POINT-FREE ULTRAMETRIC SPACES AND THE CATEGORY OF FUZZY SUBSETS

Giangiacomo Gerla DMI

University of Salerno
Via S. Allende 84081
Baronissi (SA), Italy
ggerla@unisa.it

Cristina Coppola
DMA
University Federico II, Via Cintia, 80126 Napoli, Italy, cristina.coppola@.dma.unina.it

Tiziana Pacelli
DMI
University of Salerno
Via S. Allende 84081
Baronissi (SA), Italy
tpacelli@unisa.it

Abstract

Some attempts to establish a link between point-free geometry and the categorical approach to fuzzy set theory is exposed. In fact, it is possible to find functors between the category of fuzzy sets as defined by Höhle in [4] and a category whose objects are the pointless ultrametric spaces.

Keywords: Point-free geometry, fuzzy sets, similarity, category, ultrametrics.

1. Introduction.

The aim of point-free geometry is to give an axiomatic basis to geometry in which the notion of point is not assumed as a primitive. The first example in such a direction was furnished by Whitehead's researches $[8,9]$ where the primitives are the regions and the inclusion relation. Later, Whitehead proposed the topological notion of connection instead of the inclusion [10]. More recently, in [2, 3], Gerla proposed a system of axioms in which regions, inclusion, distance and diameter are assumed as primitives.

In this note we expose some attempts to establish a link between point-free geometry and the categorical approach to fuzzy sets theory as proposed by Höhle in [6]. More precisely, Section 2 is devoted to give some preliminary notions. In Section 3, starting from the definition of pointless metric spaces, we introduce the pointless ultrametric spaces. In Section 4, we define the semi-metric spaces and the semisimilarities, and we verify the relations between these two structures. In particular, we focus on semi-ultrametric spaces and the semi-similarity with the Gödel t-norm, called G-semi-similarity. In Section 5, we give a characterization of G -semi-similarities by the notion of semiequivalence. In Section 6, we examine the relations existing between pointless metric spaces and semi-metric spaces, and, in particular, between pointless ultrametric and
semi-ultrametric spaces. Besides, we verify the connection of G-semi-similarities with pointless ultrametric spaces. In Section 7, we organize the class of pointless ultrametric spaces into a category and we define two functors to relate such a category with Höhle's category. Finally, in Section 8, we exhibit an example of G-semisimilarity. Some final remarks are given in Section 9.

2. Preliminaries.

We introduce some basic notions in multivalued logic.

Definition 2.1. A continuous triangular norm (t norm), is a continuous binary operation \otimes on $[0,1]$ such that, for all $x, x_{1}, x_{2}, y_{1}, y_{2}, \in[0,1]$

- \otimes is commutative,
- \otimes is associative,
- \otimes is isotone in both arguments, i.e.,

$$
x_{1} \leq x_{2} \Rightarrow x_{1} \otimes x \leq x_{2} \otimes x,
$$

$$
y_{1} \leq y_{2} \Rightarrow x \otimes y_{1} \leq x \otimes y_{2},
$$

- $1 \otimes x=x=x \otimes 1$ and $0 \otimes x=0=x \otimes 0$.

The most important continuous t-norms are minimum (or Gödel t-norm), product and Lukasiewicz conjunction defined by setting $a \otimes b=\max (0, a+b-1)$.
Definition 2.2. Let \otimes be a continuous t-norm. The residuation is the operation \rightarrow_{\otimes} defined by

$$
a \rightarrow_{\otimes} b=\operatorname{Sup}\{x: a \otimes x \leq b\}
$$

It is immediate that

$$
a \otimes x \leq b \Leftrightarrow x \leq a \rightarrow_{\otimes} b
$$

As an example, if \otimes is the Gödel t-norm then the residuation operation is the Gödel implication \rightarrow_{G} :
$a \rightarrow_{G} b= \begin{cases}1 & \text { if } a \leq b \\ b & \text { if } b<a .\end{cases}$
Definition 2.3. A continuous t-norm \otimes is called Archimedean if, for any $x, y \in[0,1], y \neq 0$, an integer n exists such that $x^{(n)}<y$, where $x^{(n)}$ is defined by $x^{(I)}=x$ and $x^{(n+1)}=x^{(n)} \otimes x$.

The Archimedean t-norms are important, because they are characterized by some functions.

Definition 2.4. An additive generator of a t-norm \otimes is a continuous, strictly decreasing function $f:[0,1] \rightarrow[0, \infty]$, such that $f(1)=0$ and $x \otimes y=f^{[-1]}(f(x)+f(y))$,
where $f^{[-1]}:[0, \infty] \rightarrow[0,1]$ is defined by

$$
f^{[-l]}(y)= \begin{cases}f^{-1}(y) & \text { if } y \in f([0,1]), \\ 0 & \text { otherwise }\end{cases}
$$

and it is called pseudoinverse of f.
Proposition 2.1. A function $\otimes:[0,1]^{2} \rightarrow[0,1]$ is a continuous Archimedean t-norm iff it has an additive generator.

The product t-norm and Lukasiewicz t-norm are examples of Archimedean t-norms and their additive generators are $f_{p}(x)=-\ln x$ and $f_{L}(x)=1-x$, respectively. The Gödel t-norm is not Archimedean.

Observe that, if an additive generator exists for a t-norm \otimes, then

$$
x \rightarrow_{\otimes} y=f^{[-l]}(f(y)-f(x))
$$

Now, let S be a nonempty set. We call fuzzy subset of S any map $s: S \rightarrow[0,1]$. For any $x \in S$, the value $s(x)$ is interpreted as the membership degree of x to s. Given $\lambda \in[0,1]$, the closed λ-cut of s is the subset $C(s, \lambda)=\{x \in S: s(x) \geq \lambda\}$ of S. A fuzzy relation in S is a fuzzy subset of $S \times S$, i.e., a map $r: S \times S \rightarrow[0,1]$. We are interested to the following properties for a fuzzy relation r :
(i) $r(x, x)=1$
(ii) $r(x, y) \otimes r(y, z) \leq r(x, z)$
(reflexivity) (transitivity)
(iii) $r(x, y)=r(y, x)=1 \Rightarrow x=y \quad$ (antisymmetry)
(iv) $r(x, y)=r(y, x)$
(symmetry)
for every $x, y, z \in S$.

3. Pointless ultrametric spaces.

In order to give a metric approach to point-free geometry, Gerla in [2] defines the notion of pointless metric space, briefly pm-space. A pmspace is a structure $(R, \leq, \delta,| |)$, where

- (R, \leq) is an ordered set,
- $\delta: R \times R \rightarrow[0, \infty)$ is an order-reversing map,
- ||:R $R \rightarrow[0, \infty]$ is an order-preserving map
and, for every $x, y, z \in R$:
(a1) $\delta(x, x)=0$
(a2) $\delta(x, y)=\delta(y, x)$
(a3) $\delta(x, y) \leq \delta(x, z)+\delta(z, y)+|z|$.
The elements in R are called regions, the number $\delta(x, y)$ the distance between x and $y,|x|$ the diameter of x.
In this paper we are interested to a particular class of pm-spaces which is related with the notion of ultrametric space.
Recall that in literature a pseudo-ultrametric space is defined as a structure (M, d) such that:
- $d(x, x)=0$,
- $d(x, y)=d(y, x)$,
- $d(x, y) \leq d(x, z) \vee d(z, y)$
where v is the maximum. Since

$$
\delta(x, z) \vee \delta(z, y) \leq \delta(x, z)+\delta(z, y)
$$

any pseudo-ultrametric space is a pseudo-metric space. This definition suggests the following one in the framework of point-free geometry.

Definition 3.1. A pointless ultrametric space, briefly $p u$-space, is a $p m$-space $\boldsymbol{R}=(R, \leq, \delta,| |)$ such that
(A3) $\delta(x, y) \leq \delta(x, z) \vee \delta(z, y) \vee|z|$.
Observe that, since
$\delta(x, z) \vee \delta(z, y) \vee|z| \leq \delta(x, z)+\delta(z, y)+|z|$,
(A3) entails (a3). A class of basic examples of $p m$-spaces and pu-spaces is obtained by starting from a metric space.

Proposition 3.1. Let (M, d) be a pseudo-metric space and let C be a nonempty class of bounded and nonempty subsets of M. Define δ and $\|$ by setting

$$
\begin{align*}
& \delta(X, Y)=\inf \{d(x, y): x \in X, y \in Y\} \tag{3.1}\\
& |X|=\sup \{d(x, y): x, y \in X\} \tag{3.2}
\end{align*}
$$

Then $(C, \subseteq, \delta,| |)$ is a pm-space. If (M, d) is a
pseudo-ultrametric space, then $(C, \subseteq, \delta| |)$ is a pu-space.

Proof. (a1) and (a2) are immediate. To prove (a3), let X, Y and Z be subsets of $M, x \in X, y \in Y$, z and $z^{\prime} \in Z$; then

$$
\begin{aligned}
\delta(X, Y) & \leq d(x, y) \\
& \leq d(x, z)+d\left(z, z^{\prime}\right)+d\left(z^{\prime}, y\right) \\
& \leq d(x, z)+d\left(z^{\prime}, y\right)+|z| .
\end{aligned}
$$

Consequently,

$$
\delta(X, Y) \leq \delta(X, Z)+\delta(Z, Y)+|Z|
$$

Assume that (M, d) is a pseudo-ultrametric space. Then

$$
\begin{gathered}
\delta(X, Y) \leq d(x, y) \leq d(x, z) \vee d\left(z, z^{\prime}\right) \vee d\left(z^{\prime}, y\right) \leq \\
d(x, z) \vee d\left(z^{\prime}, y\right) \vee|Z|,
\end{gathered}
$$

and therefore $(C, \subseteq, \delta,| |$) is a $p u$-space.
We call canonical the so obtained spaces.

4. Semi-metrics and semi-similarities.

We introduce a new class of structures satisfying symmetry and a triangular inequality, but not reflexivity.

Definition 4.1. A semi-metric space, briefly smspace, is a structure (R, d) where R is a set whose elements are called regions and $d: R \times R \rightarrow[0, \infty]$ is a function we call semidistance, such that, for any $x, y, z \in R$:
(b1) $d(x, y)=d(y, x)$,
(b2) $d(x, y) \leq d(x, z)+d(z, y)$.
Given a semi-distance d, we define a diameter by setting:

$$
\begin{equation*}
|x|_{d}=d(x, x) . \tag{4.1}
\end{equation*}
$$

Observe that by setting $y=x$ and $z=y$ in (b2), we obtain that $d(x, x) \leq d(x, y)+d(y, x)$ and therefore, by (b1), that $d(x, x) \leq 2 d(x, y)$. Likewise we have that $d(y, y) \leq 2 d(x, y)$ and therefore it results

$$
\begin{equation*}
d(x, y) \geq \frac{|x|_{d}}{2} \vee \frac{|y|_{d}}{2} . \tag{4.2}
\end{equation*}
$$

So we can have $d(x, y)=0$ only in the case both x and y have zero diameter. In literature it is possible to find a duality between the notion of metric and the notion of similarity (see for example Hájek [5]). Likewise we can give the next definition as a dual concept of semidistance.

Definition 4.2. Let \otimes be a t-norm. A semisimilarity is a fuzzy relation E on R such that
(e1) $E(x, y)=E(y, x)$
(symmetry)
(e2) $E(x, z) \otimes E(z, y) \leq E(x, y) \quad$ (transitivity)
for every $x, y, z \in R$. A similarity is a semisimilarity such that
(e3) $E(x, x)=1$.
$E(x, y)$ is regarded as truth-value of a statement like $x==_{R} y$. Semi-similarities are used to give a general approach to fuzzy sets theory based on the notion of category (see also M. Fourman and D.S. Scott [1]). Semi-similarities are strictly related with sm-spaces. We examine two cases regarding Definition 4.2: the case of Archimedean t-norms and the case of the Gödel t-norm. In the first one we use, as in Gerla ([4]), the notion of additive generator which characterizes the Archimedean t-norms.

Proposition 4.1. Let $f:[0,1] \rightarrow[0, \infty]$ be an additive generator of an Archimedean t-norm \otimes and let d be a semi-distance on a set R. Then the fuzzy-relation $E_{f}(d)$ defined by

$$
\begin{equation*}
E_{f}(d)(x, y)=f^{f-1]}(d(x, y)) \tag{4.3}
\end{equation*}
$$

is a semi-similarity with the t-norm \otimes. Conversely, let E be a semi-similarity on R with the t-norm \otimes, then the structure $\left(R, d_{f}(E)\right)$ where $d_{A}(E)$ is defined by

$$
\begin{equation*}
d_{f}(E)(x, y)=f(E(x, y)) \tag{4.4}
\end{equation*}
$$

is a sm-space.
If the t-norm is the Gödel t-norm, in Definition 4.2, the transitivity is given by
$\left(\mathrm{e} 2^{*}\right) E(x, z) \wedge E(z, y) \leq E(x, y)$.
In such a case, a semi-similarity is called G -semi-similarity and, setting $y=x$ in (e2*), we obtain that

$$
E(x, z) \wedge E(z, x) \leq E(x, x)
$$

and therefore that $E(x, z) \leq E(x, x)$. Then

$$
E(x, z) \leq E(x, x) \wedge E(z, z) .
$$

Observe that, since the Gödel t-norm is not Archimedean, the Proposition 4.1 doesn't hold for it. But, in this case, we consider a subclass of sm-spaces, shrinking the codomain of the semidistance and adding an axiom.

Definition 4.3. A semi-ultrametric space, briefly su-space, is an sm-space (R, d), where the semi-distance is a function $d: R \times R \rightarrow[0,1]$, such that, for any $x, y, z \in R$:
(B2) $d(x, y) \leq d(x, z) \vee d(z, y)$.

Obviously, (B2) entails (b2). Observe that by setting $y=x$ and $z=y$ in (B2), we obtain that $d(x, x) \leq d(x, y) \vee d(y, z)$ and therefore, by (b1), that $d(x, x) \leq d(x, y)$. Likewise we have that $d(y, y) \leq$ $d(x, y)$ and therefore it results

$$
\begin{equation*}
d(x, y) \geq|x|_{d} \vee|y|_{d .} . \tag{4.5}
\end{equation*}
$$

Now we are able to describe the relation between the G-semi-similarities and the smspaces.

Proposition 4.2. Let d be a semi-ultrametric on a set R, then the fuzzy-relation E_{d} defined by

$$
\begin{equation*}
E_{d}(x, y)=1-d(x, y) \tag{4.6}
\end{equation*}
$$

is a G-semi-similarity. Conversely, let E be a G -semi-similarity on R, then the structure $\left(R, d_{E}\right)$, defined by

$$
\begin{equation*}
d_{E}(x, y)=1-E(x, y) \tag{4.7}
\end{equation*}
$$

is a su-space.
Proof. Define E_{d} by (4.6). Then (e1) is immediate. To prove ($\mathrm{e} 2^{*}$) observe that

$$
\begin{aligned}
E_{d}(x, y) \wedge & E_{d}(y, z)=(1-d(x, y)) \wedge(1-d(y, z)) \\
& =1-(d(x, y) \vee d(y, z)) \leq 1-d(x, z) \\
& =E_{d}(x, z) .
\end{aligned}
$$

Now define d_{E} by (4.7). Then (b1) is immediate. To prove (B2) it is sufficient to observe that $d(x, y)=1-E(x, y) \leq(1-E(x, z)) \vee(1-E(z, y))$ $=d(x, z) \vee d(z, y)$.

5. Characterization of the \boldsymbol{G}-semi-similarities.

 We can characterize G-semi-similarities in terms of related cuts.Definition 5.1. Let S be a nonempty set. A (classical) relation R on S is called semiequivalence provided that is symmetric and transitive.

Let denote by $D_{R}=\{x \in S /$ there is an element $y \in S:(x, y) \in R\}$ the domain of R. Then, if R is a semi-equivalence relation, it results that if $x \in D_{R}$, then $(x, x) \in R$. Then R is reflexive in D_{R}. Therefore, every semi-equivalence relation R on S is an equivalence relation on its domain D_{R}. Viceversa, if R is an equivalence relation on D_{R} and if it is symmetric on S, then R is a semiequivalence relation on S.

Definition 5.2. A family $\left(R_{\lambda}\right)_{\lambda \in[0, I]}$ of semiequivalence relations on a set S is called orderreversing if it results that

- $\quad R_{\beta} \subseteq R_{\alpha}$ for every $\alpha \leq \beta, \alpha, \beta \in[0,1] ;$
- $R_{0}=S \times S$.

Proposition 5.1. A fuzzy relation E is a G-semi-similarity if and only if the cuts of E define an order-reversing family $(C(E, \lambda))_{\lambda \in[0,1]}$ of semiequivalences.

Also, any order-reversing family of semiequivalence relations defines a G-semisimilarity.

Proposition 5.2. Let $\left(R_{\lambda}\right)_{\lambda \in[0, I]}$ be an orderreversing family of semi-equivalence relations. Then the fuzzy relation E defined by setting

$$
\begin{equation*}
E(x, y)=\operatorname{Sup}\left\{\lambda:(x, y) \in R_{\lambda}\right\} \tag{5.1}
\end{equation*}
$$

is a G-semi-similarity.
Proof. Condition (e1) is immediate by the symmetry of R_{λ}. To prove (e2*), let us consider
$E(x, z)=\operatorname{Sup}\left\{\lambda:(x, z) \in R_{\lambda}\right\}=\mu$
$E(z, y)=\operatorname{Sup}\left\{\lambda:(z, y) \in R_{\lambda}\right\}=\xi$ $E(x, y)=\operatorname{Sup}\left\{\lambda:(x, y) \in R_{\lambda}\right\}=\eta$.
Suppose $\mu \leq \xi$ (likewise $\xi \leq \mu$). Since $\left(R_{\lambda}\right)_{\lambda \in[0,1]}$ is an order-reversing family of relations, it results $R_{\xi} \subseteq R_{\mu}$. Therefore we have $(x, z) \in R_{\mu}$ and $(z, y) \in R_{\mu}$ and then, by transitivity, $(x, y) \in$ R_{μ}. But $\eta=\operatorname{Sup}\left\{\lambda:(x, y) \in R_{\lambda}\right\}$, then $\eta \geq \mu$ and, since $\mu \wedge \xi=\mu$, the condition (e2*)

$$
E(x, z) \wedge E(z, y) \leq E(x, y)
$$

is verified.

6. A connection between $p m$-spaces and $s m$ spaces.

In order to establish a connection between pmspaces and $s m$-spaces, we observe that in defining $p m$-spaces we can consider the inclusion relation as a derived notion. In fact, as proved in [2], the following holds true:

Proposition 6.1. Let $(R, \delta,| |)$ be a structure satisfying (a1), (a2) and (a3) and define \leq by setting $x \leq y$ provided that
$|x| \leq|y|$ and $\delta(x, z) \geq \delta(y, z)$ for any $z \in R$.
Then $(R, \delta,| |)$ is a pm-space.
In accordance with such a proposition, in the following we denote by $(R, \delta,| |)$ a $p m$-space whose order relation is defined as in Proposition 6.1. It is possible to associate any $p m$-space with a $s m$-space.

Proposition 6.2. Let $(R, \delta,| |)$ be a pm-space and define d_{δ} by setting, for any $x, y \in R$,

$$
\begin{equation*}
d_{\delta}(x, y)=\delta(x, y)+\frac{|x|}{2}+\frac{|y|}{2} \tag{6.1}
\end{equation*}
$$

Then the structure $\left(R, d_{\delta}\right)$ is a sm-space whose diameter coincides with ||.

Proof. (b1) and the equality $\left.\right|_{d}=| |$ are trivial. Besides,

$$
\begin{aligned}
& d_{\delta}(x, y)=\delta(x, y)+\frac{|x|}{2}+\frac{|y|}{2} \\
& \quad \leq \delta(x, z)+\delta(z, y)+|z|+\frac{|x|}{2}+\frac{|y|}{2} \\
& \quad=\left(\delta(x, z)+\frac{|x|}{2}+\frac{|z|}{2}\right)+\left(\delta(z, y)+\frac{|z|}{2}+\frac{|y|}{2}\right) \\
& \quad=d_{\delta}(x, z)+d_{\delta}(z, y) .
\end{aligned}
$$

Conversely, we can associate any sm-space with a pm-space.

Proposition 6.3. Let (R, d) be a sm-space and define δ_{d} by setting $\delta_{d}(x, y)=d(x, y)-\frac{|x|_{d}}{2}-\frac{|y|_{d}}{2}$ if $d(x, y) \geq \frac{|x|_{d}}{2}+\frac{|y|_{d}}{2}$ and $\delta_{d}(x, y)=0$ otherwise. Then the structure $\left(R, \delta_{d},| |_{d}\right)$, where $\left|\left.\right|_{d}\right.$ is defined by (4.1), is a pm-space.

Proof. Axioms (a1) and (a2) are immediate. If $d(x, y)<\frac{|x|_{d}}{2}+\frac{|y|_{d}}{2}$ (a3) is trivial. Otherwise, by (b2),

$$
\begin{aligned}
& \delta_{d}(x, y)=d(x, y)-\frac{|x|_{d}}{2}-\frac{|y|_{d}}{2} \leq \\
& \quad \leq d(x, z)+d(z, y)-\frac{|x|_{d}}{2}-\frac{|y|_{d}}{2}+ \\
& \quad+\left(|z|_{d}-\frac{|z|_{d}}{2}-\frac{|z|_{d}}{2}\right)= \\
& \quad=\delta_{d}(x, z)+\delta_{d}(z, y)+|z|_{d}
\end{aligned}
$$

Observe that the definitions of d_{δ} and δ_{d} in Proposition 6.2 and in Proposition 6.3 are not the unique possible ways to associate a pmspace with a sm-space and viceversa. For example, it is possible to associate any $p u$-space $(R, \delta,| |)$ with a $s u$-space $\left(R, d_{\delta}\right)$ by setting

$$
\begin{equation*}
d_{\delta}(x, y)=\delta(x, y) \vee|x| \vee|y|, \tag{6.2}
\end{equation*}
$$

for any $x, y \in R$
Proposition 6.4. Let $(R, \delta,| |)$ be a pu-space, then the structure $\left(R, d_{\delta}\right)$ defined by (6.2) is a su-space whose diameter coincides with $|\mid$.

Proof. (b1) and the equality $\left|\left.\right|_{d}=| |\right.$ are trivial. Besides,

$$
\begin{aligned}
d_{\delta}(x, z) & =\delta(x, z) \vee|x| \vee|z| \\
& \leq \delta(x, y) \vee \delta(y, z) \vee|y| \vee|x| \vee|z|= \\
& =(\delta(x, y) \vee|x| \vee|y|) \vee(\delta(y, z) \vee|y| \vee|z|)= \\
& =d_{\delta}(x, y) \vee d_{\delta}(y, z) .
\end{aligned}
$$

Conversely, we can associate any $s u$-space (R, d) with a $p u$-space $\left(R, \delta_{d},| |_{d}\right)$ by setting, for any $x, y \in R$,

$$
\delta_{d}(x, y)= \begin{cases}d(x, y) & \text { if } d(x, y)=|x|_{d} \vee|y|_{d} \tag{6.3}\\ 0 & \text { if } d(x, y)>|x|_{d} \vee|y|_{d}\end{cases}
$$

Proposition 6.5. Let (R, d) be a su-space, then the structure $\left(R, \delta_{d},| |_{d}\right)$ defined by (6.3) and (4.1) is a pu-space.

Proof. Axioms (a1) and (a2) are immediate. To prove that

$$
\delta_{d}(x, z) \vee \delta_{d}(z, y) \vee|z|_{d} \geq \delta_{d}(x, y)
$$

assume that $d(x, z) \geq d(z, y)$. Now, in the case $\delta_{d}(x, y)=0$ and in the case $|z|_{d} \geq d(x, y)$ such an inequality is trivial. So, it is not restrictive to assume that $d(x, y)>|x|_{d} \vee|y|_{d}$, and therefore that $\delta_{d}(x, y)=d(x, y)$ and that $d(x, y)>|z|_{d, \text {. In such a }}$ case, by (B2),

$$
\begin{aligned}
d(x, z)= & d(x, z) \vee d(z, y) \\
& \geq d(x, y)>|x|_{d} \vee|z|_{d}
\end{aligned}
$$

and therefore

$$
\begin{aligned}
\delta_{d}(x, z) \vee & \delta_{d}(x, z) \geq \delta_{d}(x, z)= \\
& =d(x, z) \vee d(z, y) \geq d(x, y)=\delta_{d}(x, y)
\end{aligned}
$$

Likewise we proceed in the case $d(x, z) \leq d(z, y)$.

Besides, we can also set

$$
\delta_{d}(x, y)= \begin{cases}d(x, y) & \text { if } d(x, y)>|x|_{d} \vee|y|_{d} \tag{6.4}\\ 0 & \text { if } x=y\end{cases}
$$

instead of (6.3).
In accordance with Proposition 4.2, Proposition 6.4 and Proposition 6.5 any connection between $s u$-spaces and $p u$-spaces is also a connection between semi-similarities and $p u$-spaces.

Proposition 6.6. Let E be a G-semi-similarity, define $\left|\left.\right|_{E}: R \rightarrow[0,1]\right.$ by setting
and $\delta_{E}: R \times R \rightarrow[0,1]$ by

$$
\delta_{E}(x, y)= \begin{cases}0 & \text { if } E(x, y)=E(x, x) \wedge E(y, y) \tag{6.5}\\ 1-E(x, y) & \text { if } E(x, y)<E(x, x) \wedge E(y, y)\end{cases}
$$

for every $x, y \in R$. Then $\left(R, \delta_{E},| |_{E}\right)$ is a pu-space. Conversely, let $(R, \delta,| |)$ be a pu-space and define $E_{\delta, \|}: R \times R \rightarrow[0,1]$ by setting

$$
\begin{equation*}
E_{\delta, \mid}(x, y)=1-(\delta(x, y) \vee|x| \vee|y|) \tag{6.7}
\end{equation*}
$$

Then $E_{\delta, \|}$ is a G-semi-similarity.
This last proposition is useful to describe, in the next section, the link of point-free geometry with fuzzy sets theory by a categorical point of view.

7. The categories of semi-similarities and of pu-spaces.

In order to organize the class of semi-similarities into a category, we refer to the category M^{*} SET described by Hőhle in [4]. Namely, while Hőhle defines this category for any GL-monoid, we are interested only with the particular $G L$ monoid in [0, 1] defined by the Gödel t-norm. In such a case we have the following simplified definition.

Definition 7.1. The category of the G-semisimilarities is the category $\boldsymbol{G S S}$ such that:

- the objects are structures (R, E) in which E is a G-semi-similarity;
- a morphism from (R, E) to $\left(R^{\prime}, E^{\prime}\right)$ is a $\operatorname{map} f$: $R \rightarrow R^{\prime}$ satisfying the axioms
(M1) $E^{\prime}(f(x), f(x)) \leq E(x, x)$
(M2) $E(x, y) \leq E^{\prime}(f(x), f(y))$
for every $x, y \in X$.
Observe that from (M2) we have that $E(x, x) \leq E^{\prime}(f(x), f(x))$ and therefore, by (M1),

$$
E(x, x)=E^{\prime}(f(x), f(x))
$$

The second category we consider is defined by the class of $p u$-spaces.

Definition 7.2. The category PU of the puspaces is the category such that

- the objects are $p u$-spaces;
- a morphism from $(R, \delta,| |)$ to $\left(R^{\prime}, \delta^{\prime},| |^{\prime}\right)$ is a map $f: R \rightarrow R^{\prime}$ such that
(1) $\delta(x, y) \geq \delta^{\prime}(f(x), f(y))$
(2) $|x| \geq|f(x)|^{\prime}$

In both the categories the composition is the usual composition of maps and the identities are the identical maps. Proposition 6.6 enables us to associate any G-semi-similarity with a $p u$-space $\left(R, \delta_{E},| |_{E}\right)$. This suggests the definition of a suitable functor from $\boldsymbol{G S S}$ to $\boldsymbol{P U}$.

Proposition 7.1. Define the map F from GSS to $\boldsymbol{P U}$ by setting

- $F((R, E))=\left(R, \delta_{E},| |_{E}\right)$
- $F(f)=f$.

Then F is a functor from $\boldsymbol{G S S}$ to $\boldsymbol{P U}$.
Proof. We have only to prove that if f is a morphism from (R, E) to $\left(R^{\prime}, E^{\prime}\right)$, then f is a morphism from $\left(R, \delta_{E},| |_{E}\right)$ to $\left(R^{\prime}, \delta_{E^{\prime}},| |_{E^{\prime}}\right)$. Indeed, it is immediate that

$$
|f(x)|_{E^{\prime}}=1-E^{\prime}(f(x), f(x))=1-E(x, x)=|x|_{E} .
$$

To prove that

$$
\begin{equation*}
\delta_{E}(x, y) \geq \delta_{E},(f(x), f(y)) \tag{7.1}
\end{equation*}
$$

it is not restrictive to assume that $\delta_{E}(f(x), f(y)) \neq 0$ and therefore that

$$
E^{\prime}(f(x), f(y))<E^{\prime}(f(x), f(x)) \wedge E^{\prime}(f(y), f(y))
$$

and $\delta_{E}(f(x), f(y))=1-E^{\prime}(f(x), f(y))$. In such a case, since

$$
\begin{aligned}
E(x, y) & \leq E^{\prime}(f(x), f(y)) \\
& <E^{\prime}(f(x), f(x)) \wedge E^{\prime}(f(y), f(y)) \\
& =E^{(x, x) \wedge E(y, y),}
\end{aligned}
$$

we have that $\delta_{E}(x, y)=1-E(x, y)$. So, (7.1) is a trivial consequence of (M2).

Observe that in proving that F is a functor we obtain that

$$
\begin{equation*}
|f(x)|_{E}=|x|_{E} \tag{7.2}
\end{equation*}
$$

On the other hand, it is easy to find a morphism h in $\boldsymbol{P} \boldsymbol{U}$ such that $|f(x)|_{E},<|x|_{E}$ for a suitable region. Then, the proposed functor is faithful, but not full. We can consider the subcategory $\boldsymbol{P} \boldsymbol{U}^{*}$ of $\boldsymbol{P U}$ obtained by considering only the morphisms f satisfying (7.2). Proposition 6.6 suggests a definition of a functor from $\boldsymbol{P} \boldsymbol{U}^{*}$ to GSS.

Proposition 7.2. Define the map F^{\prime} from $\boldsymbol{P} \boldsymbol{U}^{*}$ to GSS by setting

- $F^{\prime}((R, \delta,| |))=\left(R, E_{\delta,| |}\right)$
- $F(f)=f$.

Then F^{\prime} is a functor from $\boldsymbol{P U}^{*}$ to GSS.

Proof. Let $(R, \delta,| |)$ and $\left(R^{\prime}, \delta^{\prime},| | '\right)$ be two $p u$-spaces, (R, E) and $\left(R^{\prime}, E^{\prime}\right)$ the structures, where the semi-similarities E and E^{\prime} are defined by (6.7), and f a morphism from ($R, \delta,| |)$ to ($\left.R^{\prime}, \delta^{\prime},| | '\right)$. Then

$$
E^{\prime}(f(x), f(x))=1-|f(x)|^{\prime}=1-|x|=E(x, x)
$$

Moreover,

$$
\begin{aligned}
E(x, y) & =1-(\delta(x, y) \vee|x| \vee|y|) \\
& \leq 1-\left(\delta^{\prime}(f(x), f(y)) \vee|f(x)|^{\prime} \vee|f(y)|^{\prime}\right) \\
& =E^{\prime}(f(x), f(y)) .
\end{aligned}
$$

8. A class of examples.

Let X and Y be two nonempty sets and denote by $F(X, Y)$ the class of partial functions from X to Y. If $f \in F(X, Y)$ we denote by D_{f} the domain of f and by U_{f} the complement of D_{f}, i.e. the set of elements in which f is not defined. Let f, g be elements of $F(X, Y)$, then the equalizer of f and g, is defined by

$$
e q(f, g)=\left\{x \in X: x \in D_{f} \cap D_{g}, f(x)=g(x)\right\}
$$

The contrast between f and g is defined as the complement of the equalizer, i.e.

$$
\operatorname{contr}(f, g)=-e q(f, g)
$$

Observe that

$$
\operatorname{contr}(f, g)=C_{f g} \cup U_{f} \cup U_{g}
$$

where

$$
\begin{equation*}
C_{f g}=\left\{x \in X: x \in D_{f} \cap D_{g} \text { and } f(x) \neq g(x)\right\} . \tag{8.1}
\end{equation*}
$$

In other words, contr (f, g) contains the elements on which f and g "contrast" and the elements in which either f or g is not defined. In particular contr $(f, f)=U_{f}$.

Definition 8.1.Consider a map irl: $X \rightarrow[0,1]$ we call fuzzy subset of irrelevant elements. Then the irrelevancy degree of a set S, is

$$
\begin{equation*}
\operatorname{Irl}(S)=\operatorname{Inf}\{\operatorname{irl}(x): x \in S\} \tag{8.2}
\end{equation*}
$$

We interpret $\operatorname{irl}(x)$ as the "degree of irrelevancy" of an element x and $\operatorname{Irl}(S)$ as a measure of the degree of validity of the claim "all the elements in S are irrelevant". Trivially, we have that for any pair S_{1}, S_{2} of subsets of X,

$$
\operatorname{Irl}\left(S_{1} \cup S_{2}\right)=\operatorname{Irl}\left(S_{1}\right) \wedge \operatorname{Irl}\left(S_{2}\right)
$$

Proposition 8.1. Let X be a nonempty class of partial functions and set

$$
\begin{equation*}
E(f, g)=\operatorname{Irl}(\operatorname{contr}(f, g)) \tag{8.3}
\end{equation*}
$$

Then E is a G-semi-similarity.
Proof. (e1) is immediate. To prove (e2*), observe that for every $f, g, h \in X$,

$$
C_{f g} \subseteq C_{f h} \cup C_{h g} \cup U_{h}
$$

and therefore,

$$
\operatorname{contr}(f, g) \subseteq \operatorname{contr}(f, h) \cup \operatorname{contr}(h, g)
$$

This entails

$$
E(f, g) \geq E(f, h) \wedge E(h, g)
$$

We interpret $E(f, g)$ as a measure of the truth degree of the claim "in all the relevant elements f and g are defined and coincide". Observe that

$$
E(f, f)=\operatorname{Irl}\left(U_{f}\right)
$$

and therefore $E(f, f)$ is the valuation of the claim that f is defined in all the relevant elements. In particular, if f is total, then $E(f, f)$ is equal to 1 , if f is totally undefined, i.e. $U_{f}=X$, then $E(f, f)=0$.

9. Conclusions and future works.

This note is a first attempt to establish a link between point-free geometry and fuzzy set theory. In spite of some promising results, the proposed functors are not yet satisfactory. Also, it is an open question to give a geometric interpretation of the objects of the category of the fuzzy sets as suggested by the obtained results. Future works will be addressed to this aims.

References

[1] Fourman M., Scott D.S., Sheaves and logic, in "Applications of Sheaves", Lecture Notes in Mathematics 753, Springer-Verlag (1979), 302-401.
[2] Gerla G., Pointless Metric Space, Journal of Symbolic Logic 55, 1, (1990), 207-219.
[3] Gerla G., Pointless Geometries, in "Handbook of Incidence Geometries", F. Buekenhouted (1994) Elsevier Science, 1015-1031.
[4] Gerla G., Representation Theorems for Fuzzy Orders and Quasi-metrics, to appear on "Soft Computing".
[5] Hájek P., Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, Dordrecht, 1998.
[6] Höhle U., Presheaves over GL-monoid. in "Nonclassical Logics and Their Applications to Fuzzy Subsets" (U. Höhle, E. P. Klement, eds), Kluwer, (1995), 127-157 .
[7] Novak V., Perfilieva I., Mockor J., Mathematical Principles of Fuzzy Logic, Kluwer Academic Publishers, London, 1999.
[8] Whitehead A. N., An inquiry concerning the Principles of Natural Knowledge, Univ. Press, Cambridge, 1919.
[9] Whitehead A. N., The Concept of Nature, Univ. Press, Cambridge, 1920.
[10] Whitehead A. N., Process and Reality, McMillian, N.Y., 1929.

