClone could di↵er depending
on which of the clones is chosen by the match.

LoadClone

1
2

1
2

1
2

1
2

1
2

�
R1 K1 L1 L2 K2 R2

D1L2

GD1H1 D2 H2

Send

STD-PI

Fig. 2. Standard condition exposing a conflict between rules LoadClone and Send.

The condition of parallel independence for left-linear rules presented in [11]
and shown in Diagram (4), being formulated in categorical terms, is very conve-
nient for the proof of the Local Church-Rosser Theorem which is heavily based
on diagrammatic constructions. But also a di↵erent, set-theoretical condition
was proposed in [11] for dpo in the category of graphs, requiring that:

m1(L1) \m2(L2) = m1(l1(K1)) \m2(l2(K2)). (6)

That is, each item needed by both redexes (in the image of both matches) must
be preserved by both redexes (is also in the image of both interfaces).

K1K2 ⇡

K
2

//

⇡

K
1

✏✏

l

$$

2�

K2

l2

✏✏

L1L2
⇡

L
2
//

⇡

L
1

✏✏

1�

L2

m2

✏✏

K1 l1
// L1 m1 // G

(7)

As discussed in [4], the classical condition of Diagram (4) is not a direct
translation of this set-theoretical one, as the categorical counterpart of inter-
sections are pullbacks. Diagram (7) shows the two pullbacks corresponding to

7



the left side ( 1�) and to the right side ( 2�) of Equation (6). The pullback ob-
jects are related by a unique mediating morphism l : K1K2 ! L1L2 such that
⇡L

1 � l = l1 � ⇡K

1 and ⇡L

2 � l = l2 � ⇡K

2 , by the universal property of pullback 1�.
By exploiting these pullbacks, the following condition of parallel indepen-

dence was proposed in [4] as a direct categorical translation of Equation (6).

Definition 6 (Pullback Condition). Redexes (⇢1,m1) and (⇢2,m2) as in Di-

agram (3) satisfy the Pullback Condition of parallel independence (pb-pi for
short) if in Diagram (7) mediating arrow l : K1K2 ! L1L2 is an isomorphism.

Next, we propose a third condition. To our opinion, it is simpler than the two
previous ones and it captures the essence of parallel independence. It works for
general rules, and it can be simplified in the left-linear case.

Definition 7 (Essential Condition). Let (⇢1,m1) and (⇢2,m2) be two re-

dexes in an object G, as in Diagram (3), and let (L1L2,⇡
L

1 , ⇡
L

2 ) be the pullback

defined by

1� in Diagram 7. Then (⇢1,m1) and (⇢2,m2) satisfy the Essential
Condition of parallel independence (ess-pi) if the pullback of the matches is re-

flected along the left-hand sides. That is, if there exist arrows ↵1 : L1L2 ! K1

and ↵2 : L1L2 ! K2 such that the two squares of Diagram (8) are pullbacks.

L1L2 id

//

↵1

✏✏

L1L2

⇡

L
1

✏✏

K1 l1
// L1

L1L2 id

//

↵2

✏✏

L1L2

⇡

L
2

✏✏

K2 l2
// L2

(8)

Example 3 (the pullback and the essential conditions). The rule LoadClone is in
conflict with itself when it tries to load a clone of the same data node in two
distinct messages. Figure 3 shows how this conflict is captured by the pullback
(pb-pi) and essential (ess-pi) conditions of parallel independence.

LoadClone

�

K1 L1

LoadClone

K2L2

L1L2K1(L1L2)

ESS-PI

LoadClone

1
2

K1 L1

G

LoadClone

K2L2

L1L2

K1K2

�

PB-PI 1
2

G

Fig. 3. Conditions pb-pi and ess-pi show a conflict between two redexes of LoadClone.
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4 Equivalence of conditions for parallel independence

We present here explicit proofs of the equivalence of the three conditions in-
troduced in the previous section for dpo and sqpo rewriting. The equivalence
between the Standard and the Pullback Conditions was proved in an indirect
way in [4], by exploiting some results of [5]. The proofs that follow are complete
and in a way simpler than those in [4], by reducing both conditions to the new
one. In fact, we first prove the equivalence of conditions pb-pi and ess-pi, and
next the equivalence of conditions std-pi and ess-pi. The proofs are presented
for sqpo rewriting with possibly non-left-linear rules. They also apply to dpo

rewriting with left-linear rules under mild conditions recalled in Proposition 1.

Theorem 1 (Equivalence of the Pullback and Essential Conditions).
Let C be a category with all pullbacks, and let (⇢1,m1) and (⇢2,m2) be two sqpo

redexes in an object G of C, as in Diagram (3). Then they satisfy condition

pb-pi of Def. 6 if and only if they satisfy condition ess-pi of Def. 7.

Proof. [If part] Consider the following diagram:

L1L2

1�

id

//

id

✏✏

L1L2

2�

↵2
//

id

✏✏

K2

l2

✏✏

L1L2

3�

id

//

↵1

✏✏

L1L2

4�

⇡

L
2
//

⇡

L
1

✏✏

L2

m2

✏✏

K1 l1
// L1 m1 // G

(9)

All squares are pullbacks ( 4� by construction, 2� and 3� by condition ess-pi,
and 1� trivially). Thus by uniqueness of pullbacks up to a unique isomorphism
commuting with the projections, we can deduce that the mediating arrow l :
K1K2 ! L1L2 of (7) is an isomorphism.

K1K2

1�
e

//

f

✏✏

⇡

K
2

))

⇡

K
1

⌫⌫

cc

l

##

Y

2�

d

//

c

✏✏

K2

l2

✏✏

X

3�

b

//

a

✏✏

L1L2

4�

⇡

L
2
//

⇡

L
1

✏✏

L2

m2

✏✏

K1 l1
// L1 m1 // G

(10)

[Only if part] In Diagram (10) the outer diagram and 4� are pullbacks by
construction, and their mediating arrow l : K1K2 ! L1L2 is an isomorphism
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by condition pb-pi. Let 2� and 3� be built as pullbacks: we have to show that
b and c are isomorphism. Since 3� is a pullback and ⇡L

1 � l = l1 � ⇡K

1 , there
is a unique arrow f : K1K2 ! X such that b � f = l and a � f = ⇡K

1 and,
symmetrically, there is a unique arrow e : K1K2 ! Y such that d � e =
⇡K

2 and c � e = l. The resulting square 1� is a pullback: in fact, the outer
square and 2� + 4� (by Fact 1(1)) are pullbacks, thus 1� + 3� is a pullback
by Fact 1(2); in turn since 3� is a pullback, also 1� is, again by Fact 1(2). Since
b � f = l = c � e and l is an isomorphism, f and e are sections (that is, they
have a left-inverse) and b and c are retractions (i.e., they have a right-inverse).

But pullbacks preserve retractions, as shown
in the diagram to the right. If b is a retrac-
tion then there is a b0 such that b � b0 = id.
Since 1� is a pullback and the outer square
commutes, there is an e0 such that e�e0 = id,
thus e is a retraction as well.

Y

id

))

c

✏✏

e

0
// K1K2 e

//

f

✏✏

1�

Y

c

✏✏

L1L2

id

44

b

0
// X b

// L1L2

Thus f and e are also retractions, and therefore they are isomorphisms. This
implies that b and c are isomorphisms as well, as desired. ut

Theorem 2 (Equivalence of the Standard and Essential Conditions).
Let C be a category with all pullbacks, and let (⇢1,m1) and (⇢2,m2) be two sqpo

redexes in an object G of C, as in Diagram (3). Then they satisfy condition

std-pi of Def. 5 if and only if they satisfy condition ess-pi of Def. 7.

Proof. [Only if part] Consider the following diagram:

K2

l2
ss

n2

✏✏

L2

m2

✏✏

L1L2

hh

id

ss

⇡

L
1

✏✏

L1L2

⇡

L
1

✏✏

⇡

L
2

gg

D2
g2

ssG L1

id

ss

m1d
hh

L1

m1

gg

(11)

The back-left face is a pullback by construction, the bottom face is a pullback by
condition std-pi, and the front-right face is also trivially a pullback. Therefore
since the front-left face commutes, by Fact 1(2) there is a unique arrow L1L2 !
K2 making the upper face (i.e., the right square of Diagram (8)) a pullback. For
the left square of Diagram (8) the proof is analogous.

[If part] Consider the cube in Diagram (12), ignoring for the time being objects

X, Y , and the arrows starting from them. By Def. 3 the back-left face K2
n2!

D2
g2! G is a final pullback complement of K2

l2! L2
m2! G. Therefore, since

the square made of the front-left and front-right faces is obviously a pullback
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and the top face commutes by the essential condition, there is a unique arrow
m1d : L1 ! D2 such that the bottom and the back-right face commute.

K2

l2
ss

n2

✏✏

L2

m2

✏✏

L1L2

↵2

hh

id

ss

⇡

L
1

✏✏

Y

h

pp

z

oo

k

✏✏

L1L2

⇡

L
1

✏✏

⇡

L
2

gg

D2
g2

ssG L1

id

ss

m1d

hh

Xy

oo

y

nn

x

qq

f

kk

L1

m1

gg

(12)

In order to show that condition std-pi holds, i.e. that the bottom face is a
pullback, by Fact 2(1) it is su�cient to show that for each object X and arrows
x : X ! D2, y : X ! L1 such that g2�x = m1�y, it holds (†)m1d�y = x. In order

to show this, let K2
h Y

k! X be the pullback of K2
n2! D2

x X. By composing
this pullback with the back-left face we get a pullback with vertices Y, L2, X and
G, and therefore since the back-left face is a final pullback complement, there is
a unique arrow f : X ! D2 such that (a) f � k = n2 � h and (b) g2 � f = g2 � x.
Thus (†) will follow by showing that both x and m1d � y satisfy properties (a)
and (b). For x, (a0) x � k = n2 � h holds by construction, and (b0) is obvious. For
m1d � y, we have (b00) g2 �m1d � y = m1 � id � y = m1 � y = g2 � x. In order to
show (a00) m1d �y �k = n2 �h, observe that the composition of the top face (that
is a pullback by the essential condition) and of the front-left face is a pullback,

and that the outmost square commutes (Y
h! K2

m2�l2! G = Y
y�k! L1

m1! G),
therefore there is a unique arrow z : Y ! L1L2 such that (c) ↵2 � z = h and

(d) ⇡L

1 �id�z = y�k. Thus we have m1d�y�k
(d)
= m1d�⇡L

1 �z = n2�↵2�z
(c)
= n2�h,

as desired. ut

Proposition 1 (Equivalence of Conditions for dpo rewriting). If cate-

gory C is quasi adhesive and the left-hand sides of the rules are regular monos

(i.e. they are equalizers of pairs of parallel arrows), then Theorems 1 and 2 also

apply to dpo redexes.

Proof. By Proposition 12 of [7], the pushout complement of a regular-mono left-
hand side and a match is also a final pullback complement. Therefore a dpo

redex is also a sqpo redex. ut

5 Implementation in the Verigraph System

Parallel independence is important for practical applications involving graph
transformation, in particular for static analysis techniques. The equivalence of
conditions std-pi, ess-pi and pb-pi means that tools are free to implement
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any of them. In this context, time is usually the most critical resource, thus
it should guide the choice of the algorithm. Here and in the next section we
compare the performance of the three conditions based on their implementation
in the Verigraph system and on their use, in various scenarios, for some concrete
grammars defined in categories of typed graphs.

Verigraph [9] is implemented in Haskell, exploiting its abstraction mecha-
nisms to promote separation between abstract and concrete code. This allows
the algorithms for checking parallel independence to be implemented at an ab-
stract level (based on arrows and composition) as an almost direct translation of
categorical diagrams and definitions. Clearly, when such an abstract algorithm is
applied to a concrete category of structures like (possibly typed) graphs, unary
algebras, Petri nets, etc., its e�ciency depends on the data structures and algo-
rithms that implement the concrete structures, their morphisms and the primi-
tive categorical operations on them. In general one cannot expect an instantia-
tion of an abstract algorithm to be more e�cient than an algorithm specifically
designed for the concrete structures. This is why we compare only the algorithms
as implemented in Verigraph, while we defer to future work a comparison with
algorithms for parallel independence developed in other frameworks.

Verigraph supports the definition and analysis of dpo graph transformation
systems, while the support for sqpo is under development. For this reason the
experimental evaluation presented in the next section will consider left-linear
rules only. Without loss of generality, we also assume that rules are right-linear,
because the right-hand sides don’t play a role in the conditions for parallel
independence considered in this paper.

5.1 Data structures

We briefly describe now the data structures used to represent typed graphs and
related concepts. Graphs are directed and unlabeled, and nodes and edges are
identified by unique integers. Each graph is made of a list of node identifiers
and a list of tuples (e, s, t), which are identifiers for the edge, its source and
its target, respectively. This representation is convenient as most operations on
graphs will traverse all its elements. Graph morphisms are represented as pairs
of finite maps. We use the datatypes provided by the standard library of Haskell,
which implements finite maps using balanced binary trees. A typed graph over
a type graph T is a graph morphism GT : G ! T . A typed graph morphism

f : GT ! HT is just a graph morphism f : G ! H which commutes with the
morphisms to T . Rules are spans LT � KT ⇢ RT of injective typed graph
morphisms.

5.2 Primitive categorical operations

Verigraph provides many categorical operations as primitives for algorithm con-
struction. For reasons of space, we only present a brief explanation of how the
most relevant operations for testing parallel independence were implemented in
the category of typed graphs. For more details, we refer to the source code [1].
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Pullback Let P(X) = {S | S ✓ X} and, given f : X ! Y , let the inverse
f�1 : Y ! P(X) be defined as f�1(y) = {x | f(x) = y}. The pullback of a

cospan (X
f! Z

g Y ) is obtained by taking the inverses f�1 : Z ! P(X)
and g�1 : Z ! P(Y ), then creating the disjoint union of the product of the
preimages for each element of Z, that is,

U
z2Z

f�1(z)⇥g�1(z). This is done
independently for edges and nodes in order to construct the pullback graph
and associated projection morphisms.

Pushout Complement The pushout complement (see Def. 1) of (K
l⇢ L

m!
G) in the category of typed graphs exists i↵ the gluing conditions are sat-
isfied [11]. These conditions are checked set-theoretically, before the actual
construction. To construct the pushout complement of l and m when it ex-
ists, we compute the elements present in the image of m but not in that of
m � l, and remove them from G obtaining the subgraph D. The morphism
g : D ⇢ G is the inclusion, while n : K ! D is obtained by restricting the
codomain of m � l.

Isomorphism Check To check whether a morphism f : X ! Y is an iso, we
build the inverse f�1 : Y ! P(X) and then check that the image of each
element of Y is a singleton.

Factorization Check Given a cospan (X
f! Z

g

� Y ) with g mono, to search
for morphisms h : X ! Y such that g � h = f , we first take the inverse
g�1 : Z ! P(Y ). Then we determine the existence of a morphism h by
computing g�1 � f and checking if 8x 2 X. g�1(f(x)) 6= ; holds.

5.3 Parallel independence test

Given the primitive operations just described, testing parallel independence can
be achieved by constructing the required diagram elements and testing them for
desired properties, for example, if a calculated morphism is iso. In the case of
left-linear rules, there are two variants for conditions std-pi and ess-pi: as a
consequence of Lemma 2, the reflection of f along g may either be tested by (i)
constructing a pullback and checking for the isomorphism of one of its compo-
nents, or (ii) by checking if f factorizes through g. We refer to the former by
their regular names, and to the latter by std-f-pi and ess-f-pi. Figure 4 summa-
rizes diagrammatically these five conditions: the left column contains the variants
based on factorization and the right one those based on isomorphism tests. They
are also categorized on whether they test the diagram elements statically (based
on the rules and the matches only) or dynamically (using the construction of the
fpbc/poc as part of the test). For readability, Figure 4 shows only the left part of
the conditions, although the implemented routines test both sides. The complete
source code together with the tested grammars are available as a Verigraph spe-
cial release [1], in file src/library/Analysis/ParallelIndependent.hs. Since
Haskell is a lazy language, strict evaluation was enforced to provide a better
measure of the overall computational e↵ort required in each test.
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Factorization (dpo only) Isomorphism Test (dpo & sqpo)

Static

ess-f-pi

PB

�� ��

9?

~~

K1
//L1

��

L2

��

K2
oo

G

ess-pi

PB2

✏✏

⇠=?
//PB1

~~   

K1
//L1

  

L2

~~

K2
oo

G

PB2

  ��

⇠=?
✏✏

pb-pi

PB1

~~   

K1
//

,,

L1

  

L2

~~

K2
oo

rr

G

Dynamic

std-f-pi

K1
//

✏✏

L1

⌧⌧

L2

⇥⇥

9?

uu

K2
oo

POC //G

PB

⌥⌥

⇠=?

))

std-pi

K1
//

✏✏

L1

⌧⌧

L2

⇥⇥

K2
oo

FPBC //G

Fig. 4. Conditions for verifying parallel independence of transformations.

6 Experimental evaluation

The performance of evaluating these conditions should be sensitive to character-
istics of the rules, of the instance graphs to which they are applied, and of the
matches. The size of the instance graph G, for example, should strongly a↵ect
the dynamic conditions. The static conditions, on the other hand, should be less
sensitive to the size of G, since the elements outside the matches are filtered
out by the first pullback, leaving smaller graphs for the subsequent operations.
Conversely, the presence of non-injective matches should a↵ect the static con-
ditions more than the dynamic ones, because the size of the pullback of the
matches grows with the number of elements identified by them. We expect that
considering non-left-linear rules this multiplicative e↵ect may be reinforced.

To compare the performance of the five algorithms, two scenarios were used:

Elevator [17]: a grammar with 9 rules that models the behaviour of an elevator
system. It will be referred to as elev.

Medical guidelines [2]: three grammars that model guidelines for a medical
procedure, containing 36 rules in total. These grammars are referred to as
med1, med2 and med3.

These grammars are made of linear dpo rules. The files used to perform the
benchmark and the obtained results are available at https://verites.github.
io/parallel-independence-benchmarks/. The experiment compares the exe-
cution time needed to evaluate the five conditions over eight sets of inputs (pairs
of redexes), two for each grammar, generated in the following ways.

Jointly epic pairs: Given a grammar gr, the input set gr-je is obtained by
considering for each pair of rules (L1  K1 ! R1, L2  K2 ! R2), all
possible partitions of L1 ] L2 (i.e. all epimorphisms e : L1 ] L2 ⇣ G), and
adding the pair (m1 = e� in1,m2 = e� in2) to gr-je i↵ both matches satisfy
the gluing conditions. This is the standard approach when performing critical
pair analysis.

Fixed instance graph: Given a grammar gr, a fixed instance graph G consid-
erably larger than the left-hand sides of the rules of gr is constructed. Then
for each pair of rules of gr all possible pairs of matches (m1 : L1 ! G,m2 :
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L2 ! G) such that both matches satisfy the gluing conditions are added
to set gr-ig. This represents testing parallel independence during concrete
rewritings. For the grammars considered in the experimentation, graph G
contains approximately 20 nodes.

For each input set, the five variants of the parallel independence test were ex-
ecuted ten times, the execution time was measured and the average time per
pair of matches was calculated. The benchmark was executed on an Intel(R)
Core(TM) i5-3330 machine with a 3.00GHz CPU and 16GB of RAM. Fig. 5
presents the results.
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Fig. 5. Mean runtime of each algorithm, per pair of redexes, over all input sets. elev
contains one outlier whose bar was truncated, with its numeric value written above it.

From the observed results, we conclude that the static variants (ess-pi, ess-
f-pi and pb-pi) outperform the dynamic variants (std-pi and std-f-pi) in most
cases, particularly with large instance graphs. One important exception was the
case elev-je, where pb-pi performed much worse than all other alternatives.
We conjectured that this occurs due to the multiplicative e↵ect of pullbacks in
presence of non-injective matches. To confirm this, we repeated the experiment
considering only the inputs with injective matches. In this case, the mean time
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per pair of pb-pi was 146 microseconds, slower than ess-pi (114µs) and ess-f-pi

(99µs) but faster than std-pi (265µs) and std-f-pi (211µs).
Regarding the comparison of using factorization (ess-f-pi, std-f-pi) or iso-

morphism test (ess-pi, std-pi), we observed that factorization seems consis-
tently more e�cient than pullback calculation, although in some cases the re-
sults were similar, as in med3-je. Thus, the factorization-based algorithms can
be recommended when rules are left-linear.

In general, the essential conditions (ess-pi and ess-f-pi) presented very good
performance in all situations. ess-f-pi was in many cases the fastest for test-
ing parallel independence. On the other hand, ess-pi had an overall good per-
formance, and often the di↵erence between it and ess-f-pi was insignificant.
Therefore, the essential conditions can be recommended for all cases.

7 Conclusions

In this paper we have considered some definitions of parallel independence pro-
posed for the Double-Pushout and the Sesqui-Pushout Approaches to graph
transformation, and we proposed a new condition, that we called the Essential

Condition (ess-pi). We presented explicit proofs of equivalence of condition ess-

pi with the Standard (std-pi) and the Pullback (pb-pi) Conditions previously
proposed in the literature at an abstract categorical level. Next we have imple-
mented five variants of the parallel independence test (two being optimized ver-
sions of std-pi and ess-pi for left-linear rules) for grammars based on categories
of typed graphs in the Verigraph system. We evaluated the runtime e�ciency
of each condition over a collection of test cases based on dpo transformation
with linear rules only, because the support of sqpo by Verigraph is still under
development. Our experiments led to the conclusion that the essential condition
has the best performance in most cases.

We foresee several developments of the work presented in this paper. From
the more theoretical side we intend to investigate how the intuition behind con-
dition ess-pi could be exploited in other frameworks. For example, it should be
possible to define a stronger version of ess-pi equivalent to, but simpler than,
the strong parallel independence considered in [13] for dpo transformations with
injective matchings. We also intend to exploit condition ess-pi for defining and
computing e�ciently minimal conflict reasons between redexes, as studied for
example in [18,3], and to evaluate to what extent ess-pi can be exploited to im-
prove existing algorithms for Critical Pair Analysis. This is not obvious, because
several optimization techniques have been developed (see e.g. [18]) that should
be adapted to our condition for independence. In this context, we also intend
to check formally under which assumptions condition ess-pi is equivalent to the
definition of parallel independence based on an initial pushout for the left-hand
side of a rule, as proposed in [17,18]

Concerning the comparison of e�ciency of the various conditions for paral-
lel independence, the initial evaluations presented here should be completed to
encompass non-left-linear rules as well. Next we intend to extend the compari-
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son to algorithms for checking independence developed in other frameworks, like
agg [22].
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