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Anomalous Josephson effect in S/SO/F/S heterostructures
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We study the anomalous Josephson effect, as well as the dependence on the direction of the critical
Josephson current, in an S/N/S junction, where the normal part is realized by alternating spin-orbit coupled and
ferromagnetic layers. We show that to observe these effects it is sufficient to break spin rotation and time-reversal
symmetry in spatially separated regions of the junction. Moreover, we discuss how to further improve these
effects by engineering multilayer structures with more that one couple of alternating layers.
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I. INTRODUCTION

A continuously growing interest has recently arisen in
mesoscopic systems in which conventional superconductivity,
spin-orbit interactions, and magnetism come into play at the
same time. For instance, Josephson junctions realized with
semiconducting nanowires made with group III-V semicon-
ductors, such as InAs or InSb (which are chosen because of
their strong spin-orbit coupling [1] and large g-factor [2,3])
have attracted much attention as a possible platform to support
topologically protected Majorana states [4]. Also, higher-
periodicity junctions have been proposed as arising from
the combined effects of topology and electronic correlations
[5,6]. Parallel to the search for topologically protected states
these systems have also shown to be an ideal playground
to investigate unconventional Josephson effects, such as the
anomalous Josephson effect [7] (AJE), which is the main topic
of this paper.

In its standard form the dc Josephson current flowing
between two superconducting electrodes at a fixed phase dif-
ference ϕ is expressed via a sinusoidal current-phase relation
(CPR) given by [8] I (ϕ) = Ic sin ϕ, with the critical current
Ic representing the maximum nondissipative current that the
Josephson junction can support. Among the specific features
of the above CPR, one has to stress that (i) the current is
strictly zero for ϕ = {0, π}, and (ii) the critical current does
not depend on the current direction.

In general, for Josephson junctions formed with s-wave
superconductors, it has been shown that, when the system ex-
hibits either time-reversal symmetry, or spin-rotational sym-
metry (or both), I (ϕ) must necessarily be equal to zero
for ϕ = 0, π . Therefore, in order to find an anomaly in the
CPR, that is, to have I (0) �= 0 [or I (π ) �= 0], one needs
to simultaneously break these two symmetries [9,10]. The
corresponding ground state of the junction is found at a phase
ϕ0 �= {0, π}, where the Josephson current is zero. Notice that
a zero current at phase ϕ �= {0, π} can also be found in the so-
called ϕ junctions where the ground state is doubly degenerate
and there is no need to break time-reversal symmetry [11].

The AJE has been initially predicted in systems with un-
conventional superconductivity [12–17]. Further studies have
shown that there is a large group of systems which might ex-
hibit the AJE, in particular, S/N/S junctions where the normal
region is a magnetic normal metal [18–23], a one-dimensional
quantum wire, a quantum dot [24,25], a multichannel system
with a barrier or a quantum point contact [26,27], a semi-
conducting nanowire [7,9,10,28,29], and a quantum spin-Hall
insulator [30]. Anomalies of the Josephson current have also
been predicted in the presence of Coulomb interactions and
a spin-orbit interaction (SOI) for a quantum wire [31,32]
contacted with conventional superconductors, in topological
insulator-based Josephson junctions [33–35], and in black
phosphorus-based devices [36]. Closely related to our work
is a recent proposal suggesting the possibility of obtaining a
ϕ0 junction by means of a noncoplanar ferromagnetic junction
[37]. Remarkably, the AJE can also be exploited to discern
topological versus conventional superconductivity [38–40].

On the experimental side, a nonzero shift ϕ0 has been
recently demonstrated using a gated InSb nanowire embed-
ded in a superconducting quantum interference device [41].
Even more interestingly, some systems exhibit the remarkable
feature that the anomalous CPR (ϕ0 �= {0, π}) is accompa-
nied by a direction-dependent critical current, that is, by
an asymmetry Ic+ − Ic− �= 0, with Ic+ and Ic− respectively
corresponding to the absolute value of the maximum and of
the minimum value reached by I (ϕ).

In this paper we study the possibility to observe the anoma-
lous Josephson effect and the direction-dependent critical
current in an S/N/S junction, with the N part realized with an
heterostructure composed by two or four layers where a spin-
orbit coupled region is alternated with a ferromagnetic one.
Our proposal is motivated by the observation that separating in
space the spin-orbit coupled region(s) from the ferromagnetic
one(s) is expected to offer some advantages with respect to
the “standard” approach, in which one applies an external
magnetic field to a material with a large spin orbit. Indeed,
in our case one might use a material with large spin-orbit
coupling which might not have a large g-factor and hence
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FIG. 1. Schematic representation of the device. The normal re-
gion consists of a heterostructure made by a region with spin-
orbit coupling (NSO) connected to a ferromagnetic region (NF). The
magnetization (or, alternatively, a magnetic field) is assumed to be
in the xy plane. For the sake of simplicity, in the calculations we
consider a two-dimensional system.

requiring a magnetic field that is too large to be sustained by
the superconducting leads.

The paper is organized as follows: In Sec. II we introduce
our model and discuss how to compute the Josephson current
from the scattering matrix of the normal region. In Sec. III we
present and discuss our result for the two-layer (Sec. III A)
and the four-layer (Sec. III B) normal region. In Sec. IV we
present a random matrix analysis to justify why we need
to consider at least two transport channels to look for a
large asymmetry. We summarize our findings and provide our
conclusions in Sec. V. In the Appendix we provide details
about how to compute the scattering matrices of the different
layers constituting the normal region and how to combine
them to construct the scattering matrix of the whole normal
region.

II. MODEL AND CALCULATION OF THE ANDREEV
BOUND STATES

In Fig. 1 we present a scheme of our setup. As dis-
cussed in the following, we model our system as a quasi-one-
dimensional heterostructure connected to two conventional
s-wave superconductors to form a S/NSO/NF/S junction. We
assume that a strong Rashba SOI is present in the NSO region,
while the region NF is characterized by an exchange field �h
or alternatively by an externally applied magnetic field. In
order to avoid unnecessary complications, we assume that the
effective electronic mass is the same in all the different re-
gions. Nevertheless, our analysis can be easily generalized to
the case of different effective masses. In addition, we assume
that the SOI is zero in the superconducting leads, since we
want to focus onto the case of nontopological superconducting
leads. In fact, junctions between topological superconductors
and normal wires are relevant for the physics of emerging
real Majorana fermionic modes [42–44], but not for the AJE,
which is what we focus on in our work.

It has been previously pointed out that the AJE is maximum
when the magnetic field (or the magnetization) is parallel
to the effective spin-orbit (SO) field, which corresponds to
the “effective magnetic field” due to the SOI [41,45]. For
this reason, since we are interested in configurations that
maximize ϕ0, in the following we consider only the case of

an in-plane magnetic field (or magnetization). This implies
that in this case there are no magnetic orbital effects and,
accordingly, only the Zeeman coupling has to be properly
taken into account.

In order to compute the Josephson current, we look for
solutions of the Bogoliubov–de Gennes equations,

HBdG

(
u(x, y)
v(x, y)

)
= ε

(
u(x, y)
v(x, y)

)
, (1)

with

HBdG =
(

H − EF �

�† −(H ∗ − EF )

)
. (2)

In Eqs. (1), ε measures the energy with respect to the Fermi
level EF , while u(x, y) and v(x, y) are respectively the elec-
tron and hole spinors in the Nambu representation. To model
the junction, we take the s-wave pairing potential to be given
by

�̂ = �(x)

(
0 −1
1 0

)
, (3)

with

�(x) = �0[�(xL − x)e−iϕ/2 + �(x − xR )eiϕ/2]. (4)

In the normal Hamiltonian H in Eqs. (2), we assume that
the electrons are free to propagate in the x direction, while we
introduce an harmonic confining potential in the y directions,
which comes out to be a particularly convenient choice, when
expressing the matrix elements of the SOI operator [46,47].
The corresponding Hamiltonian reads

H = p2
x

2m
+ p2

y

2m
+ 1

2
mω2y2 + α(x)

h̄
(σxpy − σypx )

+h(x)n̂ · �σ + i

2
∂xα(x)σy, (5)

where

α(x) =
{
α0 for xL < x < xc,

0 otherwise, (6)

with α0 being the strength of the Rashba SOI, and �h = n̂h(x),
with |n̂| = 1 and

h(x) =
{
h0 for xc < x < xR,

0 otherwise, (7)

with h0 being the intensity of the exchange field. In Eq. (4)
�(x) is the Heaviside step function, which corresponds to
a rigid, non-self-consistent profile for the pairing term (see,
e.g., Ref. [48] for a discussion of the physical applicability of
the model with stepwise changes in the physical parameters
as a function of the position). In addition, without loss of
generality, we set the phase difference ϕ to be symmetrically
distributed between the two superconducting leads.

The spectrum of Eq. (1) consists of a finite set of bound
states (Andreev levels) with energy |ε| < �0, and a contin-
uum of states with |ε| > �0. The current can be obtained from
the free energy F (ϕ) by the thermodynamic relation [49]

I (ϕ) = 2e

h̄

dF

dϕ
, (8)
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with the free energy in Eq. (8) obtained by considering
contributions from all the states in the spectrum.

In this paper we only consider the short-junction limit,
in which case only the subgap Andreev states contribute to
the Josephson current (the complementary long-junction limit
can be addressed by means, for instance, of the techniques
developed in Refs. [50–53]). Moreover, we limit our analysis
to the zero-temperature case, which allows for simplifying
Eq. (8) to

I (ϕ) = e

h̄

′∑
n

∂En(ϕ)

∂ϕ
. (9)

In Eq. (9), n labels the Andreev states, whose energies corre-
spond to the discrete spectrum of Eq. (1), and the primed sum
means that only negative energy (occupied) Andreev states
are considered. [Notice that, in Eq. (9), there is a factor 2
missing, with respect Eq. (8). In fact, this takes into account
that, due to the lack of spin conservation, because of SOI, the
spin degeneracy in the counting of Andreev levels is lifted in
Eq. (9).] As we model the nanowire by means of a transverse
harmonic confining potential in the y direction, while the
electrons propagate as free particles in the x direction, we
may derive the Andreev states by employing the scattering
matrix approach put forward in Ref. [54]. Specifically, one
can ideally think of the incoming and outgoing scattering
states on the normal region as respectively the outgoing and
incoming states at the superconducting regions. The Andreev
bound states correspond to the stationary solutions bound
within the normal region and, accordingly, they are described
as evanescent waves in the superconducting leads. At energies
below the superconducting gap �0, at the interface between
the normal and the superconducting regions only intrachannel
Andreev scattering takes place where a hole (electron) with
spin σ is reflected as an electron (hole) with spin −σ . These
processes are encoded in the relations⎛

⎜⎝
aeL

aeR

ahL

ahR

⎞
⎟⎠ = ŜA

⎛
⎜⎝

beL

beR

bhL

bhR

⎞
⎟⎠. (10)

The Andreev scattering matrix ŜA is defined as

ŜA =
(

0 r̂eh

r̂he 0

)
, (11)

with

r̂eh = i e−iγ

(
1̂ ⊗ σ̂ye

−iϕ/2 0
0 1̂ ⊗ σ̂ye

+iϕ/2

)
, (12)

and

r̂he = −i e−iγ

(
1̂ ⊗ σ̂ye

+iϕ/2 0
0 1̂ ⊗ σ̂ye

−iϕ/2

)
. (13)

In Eq. (13), 1̂ is the identity matrix in the channel space, the
σ̂y Pauli matrix acts in the spin space, and γ = arccos(ε/�0).
In the normal region there is no conversion of the electron into
hole states but only normal scattering processes are allowed.
The corresponding scattering matrix is purely normal, imply-
ing that there are no off-diagonal terms corresponding to the

scattering of particles into holes, and vice versa. Within the
central region, this allows us to write⎛

⎜⎝
beL

beR

bhL

bhR

⎞
⎟⎠ =

(
Ŝe(ε) 0

0 Ŝh(ε)

)⎛
⎜⎝

aeL

aeR

ahL

ahR

⎞
⎟⎠, (14)

with Ŝe(ε) and Ŝh(ε) being the normal scattering matrix for
particles into particles and for holes into holes, respectively.
The energy of the Andreev bound states is determined by the
secular equation [55]

det[1̂ − r̂ehŜh(−ε)r̂heŜe(ε)] = 0. (15)

In the short-junction limit case the Thouless energy Ec �
h̄/τdwell (with τdwell the dwell time in the junction) is much
larger than the superconducting gap �0, and in this case one
can safely disregard the energy dependence of the scattering
matrix and take Ŝ∗

h (−ε) = Ŝe(ε) � Ŝe(0). Therefore, in order
to solve Eq. (15), one only needs to calculate the scattering
matrix of the normal region at the Fermi energy. The ap-
proximation above allows for a further simplification in the
calculation of the Andreev spectrum. Indeed, we can introduce
the matrix Ŵ = exp(2iγ )r̂ehŜ

∗
e (0)r̂heŜe(0), which is unitary,

with a set of eigenvalues {wi} of modulus one. Using Eq. (15)
one sees that, in terms of the {wi}, the Andreev levels are then
obtained from the relation

arccos

(
ε

�0

)
= 1

2
arg(wi ). (16)

Equation (16) is what we have been using in the following
to compute the Andreev energy levels and to accordingly
compute the Josephson current. As, within our assumptions on
the model Hamiltonian we use, the key ingredient determining
Eq. (16) is the normal region scattering matrices Ŝe,h(ε), we
outline the details of their derivation in the Appendix.

III. RESULTS AND DISCUSSION

We now present our main results by displaying I (ϕ) as a
function of ϕ calculated using Eqs. (9) and (15), for several
representative values of the SOI and of h0.

A. Two regions

Here, we consider the case described by the Hamiltonian
of Eq. (5), where the normal region consists of two regions,
the first one characterized by a SOI α and a second one
characterized by an exchange field �h, also assuming, for the
sake of simplicity, a perfect transparency between the two
regions. We consider first the case of a spin-orbit region
coupled to a ferromagnetic region and study the CPR for a
fixed value of α and several values of the exchange field.
As it was shown in Ref. [41], when the magnetic field is
perpendicular to the SO field, no anomaly in the CPR is
observed. By SO field we mean an “effective magnetic field”
directed along the y axis; such an orientation is due to our
choice of harmonic confinement, also along the y direction.
This is consistent with the plots of the CPR we show in Fig. 2,
where we assume θ = 0, with θ being the angle between the
(in-plane) magnetization �h and the x axis, that is, �h/|�h| ≡ n̂ =
[cos(θ ), sin(θ ), 0]—see the Appendix for details. To spell our
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FIG. 2. Plots of I (ϕ) in units of e�0/h̄ as a function of ϕ.
Energies are measured in units of the harmonic confinement energy
Eω = h̄ω and EF = 1.7Eω. We set the SOI to be α = 0.9h̄2/mlω,
and LSO and LF, respectively the length of the region with SOI and
the ferromagnetic region, equal to lω = √

h̄/mω. The dimensionless
magnetization h′ = h/Eω is 0.6 (solid curve), 0.75 (dashed curve),
0.9 (dashed-dotted curve), 1.0 (dotted curve). The angle θ is set to 0.
Notice that ϕ0 = 0 for all the curves.

why the anomaly is zero when θ = 0, let us consider the
unitary operator O, defined as O = iK�y , with �y being
the parity operator in the y direction, that is, �yy�−1

y = −y.
By direct calculation, one readily checks that, with the system
Hamiltonian HBdG(ϕ) in Eq. (1) (and, more generically, with
any Hamiltonian envisaging a parabolic confinement in the
y direction), one obtains OHBdG(ϕ; θ )O−1 = HBdG(−ϕ,−θ )
(note that, for the sake of the discussion, in the above equation
we explicitly show the dependence of H on θ , as well). Thus,
we infer that, if HBdG(ϕ; θ ) has an energy eigenvalue En,
then HBdG(−ϕ,−θ ) must have an energy eigenvalue with the
same energy (but opposite values of the parameters ϕ and θ ).
As a result, at zero temperature, the ground-state energy of
the system must be invariant under (ϕ, θ ) → (−ϕ,−θ ) and,
accordingly, once taking the derivative of the ground-state
energy with respect to ϕ, one obtains I (ϕ, θ ) = −I (−ϕ,−θ ).
Setting θ = 0 (which is equivalent to assuming that the mag-
netization is perpendicular to the SO field), we eventually
obtain that ϕ0 = 0 for θ = 0. Rotating the magnetization
towards the SO field results in two effects (cf. Fig. 3): (i) the

3 2 1 0 1 2 3
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2

1

0

1

2

I

FIG. 3. Plots I (ϕ) in units of e�0/h̄ as a function of ϕ, for h′ =
0.6 (solid curve), 0.75 (dashed curve), 0.9 (dashed-dotted curve), 1.0
(dotted curve). All the other parameters are the same as in Fig. 2, but
now the angle θ is set to π/2.

FIG. 4. Density plot of ϕ0 as a function of the dimensionless SOI
α′ = αmlω/h̄2 and the dimensionless magnetization h′ = h/Eω in
the regions NSO and NF, respectively. The remaining parameters are
the same as in Fig. 3.

appearance of an anomaly in the CPR (ϕ0 �= 0), and (ii) the
appearance of a nonzero asymmetry (Ic+ − Ic− �= 0).

In general, discontinuities may appear in the plots of I (ϕ)
vs ϕ, which are typically due to crossings between Andreev
levels. Nevertheless, for the sake of the presentation, in Figs. 2
and 3 we have chosen a set of parameters such that no dis-
continuities appear in the CPR. Also, we notice that, in all the
cases presented in Figs. 2 and 3, higher values of the exchange
field correspond to a smaller amplitude of the Josephson
current accompanied by faster oscillations as a function of ϕ.
To explain these features, we note that the reduction in the
amplitude can be ascribed to the effect of the magnetic region
which acts as spin filter, effectively reducing the transmission
of one spin species and consequently reducing the efficiency
of Cooper pair transfer between the two superconducting
leads. Moreover, the appearance of high-order harmonics in
the CPR for higher values of the exchange field appears to be
a precursor of a 0 − π transition.

To evidence how ϕ0 depends on the system parameters, in
Fig. 4 we plot ϕ0, defined as the phase at which the Josephson
energy is minimum [and, accordingly, I (ϕ) = 0], calculated
for several values of the SOI of NSO and of the exchange
field of NF. The parameters employed to generate the plots
are reported in the figure’s caption. To perform a similar
analysis for the asymmetry, we therefore use the quantity
ℵ = (Ic+ − Ic−)/(Ic+ + Ic−) and plot ℵ as a function the SOI
and the exchange field in Fig. 5. As a main comment, it is
worth pointing out that ℵ = 0 when the exchange field is
perpendicular to the SO field. As it is evident from Figs. 4
and 5, larger values of the SOI and the exchange field corre-
spond to larger values of ϕ0 and ℵ, if the exchange field is
properly oriented with respect to the spin-orbit field. In order
to study whether it is possible to enhance ϕ0 and ℵ without
resorting to larger values of the fields, in the next section we
analyze a multilayer setup with two spin-orbit coupled and
two ferromagnetic regions.

B. Four regions

We now move to discuss the setup represented in Fig. 6,
in which the normal region consists of four different sec-
tions, with alternating SOI coupled and ferromagnetic regions.
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FIG. 5. Asymmetry of the critical current in the two directions
calculated as a function of the dimensionless SOI α′ = αmlω/h̄2 and
the dimensionless magnetization h′ = h/Eω in the regions NSO and
NF, respectively. The remaining parameters are the same as in Fig. 3.

Again we calculate the scattering matrix of each region,
and then after translating them to the proper position, we
construct the full scattering matrix, as explained in detail in
the Appendix. In order to compare the results of this section
to those of the previous one, we assume that the total length
of the two spin-orbit coupled (ferromagnetic) region is equal
to that of the single spin-orbit (ferromagnetic) region in the
two-region setup. In this way we can assess whether, and
to what extent, increasing the number of layers works to
maximize the anomaly in the CPR, as well as to recover a
larger values of ℵ, that is, to obtain a larger superconducting
rectifying affect.

Here, to avoid further complications, we take the orienta-
tion of the exchange field in the two ferromagnetic regions to
be along the y direction, i.e., parallel to the effective spin-orbit
field. In principle, one might allow for different orientations
of the exchange field in the two ferromagnetic regions but,
possibly, the case addressed below corresponds to the most
accessible configuration in real devices. Notwithstanding the
difficulty of orienting the exchange field in the two ferromag-
netic regions, in light of the results of Ref. [37] it would be
reasonable to expect that larger values of ϕ0 and ℵ can be
obtained by fine tuning the angle between the magnetizations.

By analyzing the CPR for several values of the spin-orbit
coupling and the magnetization, as well as changing the
relative magnitude of LSO1 (LF1) and LSO2 (LF2), we find
that the magnitude of ϕ0 is in general of the same order of

FIG. 6. Schematic representation of the device, in this case the
normal region consists of sandwichlike structure with spin-orbit
coupled sections (NSO) connected to a ferromagnetic ones (NF). The
magnetization (or alternatively a magnetic field) is assumed to be in
the xy plane.

FIG. 7. Asymmetry of the critical current in the two direction for
the four-region setup, calculated as a function of the dimensionless
SOI α′ = αmlω/h̄2 and the dimensionless magnetization h′ = h/Eω

in the regions NSO and NF, respectively. For the numerical calculation
we have set LSO1 = LF1 = 0.35lω, and LSO2 = LF2 = 0.65lω. The
remaining parameters are the same as in Fig. 3.

magnitude for the two- and the four-region setups. Conversely,
and most importantly for future applications, we find that the
asymmetry ℵ between Ic+ and Ic− in the four-region setup can
be enhanced with respect to the two-region one by an asym-
metric choice of the lengths of the different sections. Indeed,
as we show in Fig. 7, in the four-region setup for the regions of
parameters considered, we find maximum values of ℵ � 0.3,
whereas for the two-region setup we obtain at most ℵ � 0.15.
This result would suggest that multilayer heterostructures as
the one studied here may be useful in designing rectifying su-
perconducting devices. It is worth stressing that a symmetric
choice of the relative magnitude of LSO1 (LF1) and LSO2 (LF2)
does not provide a significant enhancement of ℵ with respect
to the two-region setup.

IV. RANDOM MATRIX ANALYSIS

In this section, we discuss how our results about AJE and
nonzero asymmetry are related to the total number of open
channels that we take into account. As we pointed out before,
we are interested in setting the system parameters so as to
maximize both ϕ0 and the critical current asymmetry. By
direct calculation (not presented here), we found Ic+ = Ic−
when N = 1, while, to find Ic+ − Ic− �= 0, we have to set
N � 2. To the best of our knowledge, there is no a priori
reason why for N = 1 only one should have Ic+ = Ic−. Thus,
in order to understand whether this finding is accidental to our
model, or it rather occurs in general, we have performed a
numerical simulation using random scattering matrices to de-
scribe the normal region (note that resorting to random scatter-
ing matrices is a standard mean to deal, for instance, with de-
phasing effects in mesoscopic systems [56,57]). Specifically,
we assume that the two superconducting leads are connected
to each other by a normal region characterized by a scattering
matrix Ŝ. We take Ŝ to be a unitary matrix, whose elements
are extracted with a uniform probability distribution, with
no further restriction. Since we look for Josephson junctions
which exhibit anomalies in the Josephson CPR, we do not
enforce symmetries on the matrix S, such as time-reversal
or spin-rotational symmetry [56]: In fact, in the presence of
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FIG. 8. Random matrix analysis: We generate random unitary
scattering matrices Ŝ and calculate the critical current asymmetry
ℵ, for N = 1, 2, 3, 4 open transport channels, each having two spin
directions. We generate N = 50 000 matrices for each case and
and plot

√
〈ℵ2〉 vs the number of realizations. Upper panel: N = 1.

Lower panel: N = 2 blue curve, N = 3 green curve, N = 4 red
curve.

either one of these latter symmetries (or of both of them),
Ŝ would belong respectively to the orthogonal and to the
symplectic group. Using symmetry arguments it can be shown
that for these two symmetry classes ϕ0 = 0 [9,10]. By means
of Eq. (15), we therefore calculate the Andreev spectrum
and the Josephson current, computing then Ic+ and Ic− for
each random realization. To quantify the asymmetry, we use
the mean-square visibility 〈ℵ2〉, with ℵ = (Ic+ − Ic−)/(Ic+ +
Ic−) for a given scattering matrix, and 〈· · · 〉 denoting the aver-
age over a large number of different realizations of the random
matrix. We repeat the calculation for the number of open
transport channels N = 1, 2, 3, 4. For each case we generate
N = 50 000 random scattering matrices and, using Eq. (15),
we compute the Andreev spectrum and the Josephson current
and, eventually, we compute ℵ = (Ic+ − Ic−)/(Ic+ + Ic−) for
each realization of Ŝ.

In Fig. 8 we plot the computed value of
√

〈ℵ2〉 as a function
of the number of realizations. We find that

√
〈ℵ2〉 ∼ 0.05 for

N = 1, so that only a small asymmetry can be observed in this
case, in accordance with our calculation using the Hamilto-
nian of Eq. (5). Moreover, nonzero values of ℵ are found only
for realizations of Ŝ such that the CPR is discontinuous. For
the case N � 2 we find

√
〈ℵ2〉 ∼ 0.15 and the asymmetry can

be observed even for a continuous CPR. It should be stressed

that, within the approach presented here, we are properly
describing the Josephson effect through a cavity and not the
case of a wire [56,58]; the latter case will be the subject of a
further study.

V. SUMMARY AND OUTLOOK

In this paper we have demonstrated that the anomalous
Josephson effect can be expected in SNS junctions where
the normal region is a heterostructure formed by alternat-
ing ferromagnetic and spin-orbit coupled segments. We have
shown that when the Fermi energy is such that the number of
transport channels N � 2, it is possible to observe a sizable
direction dependency of the critical current; we have validated
this result also using a random matrix analysis. Moreover, we
have shown that the asymmetry between Ic+ and Ic− can be
enhanced using a four-layer heterostructure versus a two-layer
one. Our findings might be relevant to the design of devices
with large Ic+, Ic− asymmetry to be employed as diodes in
superconducting circuits.

APPENDIX: CALCULATION OF THE
SCATTERING MATRIX

In this Appendix, we outline the calculation of the Ŝe(0)
matrix for the normal region. In view of the relation Ŝ∗

h (0) =
Ŝe(0), by means of the same token, we compute the Ŝh(0)
matrix for the normal region, as well. In practice, we first
divide the normal region in a SOI and a ferromagnetic seg-
ment and separately derive the scattering matrices of the two
regions, respectively referred to in the following as SSO and
SF. Eventually, we combine the two of them to calculate the
Ŝe(0) matrix for the whole normal region. In fact, apart for
the technical subtleties in combining together ŜSO and ŜF, our
approach appears to be particulary convenient, as it allows
us to generalize our study to multilayer setups. To combine
together ŜSO and ŜF, it is more convenient to resort to the
transfer matrices, for which a simple composition rule exists.
To do so, we decompose each scattering matrix Ŝρ (ρ =
SO, F) into reflection and transmission blocks, according to

Ŝρ =
(

r̂ρ t̂ ′ρ
t̂ρ r̂ ′

ρ

)
. (A1)

Next, we introduce the transfer matrices M̂SO and M̂F. By
definition, each M̂ρ relates the scattering amplitudes to the
left-hand side of the corresponding region to the ones at the
right-hand side, according to(

bρ,eR

aρ,eR

)
= M̂ρ

(
aρ,eL

bρ,eL

)
, (A2)

with {aρ,eL, aρ,eR, bρ,eL, bρ,eR} denoting the scattering ampli-
tudes across the corresponding scattering regions. In analogy
with the scattering matrices, the transfer matrices admit a
block decomposition, as well, according to

M̂ρ =
(

m̂ρ,11 m̂ρ,12

m̂ρ,21 m̂ρ,22

)
. (A3)
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The blocks in Eqs. (A1) and (A3) are related to each other
according to the relations

m̂ρ,11 = t̂†−1
ρ , m̂ρ,12 = r̂ ′

ρ t̂
′−1
ρ ,

m̂ρ,21 = −t̂ ′−1
ρ r̂ρ, m̂ρ,22 = t̂ ′−1

ρ , (A4)

together with their inverse

t̂ρ = m̂
†−1
ρ,11, r̂ρ = −m̂−1

ρ,22m̂ρ,21,

t̂ ′ρ = m̂−1
ρ,22, r̂ ′

ρ = m̂ρ,12m̂
−1
ρ,22. (A5)

To derive the transfer matrix, we separately solve the
Schrödinger equation in the various normal regions by set-
ting x = 0 at the center of each region. Eventually, using
the composition law of the transfer matrices, we shift the
corresponding matrices according to their location within the
heterostructure and combine them to obtain the total transfer
matrix as M̂ = M̂FM̂SO. From the total transfer matrix we
then calculate the full scattering matrix, which we use to
compute the Andreev spectrum.

1. Scattering matrix of spin-orbit coupled region

We begin our calculation by deriving ŜSO. To do so, by
standard methods, we explicitly solve the Schrödinger equa-
tion in the spin-orbit region and at its left- and right-hand side,
where only transverse confinement is assumed. Eventually,
we match the solutions at the interfaces. When doing the
corresponding calculations, we let the Fermi energy vary in an
interval such that only two transport channels are open, each
with two spin orientations.

The wave functions corresponding to the scattering states
at energy E to the left- and to the right-hand side of the SOI
region can be readily written as

ψnσ,L/R (E; x, y) = e±iknxχn(y)φσ , (A6)

with n = 1, 2 and the ± sign referring to the right-going
and to the left-going states. In Eq. (A6), χn(y) and φσ are
respectively the eigenfunctions of the harmonic oscillator
and of the spin Pauli matrix σz. In particular, we label the
ground state of the harmonic oscillator with n = 1, the first
excited state with n = 2, and so on. Moreover, we set k1 =
[2m(E − h̄ω/2)]1/2/h̄ and k2 = [2m(E − 3h̄ω/2)]1/2/h̄. At
variance, for n > 2, there are no propagative solutions and the
corresponding (evanescent) modes are described by the wave
functions

ψnσ,L/R (E; x, y) = e±κnxχn(y)φσ , (A7)

with κn = {2m[(2n − 1)h̄ω/2 − E]}1/2/h̄, where the + (−)
sign refers to the left-hand side (right-hand side) region.

To obtain the eigenfunctions in the SOI region, we
numerically diagonalize the Hamiltonian using the basis
{eiκxχm(y)φσ }. For simplicity, we truncate the Hilbert space
considering the first three subbands, resulting in a 6 × 6
Hamiltonian matrix. Such an approximation is expected to
give a reasonable description of the system even in the
presence of a sizable SOI [46]. Accordingly, our problem is
now reduced to finding the eigenvalues and the eigenfunction
of the corresponding 6 × 6 finite-dimensional Hamiltonian
matrix H(κ )m,σ ;m′,σ ′ . For a given energy E, the allowed κi are

obtained from the equation

det[H(κi ) − E] = 0, (A8)

which implies that, for each value of the energy we have 12
solutions κi (i = 1, . . . , 12), with the corresponding eigen-
functions given by

ψSO(x, y; E) =
12∑
i=1

bSO
i eiκix

∑
mσ

c(i)
m,σ χm(y)φσ , (A9)

where the coefficients c(i)
m,σ have to be determined numerically,

while the coefficients bSO
i are determined by imposing the

proper matching conditions, as discussed below. For two open
transport channels in the leads, each one with both spin
polarizations, the electronic scattering matrix ŜSO takes the
form

ŜSO =
(

r̂ t̂ ′
t̂ r̂ ′

)
, (A10)

with the (4 × 4) block r̂ given by

r̂ =

⎛
⎜⎝

r1↑,1↑ r1↑,1↓ r1↑,2↑ r1↑,2↓
r1↓,1↑ r1↓,1↓ r1↓,2↑ r1↓,2↓
r2↑,1↑ r2↑,1↓ r2↑,2↑ r2↑,2↓
r2↓,1↑ r2↓,1↓ r2↓,2↑ r2↓,2↓

⎞
⎟⎠, (A11)

and similar expressions for r̂ ′, t̂ , and t̂ ′. To move ahead in the
calculation, one has to compute all the reflection and transmis-
sion coefficients, by matching the wave function in Eq. (A9)
with the one in the leads, for any possible choice of scattering
boundary conditions. To illustrate how the procedure works,
let us explicitly discuss the case of a spin-up particle incoming
from the left-hand side. In this case, the wave functions
within the left-hand side (L) and the right-hand side (R) are
respectively given by

ψL(x, y; E)

= eik1xχ1(y)φ↑ + r1↑,1↑e−ik1xχ1(y)φ↑

+ r1↓,1↑e−ik1xχ1(y)φ↓ + r2↑,1↑e−ik2xχ2(y)φ↑

+ r2↓,1↑e−ik2xχ2(y)φ↓ +
∑

σ=↑,↓
dL

σ eκ3xχ3(y)φσ , (A12)

ψR (x, y; E) = t1↑,1↑eik1xχ1(y)φ↑ + t1↓,1↑eik1xχ1(y)φ↓

× t2↑,1↑eik2xχ2(y)φ↑ + t2↓,1↑eik2xχ2(y)φ↓

+
∑

σ=↑,↓
dR

i,σ e−k3xχ3(y)φσ . (A13)

Let us denote with LSO the total length of the SOI region and,
to simplify the derivation, let us assume that the interfaces
are symmetrically located at x = ±LSO/2. The matching
conditions at the interfaces require that the wave function is
continuous while, in general, its derivative with respect to
x must be discontinuous, to account for the discontinuous
SOI interaction [cf. Eq. (5)]. Projecting the equations cor-
responding to the matching conditions onto the basis states
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χm(y)φσ (m = 1, . . . , l; σ = ↑,↓) we obtain the following
set of equations,

∫ +∞

−∞
χ∗

m(y)φ†
σ [ψL(−LSO/2, y) − ψSO(−LSO/2, y)]dy = 0,

(A14)∫ +∞

−∞
χ∗

m(y)φ†
σ [ψR (LSO/2, y) − ψSO(LSO/2, y)]dy = 0,

(A15)∫ +∞

−∞
χ∗

m(y)φ†
σ

{
∂xψSO(−LSO/2, y) − ∂xψL(−LSO/2, y)

− im

h̄2 ασyψSO(−LSO/2, y)

}
dy = 0, (A16)∫ +∞

−∞
χ∗

m(y)φ†
σ

{
∂xψR (LSO/2, y) − ∂xψSO(LSO/2, y)

+ im

h̄2 ασyψSO(LSO/2, y)

}
dy = 0. (A17)

Therefore, we have a set of 8l equations which we solve nu-
merically to determine the corresponding Ŝ matrix elements.
Repeating the calculation for each possible incoming channel
we construct ŜSO as a function of the energy E. Eventually,
consistently with the above discussion, we set E = EF .

2. Scattering matrix of the ferromagnetic region

The calculation of ŜF is quite simpler, since, in this case, it
is straightforward to explicitly solve the Schrödinger equation
and to find the corresponding eigenvalues and eigenfunc-
tions. In the case of in-plane magnetization, corresponding to
the unit vector n̂ = [cos(θ ), sin(θ ), 0], the eigenfunctions are
given by

ψF(x, y; E) = eiknxχn(y)φ±, (A18)

with φ± = [± exp(−iθ ), 1]/
√

2 spinors in the spin space,
kn = ±√

2m[E − h̄ω(n − 1/2) ∓ h0]/h̄. From the wave
functions in Eq. (A18) it is now straightforward to compute
ŜF by exactly the same procedure that we have used to
derive ŜSO, which is even more simplified by the fact that the

wave functions and their derivatives are both continuous at the
interfaces.

3. Translation of the scattering potential

For convenience, in computing ŜSO and ŜF, we have as-
sumed that the corresponding regions were symmetric with
respect to the origin of the x axis. Now, when composing
the results to construct the full Ŝ matrix, we need to translate
the center of scattering regions to its proper position, so that,
i.e., the SO region ranges between xL and xc and the F
region between xc and xR (a pertinent generalization of such a
procedure will lead us to correctly approach, in the following,
a sandwichlike structure with more than two regions).

To illustrate our procedure, let us consider a scattering
matrix Ŝ, determined by some potential V , defined so that(

bL

bR

)
= Ŝ

(
aL

aR

)
, (A19)

with the block decomposition of Eq. (A10) for Ŝ. Assuming,
as we have done throughout our paper, that an equal number
N of transport channels is available at the left-hand side and
at the right-hand side of the scattering region, the blocks
r̂ , r̂ ′, t̂ , t̂ ′ will be realized as N × N matrices. Let Ṽ be the
scattering potential obtained by translating V by a distance
d along the x axis and let ψ̃ and ψ be the solutions of the
Schrödinger equation corresponding to Ṽ and to V , respec-
tively, so that one has ψ̃ (x + d ) = ψ (x). Making use of this
last relation, it is straightforward to show that the scattering
matrix S̃ relative to Ṽ can be obtained from Ŝ by the following
transformation,

S̃ =
(

�(d ) 0
0 �−1(d )

)
Ŝ

(
�(d ) 0

0 �−1(d )

)
, (A20)

with �(d ) = diag[exp(ik1d ), . . . , exp(ikNd )]. In terms of the
blocks of the scattering matrix, we have

S̃ =
(

�(d )r̂�(d ) �(d )t̂ ′�−1(d )
�−1(d )t̂�(d ) �−1(d )r̂ ′�−1(d )

)
, (A21)

and similarly for the transfer matrix,

M̃ =
(

�(d )−1m̂11�(d ) �−1(d )m̂12�
−1(d )

�(d )m̂21�(d ) �(d )m̂22�
−1(d )

)
. (A22)
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