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Abstract. Some attempts to establish a link between point-free geometry and the 
categorical approach to fuzzy set theory is exposed. In fact, it is possible to find functors 
between the category of fuzzy sets as defined by Höhle in [4] and a category whose 
objects are the pointless ultrametric spaces. 
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1. Introduction. 
The aim of point-free geometry is to give an 
axiomatic basis to geometry in which the notion 
of point is not assumed as a primitive. The first 
example in such a direction was furnished by 
Whitehead’s researches [8,9] where the 
primitives are the regions and the inclusion 
relation. Later, Whitehead proposed the 
topological notion of connection instead of the 
inclusion [10]. More recently, in [2, 3], Gerla 
proposed a system of axioms in which regions, 
inclusion, distance and diameter are assumed as 
primitives.  
    In this note we expose some attempts to 
establish a link between point-free geometry and 
the categorical approach to fuzzy sets theory as 
proposed by Höhle in [6]. More precisely, 
Section 2 is devoted to give some preliminary 
notions. In Section 3, starting from the definition 
of pointless metric spaces, we introduce the 
pointless ultrametric spaces. In Section 4, we 
define the semi-metric spaces and the semi-
similarities, and we verify the relations between 
these two structures. In particular, we focus on 
semi-ultrametric spaces and the semi-similarity 
with the Gödel t-norm, called G-semi-similarity. 
In Section 5, we give a characterization of    G-
semi-similarities by the notion of semi-
equivalence. In Section 6, we examine the 
relations existing between pointless metric 
spaces and semi-metric spaces, and, in 
particular, between  pointless ultrametric and 

semi-ultrametric spaces. Besides, we verify the 
connection of G-semi-similarities with pointless 
ultrametric spaces. In Section 7, we organize 
the class of pointless ultrametric spaces into a 
category and we define two functors to relate 
such a category with Höhle’s category. Finally, 
in Section 8, we exhibit an example of G-semi-
similarity . Some final remarks are given in 
Section 9.            
 
2. Preliminaries. 
We introduce some basic notions in multi-
valued logic. 
 
Definition 2.1. A continuous triangular norm (t-
norm), is a continuous binary operation ⊗ on 
[0,1] such that, for all x,x1, x2, y1, y2,∈[0, 1] 
• ⊗ is commutative,  
• ⊗ is associative, 
• ⊗ is isotone in both arguments, i.e., 

x1≤  x2  ⇒  x1⊗x≤ x2⊗x, 
y1≤  y2  ⇒  x⊗y1≤ x⊗y2, 

• 1⊗x = x = x⊗1  and  0 ⊗x = 0 = x⊗0. 
 

The most important continuous t-norms are 
minimum (or Gödel t-norm), product and 
Lukasiewicz conjunction defined by setting   
a⊗b = max(0, a+b-1).                    
Definition  2.2.  Let  ⊗ be a continuous  t–norm. 
The residuation is the operation →⊗  defined by 

a→⊗ b = Sup{x : a⊗ x≤ b} 



It is immediate that  
a⊗x≤ b ⇔ x≤ a→⊗ b. 

As an example, if ⊗ is the Gödel t-norm then the 
residuation operation  is the Gödel implication 
→G : 





<
≤

=→
a.b if         b
ba if          1

ba G                        (2.1) 

 
Definition  2.3. A continuous t–norm ⊗ is called 
Archimedean if, for any x, y ∈ [0,1], y ≠ 0, an 
integer n exists such that x(n)< y, where x(n) is 
defined by  x(1)  = x and x(n+1) = x(n) ⊗ x . 
 
The Archimedean t-norms are important, 
because they are characterized by some 
functions. 
 
Definition  2.4. An additive generator of a        
t-norm ⊗ is a  continuous, strictly decreasing 
function f: [0,1]→[0,∞], such that f(1)=0 and  

x⊗ y = f[ -1] ( f(x)+f(y) ), 
where f[ -1] : [0,∞]→[0,1] is defined by  

f[ -1] (y)=
( ) [ ]( )



 ∈−

otherwise             0
 ,1,0fy  if      yf 1

 

and it is called pseudoinverse of f. 
 

Proposition 2.1. A function ⊗: [0,1]2→[0,1] is a 
continuous Archimedean t-norm iff it has an 
additive generator. 

The product t-norm and Lukasiewicz t-norm are 
examples of Archimedean t-norms and their 
additive generators are fp (x) = -lnx and     
fL(x)=1- x , respectively. The Gödel t-norm is not 
Archimedean.  
 
Observe that, if an additive generator exists for a 
t-norm ⊗, then  

x→⊗ y = f[ -1] ( f(y)–f (x) ). 
 
Now, let S be a nonempty set. We call fuzzy 
subset of S any map s: S → [0,1]. For any x∈S, 
the value s(x) is interpreted as the membership 
degree of x to s. Given λ∈ [0,1], the closed      
λ-cut of s is the subset C(s,λ) = {x∈S : s(x)≥λ} 
of S. A fuzzy relation in S is a fuzzy subset of 
S S× , i.e., a map r: S×S→[0, 1]. We are 
interested to the following properties for a fuzzy 
relation r : 
(i)  r(x,x) = 1                                     (reflexivity) 
(ii)  r(x,y) ⊗ r(y,z)≤r(x,z)                    (transitivity) 

(iii) r(x,y)= r(y,x)=1 ⇒ x=y          (antisymmetry) 
(iv) r(x,y) = r(y,x)                               (symmetry) 
for every x, y, z ∈S. 
 
3. Pointless ultrametric spaces.  
In order to give a metric approach to   point-free 
geometry, Gerla in [2] defines the notion of 
pointless metric space, briefly pm-space. A pm-
space  is a structure  (R, ≤, δ, ), where  
• (R,≤) is an ordered set,  
•  δ : R×R→[0,∞) is an order-reversing map, 
• :R →[0, ∞] is an order-preserving map 
and, for every  x, y, z ∈ R : 
(a1) δ (x, x) = 0 
(a2) δ (x, y) = δ ( y, x) 
(a3) δ (x, y) ≤ δ (x, z) + δ (z, y) + z. 
The elements in R are called regions, the 
number δ (x, y) the distance between x and y, |x| 
the diameter of x.  
In this paper we are interested to a particular 
class of pm-spaces which is related with the 
notion of ultrametric space. 
Recall that in literature a pseudo-ultrametric 
space is defined as a structure (M, d) such that: 
-  d(x, x) = 0, 
-  d(x, y) = d(y, x), 
-  d(x, y) ≤ d(x, z)∨ d(z, y) 
where ∨  is the maximum. Since 

δ (x, z)∨δ (z, y) ≤ δ (x, z) + δ (z, y), 
any pseudo-ultrametric space is a pseudo-metric 
space. This definition suggests the following 
one in the framework of point-free geometry. 
  
Definition 3.1. A pointless ultrametric space, 
briefly pu-space, is a pm-space R=(R, ≤, δ, | |) 
such that 
(A3)  δ (x, y) ≤ δ(x, z)∨δ(z, y)∨| z|. 
 
Observe that, since 
δ(x, z)∨δ(z, y)∨ |z| ≤ δ (x, z) + δ (z, y) + |z|, 
(A3) entails (a3). A class of basic examples of 
pm-spaces and pu-spaces is obtained by starting 
from a metric space.  
 
Proposition 3.1. Let (M, d) be a pseudo-metric 
space and let C be a nonempty class of bounded 
and nonempty subsets of M. Define δ and | | by 
setting  
    δ (X, Y) = inf{d(x, y) : x∈ X,  y∈Y}          (3.1) 
    X= sup{d(x, y) : x, y ∈ X}.                   (3.2) 
Then (C, ⊆, δ, | |) is a pm-space. If (M,d) is a 



pseudo-ultrametric space, then (C, ⊆,δ,| |) is a 
pu-space. 
 
  Proof. (a1) and (a2) are immediate. To prove 
(a3), let X, Y and Z be subsets of M, x∈ X,  y∈Y, 
z and z’∈Z; then 
δ (X, Y) ≤ d(x, y)  
             ≤ d(x, z) + d(z, z’) + d(z’, y)  
             ≤ d(x, z) + d(z’, y) + Z. 
Consequently,  

δ (X, Y) ≤ δ (X, Z) + δ (Z, Y) + Z. 
Assume that (M, d) is a pseudo-ultrametric 
space. Then 
δ (X, Y) ≤ d(x, y) ≤ d(x, z) ∨ d(z, z’) ∨ d(z’, y) ≤ 

d(x, z)∨ d(z’, y) ∨ |Z|, 
and therefore (C, ⊆,δ,| |)   is a pu-space.  
                                                                           
We call canonical the so obtained spaces. 

 
4. Semi-metrics and semi-similarities. 
We introduce a new class of structures satisfying 
symmetry and a triangular inequality, but not 
reflexivity.  
 
Definition 4.1. A semi-metric space, briefly sm-
space, is a structure (R, d) where R is a set 
whose elements are called regions and               
d:R×R→[0,∞] is a function we call semi-
distance, such that, for any x, y, z ∈ R: 
(b1) d(x, y) = d(y, x),  
(b2) d(x, y) ≤ d(x, z) + d(z, y) . 
 
Given a semi-distance d, we define a diameter 
by setting: 
                         |x|d =d(x, x) .                         (4.1) 
Observe that by setting y = x and z = y in (b2), 
we obtain that  d(x,x)≤ d(x,y)+d(y,x) and 
therefore, by (b1), that d(x,x)≤ 2d(x,y). Likewise 
we have that d(y, y)≤ 2d(x, y) and therefore it 
results 

                d(x, y) ≥ 
2
y

2
x

dd ∨ .                    (4.2)       

So we can have d(x, y) = 0 only in the case both 
x and y have zero diameter. In literature it is 
possible to find a duality between the notion of 
metric and the notion of similarity (see for 
example Hájek [5]). Likewise we can give the 
next definition as a dual concept of semi-
distance. 
          

Definition 4.2. Let ⊗ be a t-norm. A semi-
similarity  is a fuzzy relation E on R such that  
(e1) E(x, y) = E(y, x)                           (symmetry)  
(e2) E(x, z) ⊗ E(z, y) ≤ E(x, y) (transitivity) 
for every x, y, z ∈R. A similarity is a semi-
similarity such that  
(e3) E(x,x) = 1. 
 
E(x,y) is regarded as truth-value of a statement 
like x =R y.  Semi-similarities are used to give a 
general approach to fuzzy sets theory based on 
the notion of category (see also M. Fourman and 
D.S. Scott [1]). Semi-similarities are strictly 
related with sm-spaces. We examine two cases 
regarding Definition 4.2: the case of 
Archimedean t-norms and the case of the Gödel 
t-norm. In the first one we use, as in Gerla ([4]), 
the notion of additive generator which 
characterizes the Archimedean t-norms.  
 
Proposition 4.1. Let f : [0,1]→ [0,∞] be an 
additive generator of an Archimedean    t-norm 
⊗ and let d be a semi-distance on a set R. Then 
the fuzzy-relation Ef (d)  defined by  
   Ef(d)(x,y)=f[-1](d(x,y))                 (4.3)                
is a semi-similarity with the t-norm ⊗. 
Conversely, let E be a semi-similarity on R with 
the t-norm ⊗, then the structure (R, df (E)) where 
df(E) is  defined by  
  df (E)(x,y) = f (E(x,y)),                (4.4) 
 is a  sm-space. 
 
If the t-norm is the Gödel t-norm, in Definition 
4.2, the transitivity is given by  
(e2*) E(x, z) ∧ E(z, y) ≤ E(x, y). 
In such a case, a semi-similarity is called G-
semi-similarity and, setting y = x in (e2*), we 
obtain that  

E(x, z) ∧ E(z, x) ≤ E(x, x) 
and therefore that E(x, z) ≤ E(x, x). Then  

E(x, z) ≤ E(x, x) ∧ E(z, z). 
Observe that, since the Gödel t-norm is not 
Archimedean, the Proposition 4.1 doesn’t hold 
for it. But, in this case, we consider a subclass of 
sm-spaces, shrinking the codomain of the semi-
distance and adding an axiom.  
 
Definition 4.3. A semi-ultrametric space, 
briefly su-space, is an sm-space (R,d), where the 
semi-distance is a function d :R×R→[0,1], such 
that, for any x, y, z∈R:  
(B2) d(x, y) ≤ d(x, z) ∨ d(z, y) . 



Obviously, (B2) entails (b2). Observe that by 
setting y = x  and  z = y in (B2), we obtain that 
d(x,x)≤d(x,y)∨d(y,z) and therefore, by (b1), that 
d(x, x)≤ d(x, y). Likewise we have that d(y, y)≤ 
d(x, y) and therefore it results 
                 d(x, y) ≥ |x|d ∨|y|d.                    (4.5)  
Now we are able to describe the relation 
between the G-semi-similarities and the sm-
spaces. 
 
Proposition 4.2. Let d be a semi-ultrametric on 
a set R, then the fuzzy-relation Ed defined by  

   Ed(x, y) = 1-d(x, y)                   (4.6)   
is a G-semi-similarity. Conversely, let E be a G-
semi-similarity on R, then the structure (R, dE), 
defined by  
  dE(x,y) = 1-E(x,y)                    (4.7)  
 is a  su-space. 
 
  Proof. Define Ed by (4.6). Then (e1) is 
immediate. To prove (e2*) observe that 
Ed(x, y) ∧ Ed(y, z) = (1- d(x, y))∧ (1- d(y, z)) 
                  = 1-(d(x, y) ∨ d(y, z))≤ 1- d(x, z)  
                  = Ed(x, z). 
Now define dE by (4.7). Then (b1) is immediate. 
To prove (B2) it is sufficient to observe that 
d(x, y) = 1- E(x, y) ≤ (1-E(x, z)) ∨(1-E(z, y)) 
= d(x, z)∨d(z, y) .                             
                                                                                                                                                                                         
5. Characterization of the G-semi-similarities. 
We can characterize G-semi-similarities in terms 
of  related cuts.         
             
Definition 5.1.  Let S be a nonempty set. A 
(classical) relation R on S  is called semi-
equivalence  provided that is symmetric and 
transitive.  
    
Let denote by DR = {x∈S / there is an element 
y∈S : (x,y)∈ R} the domain of R. Then, if R is a 
semi-equivalence relation, it results that if 
x∈DR,,then (x,x)∈R. Then R is reflexive in DR. 
Therefore, every semi-equivalence relation R on 
S is an equivalence relation on its domain DR.  
Viceversa, if  R is an equivalence relation on DR 
and if it is symmetric on S, then R is a semi-
equivalence relation on S. 
                                                              
Definition 5.2. A family (Rλ)λ∈[0,1]  of semi- 
equivalence relations on a set S is called order-
reversing if it results that 

• Rβ ⊆ Rα  for every  α≤β, α,β∈ [0,1]; 

• R0 = S × S.     
 
Proposition 5.1. A fuzzy relation E is a    G-
semi-similarity if and only if the cuts of E define 
an order-reversing family (C(E,λ))λ∈[0,1] of semi-
equivalences. 
 
Also, any order-reversing family of semi-
equivalence relations defines a G-semi-
similarity. 
 
Proposition 5.2. Let (Rλ)λ∈[0,1]  be an order-
reversing family of semi-equivalence relations. 
Then the fuzzy relation E defined by setting 
          E(x, y) = Sup{λ :(x, y) ∈ Rλ }             (5.1) 
is a G-semi-similarity. 
 
  Proof. Condition (e1) is immediate by the 
symmetry of λR . To prove (e2*), let us consider 
E(x, z) = Sup{λ :(x, z) ∈ Rλ } = µ 
E(z, y) = Sup{λ :(z, y) ∈ Rλ } = ξ 
E(x, y) = Sup{λ :(x, y) ∈ Rλ } = η. 
Suppose µ ≤ ξ  (likewise ξ ≤ µ). Since (Rλ)λ∈[0,1]   
is an order-reversing family of relations, it 
results Rξ ⊆ Rµ.Therefore we have (x, z) ∈ Rµ 

and (z, y) ∈ Rµ  and then, by transitivity,  (x, y) ∈ 
Rµ. But η =Sup{λ :(x, y)∈ Rλ }, then  η ≥ µ  
and, since µ ∧ξ=µ,  the condition (e2*) 

E(x, z) ∧ E(z, y) ≤ E(x, y)                       
is verified.                                              
                                                                      
6. A connection between pm-spaces and sm-
spaces. 
In order to establish a connection between pm-
spaces and sm-spaces, we observe that in 
defining pm-spaces we can consider the 
inclusion relation as a derived notion. In fact, as 
proved in [2], the following holds true: 
  
Proposition 6.1. Let (R, δ, | |) be a structure 
satisfying (a1), (a2) and (a3) and define ≤  by 
setting x≤y provided that  

|x|≤|y| and δ(x,z)≥δ(y,z) for any z∈ R. 
Then (R, δ, | |) is a pm-space. 
 
In accordance with such a proposition, in the 
following we denote by (R,δ,| |) a pm-space 
whose order relation is defined as in Proposition 
6.1. It is possible to associate any  pm-space 
with a sm-space. 
        



Proposition 6.2. Let (R,δ,| |) be a  pm-space and 
define dδ  by setting,  for any x, y ∈R, 

          dδ (x, y) = δ(x, y)+
2
y

2
x
+ .                (6.1) 

Then the structure (R, dδ) is a sm-space whose 
diameter coincides with | |. 
 
  Proof. (b1) and the equality | |d = | | are trivial. 
Besides,  

dδ(x, y) = δ(x,y)+ 
2
y

2
x
+  

    ≤ δ(x, z)+δ(z, y) +|z|+
2
y

2
x
+  

    = (δ(x,z)+ 
2
z

2
x
+ ) + (δ(z, y)+

2
y

2
z
+ )  

    = dδ (x, z)+ dδ (z, y).   
                                                                            
Conversely, we can associate any sm-space  
with a pm-space.  

                                                                                                              
Proposition 6.3. Let (R, d) be a sm-space and 

define δd  by setting δd(x,y)= d(x,y) 
2
y

2
x

dd −−  

if d(x,y) ≥ 
2
y

2
x

dd +  and δd(x,y)=0  otherwise. 

Then the structure (R,δd, | |d), where | |d is 
defined by  (4.1),  is a  pm-space . 
 
  Proof. Axioms (a1) and (a2) are immediate. If  

d(x,y)< 
2
y

2
x

dd +  (a3) is trivial. Otherwise, by 

(b2), 

δd(x,y)= d(x,y) 
2
y

2
x

dd −−  ≤    

≤d(x,z)+d(z,y)
2
y

2
x

dd −− +                                                                      

+ 









−−

2
z

2
z

z dd
d

 =    

= δd(x,z)+ δd(z,y) + 
d

z .   
                                                                                      

Observe that the definitions of dδ and δd in 
Proposition 6.2 and in Proposition 6.3 are not 
the unique possible ways to associate a pm-
space with a sm-space and viceversa. For 
example, it is possible to associate any  pu-space 
(R,δ, | |) with a su-space (R, dδ) by setting 
           dδ (x, y) = δ(x, y)∨| x|∨|y|,             (6.2) 

for any x, y ∈ R 
 
Proposition 6.4. Let (R,δ,| |)  be a pu-space, 
then the structure (R, dδ) defined by  (6.2)  is a  
su-space whose diameter coincides with | |. 
   
  Proof. (b1) and the equality | |d = | | are trivial. 
Besides,  
dδ(x, z) = δ(x,z)∨ |x| ∨ |z| 
            ≤ δ(x,y)∨δ(y,z)∨|y|∨|x|∨|z|=  
            = (δ(x,y)∨|x|∨|y|)∨(δ(y, z)∨|y|∨|z|)=  
            = dδ(x, y)∨ dδ(y, z).   
                                    
Conversely, we can associate any su-space      
(R, d) with a pu-space (R,δd, | |d) by setting, for 
any x,y∈R,  

( )
( ) ( )

( )





∨>

∨=
=

   dydxy,xd if                       0
dydxy,xd if              y,xd

y,xdδ
    

                                                                      (6.3)                          
 
Proposition 6.5. Let (R, d) be a su-space, then 
the structure (R,δd, | |d) defined by (6.3) and 
(4.1)  is a  pu-space . 
   
   Proof. Axioms (a1) and (a2) are immediate. 
To prove that  

δd(x, z)∨δd(z, y)∨|z|d ≥ δd(x, y), 
assume that d(x,z)≥d(z,y). Now, in the case 
δd(x,y) = 0 and in the case |z|d ≥ d(x,y) such an 
inequality is trivial. So, it is not restrictive to 
assume that d(x,y) >|x|d∨|y|d , and therefore that 
δd(x, y) = d(x, y) and that d(x,y)>|z|d,. In such a 
case, by (B2), 
d(x,z) = d(x,z)∨d(z,y)  
              ≥ d(x,y) >|x|d∨|z|d 
and therefore  
δd(x, z)∨ δd(x, z)≥ δd(x,z) =  
               = d(x,z)∨d(z,y) ≥ d(x,y) = δd(x, y). 
Likewise we proceed in the case           
d(x,z)≤d(z,y).   
                                                                                                       
Besides, we can also set  

( ) ( ) ( )






=

∨>
=

  yx  if                     0

   dydxy,xd if            y,xd
y,xdδ

 

                                  (6.4) 
instead of (6.3).  
In accordance with Proposition 4.2, Proposition 
6.4 and Proposition 6.5 any connection between 
su-spaces and pu-spaces is also a connection 
between semi-similarities and pu-spaces.  



Proposition 6.6. Let E be a G-semi-similarity, 
defineE:R → [0,1] by setting  

  xE = 1 – E(x, x)                    (6.5)   
and  δE :R×R→[0, 1] by  

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )




∧<−
∧=

=
     y,yEx,xEy,xE if         y,xE1

y,yExx,Ey,xE if                       0
y,xEδ     

                                                                      (6.6)                                                                                                                 
for every x, y ∈R. Then (R,δE ,| |E) is a pu-space. 
Conversely, let (R,δ ,| |) be a pu-space and define 
Eδ, | |:R×R → [0,1] by setting  

 Eδ, | |(x,y) = 1 – (δ(x,y)∨|x|∨|y|)          (6.7)  
Then  Eδ, | |  is a G-semi-similarity. 
 
This last proposition is useful to describe, in the 
next section, the link of point-free geometry 
with fuzzy sets theory by a categorical point of 
view. 
 
7. The categories of  semi-similarities and of  
pu-spaces. 
In order to organize the class of semi-similarities 
into a category, we refer to  the category M*-
SET described by Hőhle in [4]. Namely, while 
Hőhle defines this category for any GL-monoid, 
we are interested only with the particular GL-
monoid in [0,1] defined by the Gödel t-norm. In 
such a case we have the following simplified 
definition. 
 
Definition 7.1. The category of the G-semi-
similarities is the category GSS such that: 
- the objects are structures (R,E) in which E is a 
G-semi-similarity;  
- a morphism from (R, E ) to (R’,E’) is a map f : 
R → R’  satisfying the axioms 
(M1) E’(f(x), f(x)) ≤ E(x, x)   
(M2) E(x, y) ≤ E’(f(x), f(y))  
for every x, y ∈ X .  
 
Observe that from (M2) we have that          
E(x,x) ≤ E’(f(x),f(x)) and therefore, by (M1), 

E(x, x) = E’(f(x), f(x)). 
The second category we consider is defined by 
the class of  pu-spaces. 
 
Definition 7.2. The category PU of the pu-
spaces is the category such that 
- the objects are  pu-spaces; 
- a morphism from (R, δ, | |) to (R', δ’,| |') is a 
map f: R→R'  such that  
(1) δ(x, y) ≥ δ’(f(x),f(y))   

(2) x ≥ f(x)|'  
 
In both the categories the composition is the 
usual composition of maps and the identities are 
the identical maps. Proposition 6.6 enables us to 
associate any G-semi-similarity with a pu-space 
(R,δE,| |E). This suggests the definition of a 
suitable functor from GSS to PU. 
 
Proposition 7.1. Define the map F from GSS to 
PU  by setting 
• F((R, E)) = (R, δE , | |E)   
• F(f) = f. 
Then F is a functor from GSS to PU. 
 
   Proof.  We have only to prove that if f is a 
morphism from (R,E) to (R', E'), then f is a 
morphism from (R, δE ,| |E)  to (R', δE' , | |E'). 
Indeed, it is immediate that 

|f(x)|E’ = 1-E’(f(x),f(x)) = 1-E(x,x) = |x|E. 
To prove that 
                  δE(x,y) ≥ δE’(f(x),f(y))                  (7.1) 
it is not restrictive to assume that δE’(f(x),f(y)) ≠0 
and therefore that  

E’(f(x),f(y)) < E’(f(x), f(x))∧E’(f(y), f(y)). 
and δE’(f(x),f(y)) = 1-E’(f(x),f(y)). In such a case, 
since 
E(x,y) ≤ E’(f(x),f(y))  
            < E’(f(x), f(x))∧E’(f(y), f(y)) 
            = E(x,x)∧E(y,y), 
we have that δE(x,y) = 1-E(x,y). So, (7.1) is a 
trivial consequence of (M2).  
                                
 
Observe that in proving that F is a functor we 
obtain that  
  |f(x)|E’ = |x|E .                       (7.2) 
On the other hand, it is easy to find a morphism 
h in PU such that |f(x)|E’ < |x|E for a suitable 
region. Then, the proposed functor is faithful, 
but not full. We can consider the subcategory  
PU* of PU obtained by considering only the 
morphisms f satisfying (7.2). Proposition 6.6 
suggests a definition of a functor from PU* to 
GSS. 
 
Proposition 7.2. Define the map F’ from PU* to 
GSS  by setting 
• F’((R, δ , | |)) = (R, Eδ, | |)   
• F(f) = f. 
Then F’ is a functor from PU* to GSS. 
 



   Proof. Let (R, δ , | |) and (R’, δ’ , | |’) be two 
pu-spaces, (R, E) and (R’, E') the structures, 
where the semi-similarities E and E’ are defined 
by (6.7), and f a morphism from (R, δ ,| |) to 
(R’,δ’ ,| |’). Then  

E'(f(x),f(x)) = 1-|f(x)|’ = 1-|x| = E(x,x). 
  Moreover, 
     E(x,y) = 1-(δ(x,y)∨|x|∨|y|)  

          ≤ 1-(δ’(f(x),f(y))∨|f(x)|’∨|f(y)|’) 
          = E’(f(x),f(y)).  
                            

8. A class of examples.  
Let X and Y  be two nonempty sets and denote 
by F(X, Y) the class of partial functions from X 
to Y. If  f ∈ F(X, Y)  we denote by  Df  the 
domain of  f and by Uf the complement of Df, i.e. 
the set of elements in which f is not defined. Let  
f, g be elements of F (X, Y), then the equalizer of  
f and g , is defined by 

  eq(f, g) = {x ∈ X : x ∈Df ∩Dg , f(x)=g(x)}. 
The contrast between f and g is defined as the 
complement of the equalizer, i.e. 
                    contr(f,g) = - eq(f, g). 
Observe that  
             contr(f,g) = Cfg∪Uf∪Ug  
where  

Cfg = {x∈X : x ∈Df ∩Dg and  f(x) ≠ g(x)}. 
                                                                      (8.1) 
In other words, contr(f,g) contains the elements 
on which f and g “contrast” and the elements in 
which either f or g is not defined. In particular 
contr(f,f) = Uf. 
 
Definition 8.1.Consider a map irl:X→[0,1] we 
call fuzzy subset of irrelevant elements. Then the 
irrelevancy degree of a set S, is 
 Irl(S)= Inf{irl(x) : x ∈ S}.                 (8.2) 
 
We interpret irl(x) as the “degree of irrelevancy” 
of  an element x and Irl(S) as a measure of the 
degree of validity of the claim “all the elements 
in S are irrelevant”. Trivially, we have that for 
any pair S1, S2 of subsets of X, 

Irl(S1∪S2) = Irl(S1)∧Irl(S2). 
 

Proposition 8.1. Let Χ be a nonempty class of 
partial functions and set 
                     E(f, g) = Irl(contr(f,g)).            (8.3) 
Then E is a G- semi-similarity. 
 
   Proof. (e1) is immediate. To prove (e2*), 
observe that for every f, g, h ∈ Χ,  

Cfg ⊆ Cfh∪Chg∪Uh 
and therefore, 

contr(f,g) ⊆ contr(f,h) ∪ contr(h,g). 
This entails  

E(f,g)≥ E(f,h)∧E(h,g). 
                                                                           
We interpret E(f,g) as a measure of the truth 
degree of the claim “in all the relevant elements 
f and g are defined and coincide”. Observe that  

E(f,f) = Irl(Uf) 
and therefore E(f,f) is the valuation of the claim 
that f is defined in all the relevant elements. In 
particular, if f is total, then E(f,f) is equal to 1, if 
f is totally undefined, i.e. Uf = X, then E(f, f) = 0. 
 
9. Conclusions and future works. 
This note is a first attempt to establish a link 
between point-free geometry and fuzzy set 
theory. In spite of some promising results, the 
proposed functors are not yet satisfactory. Also, 
it is an open question to give a geometric 
interpretation of the objects of the category of 
the fuzzy sets as suggested by the obtained 
results. Future works will be addressed to this 
aims. 
  
References 
[1] Fourman M., Scott D.S., Sheaves and logic, 

in “Applications of Sheaves”, Lecture Notes 
in Mathematics 753, Springer-Verlag 
(1979), 302-401.  

[2] Gerla G., Pointless Metric Space, Journal of 
Symbolic Logic 55, 1, (1990), 207-219. 

[3] Gerla G., Pointless Geometries, in 
“Handbook of Incidence Geometries”, F. 
Buekenhouted (1994) Elsevier Science, 
1015-1031. 

[4] Gerla G., Representation Theorems for 
Fuzzy Orders and Quasi-metrics, to appear 
on “Soft Computing”. 

[5] Hájek P., Metamathematics of Fuzzy Logic, 
Kluwer Academic Publishers, Dordrecht, 
1998.  

[6] Höhle U., Presheaves over GL-monoid. in 
“Nonclassical Logics and Their Applications 
to Fuzzy Subsets” (U. Höhle, E. P. Klement, 
eds), Kluwer, (1995), 127-157 . 

[7] Novak V., Perfilieva I., Mockor J., 
Mathematical Principles  of Fuzzy Logic, 
Kluwer Academic Publishers, London, 
1999. 



[8] Whitehead A. N., An inquiry concerning the 
Principles of Natural Knowledge, Univ. 
Press, Cambridge, 1919. 

[9] Whitehead A. N., The Concept of Nature, 
Univ. Press, Cambridge, 1920. 

[10]  Whitehead A. N., Process and Reality,                                          
McMillian, N.Y., 1929. 


