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1 Introduction

The AdS/CFT correspondence provides a remarkable framework to handle quantum grav-

ity on AdS space. Scattering amplitudes on AdS are identified with correlation functions in

the dual CFT picture, through which the perturbative expansion of AdS amplitudes given

by the loop expansion of Witten diagrams [1–3] is mapped to the 1/N expansion of CFT

correlators. At tree-level in the bulk, this map is rather well understood.1 However, to date

the bulk computation of Witten diagrams at loop level has proven rather challenging and

unexplored — with the exception of some preliminary works on the Mellin representation

of loop diagrams involving only scalars [20, 30–32] and recent efforts which instead aim to

extract predictions for bulk loop-corrections from within the dual CFT picture [33–38].

The aim of this work is to develop a systematic framework for the direct bulk com-

putation of loop Witten diagrams, in particular from bulk Lagrangians involving totally

symmetric fields of arbitrary integer spin. The approach, which is outlined in more detail

below in section 1.1, is underpinned by the spectral representation of bulk-to-bulk propa-

gators [11, 12, 39], which allows the expression of a given loop diagram in terms of spectral

integrals and integrated products of higher-point tree diagrams. This reduces the loop com-

putation to the evaluation of the aforementioned spectral integrals, as well as conformal

integrals arising from the expressions for the tree-diagrams. Evaluating tree-diagrams is

comparably straightforward and can be performed systematically with currently available

methods (see footnote 1), while the subsequent conformal integrals are well-known [40].

The spectral integrals are all of the Mellin-Barnes type, which we demonstrate how to reg-

ularise and evaluate — leaving to the future the development of a fully systematic means

to do so. This decomposition of AdS loop diagrams is the natural generalisation to AdS of

momentum integrals in flat space, with the spectral integrals encoding bulk UV divergences

and the conformal integrals encoding the IR divergences. For simplicity, the focus of the

present work is mostly on 2pt one-loop bubble and tadpole diagrams on AdSd+1, though our

methods allow to deal with the more general loop amplitudes involving arbitrary spinning

internal and external legs.

We begin in section 2 where, for ease of introducing the approach, we consider one-loop

diagrams involving only scalar fields. In section 2.1 we consider the 2pt bubble diagram

in φ3 theory, and 2pt tadpole diagrams generated by quartic scalar self interactions in

section 2.3. This includes φ4 (section 2.3.1) and the most general dressing with derivatives

1By now there are numerous techniques available in the literature for evaluating Witten diagrams at

tree-level, both in position- [4–15], momentum- [16, 17] and Mellin- [18–23] space, and also via so-called

geodesic diagrams [24–29].
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(section 2.3.3). In section 2.4 we also discuss one-point tadpole diagrams with a single

off-shell external leg in the bulk. In section 3 we present the extension to bubble diagrams

produced by parity even cubic couplings of a generic triplet of totally symmetric fields of

arbitrary mass and integer spin. In section 3.3 we focus on diagrams generated by the

cubic coupling of a scalar and two gauge fields of arbitrary spin, and extract the spectral

representation of the contributions from such diagrams to the anomalous dimension of

higher-spin currents.2

In section 4 we turn to some applications in specific theories. In section 4.1 we consider

the bubble diagram generated by the minimal coupling of a scalar field to gravity in de

Donder gauge. In section 4.2 we consider the type A minimal higher-spin gauge theory.

In fact, one of our motivations for considering higher-spin gauge theories is to make

progress towards testing higher-spin holography at the quantum level, beyond the one-loop

vacuum energy results [43–54] which only probe the free theory.3 This endeavour relies

on the knowledge of the explicit interacting type-A theory action, which has only recently

become available [13–15, 39, 59–61].4

Such tests are particularly relevant in the context of the higher-spin AdS4/CFT3 dual-

ity, which gives striking predictions for the bulk loop expansion. For the ∆ = 1 boundary

condition on the bulk scalar, the type A minimal higher-spin gauge theory is conjectured

to be dual to the free scalar O (N) model in three-dimensions [67], which suggests that

the contribution of bulk loop amplitudes for this boundary condition should vanish identi-

cally. In AdS4 the bulk scalar admits a second boundary condition, ∆ = 2, for which the

theory is conjectured to be dual to the critical O(N) model [68]. This suggests that the

non-trivial contributions to the anomalous dimension of higher-spin currents in the critical

O(N) model should arise from loop Witten diagrams appearing in the difference of ∆ = 2

and ∆ = 1 boundary conditions for the scalar. While the latter prediction of the duality has

been argued to follow from the duality with ∆ = 1 [69, 70], to date there has been no direct

test of the duality for either boundary condition owing to the lack of a full quantum action

in the bulk.5 However, in the case of higher-spin gauge theories, considering loop Witten

diagrams in the difference of ∆ = 2 and ∆ = 1 boundary conditions can still teach us a

lot about the properties of higher-spin gauge theories, in particular their Witten diagram

expansion and how the infinite spectrum/expansion in derivatives should be treated.

Motivated by the above considerations, in section 4.2.1 we study the contributions

to the anomalous dimensions of higher-spin currents from 2pt bubble and
e

tadpole

diagrams which appear in the difference of ∆ = 2 and ∆ = 1 scalar boundary conditions.

We leave for the future a complete analysis of the duality in the case of ∆ = 1 boundary

2It is worth stressing here that our methods to evaluate loop corrections to 2pt functions can be also

applied to the bulk computation of the central charges CT and CJ for the stress tensor and the spin-1

currents, which do not receive anomalous dimensions. See e.g. [41, 42] for some boundary results on these

two CFT observables.
3For some loop results in flat space see [55]. For some previous investigations of quantum corrections

in the context of higher-spin gauge theories on AdS, see [56, 57]. For some recent work in the AdS3

Chern-Simons formulation using Wilson lines, see [58].
4See [62–66] for reviews on higher-spin gauge theories and their holographic dualities.
5See however [39].
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condition, for which all cubic and quartic couplings, as well as the corresponding ghost

couplings, must be included. Our analysis allows us to determine the nature of the various

types of bulk one-loop contributions to the anomalous dimension of higher-spin currents

in the critical O (N) model. In particular, we find that 2pt bubble diagrams alone are not

sufficient to reproduce the anomalous dimensions, and for this g tadpole diagrams are

required. We also point out a puzzle regarding the infinite summation over spin and the

Witten diagram expansion.

1.1 General approach

We develop a spectral approach to evaluate AdS loop diagrams, a central ingredient for

which is the decomposition of bulk-to-bulk propagators G (x1, x2) into bi-tensorial AdS

harmonic functions Ω (x1, x2) [11, 12], which we depict as:

. (1.1)

The factorisation of harmonic functions into bulk-to-boundary propagators integrated over

the common boundary point [71]:

, (1.2)

leads to the decomposition of loop diagrams into integrated products of higher point tree-

level Witten diagrams. Upon evaluating the comparably simple tree-level Witten diagrams,

the loop is reduced to the computation of well-known boundary conformal integrals [40]

arising from the gluing of the tree-level bulk diagrams, and a spectral integral in the

parameters ν.

In this work, we detail this approach for two-point bubble and tadpole diagrams,

which induce mass and wave-function renormalisations of the fields which already appear

at tree-level. In this case, the task is reduced to the evaluation of tree-level three-point

Witten diagrams (illustrated in figures 1a and 1b) which, via the sewing procedure shown

in figure 1, give rise to the following three- and, ultimately, two-point conformal integrals:
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(a)

(b)

Figure 1. Using the split representation of bulk-to-bulk propagators, 2pt Witten diagrams at

one-loop may be expressed in terms of tree-level three-point Witten diagrams.

I3pt (y1, y2, y3) =

∫
ddy[

(y1 − y)2
]a1
[
(y2 − y)2

]a2
[
(y3 − y)2

]a3
, a1 + a2 + a3 = d, (1.3a)

I2pt (y1, y2) =

∫
ddy[

(y1 − y)2
]a1
[
(y2 − y)2

]a2
, a1 + a2 = d, (1.3b)

whose evaluation we give in section A. The two-point integral (1.3b) is divergent, whose

regularisation gives rise to the corrections to the wave function and the mass.

For external totally symmetric fields of spin s and tree-level mass m2
iR

2 = ∆i (∆i − d)−
s, the two-point one-loop diagrams ultimately take the form6

M1-loop (y1, y2) =

∫ ∞
−∞

dνdν̄F (ν, ν̄)

× Hs
12(

y2
12

)(τ1+τ2−d)/2

∫
ddy[

(y1 − y)2
]d/2+(∆1−∆2)/2 [

(y2 − y)2
]d/2−(∆1−∆2)/2

, (1.4)

for some spectral function F (ν, ν̄). We employ a variant of dimensional regularisation to

6For tadpole diagrams, which have just a single bulk-to-bulk propagator, there is only one spectral

integral while for bubble diagram (which instead involve two bulk-to-bulk propagators) there is a double

integral as shown above. We emphasise that the presence of the divergent two-point conformal integral on

the second line is universal. I.e. is generated by any one-loop process, both bubble and tadpole diagrams.
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evaluate the conformal integral on the second line,7 which yields

I1-loop
2pt (y1, y2) =

Hs
12(

y2
12

)(τ1+τ2−d)/2

∫
dd+εy[

(y1 − y)2
]d/2+(∆1−∆2)/2 [

(y2 − y)2
]d/2−(∆1−∆2)/2

= δ∆1,∆2

π
d+ε

2

Γ(d2)2

Hs
12(

y2
12

)(τ1+τ2−ε)/2
Γ
(
ε
2

)2
Γ
(
d−ε

2

)
Γ(ε)

, (1.5)

= δ∆1,∆2

2π
d
2

Γ(d2)

Hs
12(

y2
12

)(τ1+τ2)/2

[
2

ε
+ log(π)− ψ

(
d

2

)
+ log

(
y2

12

)]
+O(ε),

where the constant piece generates the wave function renormalisation and the log term the

mass correction.8 Combining (1.5) with (1.4) thus gives the anomalous dimension in the

spectral form

γ ∼ −δ∆1∆2

∫ ∞
−∞

dνdν̄ F (ν, ν̄) . (1.6)

The above procedure is not only computationally convenient, but also turns out to disen-

tangle UV and IR bulk divergences. It is indeed easy to see by inspection that the spectral

integrals will diverge for large values of the spectral parameter, which therefore should

be considered a UV divergence. Such UV divergences translate into divergent anomalous

dimensions which require regularisation. While UV finite theories will lead to well-defined

predictions for the anomalous dimensions, UV divergent theories will require some sub-

traction scheme to extract the anomalous dimensions. In the latter case, in this paper we

shall use a minimal subtraction scheme. The boundary integrals instead are by construc-

tion IR effects, which correspond to short distance singularities from the perspective of the

boundary CFT. The fact that it is possible to generate anomalous dimensions even when

no UV counter-term is required is a peculiarity of the IR structure of AdS space [72].

All of the above spectral integrals will be of the form of Mellin-Barnes integrals, which

define generalisations of hypergeometric functions:

Hm,n
p,q (z) =

∫ ∏m
j=1 Γ (bj − iν)

∏n
j=1 Γ (1− aj + iν)∏p

j=n+1 Γ (aj − iν)
∏q
j=m+1 Γ (1− bj + iν)

ziνdν. (1.7)

The latter, for z = ±1 can be expressed in terms of sums of generalised hypergeometric

functions of argument ±1 and can be evaluated by the Gauss hypergeometric formula.

Once the anomalous dimension is extracted in terms of a spectral integral the problem of

7See section A.2 and section A.5 for a discussion on possible choices of regularisation, including at the

level of the bulk harmonic function (3.9).
8This can be understood from the expansion of the dual CFT two-point function

〈O∆1,s (y1)O∆2,s (y2)〉 = δ∆1∆2 CO
Hs12

(y2
12)τ1+γ

= δ∆1∆2 CO
Hs12

(y2
12)τ1

e−γ log(y212) = δ∆1∆2 CO
Hs12

(y2
12)(τ1+τ2)/2

(
1− γ log

(
y2

12

)
+ . . .

)
,

where we see that the anomalous dimension, which is related to the corrected bulk mass via m2R2 =

(∆ + γ) (∆ + γ − d)− s, is the coefficient of the log term.
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evaluating the loop diagram is drastically simplified and can be solved either analytically

(when possible) or numerically. While in this work we focus on some relevant examples,

we leave for the future the problem of developing a systematic analytic/numeric method

to evaluate the above integrals in general in the case of multiple spectral integrals.

1.2 Notation, conventions and ambient space

In this work we consider tensor fields in Euclidean anti-de Sitter (AdSd+1) space where,

unless specified, the boundary dimension d is taken to be general. We employ an operator

notation to package the tensor indices (for a review see e.g. [66], whose conventions we

adopt throughout), where a totally symmetric rank-s bulk field ϕµ1...µs represented by the

generating function

ϕµ1...µs (x) → ϕs (x;u) =
1

s!
ϕµ1...µs (x)uµ1 . . . uµs , (1.8)

where we introduced the (d+ 1)-dimensional constant auxiliary vector uµ. The covari-

ant derivative gets modified when acting on fields expressed in the generating function

form (1.8):

∇µ → ∇µ + ωabµ ua
∂

∂ub
, (1.9)

where ωabµ is the spin connection and ua = eaµ (x)uµ with vielbein eaµ (x).

One particular virtue of this notation is that tensor operations become an operator

calculus, which significantly simplifies manipulations. For instance, the contraction:

ϕµ1...µs (x)ϕµ1...µs (x) = s!ϕs (x; ∂u)ϕ (x;u) , (1.10)

and the operations: divergence, symmetrised gradient, box, symmetrised metric, trace and

spin are represented by the following operators:

divergence: ∇ · ∂u, sym. gradient: u · ∇, box: �, (1.11)

sym. metric: u2, trace: ∂2
u, spin: u · ∂u.

Likewise, operators of non-trivial spin living on the conformal boundary of AdSd+1 can

be expressed in generating function notation. A totally symmetric spin-s operator Oi1...is
at the boundary point yi, i = 1, . . . , d, is represented as

Oi1...is (y) → Os (y; z) = Oi1...is (y) zi1 . . . zis , (1.12)

with the null auxiliary vector z2 = 0 enforcing the tracelessness condition. The operator

calculus is slightly modified for traceless tensors, since one must instead replace the partial

derivative ∂z with the Thomas derivative [73]:9

∂̂zi = ∂zi −
1

d− 2 + 2z · ∂z
zi∂

2
z , (1.13)

that preserves the condition z2 = 0. For example,

Oi1,...,is (y)Oi1,...,is (y) = s!Os(y; ∂̂z)Os (y; z) . (1.14)
9In the CFT literature this is sometimes referred to as the Todorov differential operator [74]. The

normalisation of the latter is obtained from (1.13) by multiplying by the operator d − 2 + 2z · ∂z, and

recalling that z · ∂z gives the spin of the operator being acted on.

– 6 –
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Ambient space. The ambient space formalism is an indispensable tool in AdS and

CFT, which simplifies computations considerably by making the SO (1, d+ 1) symmetry

manifest. We employ this formalism throughout, and briefly review the pertinent details

here. For further details see e.g. [66, 75–78].

A perspective first considered by Dirac [79], in the ambient space formalism one regards

the AdSd+1 space as the co-dimension one hyper-surface

X2 +R2 = 0, (1.15)

in an ambient flat space-time parameterised by Cartesian co-ordinates XA where A =

0, 1, . . . , d+ 1 and metric ηAB = diag (−+ + . . .+) to describe Euclidean AdS.10

A smooth irreducible so (1, d+ 1)-tensor field ϕµ1...µs (x) of mass

m2R2 = ∆ (∆− d)− s, (1.16)

is represented uniquely in the ambient space by a field ϕA1...As (X) of the same rank subject

to the following constraints [80]:

• Tangentiality to surfaces of constant ρ =
√
−X2:

XAiϕA1...Ai...As = 0, i = 1, . . . , s. (1.17)

Explicitly, one can apply the projection operator:

PBA = δBA −
XAX

B

X2
, (1.18)

which acts on ambient tensors as

(Pϕ)A1...As
:= PB1

A1
. . .PBsAsϕB1...Bs , XAi (Pϕ)B1...Bi...Bs

= 0. (1.19)

• The homogeneity condition:

(X · ∂X + µ)ϕs (X,U) = 0, i.e. ϕs (λX,U) = λ−µϕs (X,U) , (1.20)

where we are free to choose either µ = ∆ or µ = d−∆. In this work we take µ = ∆.

This fixes how the ambient representative extends away from the AdS manifold, in

the radial direction ρ =
√
−X2.

The above conditions ensure that the ambient uplift of fields that live on the AdS manifold

is well-defined and one-to-one.

This discussion also extends to differential operators. For instance, the ambient rep-

resentative of the Levi-Civita connection ∇µ on AdSd+1 is given by [81, 82]:

∇A = PBA
∂

∂XB
, X · ∇ = 0. (1.21)

10In contrast Lorentzian AdS would require the conformal signature: ηAB = diag (−+ + . . .+−).

– 7 –
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Crucially, this must act on ambient tensors that are tangent, otherwise extra terms may be

introduced which are not killed by the projector acting on the l.h.s. of (1.21). The proper

action of (1.21) should thus be regarded as:

∇ = P ◦ ∂ ◦ P. (1.22)

For example:

∇BTA1...Ar = PCBP
C1
A1
. . .PCrAr

∂

∂XC
(PT )C1...Cr

, (1.23)

for some ambient tensor TA1...Ar (X).

The operator notation for tensor fields introduced in the previous section can also be

extended to ambient space. We have:

ϕA1...As (X) → ϕs (X;U) =
1

s!
ϕA1...As (X)UA1 . . . UAs , (1.24)

with constant ambient auxiliary vector UA. Like for the intrinsic case (1.9), the covariant

derivative (1.21) also gets modified in the operator formalism [77]:

∇A → ∇A −
XB

X2
ΣAB, (1.25)

where

ΣAB = UA
∂

∂UB
− UB

∂

∂UA
. (1.26)

The ambient formalism extends to the boundary of AdS [78–80, 83–86]. Towards the

boundary, the hyperboloid (1.15) asymptotes to the light-cone. This limit does not give

rise to a well-defined boundary metric, but a finite limit can be obtained by considering a

projective cone of light-rays:

PA ≡ εXA, ε→ 0. (1.27)

Since X2 is fixed, these null co-ordinates satisfy:

P 2 = 0, P ∼= λP, λ 6= 0, (1.28)

and are identified with the AdS boundary. For example, for Euclidean AdS in Poincaré

co-ordinates xµ =
(
z, yi

)
, we have:

X0 (x) = R
z2 + y2 + 1

2z
, (1.29a)

Xd+1 (x) = R
1− z2 − y2

2z
, (1.29b)

Xi (x) =
Ryi

z
, (1.29c)

and the boundary points are parameterised by the Poincaré section:

P 0 (y) =
1

2

(
1 + y2

)
, P d+1 (y) =

1

2

(
1− y2

)
, P i (y) = yi. (1.30)

– 8 –
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The ambient representative fA1...As (P ) of a symmetric spin-s boundary field fi1...is (y)

of scaling dimension ∆ is traceless with respect to the ambient metric11

ηABfA1...As = 0, (1.31)

and scales as

fA1...As (λP ) = λ−∆fA1...As (P ) , λ > 0. (1.32)

Like for the ambient description of bulk fields, we require that fA1...As is tangent to the

light-cone:

PA1fA1...As (P ) = 0. (1.33)

However, since P 2 = 0, there is an extra redundancy

fA1...As(P )→ fA1...As(P )+P(A1
ΛA2...As), (1.34)

PA1ΛA1...As−1 = 0, ΛA1...As−1(λP ) =λ−(∆+1)ΛA1...As−1(P ), ηA1A2ΛA1...As−1 = 0, (1.35)

which, together with (1.33), eliminates the extra two degrees of freedom per index of

fA1...As .

Likewise the operator formalism extends to ambient boundary fields, where we have:

fA1...As (P ) → fs (P ;Z) =
1

s!
fA1...As (P )ZA1 . . . ZAs , Z2 = 0, P · Z = 0, (1.36)

where as usual Z2 = 0 enforces the traceless condition (1.31) and it is useful to impose the

new constraint P · Z = 0 that takes care of tangentiality to the light-cone (1.33).

2 Scalar diagrams

For ease of illustration, we first consider two-point one-loop diagrams involving only scalar

fields. We review the basic ingredients below before giving some concrete applications in

section 2.1 and section 2.3.

Bulk-to-boundary propagators take a very simple form in ambient space. See sec-

tion 1.2 for a review of the ambient space formalism. For a scalar of mass m2R2 =

∆ (∆− d), the bulk-to-boundary propagator12

(
−� +m2

)
K∆,0 (x; y) = 0, lim

z→0

(
z∆−dK∆,0 (z, ȳ; y)

)
=

1

2∆− d
δd (y − ȳ) , (2.1)

is given by the contraction:

K∆,0 (X (x) ;P (y)) =
C∆,0

(−2X · P )∆
, (2.2)

with normalisation:

C∆,0 =
Γ (∆)

2πd/2Γ
(
∆ + 1− d

2

) . (2.3)

11It is not difficult to see that this follows from the tracelessness of fi1...is .
12In the limit we used Poincaré co-ordinates (1.29a) with xµ =

(
z, ȳi

)
, where the ȳi with i = 1, . . . , d

parameterise the boundary directions.

– 9 –
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We employ the spectral representation of the bulk-to-bulk propagators, which for scalar

fields with ∆ > d
2 is given by13

G∆,0 (x1;x2) =

∫ ∞
−∞

dν[
ν2 +

(
∆− d

2

)2]Ων,0 (x1, x2) , (2.4)

where Ων,0 is a spin 0 bi-tensorial harmonic function with equation of motion(
�1 +

(
d

2

)2

+ ν2

)
Ων,0 (x1, x2) = 0, (2.5)

where the subscript i on differential operators signifies that the derivative is being taken

with respect to xi. As is illustrated in figure 1, the factorisation

Ων,0 (x1, x2) =
ν2

π

∫
∂AdS

ddy K d
2

+iν.0 (x1; y)K d
2
−iν,0 (x2; y) , (2.6)

of harmonic functions into bulk-to-boundary propagators (2.2) re-expresses two-point one-

loop diagrams in terms of conformal integrals of tree-level three-point Witten diagrams. For

diagrams involving only scalar fields, the three-point Witten diagrams are those generated

by the basic vertex14

V(3) = φ1φ2φ3, (2.7)

of scalars φi of some mass m2
iR

2 = ∆i (∆i − d). The tree-level amplitude generated by (2.7)

is well known [5], and given in the ambient formalism (see section 1.2) by

M3pt tree
∆1,∆2,∆3

(P1, P2, P3) =
B (∆1,∆2,∆3; 0)

P
∆1+∆3−∆2

2
13 P

∆2+∆3−∆1
2

23 P
∆1+∆2−∆3

2
12

, (2.8)

where Pij = −2Pi · Pj and

B (∆1,∆2,∆3; 0) =
1

2
π
d
2 Γ

(
−d+

∑3
i=1 ∆i

2

)
C∆1,0C∆2,0C∆3,0

×
Γ
(

∆1+∆2−∆3
2

)
Γ
(

∆1+∆3−∆2
2

)
Γ
(

∆2+∆3−∆1
2

)
Γ (∆1) Γ (∆2) Γ (∆3)

. (2.9)

The C∆i,0 come from the normalisation (2.3) of the bulk-to-boundary propagator.

In section 2.1 we use this approach to evaluate the two-point one-loop bubble diagram

in φ3 theory. In section 2.3 we move on to tadpole diagrams, showing in section 2.3.1 how

they are evaluated in φ4 theory. We extend the latter result to arbitrary derivative quartic

self-interactions in section 2.3.3.

2.1 2pt bubble

We consider the two-point one-loop bubble illustrated in figure 2, which is generated by

the following cubic couplings:15

V(3)
1 = g φ1φφ̄, V(3)

2 = ḡ φ2φφ̄, (2.10)

13The case ∆ < d
2

requires a slight modification of the propagator, but the general approach for evaluating

loop diagrams is unchanged. This is explained later on in section 4.2.1.
14Note that this vertex is the unique cubic vertex of scalars on-shell.
15In this subsection we drop symmetry factors associated to indistinguishable external legs. In the case

of indistinguishable scalar fields, the corresponding symmetry factor is S = 1
2
.
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Figure 2. Scalar one-loop bubble diagram generated by the cubic couplings (2.10).

for arbitrary coupling constants g and ḡ. The diagram is given by evaluating the bulk

integrals

M2pt bubble (P1, P2)

= gḡ

∫
AdS

dX1dX2K∆1,0 (X1;P1)G∆,0 (X1;X2)G∆̄,0 (X1;X2)K∆2,0 (X2;P2) . (2.11)

The spectral representation (2.4) of the scalar bulk-to-bulk propagators expresses the dia-

gram in terms of two tree-level three-point Witten diagrams (2.8), sewn together by their

common boundary points (see figure 1a):

M2pt bubble (P1, P2) = gḡ

∫ ∞
−∞

ν2ν̄2dνdν̄

π2[ν2 + (∆− d
2)2][ν̄2 + (∆̄− d

2)2]

×
∫
∂AdS

dPdP̄M3pt tree

∆1,
d
2

+iν, d
2

+iν̄
(P1, P, P̄ )M3pt tree

∆2,
d
2
−iν, d

2
−iν̄(P2, P, P̄ ). (2.12)

The integrals in P and P̄ are both of the three-point conformal type (1.3a). Performing

first, say, the integration over P̄ leaves the two-point conformal integral (1.3b):

M2pt bubble (P1, P2) =
gḡ

64π
d+8

2

C∆1,0C∆2,0

Γ (∆1) Γ (∆2)

Γ
(

∆1+∆2−d
2

)
Γ
(
d− ∆1+∆2

2

) ∫ ∞
−∞

dνdν̄ F2pt bubble (ν, ν̄)

× P
d−∆1−∆2

2
12

∫
dP

(−2P1 · P )
1
2

(d+∆1−∆2) (−2P2 · P )
1
2

(d+∆2−∆1)︸ ︷︷ ︸
=I1-loop

2pt (y1,y2)(1.5)

, (2.13)

where

F2pt bubble (ν, ν̄) =
νν̄ sinh(πν)sinh(πν̄)[

(d2−∆̄)2 + ν̄2
][

(d2−∆)2 +ν2
] (2.14)

×Γ

(
d−∆1− i(ν− ν̄)

2

)
Γ

(
d−∆1 + i(ν+ ν̄)

2

)
Γ

(
∆1− i(ν− ν̄)

2

)
Γ

(
∆1 + i(ν+ ν̄)

2

)
×Γ

(
d−∆2 + i(ν− ν̄)

2

)
Γ

(
d−∆2− i(ν+ ν̄)

2

)
Γ

(
∆2 + i(ν− ν̄)

2

)
Γ

(
∆2− i(ν+ ν̄)

2

)
.
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Focusing on the log(y2
12) contribution, we can thus extract the leading correction to the

anomalous dimension as the following spectral integral:

γ=−gḡ δ∆1∆2

Γ
(

∆1+∆2−d
2

)
64π

d+8
2 Γ

(
d
2

)
Γ
(
d− ∆1+∆2

2

) 1√
Γ(∆1)Γ

(
−d

2 +∆1 +1
)√

Γ(∆2)Γ
(
−d

2 +∆2 +1
)

×
∫ ∞
−∞

dνdν̄F2pt bubble (ν, ν̄) . (2.15)

In the following sections we first demonstrate how the spectral integrals may be eval-

uated in some simple examples, and in section 2.2 we detail a general analytic approach

based on summing over residues. In section 3.3 we also discuss the pole structure of the

spectral function (2.14).

2.1.1 Conformally coupled scalar (∆ = 2) in AdS4

The simplest case is that of the self-coupling of a conformally coupled scalar in AdS4, i.e.:

V(3)
1 = V(3)

2 =
g

3!
φ3, (2.16)

with ∆ = 2. In this section all formulas below will include the corresponding symmetry

factor S = 1
2 .

In this case the spectral representation of the anomalous dimension (2.15) is:

γ = −S g2

∫
R2

νν̄(ν − ν̄)(ν + ν̄) sinh(πν) sinh(πν̄)csch(π(ν − ν̄))csch(π(ν + ν̄))

π2 (4ν2 + 1) (4ν̄2 + 1)
. (2.17)

To study the above integral it is convenient to make the following change of variables:

x = ν + ν̄ , y = ν − ν̄ , (2.18)

through which the (2.17) becomes:

γ = −S g
2

2π2

∫ ∞
0

dx

∫ ∞
0

dy
xy
(
x2 − y2

)
csch(πx)csch(πy) sinh

(
π
2 (x− y)

)
sinh

(
π
2 (x+ y)

)
((y − x)2 + 1) ((x+ y)2 + 1)︸ ︷︷ ︸

I(x,y)

,

(2.19)

where we have used the symmetries of the integral to restrict the region of integration to

the first quadrant of the plane. In the above form it is straightforward to identify the

singularity of the integral which arises for x→∞ or y →∞ from the asymptotic behavior

the integrand:

I(x, y) ∼ 1

x
+O

(
1

x3

)
y fixed , (2.20)

I(x, y) ∼ 1

y
+O

(
1

y3

)
x fixed . (2.21)
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A standard way to regularise integrals of the above type is to use ζ-function regularisation,

which entails introducing a parameter µ:

γ (µ) =−S g
2

2π2

∫ ∞
0

dx

∫ ∞
0
dy
xy
(
x2−y2

)
csch(πx)csch(πy)sinh

(
1
2π(x−y)

)
sinh

(
1
2π(x+y)

)
((y−x)2 +1)1+µ ((x+y)2 +1)1+µ︸ ︷︷ ︸

Iµ(x,y)

,

(2.22)

where, taking a minimal subtraction scheme, the anomalous dimension is given by the finite

part as µ→ 0:

γ = finite [γ (0)] . (2.23)

The integral (2.22) is convergent for µ sufficiently big. For such values of µ the above

integral can be split into two integrals, one of which is convergent for µ → 0 while the

other is divergent:16

I(µ)(x, y) = I
(µ)
1 (x, y) + I

(µ)
2 (x, y) , (2.24)

with

I
(µ)
1 (x,y)

∣∣∣
µ=0

=
xy

2

[
(y−x)(x+y)csch(πy)csch(πx)(cosh(πx)−cosh(πy))

((y−x)2 +1)((x+y)2 +1)
+
x2csch(πy)

(x2 +1)2

+
y2csch(πx)

(y2 +1)2

]
, (2.25)

I
(µ)
2 (x,y) =−1

2

[
x3y

(
x2 +1

)−2(µ+1)
csch(πy)+xy3csch(πx)

(
y2 +1

)−2(µ+1)
]
. (2.26)

The first integral can be evaluated numerically and gives:∫ ∞
0

dx

∫ ∞
0

dy I
(0)
1 (x, y) = 0.0289829 . (2.27)

The second integral diverges, but can be evaluated analytically for arbitrary µ as:∫ ∞
0

dx

∫ ∞
0

dy I
(µ)
2 (x, y) = − 1

32µ2 + 16µ
∼ − 1

16µ
+

1

8
+O (µ) . (2.28)

The final result for the anomalous dimension can thus be given numerically as:

γ = 0.0156017 × S g2. (2.29)

2.1.2 ∆ = 3/2 in AdS3

Another simple case that we can study in detail is that of the coupling (2.16) with ∆ = 3/2

in AdS3, for which we have:

γ = −8S g2

π2

∫
R2

νν̄ sinh(πν) sinh(πν̄)

(4ν2 + 1) (4ν̄2 + 1) (cosh(2πν) + cosh(2πν̄))︸ ︷︷ ︸
I(µ=0)(ν,ν̄)/4

. (2.30)

16This generalises the approach suggested by Camporesi and Higuchi [87].
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Like in the previous example, also in this case using a ζ-function regulator we can split

the above integral into a convergent piece which we can directly evaluate at µ = 0 and

a divergent piece which we can analytically continue. Considering the same change of

variables x = ν + ν̄ and y = ν − ν̄, we have:

F2pt bubble (ν, ν̄) → I(µ)(x, y) = I
(µ)
1 (x, y) + I

(µ)
2 (x, y) , (2.31)

with

I
(0)
1 (x,y) =

y2sech(πx)

4(y2 +1)2 +
x2sech(πy)

4(x2 +1)2 −
(eπy−eπx)

(
eπ(y+x)−1

)
(y−x)(y+x)

2(e2πy+1)(e2πx+1)((y−x)2 +1)((y+x)2 +1)
,

(2.32)

I
(µ)
2 =

1

4

(
x2sech(πy)

(
x2 +1

)−2(µ+1)−y2sech(πx)
(
y2 +1

)−2(µ+1)
)
. (2.33)

The first integral can be evaluated numerically and gives:∫ ∞
0

dx

∫ ∞
0

dy I
(0)
1 (x, y) = 0.0278017 , (2.34)

while the second can be evaluated explicitly as∫ ∞
0

dx

∫ ∞
0

dy I
(µ)
2 (x, y) = −

√
π Γ
(
2µ+ 1

2

)
16Γ(2µ+ 2)

∼ − π

16
+O (µ) . (2.35)

The final numerical result for the anomalous dimension is:

γ = −0.13662 × S g2. (2.36)

2.2 Summing over residues

In this section we explain in detail the application of the standard analytic approach to

Mellin Barnes integrals (as prescribed e.g. in [88]) to evaluate the bubble spectral integrals

of the type (2.15).17 This entails summing over residues. Setting for definiteness the

dimension of the external legs to be equal ∆1 = ∆2 = ∆ (for ∆1 6= ∆2 the result is

vanishing) and re-labelling the dimension of the internal leg as ∆ → ∆1 and ∆̄→ ∆2, we

want to evaluate the following spectral integral:

γ=−gḡ S
Γ
(
∆− d

2

)
64π

d+8
2 Γ

(
d
2

)
Γ(d−∆)

1

Γ(∆)Γ
(
−d

2 +∆+1
) ∫ ∞
−∞

dνdν̄F2pt bubble (ν, ν̄) , (2.37a)

F2pt bubble (ν, ν̄) =
νν̄ sinh(πν)sinh(πν̄)[

(d2−∆2)2 + ν̄2
][

(d2−∆1)2 +ν2
] (2.37b)

×Γ

(
d−∆− i(ν− ν̄)

2

)
Γ

(
d−∆+ i(ν+ ν̄)

2

)
Γ

(
∆− i(ν− ν̄)

2

)
Γ

(
∆+ i(ν+ ν̄)

2

)
×Γ

(
d−∆+ i(ν− ν̄)

2

)
Γ

(
d−∆− i(ν+ ν̄)

2

)
Γ

(
∆+ i(ν− ν̄)

2

)
Γ

(
∆− i(ν+ ν̄)

2

)
.

17We thank Lorenzo Di Pietro for discussions which motivated us to give details on this approach.
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As before, it is convenient to change variables as

ν =
x+ y

2
, ν̄ =

x− y
2

. (2.38)

In this way all Γ-functions arguments in the second and third lines of (2.37b) disentangle

and the only place where x and y talk to each other is through the spectral functions of

the propagators in the first line, which simplifies the extraction of residues. To wit,

γ = −gḡS
π−

d
2
−4Γ

(
∆− d

2

)
64Γ

(
d
2

)
Γ(∆)Γ(d−∆)Γ

(
−d

2 + ∆ + 1
) (2.39)

×
∫ ∞
−∞

dx dy
(x− y)(x+ y)(cosh(πx)− cosh(πy))

[(d− 2∆1)2 + (x+ y)2] [(d− 2∆2)2 + (x− y)2]

× Γ

(
∆− ix

2

)
Γ

(
ix+ ∆

2

)
Γ

(
∆− iy

2

)
Γ

(
iy + ∆

2

)
× Γ

(
d− ix−∆

2

)
Γ

(
d+ ix−∆

2

)
Γ

(
d− iy −∆

2

)
Γ

(
d+ iy −∆

2

)
.

It should be understood that the integration contours encircle all poles from a given Γ-

function while separating the poles of pairs of Γ-functions whose arguments are of the type

A − ix and A + ix. In the following we shall assume that the parameters ∆ and ∆i are

tuned so that the two series of poles from each such pair of Γ-functions are divided by the

integration contour x ∈ R.18 The result for more general configurations of ∆ and ∆i can

then be obtained by analytic continuation of the latter result. Studying the poles of the

above integrand in the variable x, for those which sit below the integration contour we

have (for n ≥ 0, ∆i >
d
2 and ∆ > d

2):

A1 : x = i(−d+ ∆− 2n), (2.40a)

A2 : x = i(−∆− 2n), (2.40b)

B : x = −y − i(2∆1 − d), (2.40c)

C : x = y − i(2∆2 − d), (2.40d)

whose residues are straightforward to compute in the usual way. This reduces the double-

integral in (2.39) to a single integral in y, which can be evaluated using standard methods

or again by extracting the y residues.

It is convenient to focus on dimensions in which UV divergences do not arise. Since the

result does not depend on any regularisation, this also allows for straightforward comparison

with other approaches. An example is given by AdS3, which in our conventions corresponds

to d = 2. We focus on this case in the following.

18Otherwise the contour of integration must be deformed in order to respect the separation of poles

among different Γ-functions (this is standard with Mellin integrals of the type (1.7), see e.g. [88]). This

corresponds to an analytic continuation of the result obtained when no pole crosses the real axis.
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Defining δi = ∆i − d
2 > 0, in this case the spectral integral simplifies to

F(x,y) =
(x−y)(x+y)(cosh(πx)−cosh(πy))(

4δ2
1 +(x−y)2

)(
4δ2

2 +(x+y)2
) (2.41)

×Γ

(
−2ix−2δ+2

4

)
Γ

(
2ix−2δ+2

4

)
Γ

(
−2ix+2δ+2

4

)
Γ

(
2ix+2δ+2

4

)
×Γ

(
−2iy−2δ+2

4

)
Γ

(
2iy−2δ+2

4

)
Γ

(
−2iy+2δ+2

4

)
Γ

(
2iy+2δ+2

4

)
.

The residues of the poles (2.40) in x in this case read:

A1 :
(−δ+2n− iy+1)(−δ+2n+ iy+1)

8π2δ2(−δ−2δ1 +2n− iy+1)(−δ+2δ1 +2n− iy+1)(−δ−2δ2 +2n+ iy+1)(−δ+2δ2 +2n+ iy+1)
,

(2.42a)

A2 : − (δ+2n− iy+1)(δ+2n+ iy+1)

8π2δ2(δ−2δ1 +2n− iy+1)(δ+2δ1 +2n− iy+1)(δ−2δ2 +2n+ iy+1)(δ+2δ2 +2n+ iy+1)
,

(2.42b)

B : − Γ(δ)sin(πδ1)(y− iδ1)sinh(π(y− iδ1))

64π4Γ(1−δ)Γ(δ+1)2(−iδ1− iδ2 +y)(−iδ1 + iδ2 +y)
(2.42c)

×Γ

(
−2iy−2δ+2

4

)
Γ

(
2iy−2δ+2

4

)
Γ

(
−iy+δ+1

2

)
Γ

(
iy+δ+1

2

)
×Γ

(
−iy−δ−2δ1 +1

2

)
Γ

(
−iy+δ−2δ1 +1

2

)
Γ

(
iy+2δ1−δ+1

2

)
Γ

(
iy+δ+2δ1 +1

2

)
,

C : − Γ(δ)sin(πδ2)(y+ iδ2)sinh(π(y+ iδ2))

64π4Γ(1−δ)Γ(δ+1)2(−iδ1 + iδ2 +y)(iδ1 + iδ2 +y)
(2.42d)

×Γ

(
−2iy−2δ+2

4

)
Γ

(
2iy−2δ+2

4

)
Γ

(
−iy+δ+1

2

)
Γ

(
iy+δ+1

2

)
×Γ

(
iy−δ−2δ2 +1

2

)
Γ

(
iy+δ−2δ2 +1

2

)
Γ

(
−iy+2δ2−δ+1

2

)
Γ

(
−iy+δ+2δ2 +1

2

)
.

Taking the residue of the poles in y for each of the above following the same prescription for

separating the poles of each Γ-functions, we arrive to the following result for the anomalous

dimension (2.37) as an infinite sum:

γ=−gḡS
∞∑
n=0

{
1

16πδ2

[
δ−δ1 +2n+1

(δ−δ1 +2n+1)2−δ2
2

− −δ+δ1 +2n+1

(−δ+δ1 +2n+1)2−δ2
2

(2.43)

+
δ+δ1 +2n+1

(δ+δ1 +2n+1)2−δ2
2

+
δ+δ1−2n−1

(δ+δ1−2n−1)2−δ2
2

]
+

(2n+1)(δ1 +δ2)

2πδ(δ−δ1−δ2 +2n+1)(−δ+δ1 +δ2 +2n+1)(δ+δ1 +δ2−2n−1)(δ+δ1 +δ2 +2n+1)

}

− gḡS

64δ2
sin(πδ)sin(πδ1)sin(πδ2)csc

(
−δ+δ1 +δ2 +1

2
π

)
sec

(
δ+δ1−δ2

2
π

)
×sec

(
δ−δ1 +δ2

2
π

)
sec

(
δ+δ1 +δ2

2
π

)
.

The above sums can be performed with Mathematica and give the following remarkably
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simple result:

γ = −gḡ S
8δ2

[
sin(πδ)

cos(πδ) + cos(π(δ1 + δ2))
(2.44)

+
1

2π

(
ψ(0)

(
1− δ − δ1 − δ2

2

)
+ ψ(0)

(
1 + δ + δ1 + δ2

2

)
− ψ(0)

(
1 + δ − δ1 − δ2

2

)
− ψ(0)

(
1− δ + δ1 + δ2

2

))]
,

in terms of the polygamma function. After replacing δ = ∆− d
2 , we then get19

γ = − gḡ S

8(∆− 1)2

[
sin(π∆)

cos(π∆)− cos(π(∆1 + ∆2))
(2.45)

+
1

2π

(
H∆+∆1+∆2−4

2

+H 2−∆−∆1−∆2
2

−H∆−∆1−∆2
2

−H−∆+∆1+∆2−2
2

)]
,

which we also rewrote in terms of Harmonic numbers. In particular, for ∆1 = ∆2 = ∆ =

3/2 we obtain:

γ = −gḡ S
(
−1

2
+

2

π

)
∼ − 0.13662 × gḡ S , (2.46)

in perfect agreement with the numerical evaluation of the integral considered in sec-

tion 2.1.2. We have checked many other (also complex) values and they precisely agree

with the numerical evaluation. Note that for ∆ > 2 one has to carefully take into account

the poles that cross the real axis and that would not be included when performing the

naive numerical integral just along the real axis. When such crossing of poles happens, the

contour needs to be deformed to ensure that the analytic continuation is done properly. In

this respect, it is also interesting to note that the above explicit result is not singular for

integer values of ∆ > 2 for which the pre-factor 1
Γ(d−∆) would naively give zero. In this

case the integral over the real line does indeed give a vanishing answer, however the correct

analytic continuation must take into account also those poles which crossed the real line.

Therefore the even d result is simply given by a finite number of residues which crossed the

real line in both directions for a given value of ∆. We have explicitly checked that indeed

defining the integral as an analytic continuation from the region where the poles are below

the real line we recover the result (2.45).

2.3 2pt tadpole

We now move onto two-point tadpole diagrams g illustrated in figure 3. We begin in

section 2.3.1 with diagrams where the quartic coupling V(4) is a non-derivative quartic

interaction. In section 2.3.3 we generalise the latter for V(4) involving any number of

derivatives.

19This formula agrees with the result independently obtained in the forthcoming [89], which instead

employs a Hamiltonian approach for scalar fields in AdS. We thank D. Carmi, L. Di Pietro and S. Komatsu

for providing examples of their independent result for a few specific values of ∆1 = ∆2 = ∆.
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Figure 3. Scalar two-point one-loop tadpole diagram generated by the quartic interaction V(4).

2.3.1 φ4 tadpole

Consider the loop amplitude generated by the quartic coupling20

V(4) = gφ1φ2φ
2, (2.48)

given by

M1-loop tad. (P1, P2) = − g
∫

AdS
dX K∆1,0 (X,P1)G∆̄,0 (X,X)K∆2,0 (X,P2) . (2.49)

In this case the spectral representation (2.4) of the bulk-to-bulk propagator allows to

express the diagram (2.49) in terms of a tree-level three-point amplitude with a single the

external leg integrated over the boundary, as illustrated in figure 1b: in particular, for the

bulk-to-bulk propagator at coincident bulk points we have

G∆,0 (X;X) =

∫ ∞
−∞

ν2dν

π
[
ν2 +

(
∆̄− d

2

)2] ∫
∂AdS

dP K d
2

+iν,0 (X;P )K d
2
−iν,0 (X;P ) (2.50)

=
Γ
(
d
2 +1

)
2π

d
2

+1Γ(d)

∫ ∞
−∞

dν[
ν2 +

(
∆̄− d

2

)2] Γ
(
d
2 + iν

)
Γ
(
d
2− iν

)
Γ(iν)Γ(−iν)

∫
∂AdS

dP Kd,0 (X;P ) ,

where the gamma function factor in the ν integrand comes from the normalisation of the

bulk-to-boundary propagators on the first line. For the tadpole diagram, upon interchang-

ing AdS and boundary integration, this yields:

M1-loop tad. (P1, P2) = − g
Γ
(
d
2 + 1

)
2π

d
2

+1Γ (d)

∫ ∞
−∞

dν[
ν2 +

(
∆̄− d

2

)2] Γ
(
d
2 + iν

)
Γ
(
d
2 − iν

)
Γ (iν) Γ (−iν)

(2.51)

×
∫
∂AdS

dPM3pt tree
∆1,∆2,d

(P1, P2, P ) ,

20In the following discussion we do not display explicitly the standard symmetry factors associated to the

diagram gwhich depend on how many indistinguishable legs are present in a given coupling. We recall that

in the case of g
4!
φ4 coupling all result obtained in this section should be multiplied by the symmetry factor

S = 1
2
. In the case of O(N) model on AdS space with coupling 1

4
(φaφa)2 the corresponding multiplying

factor is instead:

S = g (N + 2) . (2.47)
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in terms of the three-point amplitude (2.8) with an external leg integrated over the bound-

ary. Inserting the explicit expression result for the amplitude M3pt tree
∆1,∆2,d

, one obtains

M1-loop tad. (P1, P2) = − g
Γ
(
d
2 + 1

)
2π

d
2

+1Γ (d)
B (∆1,∆2, d; 0)

∫ ∞
−∞

dν F1-loop tad. (ν)

× P−
1
2

(∆1+∆2−d)

12

∫
∂AdS

dP

(−2P1 · P )
1
2

(d+∆1−∆2) (−2P2 · P )
1
2

(d+∆2−∆1)︸ ︷︷ ︸
=I1-loop

2pt (y1,y2) (1.5)

, (2.52)

in terms of the two-point conformal integral (1.3b) whose divergences regulated in dimen-

sional regularisation generates the log contribution. The spectral function is given by:

F1-loop tad. (ν) =
1[

ν2 +
(
∆̄− d

2

)2] Γ
(
d
2 + iν

)
Γ
(
d
2 − iν

)
Γ (iν) Γ (−iν)

. (2.53)

Combining the above with the dimensionally regularised form of the boundary integral (1.5)

and keeping track of the normalisation of 2-pt functions, we obtain the following spectral

representation for the anomalous dimension:

γ = g δ∆1,∆2

π
d
2
−1 dΓ

(
∆1 + 1− d

2

)
Γ(d)Γ(∆1)

B (∆1,∆2, d; 0)

∫ ∞
−∞

dν F1-loop tad. (ν) . (2.54)

In the following we explain how to evaluate the spectral integral in (2.54). In even

dimensions d we have

F1-loop tad. (ν) =
1[

ν2 +
(
∆̄− d

2

)2]
d−2

2∏
j=0

(
ν2 + j2

)
, (2.55)

while in odd d

F1-loop tad. (ν) =
ν tanhπν[

ν2 +
(
∆̄− d

2

)2]
d−2

2∏
j= 1

2

(
ν2 + j2

)
. (2.56)

Let us note that, as expected, the above gives the same spectral integral as the ζ-function

ξ(∆,0)(1). This can be made manifest performing first the integration over the boundary

than the integral over AdS (see appendix B). Commuting the AdS integral with bound-

ary and spectral integrals, however, makes manifest the analogy with momentum space

Feynman rules where the integral over space time is commuted with the momentum space

integrals and performed once and for all. Divergences are then encoded into momen-

tum space integrals. This remarkable analogy become more apparent considering that

the analogue of flat space harmonic function can be defined in terms of plane waves as

Ων(x) = ν
∫
ddk eik·xδ(k2 − ν2). We thus see that the split representation provides a close

analogue to momentum space for AdS Feynman diagrams.
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Tadpole in even dimensions. The UV divergence in (2.55) can be taken care of by

introducing a regulator µ:

ζφ
4

∆ (µ) =

∫ ∞
−∞

dν[
ν2 + (∆− p)2

]µ+1

d−2
2∏
j=0

(
ν2 + j2

)
. (2.57)

Evaluating the above for µ complex and ∆ > d
2 , one then obtains

ζφ
4

∆ (µ→ 0) = (−1)d/2 π2 Γ (∆)

Γ (∆− d+ 1)
. (2.58)

Combining the above ζ-function with the formula for anomalous dimensions, we arrive

to the following expression for the anomalous dimension in even dimensions:

γ = g
(−1)d/2+1

2d+2π
d−1

2

Γ(∆)

(∆− d
2)Γ

(
1+d

2

)
Γ(∆− d+ 1)

. (2.59)

It is interesting to consider the case of a conformally coupled scalar field for which (assuming

∆ > d
2) ∆ = d+1

2 :

γconf. = g(−1)d/2+1 π
1−d

2

2d+1Γ
(

3−d
2

) . (2.60)

This is non vanishing in any even dimension d. Note that this effect is, however, an IR effect

which does not enter in the flat space result where the first non-trivial contribution arises

at 2 loops for massless scalar. The counterpart in AdS of the absence of UV divergences

in flat space is the absence of single poles in the ζ-function regulator µ.

Tadpole in odd dimensions. The ζ-function tadpole computation is a bit more involved

in odd CFT dimension d, in particular since the integrand does not reduce to a rational

function. The result can still be given implicitly upon splitting the hyperbolic tangent

in the spectral function (2.56) for the anomalous dimension (2.56) into a piece which is

formally divergent and should be regularised, and a convergent piece:

γ = γreg. + γfin. , (2.61)

with

γreg. = − g 2−dπ−
d
2
− 1

2

(d− 2∆)Γ
(
d+1

2

) ∫ ∞
0

dν
ν p(d)(ν2)[(

∆− d
2

)2
+ ν2

]1+µ , (2.62a)

γfin. = g
2−d+1π−

d
2
− 1

2

(d− 2∆)Γ
(
d+1

2

) ∫ ∞
0

dν
ν p(d)(ν2)

(1 + e2πν)
[(

∆− d
2

)2
+ ν2

] , (2.62b)

where the polynomial p(d)(ν2) is given by the product:

p(d)(ν2) =

d−3
2∏
i=0

[(
i+

1

2

)2

+ ν2

]
=

d−3
2∑

n=0

λ(d)
n ν2n . (2.63)
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The integral giving γreg. can thus be performed using the standard identity:

∫ ∞
0

dν
ν2n+1[(

∆− d
2

)2
+ ν2

]1+µ =

(
∆− d

2

)2(n−µ) Γ(n+ 1)Γ(µ− n)

2Γ(µ+ 1)
(2.64)

∼
(−1)n

(
∆− d

2

)2n
2

[
1

µ
+Hn − 2 log

(
∆− d

2

)]
,

in terms of the harmonic numbers Hn. This yields:

γreg. = − g 2−dπ−
d
2
− 1

2

(d− 2∆)Γ
(
d+1

2

) d−3
2∑

n=0

λ(d)
n

(−1)n
(
∆− d

2

)2n
2

[
Hn − 2 log

(
∆− d

2

)]
. (2.65)

To tackle the integral (2.62b) for the finite part γfin., we rewrite part of the integrand as

p(d)(ν2)(
∆− d

2

)2
+ ν2

=
Γ(∆)

Γ(−d+ ∆ + 1)

1(
∆− d

2

)2
+ ν2

+ p̃(d)(ν2)

≡ Γ(∆)

Γ(∆− d+ 1)

1(
∆− d

2

)2
+ ν2

+

d−3
2∑

n=0

λ̄(d)
n ν2n , (2.66)

where the final equality defines the coefficients λ̄
(d)
k . One can then evaluate the ν integrals

analytically using the following identities valid for ∆ > d
2 :

∫ ∞
0

dν
ν

(1 + e2πν)
[(

∆− d
2

)2
+ ν2

] =
1

2

(
ψ

(
∆− d

2
+

1

2

)
− log

(
∆− d

2

))
, (2.67a)

∫ ∞
0

dν
νn

(1 + e2πν)
=
(
1− 2−n

)
(2π)−n−1ζ(n+ 1)Γ(n+ 1) , (2.67b)

where ψ(z) is the digamma function and ζ(z) is the ζ-function. Combining all the above

ingredients we arrive to the following expression for the finite part of the anomalous di-

mension, valid in any odd CFT dimension d:

γfin = g
2−d+1π−

d
2
− 1

2

(d− 2∆)Γ
(
d+1

2

) [1

2

Γ(∆)

Γ(∆− d+ 1)

(
ψ

(
∆− d

2
+

1

2

)
− log

(
∆− d

2

))

+

d−3
2∑

n=0

λ̄(d)
n

(
1− 2−2n−1

) ∣∣B2(n+1)

∣∣
4(n+ 1)

 . (2.68)

– 21 –



J
H
E
P
0
6
(
2
0
1
8
)
0
3
0

Below we give some more explicit examples of γfin in dimensions d = 1, 3, 5, 7, 9:

γ(1) =−g 1

2π

log
(
∆− 1

2

)
2∆−1

, (2.69a)

γ(3) =−g 3(∆−3)∆+7

48π2(2∆−3)
+g

6(∆−2)(∆−1)ψ(∆−1)

48π2(2∆−3)
, (2.69b)

γ(5) = +g
5(∆−5)∆(9(∆−5)∆+98)+1298

3840π3(2∆−5)
−g (∆−4)(∆−3)(∆−2)(∆−1)ψ(∆−2)

64π3(2∆−5)
, (2.69c)

γ(7) =−g 21(∆−7)∆(5(∆−7)∆(11(∆−7)∆+326)+15638)+1010368

967680π4(2∆−7)

+g
(∆−6)(∆−5)(∆−4)(∆−3)(∆−2)(∆−1)ψ(∆−3)

768π4(2∆−7)
, (2.69d)

γ(9) =−g (∆−8)(∆−7)(∆−6)(∆−5)(∆−4)(∆−3)(∆−2)(∆−1)ψ(∆−4)

12288π5(2∆−9)
(2.69e)

+ g
(∆−9)∆(21(∆−9)∆(5(∆−9)∆(25(∆−9)∆+1564)+178516)+36755072)+129256824

30965760π5(2∆−9)
,

with similar results in higher dimensions. For the case of the conformally coupled scalar

(∆ = d+1
2 ) the above gives:

γ(1) = g
log(2)

2π
, γ(3) = − g 1

48π2
, γ(5) = − g 11

1920π3
, (2.70)

γ(7) = − g 359

120960π4
, γ(9) = − g 8777

3870720π5
. (2.71)

It is also interesting to notice that in the conformally coupled case the 1
µ pole in the ζ-

function regulator is cancelled, in agreement with the expected absence of UV divergences

in the flat space result. In general, in odd dimensions the regulator pole is proportional to:

∼ 1

µ

d−2∏
i=0

(∆− 1− i) , (2.72)

and vanishes for integer conformal dimensions ∆ < d. Still, there is a IR contribution to

the anomalous dimension.

2.3.2 Wilson-Fisher fixed point in AdS4

A possible application of the results obtained in this section is to consider the Wilson-

Fisher fixed point [90, 91] for the O(N) model in hyperbolic space with N real conformally

coupled scalar fields:

S =

∫
dd+1x

√
−g
(

1

2
(∂φa)2 +

Md

2
(φa)2 +

g

4
(φaφa)2

)
, (2.73)

and conformal mass:

Md =
Λ

4
(d+ 1)(d− 1) . (2.74)

In this case the one loop β-function in d = 4−ε dimensions obtained from standard epsilon

expansion reads:

β =
N + 8

8π2
g2 − ε g , (2.75)
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Figure 4. One-loop tadpole diagramM1-loop tad
1234 generated by the quartic vertex (2.78). The point

split fields φ1 and φ4 are external, while φ2 and φ3 propagate in the loop. The other diagrams (2.80)
permute the positions of the point-split fields φi.

and the fixed point sits at

g? =
8π2

N + 8
ε . (2.76)

One can then plug the above value of the fixed point coupling into the anomalous dimension

for the conformally coupled scalar on hyperbolic space obtaining the following prediction

(with ζ-function regularisation) for the anomalous dimension of the dual operator of di-

mension ∆ = 5−ε
2 :21

γ = − ε

6(N + 8)
. (2.77)

It is natural to interpret this result as the anomalous dimension of an operator in a “defect

CFT” on the boundary of AdS4.

2.3.3 General 2pt tadpole with derivatives

Here we generalise the results in section 2.3.1 to tadpole diagrams for an arbitrary quar-

tic scalar self-interaction dressed with derivatives. Using the ambient space framework

(section 1.2), a complete basis for the latter is given by

V(4)
k,m (X) =

g

(k +m)!

[
φ (X) (∂U · ∂X)k φ (X)

]
× (∂U · ∂X)m φ (X) (U · ∂X)k+m φ (X) , k ≥ 2m ≥ 0. (2.78)

In this case there are four distinct contributing diagrams. To label the possibilities,

we employ the point-splitting notation:

V(4)
k,m (X) =

g

(k+m)!

[
φ1 (X)(∂U ·∂X)kφ2 (X)

]
(∂U ·∂X)mφ3 (X)(U ·∂X)k+mφ4 (X)

∣∣∣
φi=φ

,

(2.79)

and denote the contributing diagrams by:

M1-loop tad
1234 , M1-loop tad

1342 , M1-loop tad
3142 , M1-loop tad

4132 . (2.80)

The subscript labels the positions of the scalar fields in the point-split vertex (2.79), and

is illustrated in figure 4.

21If we use g
4!
φ4 the result below should be redefined with N = 1 and ε→ 6ε.
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In this more general case, the scalar propagators are acted on by ambient partial

derivatives — which are straightforward to manage. For bulk-to-boundary propagators for

instance, we have

(U · ∂X)nK∆,0 (X;P ) = 2n
(

∆ + 1− d

2

)
n

(U · P )nK∆+n,0 (X;P ) . (2.81)

This in particular leads to a shift in the argument of the gamma functions in the spectral

function compared to the φ4 case (2.53), and can be seen simply from:

(U1 ·∂X1)p (U2 ·∂X2)qG∆,0 (X1,X2)
∣∣∣
Xi=X

=

∫ ∞
−∞

ν2dν

π
[
ν2 +

(
∆− d

2

)2]∫
∂AdS

dP (U1 ·∂X1)pK d
2

+iν,0 (X1;P )(U2 ·∂X2)qK d
2
−iν,0 (X2;P )

∣∣∣
Xi=X

=
2p+qΓ

(
d
2 +1+p+q

)
2π

d
2

+1Γ(d)

∫ ∞
−∞

dν[
ν2 +

(
∆− d

2

)2] Γ
(
d
2 + iν+p

)
Γ
(
d
2− iν+q

)
Γ(iν)Γ(−iν)

×
∫
∂AdS

dP (P ·U1)p (P ·U2)qKd+p+q,0 (X;P ) , (2.82)

where we used point splitting to restrict the action of each derivative to only one of either

of the two ends of the propagator and the identity (2.81). Generalising (2.53), the spectral

function in the case of derivative interactions (2.78) is thus of the form:

F1-loop tad.
p,q (ν) =

1[
ν2 +

(
∆− d

2

)2] Γ
(
d
2 + iν + p

)
Γ
(
d
2 − iν + q

)
Γ (iν) Γ (−iν)

. (2.83)

We discuss the evaluation of the corresponding spectral integral at the end of this section.

The expression (2.82) allows one to immediately conclude that the diagramM1-loop tad
1342

is vanishing for m > 0: in this case we have U1 = ∂U and U1 = ∂U , and (2.82) vanishes

since P is a null vector: P 2 = 0. For m = 0, M1-loop tad
1342 is the same as M1-loop tad

3142 . We

give the remaining diagrams below.

Using (2.82) and together with the identity (2.81) for ambient derivatives of bulk-to-

boundary propagators, we have

M1-loop tad
1234 (P1,P2) (2.84)

=− g

(k+m)!

∫
AdS

dXK∆,0 (X,P1)(∂U ·∂X1)k (∂U ·∂X2)mG∆,0 (X1,X2)
∣∣∣
Xi=X

(U ·∂X)k+mK∆,0 (X,P2) ,

=− g(−2)k+m

(k+m)!

Γ
(
d
2

+1+k+m
)

2π
d
2

+1Γ(d)

(
∆+1− d

2

)
k+m

∫ ∞
−∞

dνF1-loop tad.
k,m (ν)

×
∫
∂AdS

dP (−2P ·P2)k+mM3pt tree
∆,∆+k+m,d+k+m (P1,P2,P ) .

Inserting the expression (2.8) for the three-point amplitude yields:

M1-loop tad
1234 (P1,P2) =− g(−2)k+m

(k+m)!

Γ
(
d
2 +1+k+m

)
2π

d
2 +1Γ(d)

(
∆+1− d

2

)
k+m

B(∆,∆+k+m,d+k+m;0)

×M1-loop (P1,P2)

∫ ∞
−∞

dνF1-loop tad.
k,m (ν) , (2.85)
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with spectral representation for the anomalous dimension:

γ1234 = − g(−2)k+m+1π
d
2
−1

(k +m)!

Γ
(
d
2 + 1 + k +m

)
Γ (d) Γ

(
d
2

)
Γ (∆)

Γ

(
∆ + 1− d

2
+ k +m

)
× B (∆,∆ + k +m, d+ k +m; 0)

∫ ∞
−∞

dνF1-loop tad.
k,m (ν) . (2.86)

Similarly, for the other diagrams we have

M1-loop tad
3142 (P1,P2) (2.87)

=− g

(k+m)!

∫
AdS

dX (∂U ·∂X)
m
K∆,0 (X,P1)(∂U ·∂X)

k
K∆,0 (X,P2)(U ·∂X2

)
k+m

G∆,0 (X,X2)

=− g(−2)k+m

(k+m)!

Γ
(
d
2 +1+k+m

)
2π

d
2 +1Γ(d)

(
∆+1− d

2

)
k

(
∆+1− d

2

)
m

B(∆+m,∆+k,d+m+k;0)

×M1-loop (P1,P2)

∫ ∞
−∞

dνF1-loop tad.
0,k+m (ν) ,

with anomalous dimension:

γ3142 = − g(−2)k+m+1π
d
2
−1

(k +m)!

Γ
(
d
2 + 1 + k +m

)
πΓ
(
d
2

)
Γ (d) Γ (∆)

Γ

(
∆ + 1− d

2
+ k

)(
∆ + 1− d

2

)
m

× B (∆ +m,∆ + k, d+m+ k; 0)

∫ ∞
−∞

dνF1-loop tad.
0,k+m (ν) . (2.88)

And finally

M1-loop tad
4132 (P1,P2) (2.89)

=− g

(k+m)!

∫
AdS

dX (∂U ·∂X)
k
K∆,0 (X,P2)(∂U ·∂X2

)
m
G∆,0 (X;X2)(U ·∂X)

k+m
K∆,0 (X,P1)

=− g(−2)k+m

(k+m)!

Γ
(
d
2 +1+m

)
2π

d
2 +1Γ(d)

(
∆+1− d

2

)
k

(
∆+1− d

2

)
k+m

B(∆+m+k,∆+k,d+m;0)

×M1-loop (P1,P2)

∫ ∞
−∞

dνF1-loop tad.
0,m (ν) ,

with anomalous dimension:

γ4132 = − g(−2)k+m+1π
d
2
−1

(k +m)!

Γ
(
d
2 + 1 +m

)
Γ
(
d
2

)
Γ (d) Γ (∆)

Γ

(
∆ + 1− d

2
+ k

)(
∆ + 1− d

2

)
k+m

× B (∆ +m+ k,∆ + k, d+m; 0)

∫ ∞
−∞

dνF1-loop tad.
0,m (ν) . (2.90)

To conclude this section let us discuss the evaluation of the spectral integrals. The

integrals are of a similar type to those (2.53) arising in φ4 theory, and can be divided into

two parts:∫ ∞
−∞

dνF1-loop tad.
m,n (ν)

=

∫ ∞
0

dν
ν p(ν2) + r(ν2)[(
∆− d

2

)2
+ ν2

]1+µ − 2

∫ ∞
0

dν
ν
[
a+ q(ν2)

[(
∆− d

2

)2
+ ν2

]]
(1 + e2πν)

[(
∆− d

2

)2
+ ν2

] , (2.91)
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Figure 5. Scalar one-point tadpole diagram with off-shell external leg, generated by the cubic

vertex (2.94).

in terms of polynomials p(ν2) ≡
∑

i ξi ν
2i, r(ν2) ≡

∑
i ri ν

2i and q(ν2) ≡
∑

i ζi ν
2i which

are defined by the above equality for integer dimensions. The polynomial r(ν2) appears

in even dimensions, while p(ν2) and q(ν2) are non-vanishing in odd dimensions and satisfy

the relation

p(ν2) = η + q(ν2)

[(
∆− d

2

)2

+ ν2

]
, (2.92)

with η a constant. One can thus in full generality evaluate the corresponding spectral

integrals in ζ-function regularisation using (2.67) and (2.64), obtaining the result as a

linear combination of the constants ξn and ζn:∫ ∞
−∞

dνF1-loop tad.
m,n (ν) (2.93)

=

[∑
i=0

ξi
(−1)i

(
∆− d

2

)2i
2

[
Hi − 2 log

(
∆− d

2

)]]

−

[∑
i

ζi

(
1− 2−2i−1

) ∣∣B2(i+1)

∣∣
2(i+ 1)

]
− η

[
ψ

(
∆− d

2
+

1

2

)
− log

(
∆− d

2

)]

−

[∑
i

π ri

(
−1

4

)i
(d− 2∆)2i−1

]
,

which is expressed in terms of Bernoulli numbers Bi, harmonic numbers Hi and digamma

function ψ(z). Similar results can also be obtained using Mellin-Barnes regularisation.

2.4 One-point bulk tadpole

In this section we consider the one-point tadpole diagram with a single off-shell external

leg in the bulk, generated by the cubic coupling:

V(3) = gφ̄φ2. (2.94)

It is given by the bulk integral:

T1pt tadpole (X1) = − g
∫

AdS
dX G∆̄,0 (X1;X)G∆,0 (X;X) , (2.95)
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Figure 6. The factorisation (2.96) of the tadpole diagram (2.95) into a tadpole connected to the

boundary and a bulk-to-boundary propagator, integrated over their common boundary point.

and depicted in figure 5. In the following we argue that this is vanishing. Using the spectral

representation (2.4) of the scalar bulk-to-bulk propagator, the diagram factorises as:

T1pt tadpole (X1) =− g

4πd+1

∫ ∞
−∞

dν̄[
ν̄2 +

(
∆̄− d

2

)2] Γ
(
d
2 + iν̄

)
Γ
(
d
2 − iν̄

)
Γ(iν̄)Γ(−iν̄)

∫
∂AdS

dP̄
1(

−2X1 · P̄
) d

2 +iν̄

×
∫

AdS

dX
1(

−2X · P̄
) d

2−iν̄
G∆,0 (X;X) , (2.96)

which is shown in figure 6. Concentrating on the tadpole factor on the second line which

is connected to the boundary point P̄ : using the identity (2.50) for the bulk-to-bulk prop-

agator at coincident points, we have

∫
AdS

dX
1(

−2X · P̄
) d

2
−iν̄

G∆,0 (X;X) =
1

4πd+1

∫ ∞
−∞

dν[
ν2 +

(
∆− d

2

)2] Γ
(
d
2 + iν

)
Γ
(
d
2− iν

)
Γ(iν)Γ(−iν)

×
∫
∂AdS

dP

∫
AdS

dX
1

(−2X ·P )d
1(

−2X · P̄
) d

2
−iν̄

. (2.97)

The two-point bulk integrals of the type on the second line are given by:22

∫
AdS

dX
1

(−2X · P1)∆1

1

(−2X · P2)∆2
= 2πd/2+1 Γ(∆1 − d

2)

Γ(∆1)

1

P∆1
12

δ(∆1 −∆2)

+ 2πd+1 Γ(d2 −∆1)Γ(d2 −∆2)

Γ(∆1)Γ(∆2)
δ(d)(P1, P2) δ(∆1 + ∆2 − d) , (2.98)

which implies∫
∂AdS

dP

∫
AdS

dX
1

(−2X · P )d
1(

−2X · P̄
) d

2
−iν̄

= 2π
d
2

+1 Γ
(
d
2

)
Γ (d)

Aδ

(
d

2
+ iν̄

)
+ 2πd+1 Γ

(
−d

2

)
Γ (iν̄)

Γ (d) Γ
(
d
2 − iν̄

)δ(d
2
− iν̄

)
. (2.99)

22This equation is the AdS analogue of the orthogonality relation
∫
ddx eix·(p1−p2) = δ(d)(p1 − p2).
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The constant A is given by the divergent integral

A =

∫
∂AdS

dP
1(

−2P · P̄
)d , (2.100)

which vanishes in dimensional regularisation. Since the integration over the parameter ν̄

in (2.96) is also restricted to real values, the tadpole factor (2.97) connected to the boundary

is zero. It thus appears that, as expected, the tadpole is vanishing when regularising the

bulk IR divergences (which maps to a UV boundary divergence):

T1pt tadpole (X1) ≡ 0. (2.101)

We may thus argue that such diagrams do not contribute to bulk amplitudes.

3 Spinning diagrams

Having illustrated the evaluation of two-point one-loop diagrams for the simplest case of

scalar field theories, we now turn to theories of spinning fields. We mostly focus on two-

point bubble diagrams, but in section 3.4 at the end of this section we also discuss tadpole

diagrams with a single off-shell bulk external leg.

The bulk-to-boundary propagator for a totally symmetric field of spin s and mass

m2R2 = ∆ (∆− d)− s is most simply expressed in the ambient space formalism, where it

is given by [11, 92]:23

K∆,s (X,U ;P,Z) =

(
U · Z − U · PZ ·X

P ·X

)s C∆,s

(−2P ·X)∆
, (3.1)

with normalisation

C∆,s =
(∆ + s− 1) Γ (∆)

2πd/2 (∆− 1) Γ
(
∆ + 1− d

2

) . (3.2)

It is often convenient to express the bulk-to-boundary propagator in the form [14]

K∆,s (X,U ;P,Z) =
1

(∆− 1)s
(DP (Z;U))sK∆,0 (X;P ) , (3.3)

with differential operator

DP (Z;U) = (Z · U)

(
Z · ∂

∂Z
− P · ∂

∂P

)
+ (P · U)

(
Z · ∂

∂P

)
, (3.4)

acting on a scalar bulk-to-boundary propagator (2.2) of the same dimension. This in

particular leads to identities that generalise (2.81):

(Ui · ∂X)nK∆,s (X,U ;P,Z) =
2n
(
∆ + 1− d

2

)
n

(∆− 1)s
(DP (Z;U))s (Ui · P )nK∆+n,0 (X;P ) ,

(3.5)

which are useful to evaluate Witten diagrams with derivative interactions.

23For ease of notation our definition of mass is based on the wave operator (∇µ∇µ +m2)ϕµ(s) = 0 acting

on symmetric traceless and transverse filed where ∇ is the AdS covariant derivative. This definition allows

to simplify various formulas in the radial reduction. Note that this mass is not zero for gauge fields.
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The spectral representation of the bulk-to-bulk propagator takes the form24

G∆,s (x1, x2) =
∑
p

∫ ∞
−∞

dν g(s)
p1,p2,p3

(ν)
(
u2

1

)p1
(
u2

2

)p2

× (u1 · ∇1)p3 (u2 · ∇2)p3+2(p1−p2) Ων,s−2p2−p3 (x1, x2) , (3.7)

for some functions g(s)
p1,p2,p3 (ν) whose properties we discuss later on. Symmetry in (x1, u1)↔

(x2, u2) imposes: g
(s)
p2,p1,p3+2(p1−p2) (ν) = g

(s)
p1,p2,p3 (ν). This way of representing bulk-to-bulk

propagators has so far been applied in the literature for totally symmetric massive spin-s

fields [11] and spin-s gauge fields [12].25 The totally symmetric spin-J harmonic function

Ων,J is traceless and divergenceless regular bi-tensor, with equation of motion(
�1 +

(
d

2

)2

+ ν2 + J

)
Ων,J (x1;x2) = 0. (3.8)

Like for the scalar harmonic functions (2.6), they factorise into a product of bulk-to-

boundary propagators:

Ων,J (x1;x2) =
ν2

π

∫
∂AdS

dPK d
2

+iν,J (X1;P ) ·K d
2
−iν,J (X2;P ) . (3.9)

Combining (3.9) with the representation (3.7) of the bulk-to-bulk propagators, a one-loop

bubble diagram M2pt bubble
s;s1,s2 with spin-s external fields of mass m2R2 = ∆ (∆− d) − s and

fields of spins s1 and s2 propagating in the loop has a decomposition of the form

M2pt bubble
s;s1,s2 (y1, y2) =

∑
p,q

1

π2

∫ ∞
−∞

ν2dνν̄2dν̄ g(s1)
p1,p2,p3

(ν) g(s2)
q1,q2,q3 (ν̄)

×
∫
ddyddȳM3pt tree-level

s,s′1,s
′
2;∆, d

2
+iν, d

2
+iν̄

(y1, y, ȳ) · M3pt tree-level

s,s′1,s
′
2;∆, d

2
−iν, d

2
−iν̄ (y2, y, ȳ) , (3.10)

in terms tree-level spinning three-point amplitudes M3pt tree-level

s,s′1,s
′
2;∆, d2±iν,

d
2±iν̄

, which generalises

the scalar case (2.12) and is illustrated in figure 1a. For concision we introduced: s′i =

si − 2pi+1 − pi−1 where i ∼= i+ 3.

For totally symmetric fields, all tree level three-point amplitudes are known for arbi-

trary cubic coupling constants [14, 15, 59]. The task is then to evaluate the three- and

two-point spinning conformal integrals in each term of the decomposition (3.10). We ex-

plain how to do this in section 3.2. We first review the evaluation of tree-level three-point

Witten diagrams for spinning fields in the following section.

24For concision we define: ∑
p

=

[s/2]∑
p1=0

s−2p1∑
p3=0

[p3/2]+p1∑
p2=0

. (3.6)

25For other works on spinning bulk-to-bulk propagators, see [57, 71, 93, 94].

– 29 –



J
H
E
P
0
6
(
2
0
1
8
)
0
3
0

3.1 Review: cubic couplings and 3pt Witten diagrams

For a generic triplet of spinning fields on AdSd+1, the possible couplings respecting the AdS

isometry are in general not unique. In the ambient space formalism, a basis of on-shell

cubic vertices for totally symmetric fields ϕsi of spins si and mass m2
iR

2 = ∆i (∆i − d)−si,
is given by [15]26

In1,n2,n3
s1,s2,s3 =

∑
mi

Cn1,n2,n3
s1,s2,s3;m1,m2,m3

Ys1−m2−m3
1 Ys2−m3−m1

2 Ys3−m1−m2
3 Hm1

1 H
m2
2 H

m3
3

× ϕs1 (X1, U1)ϕs2 (X2, U2)ϕss (X3, U3)
∣∣∣
Xi=X

, (3.11)

with coefficients

Cn1,n2,n3
s1,s2,s3;m1,m2,m3

=

(
d− 2(s1 + s2 + s3 − 1)− (τ1 + τ2 + τ3)

2

)
m1+m2+m3

×
3∏
i=1

[
2mi

(
ni
mi

)
(ni + δ(i+1)(i−1) − 1)mi

]
, (3.12)

and δ(i−1)(i+1) = 1
2(τi−1 + τi+1 − τi), i ∼= i + 3. This is built from six basic SO (d+ 1, 1)-

covariant contractions (see e.g. [76, 77, 95, 96]):

Y1 = ∂U1 · ∂X2 , Y2 = ∂U2 · ∂X3 , Y3 = ∂U3 · ∂X1 , (3.13a)

H1 = ∂U2 · ∂U3 , H2 = ∂U3 · ∂U1 , H3 = ∂U1 · ∂U2 . (3.13b)

The basis (3.11) is convenient for Witten diagram computations, in particular because

the three-point amplitude generated by each basis element is given by simple three-point

conformal structure on the boundary [15]:

Mn1,n2,n3
s1,s2,s3;τ1,τ2,τ3 (y1, y2, y3) = B(si;ni; τi) [[O∆1,s1(y1)O∆2,s2(y2)O∆3,s3(y3)]](n) , (3.14)

with27

[[O∆1,s1(y1)O∆2,s2(y2)O∆3,s3(y3)]](n)

≡ Hn1
32 Hn2

13 Hn3
21

(y12)δ12(y23)δ23(y31)δ31

[
3∏
i=1

2
δ(i+1)(i−1)

2
+ni−1Γ

(
δ(i+1)(i−1)

2
+ni

)]
(3.16)

×

[
3∏
i=1

q
1−ni

2
−
δ(i+1)(i−1)

4

i,(i−1)(i+1) J(δ(i+1)(i−1)+2ni−2)/2

(√
q(i−1)(i+1)

)]
Ys1−n2−n3

1,32 Ys2−n3−n1
2,13 Ys3−n1−n2

3,21 ,

26For concision we define:
∑
mi

=
min{s1,s2,n3}∑

m3=0

min{s1−n3,s3,n2}∑
m2=0

min{s2−n3,s3−n2,n1}∑
m1=0

.

27Recall the six three-point conformally covariant building blocks are given by (i ∼= i+ 3)

Yi,(i−1)(i+1) =
zi · y(i−1)i

y2
(i−1)i

−
zi · y(i+1)i

y2
(i+1)i

, (3.15a)

H(i−1)(i+1) =
1

y2
(i−1)(i+1)

(
zi−1 · zi+1 +

2zi−1 · y(i−1)(i+1) zi+1 · y(i+1)(i−1)

y2
(i+1)(i−1)

)
. (3.15b)

Note that we adopt a different notation to [15], which can be obtained through the replacements:

Yi,(i−1)(i+1) → Yi, H(i−1)(i+1) → Hi, qi,(i−1)(i+1) → qi.
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and we define

qi,(i−1)(i+1) = 2H(i−1)(i+1) ∂Yi+1,i(i−1)
· ∂Yi−1,(i+1)i

. (3.17)

The coefficients B(si;ni; τi) are given by

B(si;ni;τi) =π−d(−2)(s1+s2+s3)−(n1+n2+n3)−4 Γ

(
τ1 +τ2 +τ3−d+2(s1 +s2 +s3)

2

)

×
3∏
i=1

Γ
(
si−ni+1 +ni−1 + τi+τi+1−τi−1

2

)
Γ
(
si+ni+1−ni−1 + τi+τi−1−τi+1

2

)
Γ
(

2ni+
τi+1+τi−1−τi

2

)
×

3∏
i=1

Γ(si+ni+1 +ni−1 +τi−1)

Γ
(
si+τi− d

2 +1
)

Γ(2si+τi−1)
. (3.18)

The expression (3.14) for the amplitude is to be compared with the comparably more

involved amplitude [59] generated by the canonical basis of cubic couplings given by mono-

mials in Yi,(i−1)(i+1) and H(i−1)(i+1).

Employing the basis (3.11) of cubic couplings and bulk-to-bulk propagators (3.7), the

spectral decomposition of spinning bubble diagrams (3.10) will contain terms of the generic

form ∫ ∞
−∞

dνdν̄ ν2ν̄2g(s1)
p1,p2,p3

(ν) g(s2)
q1,q2,q3 (ν̄)Fn,m

s,s′1,s
′
2;τs

(ν, ν̄; y1, y2) , (3.19)

where,

Fn,m
s,s′1,s

′
2;τs

(ν, ν̄; y1, y2) (3.20)

∝
∫
∂AdS

ddyddȳMn1,n2,n3

s,s1,s2;τs,
d
2

+iν−s1, d2 +iν̄−s2
(y1, y, ȳ) · Mm1,m2,m3

s,s1,s2;τs,
d
2

+iν−s1, d2 +iν̄−s2
(y2, y, ȳ) .

Inserting in (3.20) the explicit expressions (3.14) for the three-point amplitudes, we

see that a key step is then to evaluate conformal integrals of the type:

K(n,m)(ν, ν̄ ; y1, y2) =

∫
ddyddȳ [[O∆,s(y1, z1)O d

2
+iν,s1

(y, ∂̂z)O d
2

+iν̄,s2
(ȳ, ∂̂z̄)]]

(n)

× [[O d
2
−iν̄,s2(ȳ, z̄)O d

2
−iν,s1(y, z)O∆,s(y2, z2)]](m) , (3.21)

which we discuss in the following.

3.2 Conformal integrals

As explained in the previous section, by employing the basis (3.11) of on-shell cubic ver-

tices, the task of computing one-loop bubble diagrams is reduced to evaluating conformal

integrals of the form

K(n,m)
s;s1,s2(ν, ν̄ ; y1, y2) =

∫
ddyddȳ [[O∆,s(y1, z1)O d

2
+iν,s1

(y, ∂̂z)O d
2

+iν̄,s2
(ȳ, ∂̂z̄)]]

(n)

× [[O d
2
−iν̄,s2(ȳ, z̄)O d

2
−iν,s1(y, z)O∆,s(y2, z2)]](m) , (3.22)

for external fields of spin s and mass m2R2 = ∆ (∆− d)− s, and internal spins s1 and s2.

– 31 –



J
H
E
P
0
6
(
2
0
1
8
)
0
3
0

The integral (3.22) can be expanded in terms of the basic conformal integrals:

Ia1,a2,b1,b2
α1,α2,γ,β1,β2

≡
∫
ddyddȳ

(z1 ·(y1−y))a1(z2 ·(y2−y))a2(z1 ·(y1− ȳ))b1(z2 ·(y2− ȳ))b2[
(y1−y)2

]α1
[
(y2−y)2

]α2
[
(y− ȳ)2

]γ [
(y1− ȳ)2

]β1
[
(y2− ȳ)2

]β2
,

(3.23)

where conformal invariance requires:

α1 − a1 + α2 − a2 + γ = d , β1 − b1 + β2 − b2 + γ = d . (3.24)

This decomposition of (3.22) is shown in section A.6. Direct evaluation of (3.23) gives:28

Ia1,a2,b1,b2
α1,α2,γ,β1,β2

=
πd/2

(y2
12)d/2−γ

a1∑
n=0

a2∑
m=0

(
a1

n

)(
a2

m

)(
z1 ·y12

y2
12

)a1−n(z2 ·y21

y2
12

)a2−m

×
Γ(α1 +γ−a1 +n− d

2)Γ(α2 +γ−a2 +m− d
2)Γ(d2−γ+a1 +a2−n−m)

Γ(α1)Γ(α2)Γ(γ)

×
Γ(β1 +α1 +γ−a1−b1− d

2)Γ(β2 +α2 +γ−a2−b2− d
2)

Γ(β1 +α1 +γ−a1 +n− d
2)Γ(β2 +α2 +γ−a2 +m− d

2)

×
(
−1

2
z1 ·∂y1

)n+b1(
−1

2
z2 ·∂y2

)m+b2

M1-loop (y1,y2) .

Using conformal symmetry to recover the full CFT structure and evaluating the deriva-

tives in y1 and y2, we arrive to the following expression for the log term:

Ia1,a2,b1,b2
α1,α2,γ,β1,β2

∣∣∣
log

=
2πd

(y12)d−γ

(
z1 · y12

y2
12

)a1+b1 (z2 · y12

y2
12

)a2+b2

log(y2
12)

a1∑
n=0

a2∑
m=0

(
a1

n

)(
a2

m

)

×
Γ
(
−a1 + n+ α1 + γ − d

2

)
Γ
(
−a2 +m+ α2 + γ − d

2

)
Γ(α1)Γ(α2)Γ(γ)Γ

(
b1 + d

2 + n
)

Γ
(
b2 + d

2 +m
)

×
Γ
(
b1 + b2 + d

2 +m+ n
)

Γ
(
a1 + a2 + d

2 −m− n− γ
)

Γ(α1)Γ(α2)Γ(γ)Γ
(
b1 + d

2 + n
)

Γ
(
b2 + d

2 +m
) . (3.25)

One can then combine this result with the expansion of (3.22) in terms of the basic con-

formal integrals (3.23) derived in section A.6 to obtain the log contribution to K
(n,m)
s;s1,s2 .

3.3 s− (s′ 0) − s bubble

Let us now use this approach to extract the log contribution to bubble diagrams with a

spin s′ gauge field and a scalar field propagating internally between two external spin-s

gauge fields, illustrated in figure 7. Owing to the scalar propagating in the loop, in this

case there is no contribution from ghosts. Ghosts will be required only when gauge fields

are propagating in the loop, as we do in section 3.4 where tadpole diagrams with spin-s

gauge fields in the loop are considered.

28Without loss of generality we set z1 · z2 = 0, since terms proportional to z1 · z2 can be recovered by

conformal symmetry.
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Figure 7. One-loop bubble diagram with a gauge spin-s field and a scalar propagating internally

between two external gauge fields of spin s. Throughout we represent gauge fields with wavy lines.

In this subsection, we restrict ourselves to the contributions generated by the traceless

and transverse part of the bulk-to-bulk propagators, which in the spectral representa-

tion (3.7) corresponds to the term with p1 = p2 = p3 = 0. This is the universal part of the

propagator, which encodes the exchanged single-particle state. The spectral representation

of the traceless and transverse part of a spin-s bulk-to-bulk propagator for a field of mass

m2R2 = ∆ (∆− d)− s is given by:

GTT∆,s (x1;x2) =

∫ ∞
−∞

dν g
(s)
0,0,0 (ν) Ων,s (x1;x2) , (3.26a)

g
(s)
0,0,0 (ν) =

1[
ν2 +

(
∆− d

2

)2] . (3.26b)

The notation TT signifies the restriction to the traceless and transverse part. The other

terms in the propagators (i.e. terms in (3.7) with at least one pi > 0) generate purely

contact contributions to Witten diagrams, which in contrast are not universal and are

dependent on the choice of field frame. In particular, contact contributions collapse in the

bubble to g-type tadpole diagrams. This can be understood by noting that these contact

contributions are related to g one-loop diagrams generated by quartic couplings under

field re-definitions. In section 4.1, and also section D, in some examples we shall compute

bubble diagrams using the full bulk-to-bulk propagators which includes such contact terms.

The cubic vertex for spin-s, s′ gauge fields with a scalar is given in de Donder gauge

by (D.4), whose TT part reads:

V(3)
s,s′,0 = gYs1Ys

′
2 ϕs (X1, U1)ϕs′ (X2, U2)φ (X3)

∣∣∣
Xi=X

, (3.27)

for some coupling constant g. Recall that there are no contributions from Ghost vertices

in this case owing to the scalar propagating in the loop. Via the factorisation (3.9), the

bubble diagram generated by (3.27) decomposes as

M2pt bubble (P1, P2) = g2

∫ ∞
−∞

ν2ν̄2dνdν̄

π2[ν2 + (∆s′ − d
2)2][ν̄2 + (∆− d

2)2]
F 0,0
s,s′,0;τs

(ν, ν̄;P1, P2) ,

(3.28)
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where F 0,0
s,s′,0;τs

is the product of tree-level three-point amplitudes (3.20). Plugging in the

explicit expressions (3.14) for the latter, one obtains

M2pt bubble (P1, P2) = g2

∫ ∞
−∞

ν2ν̄2dνdν̄

π2[ν2 + (∆s′ − d
2)2][ν̄2 + (∆− d

2)2]

× B

(
s, s′, 0; 0; ∆s − s,

d

2
+ iν − s′, d

2
+ iν̄

)
B

(
s, s′, 0; 0; ∆s − s,

d

2
− iν − s′, d

2
− iν̄

)
× K

(0,0)
s;s′,0(ν, ν̄; y1, y2), (3.29)

where K
(0,0)
s;s′,0 is the conformal integral (3.2), with log contribution (see section 3.2) whose

explicit evaluation yields the remarkably simple result:

K
(0,0)
s;s′,0(ν, ν̄; y1, y2)

∣∣∣
log(y2

12)
=

πd+ 1
2 2−d−s

′+6s!Γ(d+ s′ − 2)Γ(d+ 2s− 4)

(d+ 2s− 2)Γ
(
d−1

2

)
Γ
(
d
2 + s′ − 1

)
Γ(d+ s− 3)

×
Γ
(
s′+2+i(ν−ν̄)

2

)
Γ
(
s′+2−i(ν−ν̄)

2

)
Γ
(
−d+s′−2s+4+i(ν−ν̄)

2

)
Γ
(
−d+s′−2s+4−i(ν+ν̄)

2

)
Γ
(
d+s′−2+i(ν−ν̄)

2

)
Γ
(
−d+s′+4+i(ν−ν̄)

2

)
Γ
(
−d+s′+4−i(ν−ν̄)

2

)
Γ
(
d+s′−2−i(ν−ν̄)

2

)
× log(y2

12)

(y2
12)d−2

(
H21

2

)s
. (3.30)

Recall that in this section we take ∆s = s+d−2 for a spin-s gauge field, which is substituted

in (3.30) above.

Putting everything together gives the following spectral representation of the contri-

bution to the anomalous dimension of a spin-s higher-spin current on the boundary:

γTT = − g2
s,0,s′

π−
7+d

2 s!2−d+s′+s−2Γ(d+ s′ − 2)

(d+ 2s− 4)Γ
(
d−1

2

)
Γ
(
d
2 + s′ − 1

)
Γ
(
d
2 + s

)
Γ(d+ 2s− 2)

×
∫ ∞
−∞

dνdν̄ F2pt bubble
TT (ν, ν̄) , (3.31)

and

F2pt bubble
TT (ν, ν̄) =

νν̄ sinh(πν)sinh(πν̄)[
ν2 +

(
∆s− d

2

)2][
ν̄2 +

(
∆− d

2

)2] Γ
(
d
2− iν−1

)
Γ
(
d
2 + iν−1

)
Γ
(
d
2 +s′− iν−1

)
Γ
(
d
2 +s′+ iν−1

)
×Γ

(
d+s′+2s−2+ i(ν− ν̄)

2

)
Γ

(
d+s′+2s−2− i(ν− ν̄)

2

)
×Γ

(
d+s′+2s−2− i(ν+ ν̄)

2

)
Γ

(
d+s′+2s−2+ i(ν+ ν̄)

2

)
(3.32)

×Γ

(
s′+2+ i(ν− ν̄)

2

)
Γ

(
s′+2− i(ν− ν̄)

2

)
Γ

(
s′+2+ i(ν+ ν̄)

2

)
Γ

(
s′+2− i(ν+ ν̄)

2

)
.

A consistency check is the recovery of the spectral function (2.14) from (3.32) for the bubble

in φ3 theory when one sets s = s′ = 0, and ∆1 = ∆2 = d− 2 in (2.14).
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Pole structure. It is also interesting to study the pole structure of the spectral func-

tion (3.32). At fixed ν̄, apart from the single poles at ν = ±i(∆s − d
2), which is usually

uplifted to a branch cut in ζ-function regularisation, the above displays 8 series of poles —

one for each gamma functions factor in the numerator — labelled by non-negative integers:

± iν = ±iν̄ + d+ s′ + 2s− 2 + 2n , ±iν = ±iν̄ + s′ + 2 + 2n , (3.33)

for all possible uncorrelated permutations of the ±. On top of the above poles (3.33), we

also have a finite number of additional (spurious) poles at:

± iν = 1− d

2
− n , ±iν − 1 +

d

2
+ s′ > 0 , (3.34)

coming from the Γ-function factor on the first line of (3.32), which arise for s′ > n and

are absent for s′ = 0. Their effect is compensated by the contact contributions in the

bulk-to-bulk propagator, see e.g. [97, 98]. Upon introducing regulators µ and µ̄ one can

perform the above integral with Mellin-Barnes techniques defining:

H(µ, µ̄) =

∫ ∞
−∞

dν dν̄ F2pt bubble
TT (ν, ν̄) µiν µ̄iν̄ , (3.35)

which is analytic in µ and µ̄ for an appropriate domain in the complex µ and µ̄ plane.

As mentioned in the introduction, the above function defines a generalised hypergeometric

function whose analyticity properties regulate the spectral integral. After closing the con-

tour in the appropriate domain and performing the ν integration, one is left with a function

of ν̄ with a pole at ν̄ = ±i(∆ − d
2) and some leftover single poles which can be obtained

from (3.33) upon substituting the location of the ν pole. For instance, when sitting on the

pole ν = ±i(∆s − d
2) the corresponding ν̄ poles are located at:

± iν̄ = ±
(

∆s −
d

2

)
+ d+ s′+ 2s− 2 + 2n , ±iν̄ = ±

(
∆s −

d

2

)
+ s′+ 2 + 2n . (3.36)

It should also be noted that for integer values of ν and ν̄ the sinh has zeros which

cancel possible poles at these location.

A relatively simple and interesting case is d = 3, which is relevant for higher-spin gauge

theories on AdS4. In this case the structure of the spectral function drastically simplifies:

F2pt bubble
TT (ν, ν̄) =

πν πν̄ sinh(πν)sinh(πν̄)[
ν2 +

(
∆s− 3

2

)2][
ν̄2 +

(
∆− 3

2

)2] Γ
(

3
2− iν−1

)
Γ
(

3
2 + iν−1

)
Γ
(

3
2 +s′− iν−1

)
Γ
(

3
2 +s′+ iν−1

)
×P (ν− ν̄)P (ν+ ν̄)

π(ν+ ν̄)π(ν− ν̄)

sinh[π(ν+ ν̄)] sinh[π(ν− ν̄)]
, (3.37)

in terms of a polynomial function P which depends only on the internal and external spins

s and s′:

P (α) =

[
s−1∏
i=0

[(
s′ + 1

2
+ i

)2

+
(α

2

)2
]] s′∏

j=1

[(
j

2

)2

+
(α

2

)2
] . (3.38)
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(a) One-point tadpole with off-shell scalar exter-

nal leg and spin-s gauge field propagating in the

loop.

(b) One-point tadpole with off-shell external

spin-s gauge field and a scalar propagating in

the loop.

Figure 8. One-point tadpole diagrams involving a spin-s field and a scalar field.

Apart from the spurious poles coming from the Γ-function factors on the first line of (3.37),

one can see that all physical poles are resummed into the simple factor:

π(ν + ν̄)π(ν − ν̄)

sinh[π(ν + ν̄)] sinh[π(ν − ν̄)]
, (3.39)

dressed by a polynomial factor at fixed s and s′.

3.4 One-point bulk tadpoles

Let us also discuss the contribution from tadpole diagrams generated by the coupling (3.27),

with a single bulk external leg. There are two cases, which are depicted in figure 8. As

in the preceding section, we focus on the contributions generated by the traceless and

transverse part of the bulk-to-bulk propagators. Like for the scalar one-point tadpole

diagrams considered in section 2.4, we can argue that they give vanishing contributions.

We first consider the case of a scalar external leg and a spin-s field propagating in the

loop, displayed in figure 8 (a). In this case, there is in principle a contribution from ghost

fields whose cubic vertex is given by the second term in (3.42) below, in de Donder gauge.

The corresponding generalisation of the tadpole factor (2.97) connected to the bound-

ary associated to a 0-s-s vertex in type A theory is, for both physical and ghost fields:

Ts(P̄ ) = − gs,s,0
C∆̄,0

π
qs(∆̄)


∫ ∞
−∞

dν
ν2

ν2 + (∆− d
2)2

C d
2
−iν,sC d

2
+iν,s︸ ︷︷ ︸

fs(ν)


×
∫
dP dX

(−2P · P̄ )s

(−2P ·X)d+s(−2P̄ ·X)∆̄+s︸ ︷︷ ︸
Is

, (3.40)

with

qs(∆̄) = (−2)s
(d+ 2s− 2) (d+ s− 3)!

(d− 2)!

Γ(s+ ∆̄)

Γ(∆̄)
. (3.41)
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The latter result holds for both ghost and physical vertex [39] (see also section D) which

read in this case:

V = g0,s,s

[
Ys1Ys2ϕ1ϕ2φ3 + s(d− 4 + 2s)Ys−1

1 Ys−1
2 c̄1c2φ3

]
, (3.42)

and which are both polynomials in the Yi structures. The coupling constant g0,s,s for the

type A theory reads:

g0,s,s =
π
d−3

4 2
3d
2

+s− 1
2

√
Γ
(
d−1

2

)
Γ
(
d−1

2 + s
)

s! Γ(d+ 2s− 3)
, (3.43)

The UV divergent spectral integral in ν coming from the spin-s bulk-to-bulk propagator is

completely factorised from the bulk and boundary integral, and the integrand reads more

explicitly:

fs(ν) =
ν2

4πd
ν2 + (s+ d

2 − 1)2

ν2 + (∆− d
2)2

Γ

(
d

2
− 1− iν

)
Γ

(
d

2
− 1 + iν

)
sinhπν

πν
, (3.44)

where for a spin-s gauge field one chooses ∆ph. = d − 2 + s and for spin s − 1 ghosts one

chooses ∆gh. = d − 1 + s. We have also introduced the function qs(∆̄) which encodes the

result of vertex contractions in terms of the dimension ∆̄ = d
2 − iν̄ of the external leg to

the tadpole. In d = 3 the latter simplifies to

fs(ν) =
1

4π3

4ν2 + (2s+ 1)2

4ν2 + (2∆− 3)2
ν tanhπν , (3.45)

which can be regularised via ζ-function regularisation after splitting it into two pieces as:

1

4π3

∫
ν

[4ν2 + (2s+ 1)2]

[4ν2 + (2∆− 3)2]1+µ −
1

4π3

∫
4ν2 + (2s+ 1)2

4ν2 + (2∆− 3)2

2ν

1 + e2πν
, (3.46)

with the second integral convergent. The above integrals, being of the general type (2.91),

can also be explicitly evaluated via (2.93).

Using the expression (2.98) for a generic two-point bulk integral, in this case we have

(for s > 029):

Is = 2πd/2+1 Γ(d2 + s)

Γ(d+ s)
Aδ(d− ∆̄). (3.47)

and combining all the ingredients we can then write down the following expression for the

tadpole:

T ph.
s = −

2
d+5

2 π
3(d+1)

4 (−1)s(d+ 2s− 3)(d+ 2s− 2)2
√

Γ
(
d−1

2

)
(d+ s− 2)(d+ s− 1)Γ(d− 1)s!

Γ(s+ ∆̄)

Γ(∆̄)

×
(∫ ∞
−∞

dνfph.
s (ν)

)
C∆̄,0Aδ(∆̄− d) , (3.48)

29In the s > 0 case the second term in eq. (2.98) is proportional to
∫
dxd(x2)sδ(x) = 0 and therefore

vanishes identically.

– 37 –



J
H
E
P
0
6
(
2
0
1
8
)
0
3
0

for physical fields together with

T gh.
s = −

2
d+5

2 π
3(d+1)

4 (−1)s(d+ 2s− 4)2(d+ 2s− 3)
√

Γ
(
d−1

2

)
(d+ s− 3)(d+ s− 2)Γ(d− 1)(s− 1)!

Γ(s+ ∆̄− 1)

Γ(∆̄)

×
(∫ ∞
−∞

dνfgh.
s−1(ν)

)
C∆̄,0Aδ(∆̄− d), (3.49)

for the ghost contribution. We recall that the constant A is given by A =
∫
ddx 1

(x2)d
and

vanishes in our modified dimensional regularisation scheme (see section A.2). Still, the

above UV divergent coefficient can be straightforwardly evaluated using the methods of

section (2.93). Like for the scalar case presented in section 2.4, noticing also that ∆̄ = d
2−iν̄

with ν̄ restricted to real values, this contribution is vanishing.30

To summarise, regulating the AdS IR divergences automatically recover the vanishing

of the tadpole. The UV divergence is instead controlled by a factorised spectral integral

which depends explicitly on ∆̄.

Let us now consider the diagram in figure 8 (b), with a spin-s external leg and scalar

propagating in the loop. In this case there is no contribution from ghosts. The diagram is

given by:

T1pt tadpole (X1;U1) =−gs,0,0
∫

AdS
dX (∂U2 ·∂X2)sGd−2,0 (X,X2)

∣∣∣
X2=X

Gd−2,s (X1,U1;X,U2) .

(3.50)

Focusing on the traceless and transverse part of the spin-s bulk-to-bulk propagator, this

factorises as

T1pt tadpole (X1;U1)
∣∣∣
TT

=−gs,0,0
∫ ∞
−∞

ν̄2dν̄

π
[
ν̄2 +

(
s+ d

2−2
)2] ∫

∂AdS
dP̄ K d

2
+iν̄,s

(
X1,U1; P̄ , ∂̂Z

)
×
∫

AdS
dX (∂U2 ·∂X2)sGd−2,0 (X,X2)

∣∣∣
X2=X

K d
2
−iν̄,s

(
X,U2; P̄ ,Z

)
. (3.51)

Using the identity (2.82) for derivatives of bulk-to-bulk propagators at coincident points

and (3.3) for spinning bulk-to-boundary propagators, the tadpole factor in the second line

gives:∫
AdS

dX (∂U2 · ∂X2)sGd−2,0 (X,X2)
∣∣∣
X2=X

K d
2
−iν̄,s

(
X,U2; P̄ , Z

)
=

2sC d
2
−iν̄,0(

d
2 − iν̄ − 1

)
s

∫ ∞
−∞

C d
2

+iν,0C d
2
−iν+s,0ν

2dν

π
[
ν2 +

(
d
2 − 2

)2] (
−iν +

d

2

)
s

×
∫
∂AdS

dP (DP̄ (Z;P ))s
∫

AdS
dX

1

(−2X · P )d+s

1(
−2X · P̄

) d
2
−iν̄

. (3.52)

In the same way as for the diagram (a), we can argue that in dimensional regularisation

T1pt tadpole (X1;U1)
∣∣∣
TT
≡ 0 . (3.53)

30Also the scalar cut vanishes for analogous reasons, since the corresponding real dimension for the

conformally coupled scalar is also outside the domain in which the δ-function is concentrated.
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Considering other regularisations one can still argue that the latter vanishes using (2.98):

∫
AdS

dX
1

(−2X · P )d+s

1(
−2X · P̄

) d
2
−iν̄

= 2πd/2+1 Γ(d2 + s)

Γ(d+ s)

1

(−2P · P̄ )d+s
δ

(
d

2
+ iν̄ + s

)

+ 2πd+1 Γ(−d
2 − s)Γ(iν̄)

Γ(d+ s)Γ(d2 − iν̄)
δ(d)(P, P̄ ) δ

(
s+

d

2
− iν̄

)
, (3.54)

and the fact that ν̄ is restricted to real values when considering a bulk to bulk propagator

attached to a point in AdS.

4 Applications

4.1 Graviton bubble

In this section we consider the bubble diagram generated by the minimal coupling of scalar

fields to gravity. In this case we shall use the full graviton propagator, which in de-Donder

gauge reads [39]:31

Gd,2 (x1,x2) =

∫ ∞
−∞

dν

ν2 +
(
d
2

)2 Ων,2 (x1,x2)−
∫ ∞
−∞

dν u2
1u

2
2

1

d(d−1)
[
ν2 +

(
d
2 +1

)2]Ων,0 (x1,x2)

+

∫ ∞
−∞

dν
1

d
[
ν2 +

(
d
2 +1

)2][
ν2 + d

2

(
d
2 +4

)] [u2
1 (u2 ·∇2)2 +u2

2 (u1 ·∇1)2
]

Ων,0 (x1,x2)

−
∫ ∞
−∞

dν
(d−1)

d
[
ν2 +

(
d
2 +1

)2][
ν2 + d

2

(
d
2 +4

)]2 (u1 ·∇1)2 (u2 ·∇2)2 Ων,0 (x1,x2) . (4.3)

The cubic coupling of scalars φ1 and φ2 to gravity is given in de Donder gauge by [15]

V(3)
2,0,0 (X) = g Y2

3 φ1(X1)φ2(X2)ϕ3(X3, U3) + g
1

2
(d− 2)φ1(X1)φ2(X2)ϕ′3(X3)

∣∣∣
Xi=X

. (4.4)

In the following we compute the bubble diagram with φ1 on the external legs. This is

given by the four terms,

M2pt-bubble =M2pt-bubble
1,0;1,0 +

1

2
(d− 2)M2pt-bubble

1,0;0,1

+
1

2
(d− 2)M2pt-bubble

0,1;1,0 +
1

4
(d− 2)2M2pt-bubble

0,1;0,1 , (4.5)

31In terms of the decomposition (3.7), we have

g
(2)
1,1,0 (ν) =− 1

d(d−1)
[
ν2 +

(
d
2

+1
)2] , g

(2)
1,0,0 (ν) =

1

d
[
ν2 +

(
d
2

+1
)2][

ν2 + d
2

(
d
2

+4
)] , (4.1)

g
(2)
0,0,2 (ν) =− (d−1)

d
[
ν2 +

(
d
2

+1
)2][

ν2 + d
2

(
d
2

+4
)]2 , g

(2)
0,0,1 (ν) = 0, (4.2)

and the traceless and transverse part, which is the same in any gauge, is: g
(2)
0,0,0 (ν) = 1[

ν2+( d
2 )2

] .
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where we defined:32

M2pt-bubble
a,c;b,d (P1,P2)=g

∫
AdS

dX1dX2K∆1,0 (X1;P1)K∆2,0 (X2;P2)Gd,2 (X1,∂U1 ;X2,∂U2)

×(U1 ·P1 ·U1)c (U2 ·P2 ·U2)d (U1 ·∂X1)2a (U2 ·∂X2)2bG∆,0 (X1,X2) . (4.6)

The spectral representation of the graviton (4.3) and scalar (2.4) bulk-to-bulk propagators,

via the factorisation (3.9) of harmonic functions, leads to the following decomposition of

the bubble diagram:

M2pt-bubble
a,c;b,d (y1, y2) =

g2

π2

∑
p

∫ ∞
−∞

ν2dν ν̄2dν̄ g(2)
p1,p2,p3

(ν) g
(0)
0,0,0 (ν̄)

×
∫
∂AdS

dPdP̄ Aa,c;p1,p3

∆1,
d
2

+iν̄, d
2

+iν

(
P1, P̄ , P

)
· Ab,d;p2,p3+2(p1−p2)

∆2,
d
2
−iν̄, d

2
−iν

(
P2, P̄ , P

)
, (4.7)

in terms of the tree-level three-point diagrams:

Aa,c;p1,p3

∆1,∆2,∆3
(P1, P2, P3;Z) =

∫
AdS

dX K∆1,0(X,P1) (∂U · P · ∂U )c (∂U · ∂X)2aK∆2,0 (X,P2)

× (U · P · U)p1 (U · ∇)p3 K∆3,s−2p1−p3 (X,U ;P3, Z) . (4.8)

In section C we show how to bring (4.7) into the form (3.19). This gives the spectral

representation:

M2pt-bubble (y1,y2) = g2

∫ ∞
−∞

ν2ν̄2dνdν̄

π2[ν2 +(d2)2][ν̄2 +(∆− d
2)2]

×B

(
0,2,0;0;∆1,

d

2
+ iν−2,

d

2
+ iν̄

)
B

(
0,2,0;0;∆2,

d

2
− iν−2,

d

2
− iν̄

)
K

(0,0)
0;2,0(ν, ν̄;y1,y2)

+

∫ ∞
−∞

dνdν̄G2pt-bubble
contact (ν, ν̄)K

(0,0)
0;0,0 (ν, ν̄;y1,y2) . (4.9)

The first line is the traceless and transverse contribution, which coincides with the previous

result (3.29) for s = 0, s′ = 2 and ∆1 = ∆2 = d−2. The second line is the contribution from

the contact terms in the propagator (4.3), which involve traces and gradients. The function

G2pt-bubble
contact (ν, ν̄) is rather involved, and is given in section C together with its derivation.

The corresponding form for the contribution to the anomalous dimension is given by:

γ = γTT + γcontact, (4.10)

where the tracless and transverse contribution γTT is given by (3.31) with s = 0 and s′ = 2,

while:

γcontact = −g2δ∆1∆2

πd+ 1
2 2−d+4Γ

(
∆1 − d

2

)
Γ(d− 2)

Γ
(
d
2

)
Γ
(
d−1

2

)
Γ(d−∆1)Γ

(
d
2 − 1

) 1√
C∆1,0C∆2,0

×
∫ ∞
−∞

dνdν̄
Γ
(
d−∆1+i(ν−ν̄)

2

)
Γ
(
d−∆1−i(ν−ν̄)

2

)
Γ
(

∆1−i(ν−ν̄)
2

)
Γ
(

∆1+i(ν−ν̄)
2

) G2pt-bubble
contact (ν, ν̄) . (4.11)

32Note that: (U · P · U) = u2.
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4.2 Type A higher-spin gauge theory

The spectrum of the minimal type A higher-spin gauge theory on AdSd+1 consists of an

infinite tower of gauge fields ϕs of spins s = 2, 4, 6, . . . and a parity even scalar φ of fixed

mass m2
0 = −2 (d− 2) /R2. The results of section 3 can be employed to compute the

s− (s′0)− s bubble diagrams in the theory, focusing on the contribution from the traceless

and transverse part of the bulk-to-bulk propagators.

The traceless and transverse cubic couplings of the interacting theory are given in

ambient space by [59, 60]:33

Vs1,s2,s3 = gs1,s2,s3I0,0,0
s1,s2,s3 , (4.12)

where I0,0,0
s1,s2,s3 was defined in equation (3.11) and the coupling constants are:

gs1,s2,s3 =
1√
N

π
d−3

4 2
3d−1+s1+s2+s3

2

Γ(d+ s1 + s2 + s3 − 3)

3∏
i=1

√
Γ(si + d−1

2 )

Γ (si + 1)
, (4.13)

for canonically normalised kinetic terms.

In generic space-time dimensions, the spectral form of the contribution from the trace-

less and transverse part of the propagators to the anomalous dimension is simply given

by (3.31) with couplings g = gs,0,s′ :

γTT = − g2
s,0,s′

π−
7+d

2 s!2−d+s′+s−2Γ(d+ s′ − 2)

(d+ 2s− 4)Γ
(
d−1

2

)
Γ
(
d
2 + s′ − 1

)
Γ
(
d
2 + s

)
Γ(d+ 2s− 2)

×
∫ ∞
−∞

dνdν̄ F2pt bubble
TT (ν, ν̄) , (4.14)

and

F2pt bubble
TT (ν, ν̄) =

νν̄ sinh(πν)sinh(πν̄)

[ν2 +
(
∆s− d

2

)2
][ν̄2 +

(
∆− d

2

)2
]

Γ
(
d
2− iν−1

)
Γ
(
d
2 + iν−1

)
Γ
(
d
2 +s′− iν−1

)
Γ
(
d
2 +s′+ iν−1

)
×Γ

(
d+s′+2s−2+ i(ν− ν̄)

2

)
Γ

(
d+s′+2s−2− i(ν− ν̄)

2

)
×Γ

(
d+s′+2s−2− i(ν+ ν̄)

2

)
Γ

(
d+s′+2s−2+ i(ν+ ν̄)

2

)
(4.15)

×Γ

(
s′+2+ i(ν− ν̄)

2

)
Γ

(
s′+2− i(ν− ν̄)

2

)
Γ

(
s′+2+ i(ν+ ν̄)

2

)
Γ

(
s′+2− i(ν+ ν̄)

2

)
,

whose properties were discussed in section 3.3.

Let us note that this result holds for the standard boundary condition on the scalar

field near z = 0:34

φ (z, y) ∼ z∆+ , (4.17)

33See [76, 82, 99–101] for previous studies and classifications of metric-like cubic vertices of totally sym-

metric higher-spin gauge fields in AdS, as relevant for this work.
34Here we work in Poincaré co-ordinates xµ =

(
z, yi

)
ds2 =

R2

z2

(
dz2 + dyidy

i
)
, (4.16)

where z here should not be confused with the boundary auxiliary vector zi. The boundary of AdS is located

at z = 0, with boundary directions yi, i = 1, . . . , d.
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where ∆+ is the largest root of the equation:35

∆ (∆− d) = m2
0R

2. (4.19)

By definition, ∆+ ≥ d
2 . For m2

0R
2 > −d2

4 + 1, (4.17) is the unique admissible boundary

condition invariant under the symmetries of AdS space [102]. That the result (4.14) holds

for this particular boundary condition can be seen by noting that the spectral representa-

tion (2.4) only holds for square integrable functions, which requires ∆ > d
2 .

On the other hand, if the scalar mass lies within the window

− d2

4
< m2

0R
2 < −d

2

4
+ 1, (4.20)

there is a second admissible boundary condition [102]:

φ (z, y) ∼ z∆− , (4.21)

where ∆− is the smallest root of equation (4.19). This choice of scalar boundary condition

is possible for the type A higher-spin gauge theory on AdS4, where the scalar mass m2
0R

2 =

−2 (d− 2) = −2 falls within the range (4.20). While the result (4.14) holds in the type A

theory for the boundary behaviour (4.17) with ∆+ = 2, in the following section we show

how the bubble diagram can be evaluated for the alternative boundary condition (4.21)

with ∆− = 1.

4.2.1 Alternative quantization on AdS4

In this section we show how to evaluate the bubble diagrams with the alternative boundary

condition (4.21) on the bulk scalar. See e.g. [69, 70, 103] for previous works on Witten

diagrams for the alternative boundary conditions.

The bulk-to-bulk propagator of a spin-J field of mass m2R2 = ∆ (∆− d)− J with the

alternative boundary condition is given by:36

G∆−,J (x1, x2) = G∆+,J (x1, x2)− 4π

(∆+ −∆−)
Ω i

2
(∆−−∆+),J (x1, x2) (4.23)

= G∆+,J (x1, x2) + (∆+ −∆−)

∫
∂AdS

ddy K∆+,J (x1; y) ·K∆−,J (y;x2) ,

where in the second equality we inserted the factorised form (3.9) of the harmonic function.

From this expression for J = 0, we see that the s − (s′0) − s bubble diagrams with the

35Which has solutions:

∆ = ∆± =
d

2
±
√
d2

4
+m2R2. (4.18)

36To obtain this expression one uses that harmonic functions can be expressed as a linear combination of

the propagators with two different boundary conditions [71]:

Ω i
2 (∆−−∆+),J (x1, x2) =

(∆+ −∆−)

4π

[
G∆+,J (x1, x2)−G∆−,J (x1, x2)

]
. (4.22)
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Figure 9a. Diagrammatic relation between bubble diagrams with different conformal boundary

conditions on the scalar propagating inside the loop. For s′ > 0, they differ by a single-cut of the

scalar internal line.

Figure 9b. For bubble diagrams with two scalars propagating in the loop, diagrams with different

conformal boundary conditions on the scalar fields differ by both a single and double cut of the

internal lines.

alternative boundary condition on the scalar running in the loop can be obtained from those

with the standard boundary condition (4.17), supplemented by the additional diagrams

generated by the rightmost term in the modified propagator (4.23) — to account for the

difference in boundary condition. This is illustrated in figures 9, and we show how to

evaluate the additional diagrams in the following.

Single cut

Let us first evaluate the additional diagram in figure 9a, which for s′ = 0 is equal to the

left-most additional diagram in figure 9b. This corresponds to “cutting” the scalar bulk-to-

bulk propagator in the s−(s′0)−s bubble diagram (4.14) — i.e. going on-shell with respect

to the internal scalar leg. Given the result (4.14), the spectral form for the contribution to

anomalous dimension from this diagram is easy to write down by fixing d
2 + iν̄ = ∆+:

γ
∆+∆−
s,s′ = − g2

s,0,s′
π−

7+d
2 s! 2−d+s′+s−2Γ(d+ s′ − 2)

(d+ 2s− 4)Γ
(
d−1

2

)
Γ
(
d
2 + s′ − 1

)
Γ
(
d
2 + s

)
Γ(d+ 2s− 2)

×
∫ ∞
−∞

dν F2pt bubble
∆+∆−

(ν) , (4.24)

where

F2pt bubble
∆+∆−

(ν) =
2π

iν̄

[
ν̄2 +

(
∆− d

2

)2
]
×F2pt bubble

TT (ν, ν̄)
∣∣∣
ν̄=−i(∆+− d2 )

. (4.25)

The notation γ
∆+∆−
s,s′ is defined as

γ
∆+∆−
s,s′ = γ

∆+

s,s′ − γ
∆−
s,s′ , (4.26)
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where γ
∆+

s,s′ is the contribution to the anomalous dimension generated by the s− (s′0)− s
bubble diagram with the ∆+ boundary condition on the scalar (which was considered in

the previous section), and γ
∆−
s,s′ is the same but with the ∆− boundary condition.

In the present case of AdS4 with ∆+ = 2, we have in particular

Fs′TT (ν) = −π4 21−4(s′+s)

[
ν2 +

(
s′ +

1

2

)2
]
ν tanh(πν)sech(πν)[
ν2 +

(
∆s′ − d

2

)2]
×

Γ
(
s′ + 2s− iν + 1

2

)
Γ
(
s′ + 2s+ iν + 1

2

)
Γ
(

1
2 − iν

)
Γ
(
iν + 1

2

) . (4.27)

The ν integral in this case can be evaluated by expanding (4.27) as a series in ν2:

Fs′TT (ν) = −π4 21−4(s+s′)

(∑
n

c
(n)
s,s′ν

2n+1

)
tanh(πν)sech(πν), (4.28)

which truncates to a polynomial in ν2 since the denominator of the first line cancels with one

of the factors within the Γ-functions in the numerator of the second line. The coefficients

are defined as:

c
(n)
s,s′ = coeff.

 ν2 + (s′ + 1
2)2[

ν2 +
(
∆s′ − d

2

)2] Γ
(
iν + 1

2 + 2s+ s′
)

Γ
(
−iν + 1

2 + 2s+ s′
)

Γ
(
iν + 1

2

)
Γ
(
−iν + 1

2

) , ν2n

 . (4.29)

Using the identity:∫ ∞
−∞

dν ν2n+1 tanh(πν)sech(πν) =
1

π

(
−1

4

)n
(2n+ 1)E2n , (4.30)

where En are the Euler numbers the integral can be analytically evaluated for any spins.37

The final form for the contribution (4.24) to the anomalous dimension from the single

cut of a s− (s′0)− s bubble is thus:

γ
∆+∆−
s,s′ = g2

s,0,s′
π−

1
2
− d

2 s! 2−d−1−3(s′+s)Γ(d+ s′ − 2)

(d+ 2s− 4)Γ
(
d−1

2

)
Γ
(
d
2 + s′ − 1

)
Γ
(
d
2 + s

)
Γ(d+ 2s− 2)

×
∑
n

c
(n)
s,s′

(
−1

4

)n
(2n+ 1)E2n. (4.31)

where for generality we have kept d arbitrary in the overall prefactor. For the s′ = 0

contribution we can evaluate the sum over n exactly:

γ
∆+∆−
s,0 =

32s2

Nπ2(2s− 1)(2s+ 1)
. (4.32)

We give a plot of the s′ > 0 contributions in figure 10. It is interesting to notice that

contributions from higher s′ are exponentially suppressed in s′− s, so that dropping terms

with s′ > 2s gives only a small error when evaluating the sum over spins. One may verify

for large s′ that contributions for s′ � s are of order 10−
s′
2 +s. This allows to obtain

approximated analytic results with arbitrarily small errors.

37Notice that the single cut gives a convergent integral in ν. This confirms the expectation that the UV

divergences for ∆+ and ∆− boundary conditions precisely cancel. The anomalous dimension then only

receives finite IR contributions coming from the boundary conformal integrals.
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Figure 10. Plot of the contributions to the anomalous dimension from a single cut of the s−(s′0)−s
bubble diagram on the internal scalar leg. On the horizontal axis we vary the internal spin s′,

while the colour gradient represents varying external spin s. The contributions are exponentially

suppressed for large s′.

Double cut

For the bubble diagram s− (00)− s, with only scalars propagating in the loop, for the ∆−
boundary condition there is a further additional diagram given by the “double cut” of the

scalar bulk-to-bulk propagators, which is the rightmost diagram shown in figure 9b. It is

given by:

M∆+,∆−
∆+,∆−

(y1, y2) =
1

2
g2
s,0,0 (∆+ −∆−)2

×
∫
∂AdS

ddyddȳM0,0,0
s,0,0;d−2,∆+,∆+

(y1, y, ȳ) · M0,0,0
s,0,0;d−2,∆−,∆−

(y2, y, ȳ) .

The corresponding contribution (γs,0)
∆+∆−
∆+∆−

to the anomalous dimension is very easy to

extract, and can be done by simply setting d
2 + iν = ∆+ and s′ = 0 in the spectral

representation (4.24) of the contribution for the anomalous dimension from the single cut
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diagram. The result reads:

(γs,0)
∆+∆−
∆+∆−

=
[
(∆+ −∆−)2C∆+,0C∆−,0

]2
(4.33)

×
26 π2d (d− 4)Γ

(
2− d

2

)
Γ(s+ 1)

N(d+ 2s− 4)(d+ 2s− 2)Γ
(
d
2 − 1

)
Γ(d+ s− 3)

= −
22d−2(d− 4)Γ

(
d−1

2

)2
s! csc

(
πd
2

)
sin2

(
πd
2

)
π2(d+ 2s− 4)(d+ 2s− 2)Γ(d+ s− 3)

.

One can check that this agrees on the CFT side with the contribution to the anomalous

dimension of the “two-triangle” diagram (also known as “Aslamazov-Larkin” diagram), see

e.g. [34, 104], in agreement with the general arguments in [69, 70].

Combining with the contribution (4.32) from the single-cut diagram, the total addi-

tional contribution from s − (00) − s one-loop diagrams for the ∆+ boundary condition

with respect to the ∆− boundary condition is given by:

γs,0 ≡ γ∆+∆−
s,0 − (γs,0)

∆+∆−
∆+∆−

(4.34)

=

(
32s2

π2(2s− 1)(2s+ 1)N
+

16s

π2 (2s+ 1) (2s− 1)N

)
=

16s

Nπ2(2s− 1)
.

Total contribution. To obtain the total contribution from the additional diagrams for

s− (s′0)−s bubbles in the alternative quantisation of the type A higher-spin gauge theory,

we need to sum over the exchanged spin s′ in the spectrum. In particular, this is given by:

γ∆+ ∆−
s =

∑
s′∈2N

γ
∆+ ∆−
s,s′ . (4.35)

As anticipated, evaluating this sum analytically is rather complicated due to the involved

form of expansion coefficients c
(n)
s,s′ . However, it is possible to obtain an analytic estimate of

the result by truncating the summation over spin. This is possible owing to the exponential

damping of the contributions for higher and higher exchanged spins, illustrated in figure 10.

We plot the result in figure 11 for fixed external spin s, up to s = 2000.

4.2.2 Comparison with dual CFT

In addition to the s − (s′0) − s bubble diagrams considered so far in this section, there

are other types of processes that contribute at one-loop to the total two-point amplitude

in the type A minimal higher-spin gauge theory. For external spin-s fields, all diagrams

that contribute are shown in figure 12, for both boundary conditions on the bulk scalar

field. Notice that we have not included
e

-type tadpole diagrams, since it was argued in

section 3.4 that, at least taken individually, such diagrams do not contribute.38

38It should however be noted that, in order to consider diagrams individually (i.e. for fixed spins propagat-

ing internally before summing over the spectrum), it needs to be investigated whether the infinite sum over

spin commutes with the integration over AdS. This is a subtle issue, in particular since the sum over spin in

higher-spin gauge theories has a finite radius of convergence [61] and the integration over boundary (1.4)
is divergent. We discuss this point further in section 4.2.3.

– 46 –



J
H
E
P
0
6
(
2
0
1
8
)
0
3
0

Figure 11. Plot of the re-summation of the contributions to the anomalous dimension from the

difference of s − (s′0) − s bubble diagrams for the ∆− and ∆+ boundary condition on the scalar

field. The internal spin s′ is summed over while the external spin s, which is displayed on the

horizontal axis, is fixed.

Figure 12. Diagrams contributing to the one-loop two-point amplitude M∆±,total 1-loop
s (y1, y2)

with external spin-s gauge fields in the type A higher-spin gauge theory on AdS4, for both the

∆+ and ∆− boundary conditions on the bulk scalar. Diagrams (a) and (b) were considered in

section 4.2 of this work.
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In the context of AdS/CFT, the diagrams displayed in figure 12 give the holographic

computation of the 1/N correction to the two-point CFT correlation function of the single-

trace operator dual to a spin-s gauge field on AdS. On AdS4, the type A minimal higher-spin

theory with ∆− = 1 boundary condition (4.21) is conjectured to be dual to the free scalar

O (N) model in three dimensions, restricted to the O (N) singlet sector [67]. The spectrum

of primary operators consists of a tower of even spin conserved currents

∂ · Js ≈ 0, (4.36)

dual to a spin-s gauge field ϕs in the bulk, and a scalar O of scaling dimension ∆− which

is dual to the bulk parity even scalar φ. Owing to the absence of 1/N corrections in

free theory, the total of the diagrams in figure 12 for the ∆− boundary condition is then

expected to vanish.

Adding a double-trace deformation λO2 to the free theory above induces a flow an IR

fixed point where O has instead dimension ∆+ = 2, known as the critical O (N) model. In

the holographic picture, the double-trace deformation modifies the boundary condition on

the dual bulk scalar field [105, 106], requiring instead to impose the ∆+ boundary condi-

tion (4.17). This bulk interpretation of multi-trace deformations inspired the conjectured

duality between the type A minimal higher-spin gauge theory with ∆+ = 2 boundary

condition and the critical O (N) model in three dimensions [68]. At this interacting fixed

point, the operators Js are no-longer conserved and acquire an anomalous dimension:

∆s = s+ d− 2 + γs. (4.37)

At the operator level, this statement reads as the non-conservation equation of the

schematic form

∂ · Js =
1√
N

∑
JJ , (4.38)

which implies that the anomalous dimensions are γs ∼ O (1/N). At leading order in 1/N ,

they are given by [107, 108]

γs =
16 (s− 2)

3π2N (2s− 1)
, (4.39)

and to date have been determined using various approaches in CFT [34, 109–111].

To date the anomalous dimensions (4.39) have not yet been extracted via a direct

one-loop calculation in AdS. From the large N expansion of the two-point function

〈Js (y1)Js (y2)〉 = CJs
Hs

21(
y2

12

)d−2

(
1− γs log

(
y2

12

)
+ . . .

)
, (4.40)

where CJs is the O (1) normalisation and the . . . contain O
(
1/N2

)
terms and corrections

to the normalisation, we see that the anomalous dimensions of the higher-spin operators

may be computed holographically at O (1/N) by extracting the log contribution from the

bulk two-point amplitude at one-loop for the ∆+ boundary condition, shown in figure 12.

While in this work we have not evaluated all diagrams in the total one-loop amplitude

(in particular, we have not evaluated diagrams (c)-(e)), with the results of section 3 we
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Figure 13. Diagrams which contribute to the difference M∆+,total 1-loop
s (y1, y2) −

M∆−,total 1-loop
s (y1, y2) of two-point one-loop amplitudes for the ∆+ and ∆− boundary conditions

on the bulk scalar. Diagrams (a)-(c) on the first line were computed in section 4.2.1.

can still however study how the different one-loop processes in figure 12 contribute to the

anomalous dimensions (4.39):

In order for the duality with the free scalar theory to hold, the two-point amplitude

with ∆− boundary condition should not generate anomalous dimensions. Under this as-

sumption, the anomalous dimension (4.39) should be encoded in the diagrams that remain

in the difference of the two-point amplitudes with ∆+ and ∆− boundary conditions on the

bulk scalar, which is shown in figure 13. Since the change of boundary condition is just on

the bulk scalar, only the diagrams involving a scalar in the loop, which are displayed on

the first line of figure 12 (diagrams (a), (b) and (c)), may generate non-trivial contributions

in figure 13. The diagrams on the first line of the latter were computed in section 4.2.1,

which arise from bubble diagrams (a) and (b) in figure 12. The total of which, given by

the modulus of equation (4.35), does not reproduce the anomalous dimension (4.39). The

discrepancy is quite large: the CFT result (4.39) asymptotes to a constant value for large s:

γs →
8

3π2N
, (4.41)

while the total contribution (4.35) from the bubble diagrams seems to grow linearly with

s — as shown in figure 11. The remaining diagram (d) in figure 13, which arises from theg tadpole diagram (c) in figure 12 generated by the s-s-0-0 contact interactions, should

thus give a significant non-trivial contribution of the equal but opposite magnitude as

that from the total of diagrams (a), (b) and (c) in figure 13.
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Figure 14. Re-summation of tadpole diagrams with a single-cut of the scalar loop. The infinite

sum over spin s′ and the divergent integration over the boundary seem not to commute.

4.2.3 Discussion

Sum over spin. In computing the one-loop contributions to the type A higher-spin

gauge theory two-point amplitude in the preceding section, we performed the sum over

spin after regularising the divergent two-point boundary conformal integrals (1.4). This is

the standard prescription for computing Feynman diagrams in a field theory, where each

diagram is evaluated separately and the amplitude is obtained from their total sum. How-

ever, since in higher-spin gauge theories an infinite number of diagrams must be summed

for fixed external legs at each order in 1/N — owing to the infinite spectrum of higher-spin

gauge fields — it is interesting to ask whether the infinite sum over spin and regularised

integration over the boundary may be commuted.

This point can be explored and is most illuminated by considering the contributions

from
e

-type tadpole diagrams, which in section 3.4 were argued to vanish individually. In

performing the boundary integration before summing over spin, such diagrams thus do not

contribute to one-loop two-point amplitude. For simplicity, in the following let us restrict

to the single-cut tadpole diagrams that would appear in the difference of the one-loop

two-point amplitudes for the ∆+ and ∆−, shown in figure 14. These diagrams were not

considered in section 4.2.2, where they would appear in figure 13, because there the sum

over spin was being taken after performing the boundary integration and they thus did not

contribute. To investigate instead summing over spin prior to performing the boundary

integration, it is useful to note that each individual such diagram in the sum over spin s′

can be expressed as39

M∆+,∆−
tadpole,s′ (y1, y2)

=
1

2
(∆+ −∆−)2

∫
∂AdS

ddy3d
dy4Mtree-level exch.

s,s|s′|0−,0− (y1, y2, y3, y4)K∆+,0 (y3, y4) . (4.43)

39The integration weighted by the ∆+ scalar bulk-to-boundary propagator in equation (4.43) enforces

the change of boundary condition on one of the external scalars from ∆− to ∆+ [112], i.e. (see section A.7):

K∆+,J (x; y) = − (∆+ −∆−)

∫
∂AdS

ddȳ K∆−,J (x; ȳ) ·K∆+,J (y; ȳ) . (4.42)
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where Mtree-level exch.
s,s|s′|0−,0− is the spin s′ exchange diagram in the type A minimal theory with

∆− boundary condition on both scalars, which was computed in [15].40 For the part of

exchange diagrams corresponding to the genuine exchange of the single-particle (s.p.) state

(i.e. as opposed to contact contributions associated to double-trace blocks) which is encoded

in the traceless and transverse part of the bulk-to-bulk propagator (3.26), the sum over

exchanged spin is given by a higher-spin block [61, 113]:41

H(s,s|d−2|0−,0−) =
∑
s′∈2N

Mtree-level exch.
s,s|s′|0−,0−

∣∣∣
s.p.
, (4.44)

which re-sums the contribution from the infinite tower of exchanged massless higher-spin

particles. It is given explicitly by:

H(s,s|d−2|0−,0−) =
css00

N (y2
12)d−2(y2

34)d−2

[(u
v

) d−2
2

(
(2q12)−

d−4
4 Γ

(
d−2

2

)
J d−4

2
(
√

2q21)

)
Ys1,24Ys2,31

]
+

css00

N (y2
12)d−2(y2

34)d−2

[
u

d−2
2

(
(2q̄12)−

d−4
4 Γ

(
d−2

2

)
J d−4

2
(
√

2q̄12)

)
Ys1,23Ys2,43

]
. (4.45)

where

q12 = H21∂Y1,24∂Y2,31 , q̄12 = H12∂Y1,23∂Y2,41 , (4.46)

and with normalisation:

css00 =

√
π2−∆−s+4Γ(s+ 1)Γ

(
s+ ∆

2

)
Γ(s+ ∆− 1)

NΓ
(

∆
2

)2
Γ
(
s+ ∆

2 −
1
2

) , (4.47)

corresponding to unit normalisation of the two point functions. The cross ratios in the (12)

channel are defined as:

u =
y2

12y
2
34

y2
13y

2
24

, v =
y2

14y
2
23

y2
13y

2
24

. (4.48)

The higher-spin block (4.45) allows us to compute the contribution (dropping contact

terms in exchange amplitudes) from the single-cut diagrams (4.43) arising from
e

tapoles

by performing the sum over spin prior to evaluating the boundary conformal integral. This

is given by:

M∆+,∆−
tadpole (y1,y2) =

1

2
(∆+−∆−)

2
∫
∂AdS

ddy3d
dy4

∑
s′∈2N

Mtree-level exch.
s,s|s′|0−,0− (y1,y2,y3,y4)

∣∣∣
s.p.
K∆+,0 (y3,y4) ,

=
1

2
(∆+−∆−)

2
∫
∂AdS

ddy3d
dy4H(s,s|d−2|0−,0−) (y1,y2,y3,y4)K∆+,0 (y3,y4) ,

=
1

2
(∆+−∆−)

2
C∆+,0C∆−,0Cs+d−2,s

[
−2πdd(d−2)

N Γ
(
d+2

2

)2
]

log(y2
12)

(y2
12)d−2

Hs21, (4.49)

≡−Cs+d−2,sγ
∆+,∆−
tadpole

log(y2
12)

(y2
12)d−2

Hs21, (4.50)

40See also the preceding [12, 13] for the s = 0 case, and also [93, 94].
41Restricting to the single-particle contribution is the AdS analogue of restricting to single pole in Man-

delstam variables in flat space exchange diagrams.
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where in the second-last equality we restricted to the log term that encodes the contribution

to the anomalous dimension, as shown in the last equality, and which we note is non-

vanishing. Upon recalling that:

(∆+ −∆−)2C∆+,0C∆−,0 =
1

2
(d− 4)π−d−1 sin

(
πd

2

)
Γ(d− 2) , (4.51)

for d = 3, corresponding to AdS4 in the bulk, this yields:

γ
∆+,∆−
tadpole =

8

3π2N
, (4.52)

which is a non-zero and spin-independent contribution to the anomalous dimension. This

is to be contrasted with the vanishing contribution obtained in section 4.2.1 instead by first

performing the integration over the boundary, which seems to suggest that the sum over

spin and boundary integration does not commute in higher-spin gauge theories.

While it may seem non-standard in field theory to first perform the sum over spin,

which is more reminiscent of working directly with some analogue of string fields as opposed

to expanding in spin, we note that it does the job of recovering the CFT anomalous

dimension (4.39): this is straightforward to see by noting that, by first summing over

spin, the difference of one-loop two-point amplitudes for ∆+ and ∆− boundary conditions

considered in section 4.2.2 is given by:

M∆+,total 1-loop
s (y1, y2)−M∆−,total 1-loop

s (y1, y2) = −M∆+,∆−
∆+,∆−

(y1, y2)

+
1

2
(∆+ −∆−)2

∫
∂AdS

ddy3d
dy4Mtree-level 4pt

s,s,0−,0− (y1, y2, y3, y4)K∆+,0 (y3, y4) , (4.53)

where M∆+,∆−
∆+,∆−

is the double-cut diagram computed in section 4.2.1 and Mtree-level 4pt
s,s,0−,0− is

the full connected tree-level four-point amplitude in the type A higher-spin gauge theory

with two spin-s external gauge fields and two external scalars with ∆− boundary condition.

Amplitudes in higher-spin gauge theories on AdS4 are uniquely fixed by the global higher-

spin symmetry [61]. In particular, in terms of s-, t- and u-channel higher-spin blocks (4.45)

we have:

Mtree-level 4pt
s,s,0−,0− (y1, y2, y3, y4) =

1

2

[
H(s,s|d−2|0−,0−) (y1, y3, y2, y4) (4.54)

+ H(s,0−|d−2|s,0−) (y1, y4, y3, y2) +H(s,0−|d−2|0−,s) (y1, y4, y3, y2)
]
,

which neatly re-sums the contributions from the infinite tower of gauge fields in the spec-

trum. Performing now the boundary integration, we have

1

2
(∆+ −∆−)2

∫
ddy3 d

dy4H(s,0−|d−2|s,0−) (y1, y3, y2, y4) K∆+,0 (y3, y4)
∣∣∣
log

(4.55)

=
1

2N
(∆+ −∆−)2C∆+,0C∆−,0Cs+d−2,s

×

[
32πd−2

(d+ 2s− 4)(d+ 2s− 2)Γ
(
d
2 − 1

)2 − πdd(d− 2)

Γ
(
d+2

2

)2
]

log(y2
12)

(y2
12)d−2

Hs
21 ,
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and (which by symmetry in y3 and y3 is identical to (4.55)):

1

2
(∆+ −∆−)2

∫
ddy3 d

dy4H(s,0−|d−2|0−,s) (y1, y4, y3, y2) K∆+,0 (y3, y4)
∣∣∣
log

(4.56)

=
1

2N
(∆+ −∆−)2C∆+,0C∆−,0Cs+d−2,s

×

[
32πd−2

(d+ 2s− 4)(d+ 2s− 2)Γ
(
d
2 − 1

)2 − πdd(d− 2)

Γ
(
d+2

2

)2
]

log(y2
12)

(y2
12)d−2

Hs
21 .

Combined with (4.50), (4.51), and the result (4.33) for the double-cutM∆+,∆−
∆+,∆−

, from (4.53)

upon factoring out the normalisation Cs+d−2,s we obtain

γs =
2d(d− 4) sin

(
πd
2

)
Γ
(
d−1

2

)
(d s! Γ(d− 1)− 2(s− 1)(d+ s− 2)Γ(d+ s− 3))

π3/2d(d+ 2s− 4)(d+ 2s− 2)Γ
(
d
2

)
Γ(d+ s− 3)N

, (4.57)

which matches the result of [34, 114], and in particular for d = 3 reduces to the CFT

result (4.39) for the anomalous dimensions in the O(N) model:

γs =
16(s− 2)

3π2(2s− 1)N
. (4.58)

Let us stress that, in first performing the sum over spin, once it is assumed that the duality

with the ∆− boundary condition holds, the recovery of the anomalous dimension (4.58)

from (4.53) is trivial [70]. A non-trivial question would be whether the same result can be re-

covered by treating higher-spin gauge theories as standard field theories, which entails using

the approach taken in section 4.2.1 that instead sums over spin after performing the bound-

ary integration.42 Since we have seen that the contribution from bubble diagrams (4.35)

is insufficient, addressing this question requires to take into account g-type tadpole dia-

grams, which we leave for future work. We would also like to stress that in using twist-blocks

we are able to project out all double-trace contribution from the current exchange. This

subtraction should be generated in the field theory computation by the quartic contact term

and may justify the different behaviour of (4.58) with respect to the behaviour in figure 11.

Let us note that also in performing first the sum over spin we can see that g-type tad-

pole diagrams should give a non-trivial contribution to the anomalous dimension. The total

contribution from the single-cut diagrams arising from s−(s′0)−s bubbles in the difference

of one-loop two-point amplitudes (4.53) is given (modulo contact terms) by (4.55), i.e.:

M∆+,∆−
s =

1

2
(∆+ −∆−)2

∫
ddy3 d

dy4H(s,0−|d−2|s,0−) (y1, y3, y2, y4) K∆+,0 (y3, y4)
∣∣∣
log

=
1

2N
(∆+ −∆−)2C∆+,0C∆−,0Cs+d−2,s (4.59)

×

[
32πd−2

(d+ 2s− 4)(d+ 2s− 2)Γ
(
d
2 − 1

)2 − πdd(d− 2)

Γ
(
d+2

2

)2
]

log(y2
12)

(y2
12)d−2

Hs
21 ,

42If this turns out to be the case, a further question would be how this can be reconciled with the apparent

non-commutativity of the sum over spin with the boundary integration observed earlier in this section.
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which, either alone or together with the tadpole contributions (4.50) does not recover the

contribution generated by the second line of (4.53).43
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A Appendix of conformal integrals

In this appendix we outline the evaluation of various boundary conformal integrals utilised

in this work.

A.1 Fourier transform

We recall the standard result:

1

(2π)d/2

∫
ddq

[q2]∆
eiq·p =

1

(2π)d/2
1

Γ(∆)

∫ ∞
0

dt

t
t∆
∫
ddq eiq·p−tq

2
=

1

2d/2
Γ(d2−∆)

Γ(∆)

(
4

p2

) d
2
−∆

,

(A.1)

which we will use repeatedly in the following.

A.2 Two-point and comments on regularisation

The two-point conformal integral

I2pt (y1, y2) =

∫
ddy[

(y1 − y)2
]a1
[
(y2 − y)2

]a2
, a1 + a2 = d, (A.2)

appears universally in the computation of AdS two-point loop amplitudes. The regular-

isation of the latter integral generically produces two type of terms: one proportional to

43In fact, the non-trivial contribution from g-type tadpoles appears to arise from the 1/�-type non-

locality of quartic contact interactions in higher-spin gauge theories on AdSd+1 [61], which smears out

the contact interaction to produce precisely the higher-spin blocks in the second line of (4.53) needed to

recover the anomalous dimension. Notice that the expression of the four-point amplitude (4.54) purely

in terms of higher-spin blocks indicates that any genuine contact contributions (i.e. not of the 1/�-type)

cancel among each other to give a vanishing overall contribution to the anomalous dimension.
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(
y2

12

)− d
2 and a term proportional to log(y2

12), which is the fingerprint of the generation of

anomalous dimensions. By conformal invariance all divergent diagrams, regardless they

are bubble or tadpoles g, are proportional to the above 2 pt integral. It can be evaluated

by taking the Fourier transform

1

(2π)
d
2

∫
ddy1 I2pt (y1, 0) e−iy1·p (A.3)

=
1

Γ (a1) Γ (a2)

∫ ∞
0

dt1dt2
t1t2

ta1
1 t

a2
2

1

(2π)
d
2

(∫
ddy1 e

−t1y2
1−iy1·p

)(∫
ddy e−t2y

2−iy·p
)
,

where in the equality we sent y1 → y1 + y and employed the Schwinger parameterisation

1

(x2)a
=

1

Γ (a)

∫ ∞
0

dt

t
tae−tx

2
. (A.4)

Evaluating the Gaussian integrals and performing the change of variables t→ 1/t, one finds

1

(2π)
d
2

∫
ddy1 I2pt (y1, 0) e−iy1·p =

(π
2

) d
2 1

Γ (a1) Γ (a2)

∫ ∞
0

dt1dt2
t1t2

t
d
2
−a1

1 t
d
2
−a2

2 e−(t1+t2) p
2

4

(A.5)

=
(π

2

) d
2 Γ
(
d
2 − a1

)
Γ
(
d
2 − a2

)
Γ (a1) Γ (a2)

(
4

p2

)d−a1−a2

, (A.6)

where in the second equality we used the integral representation of the Gamma function.

Taking the inverse Fourier transform obtains the final expression

I2pt (y1, y2) = π
d
2

Γ
(
d
2 − a1

)
Γ
(
d
2 − a2

)
Γ (a1) Γ (a2)

Γ
(
a1 + a2 − d

2

)
Γ (d− a1 − a2)

(
y2

12

) d
2
−a1−a2 , (A.7)

and, in particular, for a1 + a2 = d employing the dimensional regularisation in eq. (A.10)

we have

I2pt (y1, y2) =
2πd/2(y2

12)−
d
2

(
log(π(y2

12))− ψ(0)
(
d
2

))
Γ
(
d
2

) , a1 = a2, (A.8a)

= 0, a1 6= a2. (A.8b)

It is also interesting to study more generally the analytic structure of the above integral

as a function of d, a1 and a2 which can be done in various ways. Considering a simple

parameterisation of the type a1 = d
2+ε1x and a2 = d

2+ε2x and expanding in x one arrives at:

I2pt (y1, y2) ∼ πd/2(y2
12)−

d
2 (ε1 + ε2)2 log((y2

12))

ε1ε2Γ
(
d
2

) − πd/2(y2
12)−

d
2 (ε1 + ε2)

xε1ε2Γ
(
d
2

) . (A.9)

The variant of dimensional regularisation mentioned above (which is here referred

to as a prescription to regulate a divergent integral) is instead achieved with the

parameterisation:44

d? = d+ ε , a1 =
d

2
, a2 =

d

2
, (A.10)

44To avoid any confusion it is useful to stress that a standard dimensional analytic continuation where

one analytically continues the bulk Lagrangian to arbitrary dimensions does not define a regularisation of

the theory in our case since this does not break the boundary conformal symmetry.
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with d? the dimension of the measure. This gives

I2pt (y1, y2) =
π
d+ε

2 Γ
(
ε
2

)2
Γ
(
d−ε

2

)
Γ
(
d
2

)2
Γ(ε)

(y2
12)

ε−d
2

∼ 4πd/2(y2
12)−d/2

εΓ
(
d
2

) +
2πd/2(y2

12)−d/2
(
log(π(y2

12))− ψ(0)
(
d
2

))
Γ
(
d
2

) . (A.11)

Another possible regularisation consists in taking the limit a1 → d/2 at a2 fixed and

then take the limit a2 → d/2. In this case one obtains:

I2pt (y1, y2) ∼ −π
d/2(y2

12)−
d
2

ε1Γ
(
d
2

) − πd/2(y2
12)−

d
2

ε2Γ
(
d
2

) +
2πd/2(y2

12)−
d
2 log((y2

12))

Γ
(
d
2

) , (A.12)

giving a log coefficient 2πd/2

Γ(d/2) which is the same as for dimensional regularisation but in a

different subtraction scheme, since no wave function renormalisation is generated. Other

choices of ε1 = k ε2 should not be admissible as they give different coefficients for the log.

In this work we stick to the above generalised dimensional regularisation as this allows

to keep a1 = a2 = d
2 in the regularisation process. This regularisation also matches

known expectations in the large-N expansion on the boundary side. Furthermore, it might

be interesting to notice that all divergent conformal integrals we have encountered can

be reduced to the same 2pt divergent conformal integral. Therefore, once a consistent

regularisation scheme is identified for I2pt, one should be able to consistently regulate all

divergent conformal integrals.

A.3 Three-point

The three-point conformal integral

I3pt (y1, y2, y3) =

∫
ddy[

(y1 − y)2
]a1
[
(y2 − y)2

]a2
[
(y3 − y)2

]a3
, a1 + a2 + a3 = d, (A.13)

arising in the computation of bubble diagrams can be evaluated using Schwinger parame-

terisation:

I3pt (y1, y2, y3) =

∫
ddy

Γ (a1) Γ (a2) Γ (a3)

∫ ∞
0

dt1dt2dt3
t1t2t3

ta1
1 t

a2
2 t

a3
3 e
−

∑
i ti(yi−y)2

. (A.14)

Writing

∑
i

ti (yi − y)2 = T

(
y − 1

T

∑
i

tiyi

)2

+
1

T

∑
i<j

titjy
2
ij , T =

∑
i

ti, (A.15)

we can evaluate the integral in y to give

I3pt (y1, y2, y3) =
π
d
2

Γ (a1) Γ (a2) Γ (a3)

∫ ∞
0

dt1dt2dt3
t1t2t3

ta1
1 t

a2
2 t

a3
3 T

−d/2e−
1
T

∑
i<j titjy

2
ij . (A.16)
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The crucial observation of Symanzik [40] was that, when a1 + a2 + a3 = d, (A.16) is

unchanged if we take instead T =
∑

i κiti for any κi ≥ 0.45 We can thus simply take,

for instance, T = t3 which gives the following final expression upon using the integral

representation of the gamma function

I3pt (y1, y2, y3) =
πd/2

Γ (a1) Γ (a2) Γ (a3)

Γ
(
d
2 − a1

)
Γ
(
d
2 − a2

)
Γ
(
d
2 − a3

)
(
y2

12

) d
2
−a3

(
y2

13

) d
2
−a2

(
y2

32

) d
2
−a1

. (A.18)

A.4 n-point

The 3pt conformal integral discussed in the previous section admits a straightforward

extension to n-points:

In-pt ≡
∫

ddy∏n
i=1

[
(yi − y)2

]ai , ∑
i

ai = d , (A.19)

via the Symanzik trick and employing the Cahen-Mellin identity:

e−z =
1

2πi

∫ c+i∞

c−i∞
dsΓ(−s) zs , (A.20)

valid for c < 0 and |arg(z)| < π
2 . The procedure is to first perform the Gaussian integration

after employing the Schwinger parametrisation as in the 3pt case and use Cahen-Mellin

formula in such a way to perform all Schwinger parameter integrations. The final result is

given by Symanzik ? formula and reads:

In−pt(yi) =
πd/2∏
i Γ(ai)

∮
dδij

∏
i<j

Γ(δij)(yij)
−δij , (A.21)

where the contour integration measure is defined as (see also [115])

∮
dδij ≡

2

(2πi)
n(n−3)

2

∫ c+i∞

c−i∞

∏
i<j

dδij
∏
j 6=i

δ

ai −∑
j

δij

 , (A.22)

where the constant c is selected to ensure that all poles of gamma functions are on the left

or right of the integration paths.

A.5 Bubble integral and alternative regularisations

In this section we study a different regularisation of the bubble conformal integrals which

do not rely on analytically continuing the boundary dimension but instead a deformation

45This can be seen by making the change of variables ti = σαi with αi constrained by
∑
i κiαi = 1. For

the integration measure we have

dt1dt2dt3
t1t2t3

ta11 ta22 ta33 =
dα1dα2dα3

α1α2α3
αa11 αa22 αa33 δ

(
1−

∑
i

κiαi

)
dσσd−1. (A.17)

In performing the integration over σ the explicit dependence on T disappears.
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of the bulk Harmonic functions appearing in the bulk-to-bulk propagators. In the spirit of

large-N conformal field theories one can indeed regularise all boundary conformal integrals

deforming asymptotic behaviour of one of the bulk-to-boundary propagators in the split

representation (3.9) of the harmonic functions as:

Ων,J =
ν2

π

∫
∂AdS

dP C d
2

+iν,J C d
2
−iν,JK̂ d

2
+iν−ε,JK̂ d

2
−iν,J , (A.23)

where

K̂∆,J (X,U ;P,Z) =

(
U · Z − U · PZ ·X

P ·X

)s 1

(−2P ·X)∆
, (A.24)

is the bulk-to-boundary propagator without normalisation factor.

With such deformed harmonic functions the basic scalar bubble conformal integral is

not conformal:∫
ddy ddȳ[[O∆(y1)O d

2
+iν−ε(y)O d

2
+iν̄−ε(ȳ)]][[O d

2
−iν(ȳ)O d

2
−iν̄(y)O∆(y2)]] . (A.25)

One can still perform the integral rewriting it in Mellin space using the identity:∫
ddyxd

dyy
1

(y2
1x)

α1 (y2
2x)

α2 (y2
xy)

γ (y2
1y)

β1(y2
2y)

β2
=

1

(y2
12)d−α1−α2−β1−β2−γ

(A.26)

× πd

Γ(α1)Γ(α2)Γ(γ)Γ(d−α1−α2−γ)

×
∫ +i∞

−i∞

dsdt

(2πi)2

Γ(−s)Γ(−t)Γ
(
d
2

+s+ t−γ
)

Γ(d+s−α2−β2−γ)Γ(d+ t−α1−β1−γ)Γ(d+s+ t−α1−α2−γ)

Γ(2d+s+ t−α1−α2−β1−β2−2γ)

×
Γ
(
− d

2
−s+α2 +γ

)
Γ
(
− d

2
− t+α1 +γ

)
Γ
(
− 3d

2
−s− t+α1 +α2 +β1 +β2 +2γ

)
Γ
(
− d

2
−s+α2 +β2 +γ

)
Γ
(
− d

2
− t+α1 +β1 +γ

) .

The limit ε → 0 can be performed as usual for Mellin integrals starting from a region

where each Γ-function argument is positive and analytically continuing while keeping track

of contour crossings. In our case the only contribution proportional to log(y2
12) comes from

the residue at s = 0 and t = 0 where for ε → 0 the integration contour is pinched. The

result reads:∫
ddy ddȳ[[O∆(y1)O d

2
+iν−ε(y)O d

2
+iν̄−ε(ȳ)]][[O d

2
−iν(ȳ)O d

2
−iν̄(y)O∆(y2)]] =

=
2πdΓ

(
∆− d

2

)
Γ
(
d
2 −∆ + ∆−i(ν−ν̄)

2

)
Γ
(
d
2 −∆ + ∆+i(ν−ν̄)

2

)
Γ
(
d
2

)
Γ(d−∆)Γ

(
∆−i(ν−ν̄)

2

)
Γ
(

∆+i(ν−ν̄)
2

) log(y2
12)

(y2
12)∆

+ . . . , (A.27)

where the . . . give terms not proportional to a log and the log-term matches the result

obtained by analytically continuing the boundary space-time dimension in (2.14). While

the log-term does not depend on the regularisation the . . . depend explicitly on the regular-

isation and in this case are expressed in terms of a Mellin-Barnes integral which contributes

to the 2-pt function normalisation.

– 58 –



J
H
E
P
0
6
(
2
0
1
8
)
0
3
0

A.6 Decomposition of bubble integrals

In this appendix we explain how to decompose the conformal integrals (3.2):

K(n,m)
s1,s2;sx,sy

(ν, ν̄ ; y1, y2) =

∫
ddyxd

dyy [[O∆1,s1(y1, z1)O∆x,sx(yx, ∂̂zx)O∆y,sy(yy, ∂̂zy)]]
(n)

× [[Od−∆y,sy(yy, zy)Od−∆x,sx(yx, zx)O∆2,s2(y2, z2)]](m) , (A.28)

which arise from spinning two-point bubble diagrams in terms of basic conformal integrals

of the form:

Ia1,a2,b1,b2
α1,α2,γ,β1,β2

≡
∫
ddyxd

dyy
(z1 · y1x)a1(z2 · y2x)a2(z1 · y1y)b1(z2 · y2y)b2(

y2
1x

)α1
(
y2

2x

)α2
(
y2

xy

)γ
(y2

1y)β1(y2
2y)β2

, (A.29)

where conformal invariance requires:

α1 − a1 + α2 − a2 + γ = d , β1 − b1 + β2 − b2 + γ = d . (A.30)

By using the series expansion around z = 0

Jα (z) =
∞∑
k=0

(−1)k

k!Γ (k + α+ 1)

(z
2

)2k+α
, (A.31)

of the Bessel functions present in the three-point conformal structures (3.16), the integrand

of (A.28) can be reduced to a linear sum of monomials of the form:

Qp,p̄ =
[
Y
s1−px−py

1,yx Ȳ
sx−py−p1

x,1y Ȳ
sy−p1−px

y,x1 H̄p1
yxH̄px

1yH̄
py

x1

] [
Y
s2−p̄x−p̄y

2,yx Y
sx−p̄y−p2

x,2y Y
sy−p2−p̄x

y,x2 Hp2
yxHpx

2yH
py

x2

]
× 1

(y2
1x)δ1x(y2

xy)δxy(y2
1y)δy1

1

(y2
2y)δ̄2y(y2

xy)δ̄yx(y2
2x)δ̄x2

, (A.32)

where

δxy =
1

2
(τx +τy−τ1) , δ1x =

1

2
(τ1 +τx−τy) , δ1y =

1

2
(τ1 +τy−τx) , (A.33a)

δ̄xy = d−∆x−∆y +
1

2
(τx +τy−τ2) , δ̄2x = ∆y−∆x +

1

2
(τ2 +τx−τy) , δ̄1y = ∆x−∆y +

1

2
(τ2 +τy−τx) ,

(A.33b)

with twists τi = ∆i − si. The conformal building blocks in this case read explicitly:

Y1,yx =
z1 ·yy1

y2
y1

− z1 ·yx1

y2
x1

, Y2,yx =
z2 ·yy2

y2
y2

− z2 ·yx2

y2
x2

, (A.34a)

Ȳx,1y =
∂̂zx ·y1x

y2
1x

− ∂̂zx ·yyx

y2
yx

, Yx,2y =
zx ·y2y

y2
2y

− zx ·yyx

y2
yx

, (A.34b)

Ȳy,x1 =
∂̂zy ·yxy

y2
xy

−
∂̂zy ·y1y

y2
1y

, Yy,x2 =
zy ·yxy

y2
xy

− zy ·y2y

y2
2y

, (A.34c)

H̄yx =
1

y2
xy

(
∂̂zx · ∂̂zy +

2∂̂zx ·yxy ∂̂zy ·yyx

y2
xy

)
, Hyx =

1

y2
xy

(
zx ·zy +

2zx ·yxy zy ·yyx

y2
xy

)
, (A.34d)

H̄1y =
1

y2
y1

(
∂̂zy ·z1 +

2∂̂zy ·yy1 z1 ·y1y

y2
xy

)
, H2y =

1

y2
y2

(
zy ·z2 +

2zy ·yy2 z2 ·y2y

y2
xy

)
, (A.34e)

H̄x1 =
1

y2
1x

(
z1 · ∂̂zx +

2z1 ·y1x ∂̂zx ·yx1

y2
1x

)
, Hx2 =

1

y2
2x

(
z2 ·zx +

2z2 ·y2x zx ·yx2

y2
2x

)
. (A.34f)
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The main step is to evaluate the Thomas derivatives ∂̂zx and ∂̂zy in (A.32). To this

end, it’s useful to introduce the combinations:

ξx · ∂̂zx = Ȳx,1y + λyH̄x1, ξ̄x · zx = Yx,2y + λ̄yHx2, (A.35a)

ξy · ∂̂zy = Ȳy,x1 + λxH̄1y, ξ̄y · zx = Yy,x2 + λ̄xH2y, (A.35b)

and the differential operators:

OH̄yx
=

1

y2
xy

(
∂ξx · ∂ξy −

2

y2
xy

yxy · ∂ξxyxy · ∂ξy

)
, (A.36)

OHyx =
1

y2
xy

(
∂ξ̄x
· ∂ξ̄y
− 2

y2
xy

yxy · ∂ξ̄x
yxy · ∂ξ̄y

)
, (A.37)

which have the property: OH̄yx
(ξxξy) = H̄yx and OHyx

(
ξ̄xξ̄y

)
= Hyx. This allows us to define

the following generating function:

Q
(
λ, λ̄

)
=

1

(sx − p1 + 1)p1(sy − p1 + 1)p1(sx − p2 + 1)p2(sy − p2 + 1)p2

(A.38)

× Y
s1−px−py

1,yx Y
s2−p̄x−p̄y

2,yx Op1

H̄yx
Op2

Hyx

[
(ξx · ∂̂zx)

sx(ξ̄x · zx)sx

] [
(ξy · ∂̂zy)

sy(ξ̄y · zy)sy

]
,

from which (A.32) can be recovered via

Qp,p̄ =
(sy − p1 − px)!(sy − p2 − p̄x)!(sx − p1 − py)!(sx − p2 − p̄y)!

(sx − p1)!(sy − p1)!(sx − p2)!(sy − p2)!
∂
py

ξx
∂px

ξy
∂
p̄y

ξ̄x
∂p̄x

ξ̄y
Q
(
λ, λ̄

)
.

(A.39)

Above and also in the following discussion, for convenience the presence of the factor in

the second line of (A.32) is left implicit. The generating function (A.38) is convenient, for

it allows to straightforwardly evaluate the Thomas derivatives by simply using that

(a · ∂̂z)k (b · z)k =
k!

2k
(
d
2 − 1

)
k

(
a2b2

)k/2
C

( d2−1)
k

(
a · b√
a2b2

)
, (A.40)

in terms of a Gegenbauer polynomial. This gives

Q
(
λ, λ̄
)

=
1

(sx−p1 +1)p1(sy−p1 +1)p1(sx−p2 +1)p2(sy−p2 +1)p2

sx!

2sx(d2−1)sx

sy!

2sy(d2−1)sy

×Y
s1−px−py

1,yx Y
s2−p̄x−p̄y

2,yx OH̄yx
OHyx

{
[ξ2

x ξ̄
2
x ]sx/2C

( d
2
−1)

sx

(
ξx · ξ̄x

[ξ2
x ξ̄

2
x ]1/2

)
[ξ2

y ξ̄
2
y ]sy/2C

( d
2
−1)

sy

(
ξy · ξ̄y

[ξ2
y ξ̄

2
y ]1/2

)}
.

(A.41)

Upon expanding the Gegenbauer polynomials, one obtains

Q=

=
2sx+sy

(sx−n1 +1)n1(sy−n1 +1)n1(sx−n2 +1)n2(sy−n2 +1)n2

sx!

2sxΓ(d2−1+sx)

sy!

2syΓ(d2−1+sy)

×
bsx/2c∑
k1=0

bsy/2c∑
k2=0

(−1)k1+k2
Γ
(
sx−k1 + d

2−1
)

Γ
(
sy−k2 + d

2−1
)

22(k1+k2)k1! (sx−2k1)!k2! (sy−2k2)!
(A.42)

×Y
s1−nx−ny

1,yx Y
s2−n̄x−n̄y

2,yx On1

H̄yx
On2

Hyx

{
[ξ2

x ξ̄
2
x ]2k1−sx/2[ξ2

y ξ̄
2
y ]2k2−sy/2

(
ξx · ξ̄x

)sx−2k1
(
ξy · ξ̄y

)sy−2k2
}
,
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which gives a nested sum of the conformal integrals (A.29) upon evaluating the OH and

expanding the Y’s, H’s, ξ’s and ξ̄’s, for which the following identities are useful:

yij · ykl = −yik · ylk + yjk · ylk , (A.43)

yij · ykj =
1

2
(y2
ij + y2

kj − y2
ik) , (A.44)

zi · yjk = zi · yik − zi · yij . (A.45)

Particularly simple with respect to the general case is the situation in which one of the

internal legs in the bubble is scalar. In this case indeed n1 = n2 = 0 and the full conformal

integral can be expressed by a Gegenbauer polynomial while the action of the differential

operator trivialises.

A.7 Shadow bulk-to-boundary propagator

In this section we prove the integral relationship (4.42) of footnote 39 between bulk-to-

boundary propagators of different conformally invariant boundary conditions for the case

J = 0, as relevant for this work.

This is most straightforward working in ambient space. The r.h.s. of (4.42) for J = 0

reads:

− (∆+ −∆−)

∫
∂AdS

dP̄ K∆+

(
P ; P̄

)
K∆−

(
X; P̄

)
= − (∆+ −∆−)C∆+,0C∆−,0

∫
∂AdS

dP̄
1(

−2P · P̄
)∆+

1(
−2X · P̄

)∆− . (A.46)

Using Feynman parameterisation:∫
∂AdS

dP̄
1(

−2P · P̄
)∆+

1(
−2X · P̄

)∆− =

∫
∂AdS

dP̄
Γ (d)

Γ (∆+) Γ (∆−)

∫ ∞
0

dλ
λ∆+−1(
−2P̄ · Y

)d ,
(A.47)

where: Y A = XA + λPA, it is straightforward to perform the conformal integral in P̄ :∫
∂AdS

dP̄
1(

−2P̄ · Y
)d =

πd/2Γ
(
d
2

)
Γ (d)

1

(−Y 2)d/2
. (A.48)

The remaining integral in λ is given by the Beta function, which yields:∫
∂AdS

dP̄
1(

−2P · P̄
)∆+

1(
−2X · P̄

)∆− = πd/2
Γ
(
d
2 −∆+

)
Γ (∆−)

1

(−2P ·X)∆+
. (A.49)

Using the explicit form (2.3) of the propagator normalisation, this finally gives:

− (∆+ −∆−)

∫
∂AdS

dP̄ K∆+

(
P ; P̄

)
K∆−

(
X; P̄

)
= K∆+,0 (X;P ) . (A.50)
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B Coincident point propagator

In this appendix we show how the split representation relates to the standard expressions

for the coincident point limit of the bulk-to-bulk propagator. We will evaluate the following

bulk integral:46

Z∆,s =

∫
AdS

Tr[G∆,s(X,X)] . (B.1)

Without loss of generality we can restrict the attention to the TT part of the propagator

which encodes the physical degrees of freedom. Using the split representation the above

vacuum bubble therefore reads:

Z∆,s =

∫ ∞
−∞

dν
ν2

π

1

ν2 + (∆− d
2)2

C d
2

+iν,sC d
2
−iν,s︸ ︷︷ ︸

f(∆,s)(ν)

×
∫
∂AdS

dP

∫
AdSd+1

dX
(∂W1 ·DW2)s

(s!)2
(B.2)

×

{
[(−2P ·X)W1 + (2W1 · P )X] · ∂̂Z

}s
{Z · [(−2P ·X)W2 + (2W2 · P )X]}s

s!(−2P ·X)d
,

where
(∂W1

·DW2
)s

(s!)2( d−1
2 )

s

defines the trace operation with respect to the tangent and light-like

auxiliary variables W1 and W2 in terms of the AdS Thomas-D derivative:47

DUA = (P · ∂U )A , (B.3a)

D̂WA = ∂WA −
1

d− 1 + 2W · P · ∂W
WA (∂W · P · ∂W ) , (B.3b)

Carrying the above derivative contractions and integrations using the identities:

1

s!
(A · ∂̂Z)s(Z ·B)s =

s!

2s
(
d
2 − 1

)
s

[A2B2]s/2G
( d2−1)
s

(
A ·B√
A2B2

)
, (B.4)

∫
∂AdS

dP
(W1 · P )2(W2 · P )s

(−2P ·X)d+2s
=

21−d−3sπ
d+1

2 s!

Γ(s+ d+1
2 )

(W1 ·W2)s , (B.5)

(∂W1 ·DW2)s

(s!)2
(W1 ·W2)s =

(d+ 2s− 1)(d+ s− 2)!

(d− 1)! s!
, (B.6)

one arrives to the following equation:

Z(∆,s) = VAdSd+1

21−dπ
d+1

2

Γ
(
d+1

2

) gs

∫ ∞
−∞

dνf(∆,s)(ν) , (B.7)

where VAdSd+1
= πd/2Γ

(
−d

2

)
is the AdSd+1 regularised volume and one can recognise the

spectral density:

f(∆,s)(ν) =
1

4πd+2

ν2 +
(
d−2

2 + s
)2

ν2 +
(
∆− d

2

)2 ν sinh(πν)Γ

(
d

2
− iν − 1

)
Γ

(
d

2
+ iν − 1

)
, (B.8)

46For s = 0 see [116].
47It is convenient to use projected auxiliary variables such that W 2

i = 0 and Wi ·X = 0.
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the volume factor VSd = 2π(d+1)/2

Γ( d+1
2 )

and we have expressed the result in terms of the number

of degrees of freedom for a symmetric TT field

gs =
(2s+ d− 2)(s+ d− 3)!

(d− 2)! s!
. (B.9)

As expected, equation (B.7) precisely matches the corresponding expression derived using

ζ-function techniques [87]:

Z(∆,s) = ζ(∆,s)(1) . (B.10)

B.1 Mellin-Barnes and sum over spins

The spectral function integrals are naturally regulated as Mellin-Barnes integrals:∫ ∞
−∞

dν f(∆,s)(ν) ziν
∣∣∣
z=1

. (B.11)

Such integrals can be straightforwardly evaluated as infinite series by closing the contour

of integration in the appropriate convergence region and dropping the arc part of the

contour. In the example above one can perform the spectral integral in full generality and

for arbitrary dimensions:

lim
z→1

∫ ∞
−∞

dνf(∆,s)(ν)ziν =

∞∑
n=0

(d+ 2n− 2)(n− s)(d+ n+ s− 2)Γ(d+ n− 2) sin
(
πd
2

)
4πd+1n!(∆ + n− 1)(d−∆ + n− 1)

− 1

4πd+1
(∆ + s− 1)(d−∆ + s− 1)Γ(∆− 1)Γ(d−∆− 1) sin

[
π

(
∆− d

2

)]
. (B.12)

The above series is divergent but with some effort it can be resummed in dimensional

regularisation obtaining a remarkably simple answer:48

lim
z→1

∫ ∞
−∞

dνf(∆,s)(ν)ziν =
sec
(
πd
2

)
csc(π∆)(∆ + s− 1)(d−∆ + s− 1)

4πd−1Γ(2−∆)Γ(∆− d+ 2)
. (B.13)

Furthermore one can explicitely evaluate the sum over spins in dimensional regularisation

using Gauss hypergeometric theorem. The sum over spins including ghosts gives:

ZHS =

∞∑
s=0

(
Z(d−2+s,s) −Z(d−1+s,s−1)

)
=

4π csc(πd)Γ(3− 2d)

dΓ(3− d)2
. (B.14)

Remarkably the latter shows no pole in any CFT dimension d > 2, signaling the cancellation

of UV divergences upon summing over spins. Notice also that in the above expression we

have included the regularised AdS volume.

48We have checked that the expression below matches the expression obtained by ζ-function regularisation

in any even dimension. In odd dimension the two result differ but we expect that the main physical

properties should remain unaffected.
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C Graviton bubble

In this appendix we detail how to bring the 2− (20)− 0 bubble diagram involving the full

de Donder gauge graviton propagator (4.3) into the form (3.19). The diagram is given by

four terms:

M2pt-bubble =M2pt-bubble
1,0;1,0 +

1

2
(d− 2)M2pt-bubble

1,0;0,1 +
1

2
(d− 2)M2pt-bubble

0,1;1,0 +
1

4
(d− 2)

2M2pt-bubble
0,1;0,1 ,

(C.1)

which each, via the spectral representation (4.3) of the full graviton propagator, decompose

in terms of the three-point Witten diagrams (4.8) as:

1.

M2pt-bubble
1,0;1,0 (P1, P2) =

g2

π2

∫ ∞
−∞

ν2dν ν̄2dν̄ g
(2)
0,0,0 (ν) g

(0)
0,0,0 (ν̄)

∫
∂AdS

dPdP̄ (C.2)

×A1,0;0,0

∆1,
d
2

+iν̄, d
2

+iν

(
P1, P, P̄

)
· A1,0;0,0

∆2,
d
2
−iν̄, d

2
−iν

(
P2, P, P̄

)
+
g2

π2

∫ ∞
−∞

ν2dν ν̄2dν̄ g
(2)
1,1,0 (ν) g

(0)
0,0,0 (ν̄)

∫
∂AdS

dPdP̄

×A1,0;1,0

∆1,
d
2

+iν̄, d
2

+iν

(
P1, P, P̄

)
· A1,0;1,0

∆2,
d
2
−iν̄, d

2
−iν

(
P2, P, P̄

)
+
g2

π2

∫ ∞
−∞

ν2dν ν̄2dν̄ g
(2)
1,0,0 (ν) g

(0)
0,0,0 (ν̄)

∫
∂AdS

dPdP̄

×A1,0;1,0

∆1,
d
2

+iν̄, d
2

+iν

(
P1, P, P̄

)
· A1,0;0,2

∆2,
d
2
−iν̄, d

2
−iν

(
P2, P, P̄

)
+
g2

π2

∫ ∞
−∞

ν2dν ν̄2dν̄ g
(2)
1,0,0 (ν) g

(0)
0,0,0 (ν̄)

∫
∂AdS

dPdP̄

×A1,0;0,2

∆1,
d
2

+iν̄, d
2

+iν

(
P1, P, P̄

)
· A1,0;1,0

∆2,
d
2
−iν̄, d

2
−iν

(
P2, P, P̄

)
+
g2

π2

∫ ∞
−∞

ν2dν ν̄2dν̄ g
(2)
0,0,2 (ν) g

(0)
0,0,0 (ν̄)

∫
∂AdS

dPdP̄

×A1,0;0,2

∆1,
d
2

+iν̄, d
2

+iν

(
P1, P, P̄

)
· A1,0;0,2

∆2,
d
2
−iν̄, d

2
−iν

(
P2, P, P̄

)
,

2.

M2pt-bubble
1,0;0,1 (P1, P2) =

g2

π2

∫ ∞
−∞

ν2dν ν̄2dν̄ g
(2)
1,1,0 (ν) g

(0)
0,0,0 (ν̄)

∫
∂AdS

dPdP̄ (C.3)

×A1,0;1,0

∆1,
d
2

+iν̄, d
2

+iν

(
P1, P, P̄

)
· A0,1;1,0

∆2,
d
2
−iν̄, d

2
−iν

(
P2, P, P̄

)
+
g2

π2

∫ ∞
−∞

ν2dν ν̄2dν̄ g
(2)
1,0,0 (ν) g

(0)
0,0,0 (ν̄)

∫
∂AdS

dPdP̄

×A1,0;0,2

∆1,
d
2

+iν̄, d
2

+iν

(
P1, P, P̄

)
· A0,1;1,0

∆2,
d
2
−iν̄, d

2
−iν

(
P2, P, P̄

)
,
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3.

M2pt-bubble
0,1;1,0 (P1, P2) =

g2

π2

∫ ∞
−∞

ν2dν ν̄2dν̄ g
(2)
1,1,0 (ν) g

(0)
0,0,0 (ν̄)

∫
∂AdS

dPdP̄ (C.4)

×A0,1;1,0

∆1,
d
2

+iν̄, d
2

+iν

(
P1, P, P̄

)
· A1,0;1,0

∆2,
d
2
−iν̄, d

2
−iν

(
P2, P, P̄

)
+
g2

π2

∫ ∞
−∞

ν2dν ν̄2dν̄ g
(2)
1,0,0 (ν) g

(0)
0,0,0 (ν̄)

∫
∂AdS

dPdP̄

×A0,1;1,0

∆1,
d
2

+iν̄, d
2

+iν

(
P1, P, P̄

)
· A1,0;0,2

∆2,
d
2
−iν̄, d

2
−iν

(
P2, P, P̄

)
,

4.

M2pt-bubble
0,1;0,1 (P1, P2) =

g2

π2

∫ ∞
−∞

ν2dν ν̄2dν̄ g
(2)
1,1,0 (ν) g

(0)
0,0,0 (ν̄)

∫
∂AdS

dPdP̄ (C.5)

×A0,1;1,0

∆1,
d
2

+iν̄, d
2

+iν

(
P1, P, P̄

)
· A0,1;1,0

∆2,
d
2
−iν̄, d

2
−iν

(
P2, P, P̄

)
,

The three-point Witten diagrams (4.8) can be straightforwardly evaluated in the present

case, in particular since the three-point conformal structure generated is unique. We have:

1.

A1,0;0,0
∆1,∆2,∆3

(y1, y2, y3)

= B (0, 0, 2; 0; ∆1,∆2,∆3 − 2) [[O∆1,0 (y1)O∆2,0 (y2)O∆3,2 (y3, z)]](0) , (C.6)

2.

A1,0;1,0
∆1,∆2,∆3

(y1, y2, y3) = f1,0;1,0
∆1,∆2,∆3

[[O∆1,0 (y1)O∆2,0 (y2)O∆3,0 (y3)]](0) (C.7a)

f1,0;1,0
∆1,∆2,∆3

= 2

(
∆2 + 1− d

2

)
2

C∆2+2,0

C∆2,0
B (0, 0, 0; 0; ∆1,∆2,∆3) , (C.7b)

3.

A0,1;0,2
∆1,∆2,∆3

(y1,y2,y3) = f0,1;0,2
∆1,∆2,∆3

[[O∆1,0 (y1)O∆2,0 (y2)O∆3,0 (y3)]](0) , (C.8a)

f0,1;0,2
∆1,∆2,∆3

= 2

[
∆2(∆2 +1)∆2

3

+
1

4
(∆1−∆2−∆3)(−d+∆1 +∆2 +∆3)

×(d(−∆1 +∆2 +∆3 +2)+(∆1 +∆2−∆3)(∆1−∆2 +∆3))

]
×B(0,0,0;0;∆1,∆2,∆3) , (C.8b)

4.

A0,1;1,0
∆1,∆2,∆3

(y1, y2, y3) = f0,1;1,0
∆1,∆2,∆3

[[O∆1,0 (y1)O∆2,0 (y2)O∆3,0 (y3)]](0) (C.9a)

f0,1;1,0
∆1,∆2,∆3

= 2 (d+ 1) B (0, 0, 0; 0; ∆1,∆2,∆3) . (C.9b)
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Putting everything together in (C.1) gives:

M2pt-bubble (y1, y2) =

∫ ∞
−∞

dνdν̄F2pt-bubble
TT (ν, ν̄)K

(0,0)
2;0,0 (ν, ν̄; y1, y2)

+

∫ ∞
−∞

dνdν̄F2pt-bubble
contact (ν, ν̄)K

(0,0)
0;0,0 (ν, ν̄; y1, y2) , (C.10)

with the usual traceless and transverse contribution (3.29):

F2pt-bubble
TT (ν, ν̄) = g2 ν2

π
[
ν2 +

(
d
2

)2] ν̄2

π
[
ν̄2 +

(
∆− d

2

)2]
× B

(
0, 0, 2; 0; ∆1,

d

2
+ iν̄,

d

2
+ iν − 2

)
B

(
0, 0, 2; 0; ∆2,

d

2
− iν̄, d

2
− iν − 2

)
, (C.11)

and purely contact contribution:

F2pt-bubble
contact (ν, ν̄) (C.12)

=g2 ν
2ν̄2

π2
g

(0)
0,0,0 (ν̄)

[
g

(2)
1,1,0 (ν)f1,0;1,0

∆1,
d
2

+iν̄, d
2

+iν
f1,0;1,0

∆2,
d
2
−iν̄, d

2
−iν+g

(2)
1,0,0 (ν)f1,0;1,0

∆1,
d
2

+iν̄, d
2

+iν
f1,0;0,2

∆2,
d
2
−iν̄, d

2
−iν

+g
(2)
1,0,0 (ν)f1,0;0,2

∆1,
d
2

+iν̄, d
2

+iν
f1,0;1,0

∆2,
d
2
−iν̄, d

2
−iν +g

(2)
0,0,2 (ν)f1,0;0,2

∆1,
d
2

+iν̄, d
2

+iν
f1,0;0,2

∆2,
d
2
−iν̄, d

2
−iν

+
1

2
(d−2)

(
g

(2)
1,1,0 (ν)f1,0;1,0

∆1,
d
2

+iν̄, d
2

+iν
f0,1;1,0

∆2,
d
2
−iν̄, d

2
−iν +g

(2)
1,0,0 (ν)f1,0;0,2

∆1,
d
2

+iν̄, d
2

+iν
f0,1;1,0

∆2,
d
2
−iν̄, d

2
−iν

+g
(2)
1,1,0 (ν)f0,1;1,0

∆1,
d
2

+iν̄, d
2

+iν
f1,0;1,0

∆2,
d
2
−iν̄, d

2
−iν + g

(2)
1,0,0 (ν)f0,1;1,0

∆1,
d
2

+iν̄, d
2

+iν
f1,0;0,2

∆2,
d
2
−iν̄, d

2
−iν

)
+

1

4
(d−2)2 g

(2)
1,1,0 (ν)f0,1;1,0

∆1,
d
2

+iν̄, d
2

+iν
f0,1;1,0

∆2,
d
2
−iν̄, d

2
−iν

]
,

which arises from considering the full propagator (4.3) as opposed to just its traceless and

transverse part (3.26).

D Full single-cut bubble diagrams

In this appendix we present some examples of the single-cut bubble diagrams considered

in section 4.2.1 using the full bulk-to-bulk propagator — i.e. including all contact terms.

We work with Fronsdal higher-spin fields ϕs in the de Donder gauge:[
(∇ · ∂)− 1

2
(u · ∇) (∂u · ∂u)

]
ϕs (x, u) = 0. (D.1)

It is useful to express the double-traceless Fronsdal field in terms of its traceless components:

ϕs (x, u) = ϕ̃s (x, u) +
u2

2 (d− 3 + 2s)
ϕ′s (x, u) , (D.2)

where

(∂u · ∂u)ϕs (x, u) = ϕ′s (x, u) , (∂u · ∂u) ϕ̃s (x, u) = (∂u · ∂u)ϕ′s (x, u) = 0. (D.3)
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The s− s′ − 0 cubic coupling in de Donder gauge then reads [39, 59]:49

Vs,s′,0 = gs,0,s′

[
Ys1Ys

′
3 ϕ̃sϕ̃s′φ− (s− s′)

(
s

2

)
d− 4 + s+ s′

d− 3 + 2s
Ys−2

1 Ys′2 ϕ
′
sϕ̃s′φ

−(s′ − s)
(
s′

2

)
d− 4 + s+ s′

d− 3 + 2s′
Ys1Ys

′−2
3 ϕ̃sϕ

′
s′φ

]
, s ≥ s′ . (D.4)

Notice that above we have only displayed the terms at most linear in the traces of the

Fronsdal fields, since terms involving two traces do not contribute to bubble diagrams with

one scalar propagating in the loop. Furthermore, in order to avoid double counting of

vertices we assume s ≥ s′. One can then see that if the exchanged spin inside the loop is

greater than the external spin, the contact contribution generated by the trace terms in

the vertex changes sign with respect to the diagrams where the internal spin is lower than

the external one.

For this computation we will use the following result for Witten diagrams involving

traceless symmetrised gradients of harmonic functions:∫
AdSd+1

dXY2
1Y2

3 Kd,2K∆2,0 (w3 ·∇3)2K∆3,0 (D.5)

=−
2(∆3−1)∆3(∆2−∆3−3)(∆2−∆3 +2)

(
∆2

2 +∆2−(∆3−4)(∆3 +1)
)

(∆2−∆3−1)(∆2−∆3 +1)(∆2−∆3 +5)(∆2 +∆3 +2)

×B(2,0,2;0;d−2,∆2,∆3−2) [[Od,2 (P1,Z)O∆2,0 (P2)O∆3,0 (P3)]](0) ,∫
AdSd+1

dXY4
1Y2

3 Kd+2,4K∆2,0 (w3 ·∇3)2K∆3,0 (D.6)

=− 2(∆3−1)∆3(∆2−∆3−7)

(∆2−∆3−1)(∆2−∆3 +1)(∆2−∆3 +9)(∆2 +∆3−1)(∆2 +∆3 +6)

×
(
(5−2∆2(∆2 +5))∆2

3 +6(∆2(∆2 +5)+2)∆3 +(∆2−1)∆2(∆2 +5)(∆2 +6)+∆4
3−6∆3

3

)
(∆2−∆3−1)(∆2−∆3 +1)(∆2−∆3 +9)(∆2 +∆3−1)(∆2 +∆3 +6)

×B(4,0,2;0;d−2,∆2,∆3−2) [[Od+2,4 (P1,Z)O∆2,0 (P2)O∆3,0 (P3)]](0) .

D.1 2-(20)-2

In this case the coupling (like for all s−s−0 couplings which are of the R2 form) is traceless

with respect to the s′ = 2 leg. Following the same approach as in section 4.1, including

all terms in the graviton propagator (4.3) we obtain the following spectral integral for the

single-cut in d = 3:

γ2,2 = −g2
2,0,2

∫ ∞
−∞

dν1

(
ν13

1

51840π3
+

23ν11
1

103680π3
− 5993ν9

1

829440π3
− 24491ν7

1

165888π3
− 12295649ν5

1

13271040π3

− 56596249ν3
1

26542080π3
− 51048983ν1

212336640π3
− 1024ν1

135π3
(
4ν2

1 + 33
)) tanh(πν1)sech(πν1) . (D.7)

49See also [117] for other recent developments on off-shell interactions of higher-spin gauge fields, which

includes interactions the Maxwell-like formulation [118, 119].
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which, apart from the rightmost term on the second line, can be evaluated analytically

using the techniques developed in this work. The part of the integral which we are able to

evaluate analytically gives

γan.
2,2 =

1757

4320π2
∼ 0.0412086 g2

2,0,2 , (D.8)

while the total result is given numerically by:

γfull
2,2 = 0.0432286 g2

2,0,2 . (D.9)

It is interesting to compare the above result with the TT contribution (4.31). The latter is:

γ
∆+∆−
2,2 ∼ 253

480π2
g2

2,0,2 , (D.10)

and differs from the full result by |γfull
2,2 − γTT

2,2 | ∼ 0.0101761 g2
2,0,2.

D.2 4-(20)-4

In this case using the full graviton propagator (4.3) we have

γ2,4 =−g2
2,4,0

∫ ∞
−∞

dν1 ν1

(
4ν2

1 +1
)(

4ν2
1 +25

)(
4ν2

1 +49
)(

4ν2
1 +81

)(
4ν2

1 +121
)(

4ν2
1 +169

)
×
(
4ν2

1 +225
) (256ν8

1−20224ν6
1−778144ν4

1−8790256ν2
1−28691327

)
3262849744896000π3

(
4ν2

1 +33
) , (D.11)

which can be evaluated analytically apart from the term 1274544128ν1

2701125π3(4ν2
1+33)

. The part of the

integral which we are able to evaluate analytically gives

γan.
2,2 =

3938687

105840π2
∼ 3.77053 g2

4,2,0 , (D.12)

while the total result is given numerically by:

γfull
4,2 = 3.74762 g2

4,2,0 . (D.13)

The TT contribution (4.31) in this case is

γ
∆+∆−
4,2 ∼ 87491

2352π2
g2

4,2,0 , (D.14)

which differs from the full result by |γfull
4,2 − γTT

4,2 | ∼ 0.0213821 g2
4,2,0.
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[108] K. Lang and W. Rühl, The critical O(N) σ-model at dimension 2 < d < 4 and order 1/n2:

operator product expansions and renormalization, Nucl. Phys. B 377 (1992) 371 [INSPIRE].

[109] E.D. Skvortsov, On (un)broken higher-spin symmetry in vector models, in Proceedings,

International Workshop on Higher Spin Gauge Theories, Singapore, 4–6 November 2015,

World Scientific, Singapore, (2017), pg. 103 [arXiv:1512.05994] [INSPIRE].

[110] S. Giombi and V. Kirilin, Anomalous dimensions in CFT with weakly broken higher spin

symmetry, JHEP 11 (2016) 068 [arXiv:1601.01310] [INSPIRE].

[111] R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal bootstrap in Mellin space,

Phys. Rev. Lett. 118 (2017) 081601 [arXiv:1609.00572] [INSPIRE].

[112] T. Leonhardt, W. Rühl and R. Manvelyan, The group approach to AdS space propagators: a

fast algorithm, J. Phys. A 37 (2004) 7051 [hep-th/0310063] [INSPIRE].

[113] L.F. Alday, Large spin perturbation theory for conformal field theories, Phys. Rev. Lett. 119

(2017) 111601 [arXiv:1611.01500] [INSPIRE].
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