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Abstract

Chronic respiratory diseases (CRDs) are complex multifactorial disorders involving the
airways and other lung structures. The development of reliable markers for an early
and accurate diagnosis, including disease phenotype, and prediction of the response
and/or adherence to treatment prescribed are essential points for the correct manage-
ment of CRDs. Beside the traditional techniques to detect biomarkers, “omics” sciences
have stimulated interest in clinical field as they could potentially improve the study of
disease phenotype. Perturbations in a variety of metabolic and signaling pathways
could contribute an understanding of CRDs pathogenesis. In particular, metabolomics
provides powerful tools to map biological perturbations and their relationship with dis-
ease pathogenesis.

The exhaled breath condensate (EBC) is a natural matrix of the respiratory tract, and
is well suited for metabolomics studies. In this article, we review the current state of
metabolomics methodology applied to EBC in the study of CRDs.
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1. Introduction

Chronic respiratory diseases (CRDs) are complex multi-factorial dis-

orders. They involve the airways and other structures of the lung, whose

pathogenesis depends on the interplay between host and environmental fac-

tors [1]. Chronic obstructive pulmonary disease (COPD) and asthma are

certainly the most common among CRDs, but others like allergic rhino-

sinusitis, occupational lung diseases, sleep apnea, lung cancer, cystic fibrosis,

primary ciliary dyskinesia and pulmonary fibrosis, although less common, are

often underdiagnosed. CRDs affect hundreds of millions people worldwide,

and beingmulti-factorial diseaseswith both environmental and genetic influ-

ences [2], are characterized by a remarkable heterogeneity in the clinical

course and in their pathophysiological phenotypes [3,4].

Phenotyping of human pathologies in general, and of CRDs in partic-

ular, has recently become a way toward precise and personalized medicine.

The identification of reliable markers for early and accurate diagnosis, phe-

notype characterization, and prediction of response and adherence to

treatment are essential points for the correct management of CRDs [5].

Because of the complexity, CDRs’ phenotyping cannot be described by

a single biomarker, and a biomatrix profile including several biomarkers

has the potential to better characterize disease phenotypes [6]. Recently,

“omics” sciences have become a fundamental research tool in the respira-

tory clinical field. In particular, metabolomics provides a powerful tool to

map the perturbations originating from the altered metabolic and signaling

pathways characterizing each CRD [7].

Metabolomics analyzes the whole set of low-molecular-weight metab-

olites present in cells, tissues, organs and bio-fluids as a manifestation of any

exposure (including drug treatment), lifestyle, environmental issues and

genetic mutations [8]. Therefore, metabolomics can be useful to define

the disease onset and its prognosis and progression [8]. Furthermore, detec-

tion of unexpected/unknown metabolites can possibly drive new patho-

physiological hypotheses [9].

The respiratory tract offers a natural matrix, the exhaled breath, which

is well suited for metabolomics studies. Exhaled breath condensate (EBC)

can be easily obtained by cooling exhaled air from spontaneous tidal

breathing. It represents a non-invasive method of sampling the airway-

lining fluid (ALF) [10], on which metabolomics methodology can be

fruitfully applied.
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2. Exhaled breath condensate (EBC)

The pulmonary inflammatory response releases many mediators into

the ALF, and may mirror the severity of lung injury [10]. EBC essentially

contains water (99.9%) but also inorganic compounds like nitric oxide and

carbonmonoxide, volatile organic compounds (VOCs) and non-volatile sub-

stances, and probably reflects the ALF composition. The non-volatile

compounds include inorganic anions and cations, organic molecules (urea,

organic acids, amino acids and their derivatives), peptides, proteins, sur-

factants and macromolecules [10].

Different mechanisms are responsible for the presence of volatile and

non-volatile compounds in the EBC. While VOCs are present in EBC

because of the partitioning between the gaseous and aqueous phases of

the exhaled breath, the exact mechanism(s) explaining how the non-

volatiles enter the gaseous phase is still debated. It is hypothesized that the

non-volatile compounds can be released from ALF into the exhaled air as

aerosolized particles and/or aerosols. A number of conditions such as age,

sex, circadian rhythm, infection and other exogenous elements may interfere

with the EBC composition, and they should be taken into account [11].

Because of the water excess, the EBC compounds are highly diluted.

Often, the ratio between the concentrations of the non-volatile analytes

in EBC and those in ALF is considered as the EBC dilution factor, which

is reported to vary between 1000 and 50,000 [10]. Consequently, such a sig-

nificant intra- and inter-individual variability of the concentration of non-

volatile compounds must be considered when analyzing EBC samples and

interpreting data. So far, no golden standard for dilution has been identified.

The appropriate dilution standardization, the simultaneous measurement of

dilution marker(s), the monitoring of ventilatory patterns, the measurement

of the exhaled particles and the condensation temperature are all factors that

need to be addressed for a successful application of metabolomic-based anal-

ysis of EBC in clinical and/or research area.

3. Metabolomics of EBC

Metabolomics is the comprehensive assessment of endogenous metab-

olites (metabolome). It systematically identifies and quantifies metabolites

from a biological specimen in a global/targeted approach [12]. Metabolites

are small molecules (! 1000 Da), and include peptides, amino acids,
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nucleotides, carbohydrates, organic acids, vitamins, polyphenols, alkaloids

and inorganic species, which act as a signature of the functional phenotype

in a cell, tissue or organism. The metabolome represents the expression of a

multiparametric response of a living system to genetic modification, patho-

physiological stimuli and influence of the environment [13]. Therefore, it is

well suited to study a disease through a metabolic bioprofile because metab-

olites can potentially represent the history of the cellular response to past

exposure, and offer potential diagnostic and/or prognostic application [12].

Currently, no single analytical platform leads to a comprehensive iden-

tification and quantification of the metabolome of a biological system. The

intrinsic chemical diversity demands that different analytical techniques

should be combined to generate complementary results useful to enhance

metabolic analysis. The most used techniques in metabolomics are nuclear

magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) [14],

whose main characteristics are compared in Table 1.

Comparing NMR and MS, it should be underlined that NMR requires

little pre-treatment of samples, is rapid (10–15 min for a 1D acquisition), is

non-destructive, non-invasive, has a high degree of sensitivity (less than or

equivalent to μmol L"1), and provides highly reproducible results. How-

ever, NMR is a rather insensitive technique, and, therefore, requires con-

centrated metabolites. The major advantage of MS is represented by its

significantly lower limit of detection, while disadvantages include the poten-

tial biases introduced by sample preparation and differential ionization effects

that can affect the detection and quantization of metabolites.

NMR spectroscopy can be considered a general technique for metab-

olite detection. It studies molecules by recording the interaction of the

nuclei forming the molecules with an electromagnetic radiation in the

radiofrequency range when the sample is placed in a strong magnetic field.

This energy is at a specific resonance frequency that depends on the strength of

themagnetic field and themagnetic properties of the nucleus. The re-emission

of the energy absorbed by the nuclei in the experiment is registered and an

NMR spectrum is then obtained after a Fourier-transformation (Fig. 1). A sin-

gle nucleus in a molecule can be “observed” bymonitoring the corresponding

line (resonance) in a spectrum, and the various parameters that characterize the

line (frequency, splitting, line width and amplitude) can be used to determine

the molecular structure, conformation and dynamics of biomolecules, whose

size varies from small organic molecules to macromolecules.

NMR spectrometers operating at high static magnetic field detect more

spectral details. The magnetic field strength available today has reached
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28.2 T (that is, 1.2 GHz for proton frequency). However, most applications

in NMR-based metabolomics are obtained using spectrometers operating at

600 MHz (i.e., 14.1 T), equipped with a CryoProbe. Such technology

brings about a sensitivity increase while the level of the thermal noise

Table 1 Main characteristics of nuclear magnetic resonance (NMR) spectroscopy and
mass spectrometry (MS) for metabolomics studiesa.

NMR MS

Detection limit Nanomolar
(with cryoprobes)

Picomolar (much lower with
special techniques)

Metabolite
detection

All metabolites detected Usually needs a targeted approach
with pre-analytical conditions
based on chemical classes

Analysis Whole sample analyzed in
one measurement

Different experimental conditions
for different chemical classes

Quantity 200–400μL Few μL

Recovery nondestructive Destructive (but uses small
amounts)

Tissue analysis Yes (MAS-NMR) Yes (MALDI protein tissue
imaging; DESY metabolite
imaging)

Reproducibility Very high Targeted: high;
Untargeted: fair

Sample
preparation

Minimal Variable but can be extensive
(protein precipitation, solid-phase
extraction, liquid-liquid, etc.)

Difficulty in
molecular
identification

Low, from databases and
analysis of multidimensional
spectra

Depending on instruments
(MS/MS, MSn, GC-MS, etc.)

Acquisition time 10–15 min for 1D spectra 10 min for UPLC-MS

Quantification 1–5% 5% intraday

Instrument
robustness

High High

Databases Available and increasing Available and increasing

aAdapted from M.C.A. Maniscalco, D. Paris, D.J. Melck, A. Molino, S. Fuschillo, Motta A, Met-
abolomics of exhaled breath condensate by nuclear magnetic resonance spectroscopy and mass spectrom-
etry: a methodological approach, Curr. Med. Chem. (2018) in press.
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produced by electronic circuits and components is efficiently reduced,

therefore increasing the signal-to-noise ratio of the experiments. NMR

spectrometers present an amplitude response linearly dependent on sample

concentration, and this permits a straightforward quantification of the

metabolite concentration. In modern spectrometers, all steps involved in

the acquisition and processing of NMR data, including machine setting

and exchange of samples, are fully automated for dozens of samples without

human intervention.

NMR-based metabolomics offers several advantages for a rapid and

accurate metabolic analysis of the sample with minimal sample pretreatment.

Furthermore, since the technique is nondestructive, the samples can be

repeatedly investigated when the metabolic stability is preserved.

Biological molecules are mainly composed by hydrogen, carbon, oxy-

gen, nitrogen and fluorine atoms, which all present an NMR-detectable iso-

tope. Since proton has a high natural abundance and inherent sensitivity, 1H

(the “proton”) is the nucleus of choice used for metabolomics. In principle,

the identification (i.e., the “assignment”) of a resonance originating from a

specific metabolite is obtainable by a comparison with published reference

Fig. 1 NMR spectra of EBC samples. Representative one-dimensional 1H spectra of an
asthmatic (A), and a COPD (B) patient. The region between 9.0 and 6.5 ppm has a 32-fold
vertical expansion. All signals were assigned to single metabolites by resorting to two-
dimensional NMR experiments and referring to published data on metabolite chemical
shifts. Absorption (related to the intensity) is plotted on the y-axis, and magnetic field
strength is plotted on the x-axis, which usually ranges from 0 to 12 ppm.
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data, which tabulate the chemical shifts (i.e., the position of the line in a

spectrum with respect to a reference line) of metabolites found in several

specimens. Since proton signals are spread over a chemical shift range of

ca. 14 ppm, signal overlap is often observed, and this generates specificity

problems because resonances can be hidden under signals from chemically

similar species. This problem can be (partially) overcome by recording spectra

for nuclei with a larger chemical shift range (for example, 13C), or for nuclei

with a limited presence in the molecules (for example, 15N, 19F, and 31P).

Identification of metabolites in crowded spectral regions can be helped

by acquiring two-dimensional (2D) spectra, which separate signals in two

dimensions. Used experiments connect the same [“homonuclear” corre-

lations like 1H–1H clean total correlation spectroscopy (TOCSY)], or dif-

ferent [“heteronuclear” correlations like proton and carbon, like 1H–13C
single-quantum coherence (HSQC) experiments] nuclei. The built-in

pulse sequence library of each spectrometer allows for a panoply of 2D

experiments, but in-house personalization for dedicated experiments is

also possible.

MS is a technique that ionizes molecules and classifies the ions according

to their mass-to-charge ratio. Accordingly, a mass spectrum determines the

masses of the molecules that are present within a sample. MS methods vary

with respect to throughput (i.e., time of analysis), sensitivity and selectivity,

as well as robustness, ease of use and cost. Mass spectrometers determine the

molecular mass of molecules using mass analyzers, which broadly exist in

distinct formats of increasing mass resolution and accuracy: quadrupole,

ion trap, time of flight, Orbitrap and Fourier Transform Ion Cyclotron

Resonance.

MS presents higher intrinsic sensitivity and specificity compared with

NMR, although it usually requires a previous separation step such as gas

chromatography (GC), high-performance liquid chromatography (HPLC)

or ultra-performance liquid chromatography (UPLC) and capillary electro-

phoresis (CE) (Table 1). Both VOCs and non-volatile organic components

of EBC (NVOCs) are analyzed in clinical studies. Separation techniques

coupled to MS are important to reduce sample complexity and to mini-

mize ionization suppression effects, thus enhancing the detection sensitiv-

ity and increasing the metabolome coverage [15]. Differently fromNMR,

which requires limited sample preparation, pre-concentration and/or

pre-purification steps are often required before MS analysis can be carried

out, and they may be quite demanding, but the MS sensitivity improves

after clean-up and chromatographic separation of the biological sample
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[16]. MS sample preparation includes lyophilization, liquid-liquid extrac-

tion (LLE), solid-phase extraction (SPE), and micro-extraction (SPME).

MS-based metabolomics allows for untargeted and targeted approaches.

The untargeted strategy evaluates the whole molecular content of the sam-

ples, and may favor a deeper and more complete knowledge of physiological

and pathological biochemical processes. On the contrary, targeted method-

ology can reveal the biological mechanism(s) responsible for pathology. It

can identify and quantify specific metabolites, or class of metabolites,

according to a hypothesis-driven strategy, but it disregards potential new

or unknown disease biomarkers.

GC-MS can be usefully applied to detect volatile and semi-volatile ther-

mally stable compounds. Furthermore, after appropriate chemical derivati-

zation, some non-volatile compounds can be transformed into volatile at the

analytical temperature. Identification of VOCs in EBC by GC-MS or GC

coupled to Tandem Mass Spectrometry (GC/MS/MS) is typically obtained

on samples pre-enriched by SPME [17–24]. Unidentified mass values

require mass spectral databases and libraries to match molecular ion and

ion fragment patterns. Since databases do not contain all metabolites, to

avoid tentative identification reference standards should be used for struc-

tural validation.

LC-MS/MS uses a wide array of platforms that allow for simultaneous

identification and quantification of targetedmetabolites like 8-isopostaglandin

F2α in human EBC samples [25], with high degree of sensitivity and speci-

ficity. Often it does not require sample derivatization, and therefore ther-

mally unstable molecules that cannot be safely analyzed by GC-MS-based

methodologies can be investigated. In EBC, LC-MS/MS has been chiefly

used to assess the presence of biomarkers of inflammation like alkenals [26],

leukotrienes [27,28], isoprostanes [29] and eicosanoids [30,31] in healthy,

asthmatic and pneumoconiosis subjects. Although not described in this

chapter, LC-MS/MS is also extremely useful in analyzing proteins present

in EBC samples [32], as demonstrated for lung cancer screening [33] and

asthma monitoring [34].

NMR and MS spectral data derived from the entire metabolome in

biofluids are extremely complex for the presence of hundreds of low-

molecular-weight compounds. A biological matrix (EBC, blood, urine,

saliva, cells, tissue, etc.) comprises not only the endogenously formed

and metabolized compounds, but may also include xenobiotic molecules

together with metabolites produced by viruses and bacteria. Furthermore,

sample manipulations and biological fluctuations of the metabolic profile
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may increase the sample variability. Multivariate analysis techniques pro-

vide three of themost popular regression algorithms, the principal component

analysis (PCA), the partial least squares projection to latent structures (PLS)

[26,27], together with the “filtered versions” orthogonal projection to latent

structures (OPLS, O2PLS) [28–30]. The new factors that are generated are

called latent variables or principal components. The subsequent data projec-

tion into the corresponding latent space results in dimensionality reduction,

and in an easily and intuitive data visualization. Therefore, multivariate

analysis is an integrated part of metabolomics, due to its ability to provide

interpretable models for complex intercorrelated data [31].

The raw metabolic profiles acquired with NMR or MS techniques can

be processed and arranged to form a data matrix containing N observations

in rows andK variables in columns, consisting of NMR spectral bins or m/z

intensities each (coupled with the retention time). The chemical profile

dataset can be transformed into a matrix through a binning/bucketing pro-

cedure that defines chemical shift or m/z bins sizes and integrates the bin

intensities [32,33].

After NMR/MS spectral processing, which transforms row spectral

data into clean spectra for the matrix, data analysis proceeds via multiple

steps that include alignment, normalization and scaling. All these proce-

dures are widely described in literature [34–36] and performed with ded-

icated commercial software, or available from on line resources and free

platforms (for example, Metaboanalyst [http://www.metaboanalyst.ca/]

or OpenMS [37]).

Statistical analysis is carried out by applying unsupervised or supervised

procedures and discriminant methods. The difference between them refers

to the regression algorithms: in the unsupervised, the dimensionality reduc-

tion is carried out without a-priori knowledge of sample categories or related

metadata; while, in the supervised the reduction is obtained together with

extra information on the sample. The choice of the regression method

depends upon the experimental conditions of the data collected and the

research purpose.

The most popular unsupervised method to analyze metabolomic data is

PCA. The regression strategy obtains a small number of orthogonal factors,

called principal components (PCs), gradually explaining the largest variance

within the dataset while adding components stepwise. The dataset projec-

tion into the obtained low-dimensional PC space visualizes sample distribu-

tion, possibly discerning groups without referring to class information. Two

matrices, known as scores and loadings, are obtained from the original matrix.
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Scores are the new coordinates associated to each EBC sample, which is rep-

resented as a point in the scores plot, while loadings represent the role of

metabolites responsible for samples distribution in the PC space. In the

scores plot, points close to each other present comparable concentration var-

iation in the metabolic profiles, while points placed distant to each other

imply different metabolic levels. In the loadings plot, variables (metabolic

compounds) close to each other are positively correlated for the samples

placed in the corresponding position in the scores plot, while negatively

correlated variables will appear diagonally at the opposite side.

PCA is often applied as an initial step prior to the application of a super-

vised method, as it can anticipate likely sample clustering that PLS or OPLS

can further highlight. Supervised methods such as PLS guide the matrix

decomposition to disclose new latent factors by resorting to additional sample

information [26]. Recently, OPLS has been introduced to further enhance

the ability of data modeling [28,29]. The prediction ability of PLS andOPLS

and their discriminant version (PLS-DA, OPLS-DA) is extremely valuable

in data explanation and sample classification, but proper validation is fun-

damental. Model performance could be assessed with several dedicated

methods [38,39], but projection in the calculated model of an external

dataset, not included in the calculations of the primary model, is considered

the most valid.

4. Metabolomics in respiratory disorders

Metabolomics applied to EBC in CRDs allows for: (a) the assessment

of biomarker profiles, resulting in a specific “fingerprint” of a disease (Fig. 1);

(b) identification of specific metabolites characterizing the disease; (c) dis-

crimination of specific diseases and their phenotypization (Fig. 2); (d) the

possible metabolic pathways involved in the separation obtained by using

dedicated software (e.g., MetaboAnalyst 3.0) [40] (Fig. 3).

4.1 COPD
COPD is one of the leading causes of mortality and morbidity worldwide,

and is expected to be the third leading cause by 2030 [41]. It is characterized

by incompletely reversible airflow limitation that results from small airway

disease (obstructive bronchiolitis) and parenchymal destruction (emphy-

sema). It is often very difficult to differentiate COPD from other diseases

such as asthma particularly in adult smokers or in the outpatient clinical prac-

tice, as the symptomsmay be very similar [42].Metabolomic investigation of
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EBC by NMR and statistical analysis has been proved particularly able to

reliably separate patients with COPD from other pulmonary diseases.

We have recently reported that patients with a new diagnosis of asthma

or COPD can be separated by NMR-based metabolomics of EBC samples

[43] (Fig. 1). We initially built a model in which the COPD patients, in

comparison with those obtained from the asthmatic subjects, show a statis-

tically significant increase in ethanol and methanol levels and significantly

lower levels of both formate and acetone/acetoin (Fig. 4). Next, we tested

a separate, different cohort of EBC samples obtained from asthmatic and

COPD patients that were tested blindly.

In the validation study, the asthmatics were clearly separated fromCOPD

patients, identifying 12 of 13 asthmatic patients and 19 out of 20 COPD sub-

jects. The results confirm that, by using anNMR-based profiling of the EBC

metabolites, it is possible to easily discriminate between asthma COPD

patients with high sensitivity and specificity.

de Laurentiis et al. [44] evaluated the possibility of distinguishing COPD

patients from healthy (HS) and laryngectomized subjects by means of NMR

analysis of EBC and saliva samples from 12 COPD, 12 HS and 12 laryngec-

tomized subjects. They first showed that EBC spectra were not contami-

nated by saliva. By applying PLS-DA analysis, it was possible to obtain a

Fig. 2 Example of a scores plot obtained from MS data for the discrimination of asth-
matic and COPD patients: asthmatics, blue circles; COPD, red circles. The labels t[1] and
t[2] along the axes represent the scores (the first 2 partial least-squares components) of
the model, which are sufficient to build a satisfactory classification model.
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sample classification of #95% (samples correctly classified into different

regions). In particular, the saliva from HS, laryngectomized and COPD

patients were all different from EBC and from each other. Such a separation

comes mostly from metabolites present within the 3.5–2.9 and 2.1–1.7 ppm
regions of the NMR spectra. In addition, EBC and saliva were stable as sam-

ples collected at times 0 and 12 h demonstrated good within-day repeatabil-

ity, showing no evident spectral difference.

The authors also reported some guidelines on EBC manipulation (how

to avoid possible contamination of the EBC samples by the disinfectant

when a condenser with reusable collecting parts is used, how to remove

Fig. 3 Example of MetaboAnalyst (http://www.metaboanalyst.ca/) pathway impact
based on selected and statistically (P <0.05) representative metabolites responsible
for the class separation between asthmatic and COPD subjects. Circles represent all met-
abolic pathways potentially involved in class separation. The vertical bar highlights the 2
metabolisms with higher impact located on the right side of the bar, namely, methane
metabolism (24%) and glyoxylate and dicarboxylate metabolism (23%). The impact
[the x—(horizontal) coordinate] is the pathway impact value calculated from pathway
topology analysis.
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oxygen from the samples by nitrogen degassing, storage at"80 °C to quench

metabolism at the collection time and prevent any metabolic decay, why

lyophilization should not be carried out to prevent metabolite precipitation,

etc.). Based on qualitative and quantitative spectral differences, together

with acetate, four additional signal variations were found to differentiate

COPD from healthy and laryngectomized subjects with an overall accuracy

of 94%. The observed signal variations were linked to the increased oxida-

tive stress that is observed in COPD.

The same authors [13] studied 54 EBC samples from 27 COPD subjects

and 27 healthy controls. Compared to healthy controls, the corresponding

spectrum from a COPD patient showed some differences located in the

regions centered at 2.2 and 1.2 pm. These regions include propionate

αCH2, acetoin αCH3, fatty acid (CH2)2COO, propionate βCH3, ethanol

CH3, fatty acid CH2CH3, lactate βCH3 and threonine γCH3. Unfortu-

nately, in that study no interpretation of the metabolic pathways involved

was provided.

Fig. 4 S-line plot between 8.6 and 0.5 ppm corresponding to Fig. 1 NMR spectra of asth-
matic and COPD patients. Positive signals correspond to metabolites that present an
increased concentration in COPD patients, whereas negative signals correspond to
those that show an increased concentration in asthmatic patients with respect to COPD
subjects (i.e., a reduction in COPD). The buckets (i.e., the sequentially integrated spectral
regions) are labeled on the x-axis according to metabolite assignment with variable
identity. The y-axis p(ctr)[1] indicates the loading value for each variable according to
the centering, whereas abs (p[corr])[1] refers to the absolute correlation value.
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Another study from the same authors [45] demonstrated that NMR pro-

file of EBC samples from COPD subjects is different from that of subjects

affected by pulmonary Langerhans cell histiocytosis (PLCH). An inverse

behavior of 2-propanol and isobutyrate characterized COPD with respect

to PLCH (high/low in COPD, low/high in PLCH). Furthermore,

NMR was able to identify COPD and PLCH subjects compared to current

smokers without COPD. Indeed, COPD and PLCH samples presented a

profile different from that of smokers without COPD, showing acetate

increase and 1-methylimidazole reduction. The method unambiguously

recognized metabolites responsible for between-group differences, strongly

suggesting that the biomarker signature characterizing PLCH and COPD is

independent from the “common background” due to smoking habit. A lim-

ited number of metabolites identify molecular changes in smoking-related

diseases such as COPD and PLCH. Acetate, acetoin, ethanol, formate,

methanol, 1-methylimidazole, 2-propanol, propionate, and isobutyrate

were identified as responsible for intergroup separation and, because of their

different concentrations, identified specific trends. In particular, high acetate

characterizes COPD and PLCH, representing a key metabolite to differen-

tiate them from health subjects, suggesting an involvement of lipid metabo-

lism related to energy requirements. Indeed, cholesterol molecule is formed

from acetate units. Unlike acetate and propionate, no butyrate was reported

in COPD and PLCH. Butyrate is oxidized in the mitochondria, forming

two acetate molecules for each butyrate molecule. It is possible that the

acetate increase in COPD and in PLCH is due to the result of butyrate

beta-oxidation.

In a study by Bertini et al. [46] involving 37 COPD patients and

25 healthy subjects, NMR spectroscopy applied to EBC yielded an accurate

discrimination between normal subjects and COPD subjects, thereby

suggesting that COPD features a distinct metabolomic fingerprint. In par-

ticular, COPD subjects displayed significantly lower levels of acetone, valine

and lysine, and significantly higher levels of lactate, acetate, propionate, ser-

ine, proline and tyrosine. The reported lower levels of valine and lysine

could be related to an enhanced metabolic demand. The high levels of lac-

tate observed in COPD could be the result of a persistent subclinical airway

inflammation, while the increased levels of acetate could be related to acet-

ylation of pro-inflammatory proteins in the airway lining fluid.

Zabek et al. [47] investigated whether it is possible to diagnose a patient

with either COPD or obstructive sleep-apnea syndrome (OSAS) and,

simultaneously, to determine whether, to correctly diagnose a patient, it
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is necessary to studymetabolites present in one, two or three biofluids (serum,

exhaled breath condensate or urine). Urine metabolites presented the highest

probability to correctly identify patients with COPD and the lowest prob-

ability for an incorrect identification of the OSA syndrome. In this study

changes in EBC metabolite levels did not appear to be specific enough

to differentiate between patients with COPD and OSAS.

4.2 Asthma
Asthma is a serious health and socioeconomic issue all over the world [48].

The effort of researchers has focused on the identification of key metabolites

useful for diagnosis, monitoring and treatment of asthma. In that regard, early

studies on metabolomics have opened encouraging perspectives for patients

[49,50]. In fact, asthma should no longer be considered a single disease and

efforts should be made to identify the different biochemical and inflamma-

tory profiles behind asthma symptoms in order to treat themwith specifically

targeted therapies [51]. Objective measurements of airway inflammation

allowed a better customization of therapy than traditional measures alone

[52]. Metabolomics has been used in discrimination among asthma, healthy

subjects and other diseases both in children and adults, and for the identifi-

cation of specific pathways that could lead to the development of targeted

therapies thereby improving the outcome of patients.

Carraro et al. published a proof-of-concept study on the metabolomics

analysis of EBC in relation to asthma [50]. Twenty-five childrenwith asthma

(with or without ICS treatment) and 11 healthy controls were enrolled to

perform exhaled nitric oxide (eNO), spirometry and EBC collection. They

found that selected signals from NMR spectra from two regions, namely,

1.7–2.2 and 3.2–3.4 ppm, corresponding to oxidized and acetylated com-

pounds, were more successful in identifying asthma than the combination

of eNO and forced expiratory volume in 1-s (86% versus 81%). In that study,

the NMR signals were not identified, but the authors speculated that

because of the increased inflammation present in asthmatic airways, the high

motility group box protein 1 were acetylated and released in the airways.

The presence of oxidized compounds is in line with other studies showing

higher concentration of oxidative stress markers in EBC from asthmatic

subjects.

In a successive study, Sinha et al. [53] found that the presence or

absence of a trident peak at 7 ppm during NMR spectroscopy reliably dis-

tinguished between EBC samples collected from healthy and asthmatic
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subjects, respectively. This peak probably represents ammonium ion,

whose loss in asthma is consistent with a reduced expression of glutamin-

ase, an enzyme that converts glutamine to glutamate and ammonia leading

to impaired acid neutralization.

In a number of studies metabolomics approach has showed to be able to

discriminate between asthma sub-phenotypes.

In 2013, Carraro et al. [54] applied the metabolomics approach to EBC

from 42 asthmatic children to discriminate asthma phenotypes based on dis-

ease severity. They found that compounds related to retinoic acid, adenosine

and vitamin Dwere relevant for the discrimination between different groups

and a specific metabolite fingerprint emerged in the characterization of

severe asthma. These results are consistent with previous literature data.

Retinoic acid and its metabolites are involved in both inflammation and air-

way remodeling in asthma and particularly in the more severe forms [55].

Adenosine presents a number of pro-inflammatory effects and has been

involved in asthma especially in those with worsening symptoms [56].

Finally, vitamin D is implicated in the onset of asthma and there are reports

suggesting an inverse relationship between its serum levels and asthma sever-

ity [57]. Metabolomics data analysis leads to a robust model also when the

three groups of children (no asthma, non-severe asthma and severe asthma)

were considered altogether, indicating that each group is characterized by a

specific metabolomics profile. Furthermore, severe asthma phenotype could

be fully discriminated, suggesting that this approach may be very well suited

to develop new-targeted therapies [58].

Ibrahim et al. [59] used NMR-based metabolomics of EBC to discrim-

inate asthmatics from controls, and to observe whether these profiles could

be used to distinguish asthmatic phenotypes based on sputum eosinophilia,

neutrophilia, asthma control and inhaled corticosteroid use. In this investi-

gation, 82 asthmatics and 35 healthy controls were recruited. Five NMR

spectral regions were different between patients and healthy volunteers,

and demonstrated good accuracy in between-group discrimination. In addi-

tion, the model was validated in an independent set of subjects. Additional

regions were able to discriminate between sputum neutrophilia and use of

inhaled corticosteroids, but this method was not able to differentiate the

asthma phenotypes of sputum eosinophilia and asthma control with good

accuracy.

Motta et al. [60] studied the EBC from 35 mild asthmatic patients and

35 healthy subjects at two different condensing temperatures, at "27.3 °C
and"4.8 °C. Blind validation of the models was obtained from 20 asthmatic
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and 20 healthy different subjects not included in the primary analysis. Sam-

ples were initially investigated separately according to the collection tem-

perature, and the within-day, between-day, and technical repeatabilities

were assessed. Next, samples were interchanged, and, finally, all samples

were analyzed together, disregarding the condensing temperature. Partial

least-squares discriminant analysis of NMR spectra correctly classified

samples, without any influence from the temperature. To build the models

the authors used either integral bucket areas (spectral bucketing) or metab-

olite concentrations (targeted profiling), obtaining strong regression (95%)

with high quality parameters for spectral (R2 ¼0.84 and Q2 ¼0.78) and

targeted (R2 ¼0.91 and Q2 ¼0.87) profilings. In particular, the authors

showed that all models were able to reproduce the metabolic variations

responsible for class separation notwithstanding the differences in the devices

and the condensing temperature. This suggests that cross comparisons of data

originating from different condensers are reliable and that NMR-based met-

abolomics could attenuate some specific problems linked to standardization

of EBC collection.

A number of epidemiologic studies indicate that obesity and asthma are

linked. Obesity is a risk factor for incident asthma and also affects its severity,

control and medication response [61]. A distinct “asthma-obesity” pheno-

type was suggested in unbiased cluster analysis [62].

In a study by Paris et al. [63], NMR-based metabolomics applied to

EBC correctly discriminated samples from obese and lean subjects. In par-

ticular, with respect to lean controls, obese subjects presented an increased

concentration of ethylene, glycol, ethanol, n-valerate short-chain fatty

acid, and hydroxybutyrate, and a decreased concentration of formate,

methanol, succinate, acetone, acetoin, propionate, acetate, and lactate.

As these metabolites are involved in energy homeostasis and inflammatory

processes, it was concluded that obesity constitutes a specific respiratory

phenotype (metabotype) in which discriminating metabolites are linked

to energy homeostasis and inflammation.

In another study [64], the same authors showed that obese asthmatic

(OA), lean asthmatic (LA), and obese non-asthmatic subjects (ONA) can

be discriminated by NMR-based metabolomics. OA patients were charac-

terized by a respiratory metabolic fingerprint fully different from that of

patients independently affected by asthma or obesity. In that study methane,

pyruvate, and glyoxylate and dicarboxylate metabolisms were the most

probable pathways involved in the class separation. In particular, as com-

pared with ONA, both OA and LA presented reduction of methanol,
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formate and acetate, where OAs show a smaller reduction of formate, meth-

anol and acetate with respect to ONA. Since methane metabolism is an

important pathway involved in the production of cellular energy, the

authors suggested that the energy requirement characterized the two

models. The progression from obese to OA seems to require lower energy,

consuming a relatively low amount of formate, methanol and acetate. On

the contrary, the obesity-asthma co-morbidity involves additional energy,

consuming more substrates of methane metabolism. Furthermore, many

of the altered metabolites are also suggestive of inflammation. In fact,

reduced methanol and formate in OA with respect to LA and, to a lesser

extent, with respect to ONA, might indicate a tentative to reduce pulmo-

nary inflammation.

4.3 Cystic fibrosis and primary ciliary dyskinesia
Mutations in the gene encoding the cystic fibrosis transmembrane con-

ductance regulator protein cause cystic fibrosis (CF) [58]. It promotes

alterations in the transport of chloride and sodium ions in epithelial secret-

ing cells, producing more viscoid mucus (respiratory tract secretions),

chronic respiratory tract infection, dysregulated and heightened inflam-

matory responses, and progressive lung tissue destruction [65]. Although

CF affects multiple organs, over 90% of patients dies from progressive pul-

monary disease and subsequent respiratory failure [66]. The natural course

of CF is characterized by acute pulmonary exacerbations triggered by viral

infections, pollutants or increased bacterial load and, often, requires

hospitalization.

CF drives metabolomics alterations in plasma, broncho-alveolar lavage

fluid, sputum and serum [67–69]. Robroeks et al. [70] recruited 48 children

with CF and 57 controls and analyzed their EBC by GC-MS. They reported

a classification rate of 100% for CF patients by using 22 compounds present

in exhaled breath. The discrimination between CF and controls was mainly

based on C5–C16 hydrocarbons and N-methyl-2-methylpropylamine.

In a study by Montuschi et al. [71], EBC metabolomics by NMR dis-

criminated between 29 subjects with stable CF, 24 subjects with unstable

CF and 31 age-matched healthy controls. Correct classification rate of CF

versus healthy subjects was 96%. The classification rate of stable CF versus

unstable CF subjects was 95%. Ethanol, acetate, 2-propanol and acetone

were most discriminant between patients with CF and healthy subjects.

Acetate, ethanol, 2-propanol and methanol were the most important
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metabolites for discriminating between patients with stable and unstable

CF. The authors suggested that the elevated EBC ethanol concentrations

in patients with CF may be related to the reduced capacity of Pseudomonas

aeruginosa to oxidize ethanol to acetate, whereas the elevated EBC

2-propanol levels might be due to bacterial metabolism or to increased

lipolysis and lipid peroxidation. These data suggest that a limited number

of metabolites can be used to pinpoint some of the metabolic changes in

CF. A strength of this study is the external validation of these results in

independent datasets.

15-F2t-Isoprostane, a reliable biomarker of oxidative stress, has been

reported elevated in EBC of CF patients. Azithromycin has antioxidant

properties in experimental models of CF, but its effects on oxidative stress

in CF patients are largely unknown. Recently, Montuschi et al. [72]

reported a proof-of-concept pharmacological study in which they investi-

gated the potential antioxidant effects of azithromycin in CF patients as

reflected by EBC 15-F2t-isoprostane, and the effect of azithromycin on

EBC and serum metabolic profiles, and on serum 15-F2t-isoprostane. No

change was detected in EBC 15-F2t-isoprostane concentrations compared

with baseline values after 8-week treatment or 2 weeks after treatment sus-

pension. Likewise, no differences in serum 15-F2t-isoprostane concentra-

tions were observed in either study group. On the contrary, NMR-based

metabolomics of EBC showed that suspension of both azithromycin plus

vitamin E and vitamin E alone had a striking effect on metabolic profiles,

but no effect was observed in serum. Between-group comparisons indicated

that EBCmetabolite distribution after treatment and 2 weeks after treatment

suspension was different. Quantitative differences in ethanol, saturated fatty

acids, acetate, acetoin/acetone, and methanol were responsible for these dif-

ferences. The study suggested that EBC NMR-based metabolomics might

be used for assessing the effects of pharmacological treatment suspension in

stable CF patients.

Distinct inflammatory and metabolic processes generate different

metabolites that may be found in the EBC of subjects with CF and pri-

mary ciliary dyskinesia (PCD) [73]. NMR-based analysis of EBC found

that acetoin, lactate, methanol, acetate, ethanol, saturated fatty acid, and

formate discriminated PCD from CF with 85% sensitivity and 88% spec-

ificity. Ethanol, methanol, saturated fatty acids, formate, lactate, acetate,

leucine/isoleucine, isobutyrate, and glutamine/glutamic acid separated

subjects with PCD from control subjects with 90% of sensitivity and

96% specificity.
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Ethanol, methanol, and SFAs represent a sufficient set for subjects’ clus-

tering. Ethanol is implicated in the cilia beating with stimulatory effects at

low concentrations. SFAs modulate neutrophil production of

proinflammatory mediators, and their decreased concentration might be

associated with a lack of inflammation suppression in PCD and CF. Simi-

larly, increased methanol in PCD and CF may be associated with airway

inflammation. Methanol, present in human breath, is a breakdown product

of formaldehyde, which exacerbates airways inflammation. Acetoin is

involved in inflammatory processes and its reduction in PCD compared

with CF might be associated with a different airway inflammation pattern

in these disorders [73].

Recently, Zang et al. [74] applied UPLC-MS to profile metabolites in

EBC from 17 clinically stable CF subjects, 9 CF subjects with an acute pul-

monary exacerbation, 5 CF subjects during recovery from an acute exacer-

bation, and 4 CF subjects who were clinically stable at the time of collection

but developed an acute exacerbation in the subsequent 1–3 months.

Untargeted UPLC-MSmetabolomics method coupled to multivariate anal-

ysis allowed identification of EBC metabolites related to an acute exacerba-

tion event in CF. 4-Hydroxycyclohexylcarboxylic acid and pyroglutamic

acid differentiated EBC of exacerbated subjects from stable CF samples with

84.6% accuracy [74].

Lactic acid was identified as key biomarker for predicting an oncoming

acute exacerbation pulmonary event (APE). Lactic acid levels in the studied

cohort possibly reflect the status of different stages preceding and following

an APE event. The higher levels of lactic acid in the pre-APE and APE

patients compared to stable CF patients could possibly result from the

increasing hypoxic environment in CF lungs due to poorly cleared thick

mucus developing on epithelial surfaces, which leads to an increased lactate

conversion from pyruvate in anaerobic glycolysis. Lactate is also a glucose

precursor in gluconeogenesis, and elevated gluconeogenesis has been found

in CF-related diabetes.

Pyroglutamic acid is a known intermediate in the γ-glutamyl cycle, a

pathway for the biosynthesis and degradation of glutathione, and is thus

related to redox imbalance.

4-Hydroxycyclohexylcarboxylic acid is a rare organic acid involved in

gut microbial mammalian metabolism. This type of metabolic gut-lung

crosstalk has also been found to be associated with inflammatory bowel dis-

ease in which the pulmonary inflammation is reported to accompany the

main inflammatory process in the bowel [74].
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4.4 Lung cancer
In the carcinogenetic process cancer cells develop new biochemical adapta-

tions with quantitative changes in endogenous metabolites [75]. A number

of enzymatic activities are affected through the alteration of oncogenes and

onco-transcription factors, contributing to drive the metabolic shifts

observed in cancer cells [76].

Metabolomics, due to its ability to simultaneously detect changes in

metabolite profile, is currently one of the fastest developing disciplines in

cancer research. In cancer studies, untargeted metabolomics has potential

application in biomarker discovery and interventional studies to evaluate

the effect of the treatment or search for novel therapeutic targets [76]. Over

the last decade, numerous articles on cancer metabolomics have been

reported. They involve several cancer types and use different kinds of sam-

ples (cells, tissues, biofluids, etc.), and aim at discovering specific metabolic

signatures or biomarkers applying NMR and MS techniques [77].

Searching for articles on metabolomics-based analysis of EBC in lung

cancer, we identified three articles. In the first work by Peralbo-Molina

et al. [78], metabolomics analysis of EBC was applied to discriminate

between patients with lung cancer and those at risk for lung cancer.

Untargeted analysis, using GC-TOF-MS, was conducted in a cohort of

patient with lung cancer (n ¼48), risk factor individuals (active smokers

and ex-smokers, n ¼130) and control healthy individuals (n ¼61) in order

to detect the EBC metabolic signature within risk and cancer affected indi-

viduals. Five compounds were significant in the comparison of the lung can-

cer patients versus the risk-factor group. Among these compounds, it is worth

noting the presence of two saturated monoacylglycerols (monopalmitin

ad monostearin) and an acyclic triterpenoid (squalene). Monopalmitin and

monostearin were characterized by different behaviors: monopalmitin

was more concentrated in the risk factor group than the cancer group.

On the other hand, monostearin offered an inverse profile, as the risk factor

group showed a lower relative concentration than the lung cancer patients.

Seven compounds were shown to discriminate between the lung cancer

patients and the risk factor group. Among them, triethyl citrate and indole

are related to cigarette smoke. No information about the role played by the

other compounds was reported.

Subsequently, the same authors [79] identified metabolomics panels for

potential lung cancer screening. Metabolite profiles were obtained from

lung cancer patients, which were compared to those provided by two addi-

tional cohorts: a risk factor group formed by active smokers with at least
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20 pack-years of exposure and ex-smokers, and a second group including

healthy non-smoker individuals. EBC collected from the three groups

was analyzed by GC. The best panel of metabolites with capability of dis-

crimination between the risk factor cohort and healthy individuals was

formed by combination of five metabolites (monopalmitin, monostearin,

benzyl alcohol, 2,4-diphenyl-4-methyl-2E-penten and p-cresol) to provide

90.3% specificity, 77.9% sensitivity and 85.1% AUC. Discrimination of

lung cancer patients versus the risk factor individuals resulted in one other

five-compound panel characterized by sensitivity close to 90%, and com-

posed by 2,4-bis-dimethylbenzyl-6-t-butylphenol, monostearin, spiro-

2,4-heptane-1,5-dimethyl-6-methylene, 13-heptadecyn-1-ol and methyl

stearate, with 67.5% specificity, 86.8 sensitivity and an AUC of 77.5% [79].

From a biological point of view, some of the compounds identified can be

associated to smoking habit; others can derive from systemic circulation or

from airways microbiome.

Furthermore, in this study, the subjects with the most common lung

cancer diagnosis (squamous cell carcinoma and adenocarcinoma) were

selected to compare their EBC composition with the aim of identifying

metabolomics differences among lung cancer stages. Ten subjects belong-

ing to early stages I and II and 28 belonging to advanced stages III and IV

were compared with the risk factor cohort [79]. A test was applied to

each compound to find statistical differences among the three groups. Six

compounds were statistically significant among the three groups under study:

cumylalcohol, benzoic acid methyl ester, 2,4,6-triisopropylphenol, 2,6-bis-

(1,1dimethylethyl)-4-(1-methyl-1-phenylethyl)phenol, 2,4-bis-(1-methyl-

1-phenylethyl) phenol and 2,4-bis-(dimethylbenzyl-6-t-butylphenol). All

compounds were detected at higher concentrations in lung cancer patients

at advanced stage. Five of these compounds had benzenoic structure with

alkyl groups, which could be related to tobacco smoke or to metabolic

variations ascribed to airways microbiome.

The third study by Ahmed et al. [80] aimed to determine if 1HNMRof

sputum and EBC could identify biomarkers of lung cancer. In the EBC

samples, median concentrations of propionate, ethanol, acetate, and ace-

tone were higher in lung cancer patients compared to the patients with

benign conditions. Median concentration of methanol was lower in lung

cancer patients (0.028 mM) than in patients with benign conditions

(0.067mM; P ¼0.028). Methanol is primarily produced in the gut by

the interaction of bacteria with the unabsorbed carbohydrates, and the
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reduced levels observed in the EBC of lung cancer patients might indicate

a possible alteration in its metabolic pathway triggered by the malignant

transformation.

4.5 Miscellanea
EBC metabolomics has also been used to investigate other CRDs. In a pilot

study, Fermier et al. [81] investigated the metabolomics signature of EBC

from patients in shock with acute respiratory failure. They compared the

EBC profiles of 12 patients with shock with those from 14 controls with

LC-HRMS.Using a non-targeted approach together withmultivariate anal-

ysis, theywere able to differentiate the two enrolled groups of subjects.More

than 1000 ionswere detected, but an excellentmodel of differentiation could

be obtained after inclusion of only 6 ions. Although ion identification was

missing, the authors claimed that their findings may enable the characteriza-

tion of endophenotypes of patients, and may improve our knowledge of

shock pathogenesis.

Carraro et al. [82] compared EBCmetabolomics signature from 20 ado-

lescents with bronchopulmonary dysplasia (BPD) and 15 healthy controls.

OPLS-DA model clearly showed a discrimination between patients and

healthy controls. In particular, the adolescents with BPD showed an altered

complex lipid profile, which persists in the lung of survivors of BPD as a

long-term metabolic abnormalities.

In a pilot study, Airoldi et al. [83] reported an NMR-based met-

abolomics analysis of EBC from patients with α1-antitrypsin deficit as com-

pared with healthy subjects. NMR profiles were different from both a

qualitative and a quantitative point-of-view. Acetoin, propionate, acetate,

and propane-1,2-diol were the metabolites presenting the largest difference

between the two group of subjects. Most of the metabolites identified

derive from pyruvate metabolism pathway, and many of them are bacterial

fermentation products.

Li et al. [84] used metabolomics of EBC to study the lymphangio-

leiomyomatosis (LAM), a progressive neoplastic disorder that leads to lung

destruction and respiratory failure, particularly in women. They identified

15-epi-lipoxin-A4 in EBC from LAM subjects, and noted that its level

was increased by aspirin treatment, indicating a functional COX-2 expres-

sion in the LAM-patients airway. Then, they evaluated that in vitro

15-epi-lipoxin-A4 reduced the proliferation of LAM patient-derived cells
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in a dose-dependent manner. Therefore, they concluded that targeting

COX-2 and prostaglandin pathways might have therapeutic value in treat-

ment of LAM subjects.

5. Summary and future perspectives

Metabolomics represents a major and rapidly evolving component of

the new biology. EBC holds a promise to become one of the preferred

biomatrices for diagnostics, management and follow-up of various respi-

ratory diseases, including inflammation phenotyping [85]. The separate

and/or joint use of NMR and MS allows accurate measurement of small

molecules in EBC. This could help our pathophysiological understanding

of CRDs, and could possibly identify early metabolic changes of disease,

favoring the development of predictive biomarkers that can trigger earlier

interventions. In particular, metabolomics of EBC can: (1) add informa-

tion about physiopathogenetic mechanisms of CRDs; (2) identify prognos-

tic, diagnostic, and surrogate markers for a CRD disease state; (3) classify

specific CRD phenotypes/endophenotypes; (4) recognize biomarkers

related to drug responsiveness and evaluation of side effects (pharmaco-

metabolomics), correcting/suggesting individually tailored therapeutic

approaches in CRDs.

Although many efforts have been made to optimize protocols, many

methodological issues still need to be addressed and require thorough vali-

dation in large cohorts before NMR- and MS-based metabolomics of EBC

can be used in clinics. However, the published data are of remarkable inter-

est, and may currently support clinical data in an unbiased way.
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