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1 Introduction

Massless and massive higher-spin interactions are believed to be governed by Vasiliev’s

equations [1] and by String Theory, respectively; relating these theories is a pressing prob-

lem for modern theoretical physics. For the former, scattering amplitudes are formulated

as (d = 2) CFT vertex operator correlators while the Vasiliev system relies on an unfolded

frame-like approach. However, in the end, one is often interested in either an S-matrix

or Witten-type diagrams, whose features can often be determined by gauge invariance

alone. In a light-cone framework and flat backgrounds, detailed results for massless [2–4]

and massive [5, 6] cubic higher spin interactions were obtained by following exactly this

philosophy. More recently, a covariant version of this program was carried out for higher

spin cubic vertices, both for simple cases (see, for example [7–12] and the review [13]) and

rather generally [14–17]. The (anti) de Sitter [(A)dS] and general mass (including partially

massless [PM]) cases were then given in [18–23], while frame-like and mixed symmetry

analyses were performed in [24, 25] and [26–29], respectively. Early results beyond cubic

order are available in both light-cone formalism [30, 31] and covariant settings [32–34].
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Figure 1. Conformally related metrics are obtained by slicing the conformal cone. These are

conformally Einstein when there exist slices admitting a parallel scale tractor I. The second picture

depicts the slice inducing an Einstein metric.

A central difficulty faced by higher spin theories is maintaining correct degrees of

freedom (DoF) counts in the presence of interactions which generically destroy the gauge

invariances or constraints controlling the DoF of free higher spin wave equations. For non-

interacting theories, by including Stückelberg auxiliary fields, gauge invariance can be used

as the central principle underlying the propagating higher spin DoF for all mass types: there

are various ways to understand the auxiliary field content required for massive higher spin

fields, crucial among them being their origin as Scherk-Schwarz reductions [35] of massless

higher spins in one higher dimension [36, 37]. Indeed, by a radial reduction corresponding

to a conformal isometry of a flat embedding space [38], the same mechanism generates

the Stückelberg couplings for higher spins in constant curvature backgrounds [39]. This

is the first hint that conformal geometry might play a rôle in these constructions. It also

suggests an underlying Dirac space construction, where conformally flat spaces are realized

as sections of a cone in two higher dimensions. What is surprising is that such methods,

which have long been known to be applicable to models with conformal symmetries [40],

can actually be used to great advantage for massive — non-conformal — models [41–43].

The flat model for a d-dimensional conformal geometry is obtained by sections of an

ambient light-cone in (d+2)-dimensions. Metrics induced on d-dimensional slices by the (d+

2)-dimensional ambient metric are conformally related. Metrics induced by flat slices (the

classical conic sections) give constant curvature spaces, as depicted in figure 1. These are

characterized by the normal vector I —which we will later elevate to a parallel ambient

vector field termed the scale tractor — to the flat slicing hypersurface. Moreover this flat

model can be generalized to the curved setting where the space of slicings yields general

conformal classes of metrics, while parallel scale tractors correspond to Einstein metrics. So

in this picture, solving Einstein’s equations amounts to finding parallel scale tractors [44].

The relevance of a six dimensional cone to four dimensional conformal wave equations

was first observed by Dirac [40] while its (d+2)-dimensional curved generalization and appli-

cation to d-dimensional conformal geometry was initiated by Fefferman and Graham [45].

The parallel scale tractor description of conformally Einstein metrics was discovered by
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Figure 2. Coupling to scale through the scale tractor I determines the evolution of physical fields

with masses labeled by conformal weights. The scale tractor also determines how data is moved

from the boundary (the zero scale slice) to the bulk (standardly described by a constant scale slice).

Bailey, Eastwood and Gover in a paper which also developed the so-called (d-dimensional)

“tractor calculus” for conformal invariants [44]. Later it was realized that tractors could

also be profitably described using ambient (d+ 2)-dimensional tensors [46, 47]. Moreover,

it was shown that tractors could be used to express the fundamental wave equations of

physics [41–43]. The main idea was very simple: while parallel scale tractors I describe

the background Einstein geometry, evolving boundary data along I corresponds to wave

equations. This development allowed both massless and massive wave equations to be

described by conformal geometry, rather than Riemannian geometry methods. Mass then

amounts to how physical fields respond to changes of scale (i.e., their tractorial weights).

The above picture becomes much richer when one considers also boundary problems,

in particular those with data at conformal infinities. In fact, this is precisely the setting

of the AdS/CFT correspondence [48, 49]. Firstly, the slicing hypersurface is described by

the constant locus of a unit homogeneity scalar called the scale σ, that plays the rôle of a

dilaton field, or in other words a d-dimensional scalar, conformal density. A key insight of

Gover [50], was that although a nowhere-vanishing scale and a conformal class of metrics

is equivalent to a Riemannian geometry, this is not the case when σ has a non-trivial zero-

locus. This led to a generalization called “almost Riemannian geometry”. In hyperbolic

settings the zero locus of the scale σ amounts to a conformal infinity. This is depicted in

the conformally flat — conic sections — setting in figure 2. Observe that constant loci

of σ intersect the cone along hyperboloids (positively curved constant curvature spaces)

while the zero locus yields a cone, and in turn conformal structure, in one dimension less.

The former intersection corresponds to the bulk manifold in an AdS/CFT correspondence

while the latter yields the boundary conformal geometry (and in turn CFT).

The power of this approach is that the bulk conformal structure can be utilized to re-

alize spectrum or solution generating symmetries [48, 49]: the contraction of the scale trac-
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tor I with a tractor analog of the gradient and Laplace operators (known as the Thomas-D

operator [44]) yields the so-called Laplace-Robin operator. This is a conformal version of

the bulk Laplacian which continues smoothly to the boundary (even though it is at con-

formal infinity). Remarkably, this operator is a generator of an sl(2) solution-generating

algebra valid on any curved manifold [48]. This facilitates solutions to conformal infinity

boundary problems. These results have a wide applicability, both to higher spin, bose,

fermi, massless, massive and PM systems. Hence, the main building blocks for a calcu-

lus for scattering problems taking full advantage of the bulk conformal structure are now

available. The next (and crucial) step is to describe higher spin vertices in this approach.

In this article we show how this can be done for totally symmetric higher spin fields. This

requires a melding of known results for these vertices with tractor approaches to higher

spin fields.

Before summarizing our results, we provide a brief guide to the Article. In section 2

we review the tractor calculus description of conformal geometry and of physical systems

in terms of conformally invariant tractors coupled to scale. In section 3 we specialize these

methods to higher spins, focusing on their on-shell description. The results in section 3.2

focus on how to write point-split on-shell amplitudes (à la [15, 16, 18–21, 23]) in terms of

tractor multiplets and are new. In section 4 we apply our “tractor higher spin Noether

method” to compute the three point vertex generating functions. In the appendices, we

derive various key identities and connect our results with previous ones based on a (d+ 1)-

dimensional projective space approach [18–21, 23].

Summary of results. Our results for totally symmetric higher spins of arbitrary rank

can be compactly expressed in terms of tractor generating functions Φ(x, U) (where a (d+

2)-dimensional auxiliary vector UM is used to keep track of tractor bundle valued indices

— see section 3.1). Vertex generating functions can be expressed in terms of the irreducible

set of operators

Yi = ∂Ui · D̂i+1 , Zi = σ−2 ∂Ui−1· ∂Ui+1 [i ' i+ 3] ,

built from the Thomas-D operator (see section 3.2):

S(3) ∼
∫
σ

:σ
∑
i τi C(Yi ,Zi) : Φ(X1, U1) Φ(X2, U2) Φ(X3, U3)

∣∣∣xi=x
Ui=0

.

Here, the integration measure
∫
σ is defined in (3.4), the normal ordering is σ > Y > Z

and the parameters τi are the twists of respective fields. Our punchline is a proof that

the tractor gauge consistency condition — which amounts to (strictly) massless (τ1 = 2)

gauge transformations in a dual (d+ 2)-dimensional theory [41, 42, 51], gives a differential

equation determining the function C :[
Y3∂Z2 − Y2∂Z3 − γ̂

(
Y3∂Y3 − Y2∂Y2 +

τ2 − τ3

2

)
∂Y1

]
C(Yi , Zi ) = 0 , (1.1)

where

γ̂ = τ2 + τ3 − d+ 1− 2
∑
i

Zi∂Zi .
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This equation has already been solved in [23]: for that one absorbs the factor − γ̂ into a

differential operator δ̂

δ̂ = −σd d

dσ
σ−d+1 .

Exactly the same operator arose in [20] from a careful handling of a projective space delta

function measure. In these terms, the cubic coupling for three massless fields can be

written as

C(Yi , Zi ) = e− δ̂DK(Yi , G )
∣∣
G=

∑
i Yi Zi

,

where D :=
[
Z1∂Y2∂Y3 + Z1Z2∂Y3∂G + cyclic

]
+ Z1Z2Z3 ∂

2
G (see [20, 23]) and K is an

arbitrary polynomial function of four variables.

The same pattern arises also for generic massive and (partially-)massless couplings.

These correspond to various intersections of kernels of the differential operator appearing

in eq. (1.1), and cyclic permutations thereof, as discussed in [23]. In summary, we find that

the solutions in the projective formalism of [23] and the corresponding tractor ones are

related simply by replacing the (d+ 1)-dimensional integration with the standard (confor-

mally invariant) d-dimensional measure along with substitutions Y → Y and Z → Z. In

particular, the tractor approach gives an alternative proof of the δ-function methods used

in [18–21, 23].

2 Tractors

A conformal d-manifoldM is a manifold equipped with a conformal class of metrics [gµν ] =

[Ω2 gµν ]. The data (M, [g]) determines the standard tractor bundle TM over M, which

can be viewed as a conformally invariant extension of the tangent bundle TM. This comes

equipped with a canonical tractor connection ∇T . In simple (four dimensional-)terms,

tractors replace four-vectors (sections of TM) by six-vector sections of TM in order to

make Weyl invariance manifest. Under changes of Weyl frame gµν(x) 7→ Ω2(x) gµν(x), a

standard tractor VM ∈ ΓTM (M = 0, . . . , d+ 1) transforms as

VM :=

V +

V m

V −

 7−→
 ΩV +

V m + ΥmV +

Ω−1
(
V − −ΥµV

µ + 1
2Υ2V +

)
 =: UMNV

N .

Here Υµ := Ω−1∂µΩ and we have used the vielbein in the middle slot to flatten indices.

The matrix UMN is SO(d+ 1, 1)-valued.1 The tractor connection acts on VM as

∇Tµ VM =

 ∂µV
+ − Vµ

∇µV m + eµ
mV + + Pµ

mV −

∂µV− − Pµ
mVm

 ,

and is the covariant derivative with respect to the change of Weyl frame given above. On

the right hand side of this formula, ∇ denotes the Levi-Civita connection and the Schouten

1All formulæ presented here continue to any metric signature by letting d→ (q, d−q) and thus (d+1, 1)→
(q + 1, d− q + 1).
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tensor Pµν is defined by the decomposition of the Riemann tensor into its trace-free Weyl

plus trace pieces:

Rµνρσ = Wµνρσ + gµρPνσ − gνρPµσ + gνσPµρ − gµσPνρ .

To complete the tractor calculus we introduce weighted tractors VM ∈ ΓTM[w] trans-

forming as

VM 7→ Ωw UMNV
N ,

as well as a pair of tractor operators, of weights −1 and +1, respectively known as the

Thomas-D operator and canonical tractor :

DM :=

 w(d+ 2w − 2)

(d+ 2w − 2)∇m

−∆− wJ

 and XM =

0

0

1

 .

These both act on (weighted) tractor(-tensor)s yielding tractor(-tensor)s, for this reason

we have dropped the (implicit) label T on the tractor connection, also ∆ := gµν∇µ∇ν
and J := Pµµ. Importantly, for any conformal structure (M, [gµν ]), these operators obey

a null condition DMD
M = 0 = XMXM , where indices are raised and lowered with

the SO(d+ 1, 1)-invariant tractor metric V · V ′ := V +V ′− + V −V ′+ + V mV ′m .

Since the Thomas-D operator unifies the Laplacian and gradient operators in a single

tractor multiplet of operators, it will play a crucial rôle in many computations. Let us

gather together some of its key properties: firstly, it is null, in the sense:

DMD
M = 0 .

However, since it is second order in derivatives, it does not obey a Leibniz rule. Nonetheless,

an integration by parts formula does hold (with an unusual sign)∫
M
ddx
√
−g VM DMU =

∫
M
ddx
√
−g (DMV

M )U , (2.1)

for any tractors VM and U (suppressing further indices such that the overall integrand

is a scalar) of weights wV and wU subject to d + wV + wU − 1 = 0 (which ensures that

the integrand is of zero weight). Moreover, the failure of the Leibniz property can be

characterized as follows: acting on any tractor with weight w 6= 1− d
2 we first define

D̂M :=
1

d+ 2w − 2
DM .

Then if A and B are tractors of weight wA and wB, respectively, the failure of the Leibniz

rule is measured by the following identity

D̂M (AB)− (D̂MA)B −A(D̂MB) = − 2

d+ 2wA + 2wB − 2
XM (D̂NA)(D̂NB) . (2.2)

This is easily verified by using the ambient formula for the Thomas-D operator given

in (2.5) below, and is valid away from obvious poles at distinguished values of wA, wB.

– 6 –
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This formula can be further simplified to an operator statement by introducing the weight

operator h whose eigenvalue is d+ 2w acting on weight w tractors:

D̂MA− (D̂MA)−AD̂M = −2

h
XM (D̂NA) D̂N .

From time to time, we will need the commutator between the Thomas-D and canonical

tractor operators:

[
XM , D̂N

]
=

2

h
XN D̂M − ηMN , ηMN =

0 0 1

0 ηmn 0

1 0 0

 , (2.3)

where ηMN is the SO(d, 2)-invariant metric.

Finally, on conformally Einstein manifolds, the Thomas-D operator commutes with

the scale tractor IM = D̂M σ (see section 2.2):[
DM , IN

]
= 0 , [D̂M , IN ] = 0 ,

while it commutes with itself on flat conformal structures:

[DM , DN ] = 0 , [ D̂M , D̂N ] = 0 .

2.1 Ambient tractors

The bundle-theoretic description of tractors and their calculus is extremely useful for com-

putations whose output is required in standard Riemannian geometry terms. However, for

many computations, an ambient description of tractors is very powerful. For that we first

introduce a Fefferman-Graham ambient space.2 This is a (d + 2)-dimensional space M̃
endowed with a metric obeying

GMN = ∇MXN

for some vector field XN . This condition immediately implies GMN = 1
2∇M∂NX

2. The

function X2 is known as a homothetic potential or a defining function; its zero locus

defines a curved version of the Dirac cone described and depicted in the Introduction. The

transition to the underlying d-dimensional conformal geometry is achieved via reducing to

the cone and then demanding a homogeneity condition with respect to the homothety XM .

More precisely, tractor(-tensor)s are equivalence classes of ambient tensors on (M̃, GMN )

TM1···Ms ∼ TM1···Ms +X2 SM1···Ms , (2.4)

(where the tensor S extends smoothly to the cone {X2 = 0}; spinor-tractors can be defined

analogously [43]) classified by weights w

X · ∇TM1···Ms = wTM1···Ms .
2Originally Fefferman and Graham studied (d + 2)-dimensional Ricci-flat ambient spaces [45]. Ricci

flatness is not required here (it can be viewed as a choice of gauge for the geometry extending away from

the Dirac cone), nonetheless, we still employ the name Fefferman-Graham ambient space even in its absence.

Flat Fefferman-Graham spaces reproduce the Dirac cone construction.

– 7 –
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The equivalence relation (2.4) is precisely that enjoyed by the lightlike physical excitations

of a massless scalar field in a momentum basis. Therefore, tractor operators can be derived

by considering the momentum representation of the so(d+2, 2) generators of the conformal

group acting on a flat ambient space [51]. Their generally curved counterparts follow by

replacement of partial derivatives by covariant ones. Thus, acting on ambiently represented

tractors, the Thomas-D operator is given by the analog of a momentum space conformal

boost

DM = (d+ 2X · ∇)∇M −XM ∇2 . (2.5)

This construction ensures that DM respects the equivalence relation (2.4).

2.2 Wave equations

To describe the evolution of physical fields we must consider how they couple to scale. This

problem is solved by first considering gravity. To begin with, suppose we are given a double

conformal class of a metric and scale [gµν , σ] = [Ω2 gµν ,Ωσ]. From this we can construct

the scale tractor IM = 1
d DMσ =

(
−1

2(∆σ + Jσ), nm, σ
)

, where nµ := ∂µσ. Requiring

that IM is tractor parallel

∇Tµ IM = 0 ,

ensures that gµν is conformal to an Einstein metric, with the Einstein metric being achieved

precisely in the choice of Weyl frame σ = constant. This is the mathematics behind

the conic sections picture of Einstein geometries sketched in the Introduction. Moreover,

since IM is parallel for conformally Einstein metrics, its square I2 = IMIM is constant;

physically this is the cosmological constant. Note that the Einstein-Hilbert action in these

terms is simply the conformally invariant expression S[g, σ] =
∫
ddx
√
−g σ−dI2, so that

Einstein’s equations amount to extremizing the magnitude of the scale tractor (a cosmo-

logical term is just the integral of the conformally invariant measure:
∫
ddx
√
−g σ−d.) In

fact, taking the normal vector nµ = ∂µσ to loci of constant σ as an independent field, then

the pair (σ, nµ) can be viewed as a generalized lapse and shift and thus the parallel scale

tractor equation yields a covariant extension of the ADM formalism.

Not only does the scale tractor control the geometry, it determines the evolution of

physical fields. If Φ• is any tractor tensor, the quantity DMΦ• is covariant under Weyl

transformations. Generally, wave equations are not conformally invariant, so they must

somehow be coupled to scale. There is a simple universal prescription for this, namely the

contraction with the scale tractor

IMD
MΦ• = 0 .

The operator I · D := IMD
M is called the Laplace-Robin operator because in the bulk

it is a conformally invariant version of the Laplacian while along the boundary it gives

the Robin operator, which is a conformally invariant normal derivative [52]. Crucially, the

operator I · D extends smoothly to conformal infinities encoded by the zero locus of the

scale σ = 0. From the conical section picture of the Introduction and the interpretation of

the Thomas-D operator as the generalization of the ambient gradient operator, it follows

– 8 –
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that the Laplace-Robin operator generates evolution along the σ-direction, indeed this

underlies standard Fefferman-Graham type expansions of the type crucial to the AdS/CFT

correspondence [42, 48]. Also, it is important to note that the weight of the tractor Φ•

will encode the mass of its underlying physical excitations [41], indeed the general mass

Weyl-weight relationship for spin s fields is given by

m2 = −2J

d
(w − s+ 2)(d+ w + s− 3) , (2.6)

where for constant curvature spaces J
d = Λ

(d−1)(d−2) . Massless fields appear when w = s− 2

while depth t PM ones arise at w = s − t − 13 (maximal depth t = s PM fields always

have w = −1).

Generally for higher spins, we are not interested in wave equations alone, but must

augment these with transversality conditions. The first point to notice, is that as the spin

increases, consistency of transversality requirements impose restrictions on the backgrounds

in which higher spin fields can propagate. We do not wish to delve further into that issue

here, so for the remainder of this discussion concentrate on conformally flat spaces. This

has the happy consequence that commutators of the Thomas-D operator and scale tractor

vanish [DM , DN ] = 0 = [DM , IN ] (the latter of these conditions of course holds more

generally in conformally Einstein spaces). Also, for massive spins, we desire a simple

calculus automatically incorporating the Stückelberg fields required to describe them in

a gauge invariant way. Let us sketch how this works for spins 1 and 2 before giving the

equations we need at general s in section 3. For spin 1 we take as field content a weight w

tractor AM while for spin 2 we consider a weight w rank 2 symmetric tractor hMN and

postulate gauge invariances mimicking their Maxwell and linearized general coordinate

counterparts

δAM = DMα , δhMN = DMξN +DNξM .

Because the Thomas-D operator is null, under these transformations the “Feynman- and

Fock-de Donder-gauge” parts of the fields AM and hMN are, respectively, gauge inert, thus

we may consistently impose conditions

DNAN = 0 , DMhMN −
1

2
DMh

N
N = 0 . (2.7)

These conditions already ensure that the tractors AM and hMN are parameterized by:

a vector and Stückelberg scalar for the Maxwell case; and metric fluctuations and a

Stückelberg vector and scalar for the spin 2 case. For example, in the spin 2 case one finds

gauge transformations for the metric fluctuations hµν and Stückelberg fields (Vµ, ϕ) [41, 42]

δhµν = ∇(µξν) +
2J

d
gµν ξ , δVµ = w ξµ + ∂µξ , δϕ = (w + 1) ξ .

For generic weights (and in turn w), the Stückelberg fields can be gauged away leaving

a massive theory for hµν ; when w = 0, the Stückelberg scalar ϕ can be gauged away

and the vector Vµ decouples leaving massless metric fluctuations hµν with a linearized

3Note that the twist τ := s− w and depth are related by τ = t+ 1.
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diffeomorphism gauge symmetry δhµν = ∇(µξν). At w = −1, the scalar decouples and the

vector Stückelberg mode can be gauged away leaving residual symmetries with ξµ = ∂µξ.

Under these, the metric fluctuations enjoy the PM gauge symmetry δhµν =
(
∇µ∂ν +

2J
d gµν

)
ξ.

Oftentimes, a (d + 1)-dimensional projective approach based on a log-radial reduc-

tion [38] is employed to describe massive higher spins. In fact the above Stückelberg gauge

transformations can be derived exactly in that way [39]. In the above description, the

independent tractor field content is given by components h++, h+m and hmn. In fact quite

generally, the “top slots” of tractor fields encode the (d + 1)-dimensional projective con-

struction [42]. Geometrically this is easy to see; essentially one is projecting the Dirac cone

along the scale tractor onto a surface of constant σ. The images of conical sections at fixed

values of σ are mapped in this way to loci with constant values of the log-radial coordinate

in a (d+ 1)-dimensional hypersurface. These loci are again constant curvature manifolds.

The equations of motion for spins 1 and 2 are given by forming tractor analogs of the

Maxwell curvature and Christoffel symbols

FMN := DMAN −DNAM , ΓRMN := D(Mh
R
N) −

1

2
DRhMN ,

and then coupling these to scale by simply contracting with the scale tractor

IMFMN = 0 , IRΓRMN = 0 . (2.8)

These equations of motion enjoy the above gauge invariances (so long as IMξ
M = 0 for

spin 2) and have as leading terms the universal Laplace-Robin structure I ·DAM + · · · = 0,

I · DhMN + · · · = 0. They encode massive, massless and PM equations in a unified

framework.

3 Tractors and higher spins

In this section we apply tractor technology to higher spin fields. In particular we show how

to write wave equations and then construct on-shell vertex functionals.

3.1 On-shell higher spin tractors

For our “on-shell” purposes, the off-shell equations of motion presented for the special case

of spin s = 1, 2 cases in the previous section are not optimal. Their on-shell counterparts

are obtained by fixing gauges for the Stückelberg auxiliaries:

XMΦMM2···Ms = 0 , IMΦMM2···Ms = 0 , ΦM
MM3···Ms = 0 .

We then obtain the following equations, which generalize (2.7) and (2.8) directly to their

higher s counterparts:

DMΦMM2···Ms = 0 , I ·DΦM1···Ms = 0 . (3.1)

– 10 –
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I · D̂Φ(x, U) = 0 , ∂U · ∂U Φ(x, U) = 0 , U · ∂U Φ(x, U) = sΦ(x, U) ,

D · ∂U Φ(x, U) = 0 , X · ∂U Φ(x, U) = 0 , I · ∂U Φ(x, U) = 0 .

Figure 3. Index-free tractor field equations for totally symmetric higher spins of any mass type.

These also apply to the ambient description in terms of fields Φ(X,U) extended off the cone and

subject to Φ ∼ Φ+X2S . In that case the weight condition is rewritten as the homogeneity one (B.1).

Here, ΦM1...Ms is a totally symmetric weight w tractor, and masses and weights are related

by (2.6) above. For tuned weights

w = −1, 0, . . . , s− t− 1, . . . , s− 2 ,

the above on-shell equations describe depth t PM and massless (t = 1) excitations. At

these weights, residual gauge invariances appear [41, 42]

δΦM1···Ms = D(M1
· · ·DMt ΞMt+1···Ms) , (3.2)

where the gauge parameters Ξ obey exactly the same set of conditions as the fields Φ listed

in (3.1). The on-shell equations of motion (3.1) and their residual invariances (3.2) give

the description of spin s fields needed for our vertex calculations.

Our next step is a simple technical manœuvre. Totally symmetric tensors ϕµ1···µs
written in a “symmetric-form” notation ϕ(x, dx) := ϕµ1···µs(x) dxµ1···µs can be treated as

functions of coordinates xµ and commuting differentials dxµ. By introducing also deriva-

tives with respect to the differentials ∂/∂(dxµ), the main operations on symmetric tensors

(the symmetrized gradient, divergence and trace) can be handled in an efficient, index free

way [39, 53–55]. This also allows physical quantities to be described as generating functions

simultaneously describing all spins s. The same methods can be applied in the ambient

space (or tractor bundle fibre) [56] by re-expressing symmetric tractor fields ΦM1···Ms as

Φ(x, U) := ΦM1···Ms(x)UM1 · · · UMs .

In these terms, the tracefree condition takes the form ∂U · ∂U Φ(x, U) = 0 . Also, we will

need the operator whose eigenvalue is the spin s of Φ(x, U), this is simply U · ∂U . Finally,

the difference of the spin and weight appears in many places, therefore we define the twist4

τ := s− w .

We have summarized the higher spin field equations in index-free tractor notation in

figure 3.

3.2 Conformally invariant functionals

We want to establish a basis for the possible on-shell vertex functions. These can be written

efficiently by splitting the spacetime points associated with each on-shell field. Point-split,

4Note that the twist τ is related to the homogeneity µ of [19–21, 23] by τ = µ+ 2.
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on-shell, densities can then be written in terms of tractors in much the same way as is done

for standard tensors. The key differential operator is the Thomas-D. Indeed, any quantity

which is of the N -th order in on-shell tractors and involves δ Thomas-D operators can be

expressed in the form

L[Φ1, · · · ,ΦN ](x) =

N−δ
2∏
i=0

δ∏
j=0

∂Uni· ∂Umi ∂Unj· D̂mj ×

× Φ1(x1, U1) · · · ΦN (xN , UN )
∣∣∣X1=···XN=X
U1=···=UN=0

. (3.3)

The conformal weight (or degree of homogeneity) of the above density is w1 + · · ·+wN − δ,
where each wi labels the weight of the tractor field Φi . Subscripts i, j, . . . will generally be

used to label points in the point-splitting procedure.

Generically, to establish a complete dictionary between (pseudo-)Riemannian and trac-

tor quantities, one also employs the canonical tractor XM . However, point-split quantities

involving the canonical tractor can be recast in terms of the above basis of invariants. This

vastly simplifies our ansatz for cubic interactions, so let us elaborate on this point: one

could consider operators X ·D̂i or X ·∂Ui acting on (3.3). But, because this expression is to

be evaluated at a single point xi = x , these operators can be traded for Xi · D̂i or Xi · ∂Ui ,

the operators entering the homogeneity (B.1) and tangentiality conditions (see the sec-

ond line of the display in figure 3) respectively. The former then just returns the degree

of homogeneity while the latter annihilates the tensor field Φ(xi, Ui) on-shell. Therefore,

to eliminate Xi · ∂Ui ’s it suffices to commute them with all Thomas-D operators acting

on Φ(xi, Ui) , which can be achieved via the commutator/reordering identity displayed in

eq. (2.3). In our index free notation, this implies[
X · ∂U , D̂M

]
=

2

h
XM ∂U · D̂ − ∂UM ,

which generates no new X-dependence on-shell, the latter being proportional to a diver-

gence operator.

To construct vertices, we still need to integrate densities such as (3.3) over slices of

the cone, in a way that maintains manifest Weyl invariance (of course this is ultimately

broken as explained earlier by the coupling to scale σ). For that we observe that the d-

dimensional measure
√
−g σ−d is Weyl invariant, so that for any Weyl invariant function f ,

the integral F [g, σ] =
∫
ddx
√
−g σ−d f(g, σ) = F [Ω2 g,Ωσ] is also Weyl invariant.5 We will

denote ∫
σ
f :=

∫
M
ddx

√
−g
σd

f . (3.4)

Thus, to integrate the quantity (3.3), we must first convert it to the correct weight by

introducing a suitable power of σ:∫
σ
σδ−w1− ···−wN L[Φ1, . . . ,ΦN ] .

5Then, the parallel scale tractor construction ensures that choosing Ω such that σ = 1 singles out the

underlying Einstein metric from the conformal class [g].

– 12 –



J
H
E
P
0
7
(
2
0
1
3
)
1
8
6

This functional can be used for the construction of both actions and vertices. For, example,

the leading quadratic term of the on-shell action is captured by

S(2) ∝
∫
σ
σ1+2µ eσ

−2 ∂U1
· ∂U2 Φ(x, U1) I · D̂ Φ(x, U2)

∣∣∣
U1=U2=0

.

It is not difficult to show by employing the harmonic gauge of appendix B that this ex-

pression is equivalent to the one obtained in a (d + 1)-dimensional projective formulation

in [18].

Finally, the tractor integration by parts formula (2.1) implies the following integration

by parts rule for our vertex functionals:

(hB − 2)

∫
σ
σdA (D̂M B

M) = (hA − 2)

∫
σ
σd (D̂M A)BM , (3.5)

where the weights hA and hB of A and BM satisfy the relation hA + hB = 2 . This property

together with the deformed Leibniz rule (2.2) and the commutation relation (3.4) constitute

a complete vertex calculus.

4 Cubic interactions

In order to construct interactions of higher spin fields, we rely on gauge invariance. This

is based on the assumption that a non-linear deformation of the leading gauge symme-

tries is responsible for propagation of the correct higher spin physical degrees of freedom.

Gauge invariance of the interacting theory can be analysed perturbatively by expanding

the (ultimate non-linear) action in powers of the gauge fields following a Noether-type

procedure.

4.1 Noether procedure

In the standard setup, one considers an expansion of the gauge invariant action and its

non-linear gauge symmetry order by order in the number of gauge fields. Up to the cubic

order, these are

S = S(2) + S(3) + · · · , δΦ = δ(0) Φ + δ(1) Φ + · · · .

Assuming that δS = 0, then it follows that

δ(0) S(n) + δ(1) S(n−1) + · · ·+ δ(n−2) S(2) = 0 , [n ≥ 2] . (4.1)

Our ultimate aim is to solve these conditions iteratively. Focusing on the first non-trivial

part of (4.1) gives the requirement relevant for our current cubic problem:

δ(0) S(3) + δ(1) S(2) = 0 .

This task is further simplified by observing that linearly on-shell (denoted ≈) δ(1) S(2) ≈ 0 .

Therefore, the first step of the Noether procedure is to solve

δ(0) S(3) ≈ 0 . (4.2)

This problem enjoys an elegant and simple tractor-based solution.
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4.2 The cubic vertex ansatz

To solve the cubic-order gauge consistency condition (4.2), we start with the most gen-

eral transverse and traceless, parity-invariant, d-dimensioanl cubic interactions S(3). In

generating function notation, these take the compact form

S(3) =

∫
σ

:C(σ , ∂Ui , D̂i ) : Φ(x1, U1) Φ(x2, U2) Φ(x3, U3)
∣∣∣xi=x
Ui=0

,

where we neglect terms involving Stückelberg or auxiliary fields. Here :C : denotes a

normal ordered operator. The normal ordering can be chosen such that σ sits to the left.

Although, passing the Thomas-D operator through powers of σ can produce the scale

tractor IM = D̂Mσ, the dependence on it can be removed by noticing that it can appear in

combinations removable by linear order field equations:

I · ∂Ui ≈ 0 , I · D̂i ≈ 0 .

The remaining 6(d + 2) variables appearing in the operator C can be packaged in twelve

combinations:

:C(σ , ∂Ui , D̂i ) : ≈ :C(σ , X , Y , Z ) : .

Here, the operators X ,Y,Z are point-split combinations of internal index and Thomas-D

operators given by

Xij = D̂i · D̂j , Yij = ∂Ui · D̂j , Zij = ∂Ui · ∂Uj ,

and they satisfy Xij = Xji , Zij = Zji and Xii Φi ≈ 0, Yii Φi ≈ 0, Zii Φi ≈ 0 . We

choose the remaining normal orderings according to σ > X > Y > Z > h. The twelve

variables (X ,Y,Z) can be halved because all three Xij ’s as well as the half of the Yij ’s,
say the Yi i−1’s, can be removed by re-expressing them in terms of the others. To prove

this requires a set of identities that we develop in appendix A. Thus our vertex ansatz

now reads

S(3) ≈
∫
σ

:C(σ , Yi , Zi ) : Φ(x1, U1) Φ(x2, U2) Φ(x3, U3)
∣∣∣xi=x
Ui=0

=:
〈
C(σ, Yi , Zi )

〉
Φ1Φ2Φ3

,

(4.3)

where

Zi = σ−2Zi−1,i+1 , Yi = Yi,i+1 , [i ∼ i+ 3] .

Having removed all redundant variables we can now determine the σ-dependence of

the vertex by simply counting the homogeneity degree of generic monomials

Ys1−m2−m3
1 Ys2−m3−m1

2 Ys3−m1−m2
3 Zm1

1 Zm2
2 Zm3

3 .

Since (X · D̂ − U · ∂U + τ) Φ = 0, the above monomial has homogeneity −(τ1 + τ2 + τ3).

Therefore, it follows that the vertex dependence of σ is simply

S(3) ≈
〈
στ1+τ2+τ3 C(Yi , Zi )

〉
Φ1Φ2Φ3

. (4.4)
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4.3 Vertex gauge invariance

For vertices where all external lines are massive and on-shell, we can go no further with our

on-shell, three-point, analysis of allowed higher spin vertices. The reason is that, unlike

their massless and PM counterparts, which enjoy a residual, onshell, gauge invariance (3.2),

the massive fields only obey second class constraints which have already been implemented

at this order. (Of course, one could either study off-shell three point vertices or higher

point functions, to further whittle down the space of cubic vertices concordant with massive

constraints.) Hence we now focus on the case where at least one external line has a residual

gauge invariance.

Let us first focus on the case when one field is massless: τ1 = 2 (say), and try to

solve (4.2) by requiring gauge invariance. To perform a linear gauge variation of the cubic

interaction (4.4) with respect to the field Φ1 we replace

Φ1 −→ δ(0)E1
Φ1 = U1 · D̂1E1 ,

by its (strictly massless) gauge transform corresponding to eq. (3.2) at t = 1 = τ −1. Then

we must push the operator U1 · D̂1 to the left where it vanishes because the integrand is

evaluated at U1 = 0 . For this we employ the commutation relations:6

[Yi , Ui · D̂i ] = Xi,i+1 , [Zi±1 , Ui · D̂i ] = σ−2 Yi∓1,i ,

in order to encode this manœvre in terms of ordinary derivatives on the function C that

labels the “vertex operator”. Orchestrating these manipulations we get:

δ
(0)
E1
S(3) ≈

〈
σ2+τ2+τ3

[
X12 ∂Y1 + σ−2 Y31 ∂Z2 + σ−2 Y21 ∂Z3

]
C(Yi , Zi )

〉
E1Φ2Φ3

.

Then, by applying the identities (A.2) and (A.3), with α−1 and β+1 given by the operator

γ̂ := τ2 + τ3 − d+ 1− 2
∑
i

Zi ∂Zi ,

we can rewrite this variation in terms of the restricted set of variables Yi and Zi as

δ
(0)
E1
S(3) ≈

〈
στ2+τ3

[
Y3∂Z2 − Y2∂Z3

− γ̂
(
Y3∂Y3 − Y2∂Y2 +

τ2 − τ3

2

)
∂Y1

]
C(Yi , Zi )

〉
E1Φ2Φ3

= 0 .

From this we extract the differential equation[
Y3∂Z2 − Y2∂Z3 − γ̂

(
Y3∂Y3 − Y2∂Y2 +

τ2 − τ3

2

)
∂Y1

]
C(Yi , Zi ) = 0 ,

which can be slightly rewritten using〈
στ2+τ3 γ̂ ∂Y1C(Yi , Zi )

〉
E1Φ2Φ3

= −
〈
δ̂ στ2+τ3 ∂Y1C(Yi , Zi )

〉
E1Φ2Φ3

,

6We display only non-vanishing commutators; these can be easily computed using the operator algebra

generated by Ui and ∂Uj .
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where

δ̂ := −σ d

dσ
+ d− 1 = −σd d

dσ
σ−d+1 . (4.5)

This gives our formula of the linear gauge variation of the cubic vertex:

δ
(0)
E1
S(3) ≈

〈[
Y3∂Z2 − Y2∂Z3 + δ̂

(
Y3∂Y3 − Y2∂Y2 +

τ2 − τ3

2

)
∂Y1

]
×

× σ2+τ2+τ3 C(Yi , Zi )

〉
E1Φ2Φ3

= 0 .

All in all, this gives our final result for the differential equation determining cubic interac-

tions: [
Y3∂Z2 − Y2∂Z3 + δ̂

(
Y3∂Y3 − Y2∂Y2 +

τ2 − τ3

2

)
∂Y1

]
C(Yi , Zi ) = 0 , (4.6)

where δ̂ can be considered here as an auxiliary variable on which the function C(Yi , Zi )

depends. It can be substituted for its operator definition (4.5) at the last step. The

above equation coincides with the consistency condition obtained using (d+1)-dimensional

projective methods [20].

The above discussion is quite general and extends also to PM couplings along the

same lines as in [20]. Indeed, since the gauge transformations of the PM fields are multiple

gradients with respect to the Thomas-D operator (see eq. (3.2)), at the PM point τ1 ∈ N
the corresponding differential equation factorizes as:

τ1−2∏
n=0

[
Y3∂Z2 − Y2∂Z3 + δ̂

(
Y3∂Y3 − Y2∂Y2 +

τ1 + τ2 − τ3 − 2n− 2

2

)
∂Y1

]
C(Yi , Zi ) = 0 .

5 Conclusions

In this article we have addressed the problem of constructing higher-spin cubic interactions

for totally symmetric fields using tractor calculus. This extends and generalizes the results

obtained requiring (Stueckelberg-)gauge invariance in [18–21] and [23]. (The latter PM

analysis completes the flat space, light-cone, cubic interaction program of [3–6].) Asides

from deeper questions involving the higher dimensional nature of spacetime and the rôle

of conformal geometry, it also clarifies and simplifies the δ-function radial integrations

in the aforementioned projective space approaches. In particular, the projective measure

factor δ(
√
X2 − L) is replaced by a standard d-dimensional one. The projective space

tensor structures are then encoded by sections of the (d + 2)-dimensional tractor bundle.

Moreover, non-conformal interacting higher spins now couple in a conformally covariant

way to scale through the scale tractor I, the very tensor encoding the underlying geometry.

The end result can be summarized by a simple and complete dictionary between the

projective-space, cubic vertex function C(Y,Z) and measure (of [18–21, 23]) and their
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tractor counterparts given by∫
dd+1X δ(

√
X2 − L) ←→

∫
σ

:=

∫
ddx

√
−g
σd

,

Yi = ∂Ui · ∂Xi+1 ←→ Yi = ∂Ui · D̂i+1 ,

Zi = ∂Ui−1· ∂Ui+1 ←→ Zi = σ−2 ∂Ui−1· ∂Ui+1 .

This result likely carries over to higher point functions and therefore provides a useful

avenue to extend the higher point analysis of [21, 32]. It also hints at a (dual) (d + 2)-

dimensional field theory [51] underlying higher spin interactions. Let us stress here that

cubic consistency alone does not control the second class constraints of massive or PM fields.

In both massless and massive cases, quartic consistency is expected to further restrict cubic

couplings (see, e.g., [34]).

A distinct advantage of the tractor approach is that it makes both bulk and boundary

conformal structures explicit. Since, our analysis of bulk vertices will ultimately be dual

to the boundary conformal block-type analyses of, for example, [57–62], this indicates the

existence of a new dictionary between boundary correlators and bulk Witten diagrams real-

ized as different gauge fixings of the same tractor expression. It is also interesting to point

out the simpler nature of bulk inputs with respect to their CFT counterparts that solve

more complicated differential equations [62]. In fact, the ambient construction of [63, 64]

is a first step in this direction. Thus, a detailed analysis would start by clarifying the rela-

tions between our bulk results and the bulk normalizable and non-normalizable solutions

and the corresponding CFT operators and shadow fields given there. Also, the solution

generating algebra of [48, 49] gives simple formulæ for the bulk boundary propagators for

those fields. In fact, even though both in the CFT side and in the bulk side one is able

to classify the corresponding current correlators and bulk couplings respectively, a precise

dictionary relating the two is still unavailable as are the corresponding Witten diagrams

(see however [65–69] for interesting examples of n-point correlation function computations

exploiting higher spin symmetry). This construction is important to clarify the struc-

ture of cubic couplings in Vasiliev’s system as well in the more complicated case of String

Theory. Another issue is locality beyond quartic order (where ever increasing towers of

derivative interactions can set in). Also a bulk understanding of the conformal bootstrap

(which determines CFT correlators from cubic vertices, associativity and conformal invari-

ance) would be desirable [21]. Because it connects bulk and boundary ambient approaches

through their conformal structure, the tractor approach can indeed cast light on all these

issues.
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A Reordering identities

In this appendix, we provide the operator identities required to reach the simple ansatz for

the cubic vertex given in eq. (4.3).

The Xij operators. In the following we are going to show that any Xij can be removed

in terms of the other operators. Without loss of generality, consider X12:〈
σd+αX12 F (X ,Y,Z)

〉
=: A ,

where the power α is determined by requiring integrands to have the correct weight. The

generalized Leibniz rule (2.2) together with the on-shell condition on the fields gives

D̂1 · D̂2 ≈ −
1

2
σ−1 I ·D12 ,

where the subscript ij of D̂ij means that it acts as D̂(ΦiΦj) . Using this identity, one gets

A ≈ −1

2

〈
σd+α−1 I ·D12 F (X ,Y,Z)

〉
.

Then, using the integration by parts formula (3.5), this becomes

A ≈ −1

2

〈
σd I ·D3 σ

α−1
3 F (X ,Y,Z)

〉
.

Upon using the identity, valid for f ∈ ker(I · D̂),

[D̂M , σk] f = k σk−2

(
σ IM − k − 1

h
I2XM

)
f , (A.1)

we finally find

〈
σd+αX12 F (X ,Y,Z)

〉
≈ −1

2
(α− 1)

〈
σd+α−2 (h3 + α− 2)F (X ,Y,Z)

〉
, (A.2)

which allows us to eliminate completely the dependence on X12.

The Yij operators. We want to show that any Yi,i+1 can be replaced by combinations

of Yi,i−1 and the other operators. Focusing on Y12, consider〈
σd+β Y12 F (X ,Y,Z)

〉
=: B .

Using the identity (A.1) we find

B =

〈
σd
(
∂U1 ·D2 σ

β
2 + β(β − 1)σβ−2X · ∂U1

) 1

h2 + 2β − 2
F (X ,Y,Z)

〉
.
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Integrating by parts this becomes

B =

〈
σd+β

(
∂U1 ·D13 + β(β − 1)σ−2X · ∂U1

) 1

h2 + 2β − 2
F (X ,Y,Z)

〉
.

This time the generalized Leibniz rule (2.2) gives

∂U1 · D̂13 = ∂U1 · D̂1 + ∂U1 · D̂3 −
2

h13
X · ∂U1 D̂1 · D̂3 ,

and hence

B ≈
〈
σd+β

[
h13 ∂U1 · D̂3 −

(
2 D̂1 · D̂3 − β(β − 1)σ−2

)
X · ∂U1

] 1

h2 + 2β − 2
F (X ,Y,Z)

〉
.

Here, we can trade X · ∂U1 for X1 · ∂U1 at the price of a commutator. Using (2.3) together

with the identity (A.2) for D̂1 · D̂3 one ends up with

B ≈
〈
σd+β

(
h13 + 2

h2 + 2β − 2
Y13 + (β − 1)σ−2X1 · ∂U1

)
F (X ,Y,Z)

〉
.

Finally, using the fact that the overall vertex has zero weight

d+ β +
1

2
(h2 − d) +

1

2
(h13 − d) = 0 ,

and pushing to the right X1 · ∂U1 one gets〈
σd+β (Y12 + Y13)F (X ,Y,Z)

〉
≈ (1− β)

〈
σd+β−2 (Zi1∂Yi1 + Y1i∂X1i) F (X ,Y,Z)

〉
,

that can be turned into a formula for total derivatives as〈
σd
[
∂U1 · (D̂1 + D̂2 + D̂3) +

∂

∂σ

1

σ
Z2∂Y3

]
σβ F (Yi,Zi)

〉
≈ 0 . (A.3)

B Ambient harmonic gauge

To connect our tractor approach with previous (d+ 1)-dimensional projective space meth-

ods, we work in the Fefferman-Graham ambient space described in section 2.1 and employ

a harmonic gauge choice for how tractors are extended off the cone. In this appendix,

we review the ambient description of higher spin wave equations and then show how the

harmonic gauge connects our vertex result with cubic interactions known via projective

space methods.

B.1 Ambient wave equations

Our basic objects are now ambient space tractor generating functions Φ(X,U) subject to

the equivalence relation (2.4). Representatives of these equivalence classes can be chosen

by fixing a gauge, an enlightening choice being the ambient harmonic condition

∂M∂
M Φ(X,U) = 0 .
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As a welcome consequence of (2.5), in this gauge the ambient Thomas-D operator can be

replaced by the gradient

D̂M → ∂M .

The higher spin equations of motion (3.1) then have simple interpretations: the Laplace-

Robin condition I ·D Φ = 0 says

I · ∂X Φ(X,U) = 0 .

In the conformally-flat setting IM is a constant vector so the ambient space dependence

of Φ is reduced to the (d+ 1)-dimensional hyperplane Pd+1 :

Pd+1 := {X ∈ M̃ | σ(X) = constant } , σ(X) := I ·X .

Typically we choose σ = 1, the crucial point is that the choice σ = 0 should be avoided as it

corresponds to the boundary in an AdS setting and is singular for dS and Minkowski spaces

— physically this corresponds to the choice of units for the Planck constant. Then, de-

pending on the direction (time-like, space-like or light-like) of the ambient scale tractor IM

the intersection between Pd+1 and the cone Cd+1 := {X ∈ M̃ |X2 = 0} :

M := Pd+1 ∩ Cd+1 ,

gives all the maximally symmetric spaces in d-dimensions (respectively dS, AdS or Mink-

owski). This establishes that our tractor description amounts to fields living in constant

curvature spaces. The tangentiality conditions X · ∂U Φ = 0 = I · ∂U Φ then reduce the

tractor tensor multiplets to standard tensor ones and the tractor trace ∂U · ∂U Φ = 0, in

turn, becomes the regular trace condition. The divergence constraint for on-shell massive

tensors then follows from D · ∂U Φ = 0. This story is unaltered by inclusion of a fixed

homogeneity (
U · ∂U −X · ∂X

)
Φ(X,U) = τ Φ(X,U) , (B.1)

which together with the gauge condition ∂M∂
M Φ(X,U) = 0 give eigenvalues for the

Laplacian and thus masses for fields along M according to the Weyl-weight relation-

ship (2.6) [41, 42]. The above gauge fixing gives us a clear link between the (d + 1)-

dimensional projective construction of [38, 39] and its tractor formulation, which can be

viewed as its (d+ 2)-dimensional lift.

We will also need an integration formula based on the (d + 2)-dimensional ambient

measure: ∫
σ
L :=

∫
dd+2X

√
G δ(X2)

vol(GL(1))σ(X)d
L .

This formula deserves quite some explanation: L stands for any scalar, ambient function

of vanishing homogeneity. The ambient metric determinant
√
G has homogeneity d + 2

(of course, for the conformally flat case in standard coordinates, it is unity). The delta

function of the cone constraint has homogeneity −2 and the factor σ(X)−d has homo-

geneity −d, thus the integral inside the square brackets has zero conformal weight and

corresponds to a Weyl invariant integral in d-dimensions. The delta function removes one
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coordinate (complementary to the cone) and therefore leaves an integral over the projective

cone of a projectively invariant quantity. Thus the result is proportional to the volume of

the dilation group, denoted by vol(GL(1)), multiplied by a Weyl invariant d-dimensional

integral describing the physics we are interested in. Such integrals have been utilized in

various contexts, see for example [51, 70–73]. The last step is to extract an integral over

the actual constant curvature space where our theory lives. The point is simply (as dis-

cussed earlier) that a Weyl invariant quantity I[g, σ] = I[Ω2 g,Ωσ] with a Stückelberg shift

symmetry ultimately encodes a canonical (pseudo-)Riemmanian one obtained by choosing

a gauge σ(X) = 1 .

B.2 Harmonic gauge vertex

The result (4.6) was actually not unexpected. Indeed, one can recover from the ambient

approach in the harmonic gauge. In this case following [18] the general ansatz for the

transverse-traceless part of the cubic interaction in the flat (d+ 1)-dimensional projective

space can be written in terms of harmonic gauge-fixed tractors as

S(3) ≈
〈
σ
∑
i τi C(Yi, Zi)

〉
Φ1Φ2Φ3

,

where Zi := Zi and Yi := ∂Ui · ∂Xi+1 . Notice that no normal ordering is required since

reorderings produce only I · ∂X and I · ∂U . To compute the gauge variation, we need

an integration by parts formula for
〈
σ
∑
i τi ∂XM ( · · · )

〉
, where all derivatives acting on

the delta-function measure are encoded by
〈
σ
∑
i τi ∂XM ( · · · )

〉
≈ −

〈
σ
∑
i τi XM γ̂ ( · · · )

〉
and γ̂ is defined in (4.5). Thus we have two main identities; firstly:〈

σ
∑
i τi∂X · ∂Ui ( · · · )

〉
≈ −

〈
σ
∑
i τi γ̂ Xi · ∂Ui ( · · · )

〉
≈
〈
σ
∑
i τi γ̂ Zi+1∂Yi−1 ( · · · )

〉
.

And second:〈
σ
∑
i τi ∂X · ∂Xi ( · · · )

〉
≈ −

〈
σ
∑
i τi γ̂ Xi · ∂Xi ( · · · )

〉
≈ −

〈
σ
∑
i τi γ̂

[
Yi∂Yi − Yi−1∂Yi−1 + Zi−1∂Zi−1 + Zi+1∂Zi+1 − τi + 2

]
( · · · )

〉
.

We can now impose gauge consistency with respect to the massless field Φ1:

δ
(0)
E1
S(3) ≈

〈
σ
∑
i τi [∂X1 · ∂X2 ∂Y1 + ∂U2 · ∂X ∂Z3 + Y3∂Z2 − Y2∂Z3 ] C(Yi, Zi)

〉
E1Φ2Φ3

.

Using the above identities together with the on-shell relation ∂X1·∂X2 ≈ 1
2 ∂X ·(∂X1 +∂X2−

∂X3), one then gets

δ
(0)
E1
S(3) ≈

〈
σ
∑
i τi

[
Y3∂Z2 − Y2∂Z3 − γ̂

(
Y3∂Y3 − Y2∂Y2 +

τ2 − τ3

2

)
∂Y1

]
C(Yi, Zi)

〉
E1Φ2Φ3

.

Thus, we finally recover the differential equation for C(Yi, Zi):[
Y3∂Z2 − Y2∂Z3 − γ̂

(
Y3∂Y3 − Y2∂Y2 +

τ2 − τ3

2

)
∂Y1

]
C(Yi, Zi) = 0 .

In fact, this is exactly the same equation as obtained in section 4.3.
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