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Abstract

Autotrophic denitrification (AuDen) is an efficient, convenient and eco-friendly biological 

process for the treatment of nitrate-contaminated organic-deficient waters. AuDen can be 

applied as a unique process or complement the conventional denitrification with organics, 

reducing the risk of organic carbon breakthrough in the effluent and formation of undesirable 

byproducts downstream (e.g. trihalomethanes). A wide range of inorganic compounds can act 

as electron donor for AuDen. The most used electron donors include hydrogen gas and 

reduced sulfur compounds, i.e. elemental sulfur, sulfide and thiosulfate. Recently, the 

denitrification potential of certain contaminants (such as sulfite, thiocyanate, arsenite and 

manganese) and inorganic wastes (such as biogenic elemental sulfur from biogas upgrading) 

has been revealed and attracted interest for developing technologies that combine nitrate 

removal with water detoxification. This paper critically reviews the state of the art of the 

most used electron donors for AuDen and highlights recent advances on the application of 

novel inorganic compounds, reactor configurations and microorganisms to support 

denitrification. Criteria and guidelines for the selection of a suitable electron donor are 

provided.
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1 Introduction

Nitrate (NO3
-) is one of the most common water contaminants and a serious environmental 

concern in many areas of the world [1]. Over the last decades, NO3
- concentrations in 

American and European rivers have dramatically increased, resulting in up to 15-fold higher 

concentrations than 100 years ago [2]. NO3
- contamination of the aquatic environments is 

mainly due to anthropogenic activities, e.g. the massive use of fertilizers in agriculture [3] 

and nitrogen-based chemicals (e.g. ammonium nitrate and nitric acid) in the industry [4] as 

well as intense livestock farming and on-site sewage disposal [5]. NO3
- in drinking water is a 

threat to human health, since an excessive intake increases the risk of severe diseases such as 

infantile methemoglobinemia [6], non-Hodgkin’s lymphoma [7], gastric cancer [8] and 

cardiac diseases [9]. In order to prevent potential health issues linked to nitrate 

contamination, the European Commission (Drinking Water Directive 98/83/EC) and the US 

Environmental Protection Agency [10] have set the maximum admissible NO3
- concentration 

in drinking water to 11.3 and 10 mg N-NO3
- L-1, respectively.

Biological denitrification is a more cost-effective and environmentally friendly NO3
- removal 

method than physicochemical processes such as ion exchange, adsorption and reverse 

osmosis as it requires a limited amount of energy and chemicals [11]. On the other hand, 

denitrifying microorganisms can be very sensitive to the physical and chemical parameters of 

the contaminated water, which cannot be too far from the optimal values. Nevertheless, 

biological denitrification has been widely used for the treatment of several nitrate-rich 

industrial wastewaters [12–14]. Additionally, biological denitrification may be intended to 

oxidize excess organic matter and/or toxic pollutants such as hydrogen sulfide (H2S), 
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trivalent arsenic (As3+) or cyanide (CN-), thus reducing their toxicity or completely remove 

these pollutants.

Denitrifying bacteria can be heterotrophs, autotrophs or mixotrophs, depending on whether 

they gain their energy from the oxidation of organic or inorganic compounds, or both. 

Methanol, ethanol and acetic acid are readily degradable organic substrates particularly 

suitable for the denitrification of drinking water [15,16]. In the last years, hydrogen gas (H2) 

and reduced inorganic sulfur compounds (RISCs), such as elemental sulfur (S0), sulfide (S2-) 

and thiosulfate (S2O3
2-), have been widely used as electron donors for autotrophic 

denitrification (AuDen) in batch and continuous systems [17]. The effectiveness of pyrite 

(FeS2) [18], thiocyanate (SCN-) [19], ferrous iron (Fe2+) [20] and As3+ [21] as energy sources 

for denitrifiers has been explored as well. The use of sulfite (SO3
2-) as electron donor for 

AuDen has recently gained increasing attention as well [22].

The choice of the electron donor strongly affects the biological denitrification kinetics. The 

electron donor concentration, microbial affinity, hydrophilicity and particle size must be 

carefully evaluated in order to achieve the desired denitrification rate and efficiency [23,24]. 

Additionally, the choice of the inorganic carbon source, i.e. carbonate (CO3
2-), bicarbonate 

(HCO3
-) or carbon dioxide (CO2), is strictly related to the selected electron donor, microbial 

culture and reactor configuration [25]. 

The past few years have seen an increasing interest and important advances in investigating 

the feasibility and effectiveness of novel electron donors for AuDen [22,26], combination of 

electron donors for mixotrophic denitrification [27] and improving the denitrification kinetics 

and process feasibility under harsh conditions [28–30]. 

This paper overviews the electron donors for autotrophic denitrification by discussing 

chemical and biological aspects of twelve different inorganic compounds, i.e. hydrogen gas, 
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elemental sulfur, sulfide, thiosulfate, sulfite, biogenic elemental sulfur, pyrite, thiocyanate, 

zero-valent iron, ferrous iron, arsenite and manganese. Their advantages, drawbacks, 

bioreactor applications and criteria for appropriate selection are discussed as well.

2 Overview of denitrification

2.1 Microbiology and reaction stoichiometry

Biological denitrification is a respiratory process (also known as dissimilatory NO3
- reduction 

to N2) occurring in four sequential steps catalyzed by specific enzymes (Fig. 1). Unlike 

heterotrophic denitrification, AuDen produces acidity except when H2, S2-, SCN- or Mn2+ are 

used as electron donors (Table 1). Autotrophic denitrifiers are randomly distributed within 

the α-, β-, γ-, and ε-Proteobacteria and have been isolated from both natural habitats and 

anthropogenic environments [31]. Table 2 provides a non-restricted list of identified 

Proteobacteria able to support AuDen with various inorganic electron donors.

Fig. 1.

Table 1.

Table 2.

2.2 Environmental parameters

Anoxic conditions are required for denitrification since dissolved oxygen (DO) can inhibit the 

synthesis of the denitrification enzymes (Fig. 1). In particular, nitrite reductase (NiR) and 

nitrous oxide reductase (NoS) are more sensitive to O2 than nitrate reductase (NaR) and their 

inhibition at high DO concentrations results in the accumulation of denitrification 

intermediates, i.e. NO2 and nitrous oxide (N2O) [73–75]. Denitrification usually occurs at 

redox potentials (ORP) between -100 and +100 mV, although stable and complete AuDen has 

been reported at ORP values lower than -200 mV as well [76]. However, ORP values below -

250 mV should be avoided as they may trigger the bacterial competition for common electron 
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donors, e.g. H2 [77]. Temperatures around 30°C are usually optimal for denitrifiers, while 

lower temperatures may significantly reduce the denitrification rate and efficiency [78]. 

Acidic pH values also limit the denitrification rate and increase the concentration of harmful 

intermediates such as N2O [79,80]. Excess pH increase and water hardness can also affect 

bacterial metabolism and cause mineral precipitation [81].

2.3 Inorganic electron donors for denitrification

Drinking water from rivers, lakes, aquifers and man-made reservoirs is commonly organic-

deficient. Similarly, wastewaters from industrial activities such as mineral processing, 

electroplating, semiconductor manufacturing and power plants contain negligible 

concentrations of organic compounds [11]. As a result, the addition of external organic 

carbon may be required in conventional wastewater treatment plants. The addition of 

supplemental organic carbon may result in a higher sludge production and potential formation 

of extremely toxic organic compounds during chlorination, such as trihalomethanes (THMs) 

and haloacetic acids (HAAs) [82]. Thus, performing denitrification with autotrophic bacteria 

is an appealing alternative. 

Table 3 lists the denitrification rates observed with different inorganic electron donors and 

bioreactor systems. The choice of the electron donor and bioreactor has a substantial impact 

on the denitrification kinetics. High denitrification rates have been achieved using H2 or 

RISCs as electron donor [83,84], whereas much lower rates have been observed with other 

inorganic compounds [85,86]. 

Sulfur-containing contaminants such as H2S, S2O3
2-, SO3

2-  and microbially produced S0 can 

be removed with NO3
- in wastewater treatment plants by coupling biogas desulfurization with 

denitrification [87]. Minerals such as S0 and Mn have low cost and are readily available as 

mined materials. Additionally, AuDen can also be applied to oxidize toxic compounds such 
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as As3+ and SCN-, which can occur both in drinking and process water due to natural 

biogeochemical reactions [88] and mining activity [89], respectively. 

Autotrophic denitrification is usually performed in attached-growth systems such as 

membrane biofilm reactors (MBfR), biofilters and fluidized bed reactors (FBRs) (Table 3) as 

they can assure extremely high biomass concentrations and a sheltered environment to the 

slow-growing autotrophic denitrifers [17]. Biomass yield depends on the electron donor used 

and is usually lower when using inorganic electron donors (Table 1).

Table 3.

3 Reduced inorganic sulfur compounds as electron donors for AuDen 

RISCs such as S0, S2-, S2O3
2- and SO3

2- are often regarded as environmental pollutants. For 

this reason, the ability of some bacteria to use these compounds as electron donors for NO3
− 

reduction has gained increasing interest. Table 1 reports the complete denitrification 

reactions with the three most used electron donors among RISCs, i.e. S0, S2- and S2O3
2-. The 

main drawback of sulfur-based denitrification is SO4
2- production. Different strategies to limit 

the SO4
2- concentration in denitrification effluents are also discussed in this section.

3.1 Sulfide

Sulfide can exist in water as hydrogen sulfide (H2S) and/or non-volatile ionic species, i.e. 

hydrosulfide (HS-) and sulfide (S2-) ions depending on pH. Even at low concentrations, H2S 

represents a health and environmental concern because of its toxicity, odor and corrosive 

properties [96]. H2S generation by sulfate reducing bacteria (SRB) is a major problem in 

water distribution pipes, sewers, municipal wastewater treatment plants [97], water injected 

oil reservoirs [98] and sediments in urban areas [99]. 

Eqs. 1-4 show the complete and partial biological oxidation of S2- to SO4
2- and S0, 

respectively, with either NO3
- or NO2

- as the electron acceptor [93]. NO2
- can also be used as 
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electron acceptor for sulfide oxidation, resulting in the so-called autotrophic denitritation 

[100]. The complete oxidation of sulfide to SO4
2- (Eqs. 1 and 2), transferring eight electrons 

per atom of sulfur, is among the most energetically attractive processes for chemoautotrophs 

[68,101]. When sulfide-rich anoxic sediments were treated by NO3
- addition to remove 

recalcitrant organic residues, autotrophic denitrifiers dominated the whole process [99,102]. 

5 HS- + 8 NO3
- + 3 H+ → 5 SO4

2- + 4 N2 + 4 H2O                                (1)

3 HS- + 8 NO2
- + 5 H+ → 3 SO4

2- + 4 N2 + 4 H2O                                (2)

5 HS- + 2 NO3
- + 7 H+ → 5 S0 + N2 + 6 H2O                                   (3)

3 HS- + 2 NO2
- + 5 H+ → 3 S0 + N2 + 4 H2O                                   (4)

Many authors have reported the formation of S0 during sulfide-based denitrification 

depending on NO3
- or NO2

- concentration. The complete oxidation of S2- to SO4
2- is 

thermodynamically more favorable than the partial oxidation to S0 (Eqs. 3 and 4), although 

the occurrence of S0 as a transient product in the oxidation pathway to SO4
2- has been 

frequently observed [93,103]. Sulfide conversion to S0 consumes four times less NO3
- and 

NO2
- than its complete oxidation to SO4

2- (Eqs. 1-4), resulting in a preferential process under 

electron acceptor limitation. In these conditions, the oxidation of excess sulfide is favored 

due to its higher bioavailability to denitrifiers compared to S0, which accumulates over time. 

Cardoso et al. [103] observed complete sulfide oxidation to SO4
2- when NO3

- was 

supplemented at stoichiometric or higher N/S ratios, whereas limiting NO3
- concentrations 

resulted in the formation of a colloidal S0 precipitate. Transient S0 accumulation with both 

NO3
- and NO2

- as electron acceptors has been reported also at stoichiometric N/S ratios [93]. 

Evidence suggested that the produced S0 was being used as complementary electron donor. 

High sulfide loadings also promote partial sulfide oxidation to S0. Mahmood et al. [100] 

observed an increasing S0 accumulation and a decreasing SO4
2- production in a sulfide-
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oxidizing UASB reactor operated at nearly stoichiometric N/S ratios when the sulfide 

concentration was increased stepwise from 32 to 1920 mg L-1. 

Sulfide supplementation at increasing loading rates under mixotrophic conditions was shown 

to increase the rates of both autotrophic denitrification and S0 accumulation as well as the 

yield of sulfide conversion to S0 [104]. A possible explanation is that acetate and partial 

sulfide oxidation, being faster than S0 oxidation to SO4
2-, could drive both the NO3

- and NO2
- 

reduction steps. The activity of heterotrophic denitrifiers such as Pseudomonas sp. C27 might 

have a primary role in sulfur oxidation under mixotrophic conditions, as they are capable of 

partial sulfide oxidation [105]. S0 accumulation by these so-called heterotrophic sulfide-

oxidizing nitrate-reducing bacteria (h-soNRB) was observed to be enhanced at high sulfide 

and acetate concentrations, whereas at low-sulfide conditions complete sulfide oxidation by 

autotrophic sulfur-oxidizing bacteria such as T. denitrificans preferably occurs [106].

Unlike the other RISCs, sulfide results in alkalinity production when used as electron donor, 

which can be advantageous for the treatment of slightly acidic wastewaters. The complete 

reduction of 1 mg N-NO3
- L-1 produces 1.66 mg L-1 of alkalinity as CaCO3 (Table 1). 

Additionally, the complete oxidation of sulfide produces less SO4
2- compared to both S0 and 

S2O3
2- as only 5.58 mg SO4

2- L-1 is produced per mg N-NO3
- L-1, which makes sulfide a 

promising electron donor for drinking water denitrification if excess sulfide is prevented.

Despite its high potential as an electron donor, sulfide is a known inhibitor of both 

heterotrophic [107] and autotrophic [103] denitrification. Low sulfide levels can significantly 

impact the reduction of N2O, a potent greenhouse gas [80], whereas less influence has been 

observed on NO3
- and NO2

- reduction. Pan et al. [107] showed 50% inhibition of N2O 

reduction by methanol-utilizing denitrifiers exposed to 0.04 and 0.1 mg S-H2S L-1 before and 

after adaptation to sulfide, respectively. A 50% inhibition on NO2
- reduction was observed at 

only 2.0 mg S-H2S L-1, which however did not affect NO3
- reduction. In another study, S2- 
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concentrations of 240 and 320 mg L-1 completely inhibited autotrophic NO3
- reduction in 

batch bioassays [103]. As a result, sulfide levels in denitrifying bioreactors must be 

controlled carefully to avoid process inhibition. Nitrogen loadings in sulfide-fed denitrifying 

bioreactors are generally lower than those applied to S0-based biofilm reactors to limit sulfide 

levels. This means that at high NO3
- concentrations bioreactors should be operated under 

sulfide limitation, which would result in incomplete denitrification. In this condition, sulfide 

concentration in the effluent would be extremely low and post-treatment for excess sulfide 

removal not necessary.

3.2 Elemental sulfur

3.2.1 Chemically synthesized S0

Chemically synthesized S0 (S0
chem) has been the most used electron donor for AuDen among 

RISCs so far, because it is inexpensive, easy to handle and transport and is able to act both as 

a source of energy and biomass support [17]. S0
chem is poorly soluble in water and commonly 

used in granules forming the carrier material of packed-bed bioreactors. According to the 

stoichiometry of S0-based denitrification (Table 1), the reduction of 1 mg N-NO3
- generates 

7.83 mg SO4
2- L-1 and consumes 3.36 mg L-1 of alkalinity as CaCO3. Alkalinity consumption 

may result in a large pH decrease, which could inhibit the process if the pH drops below 6. 

The addition of an external buffer is often required to counteract the pH decrease. Limestone 

has been widely used in reactive barriers both as pH buffer and inorganic carbon source for 

autotrophic growth. The sulfur-limestone autotrophic denitrification (SLAD) process has 

been widely used both for on-site and off-site ground and waste water treatment, since it 

combines ease of use, good efficiency and convenience [17]. Several types of solid-phase 

sulfur (sulfur chips, flakes, lentils and pop-corn sulfur) and sources of inorganic carbon 

(limestone, marble chips and crushed oyster shells) have been used in SLAD columns 

[108,109]. However, excess CaCO3 supplementation increases hardness and induces 
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phosphorus precipitation, which may limit bacterial growth. Bicarbonate is a soluble and 

more versatile alternative to limestone both as alkalinity and carbon source [17]. Recently, 

mixotrophic denitrification has gained increasing attention as a way to limit alkalinity 

consumption and sulfate production as well as increase the denitrification kinetics [110,111]. 

The main drawback related to the use of S0
chem as electron donor is its extremely low aqueous 

solubility (0.16 μM in pure water at 25°C), which severely limits sulfur mass transfer from 

the solid to the aqueous phase and, thus, the rates of S0
chem biological oxidation [23,112]. The 

size of S0
chem granules affects the rates of sulfur oxidation both in suspended or attached 

growth systems as increasing the specific surface area (SSA) of the particles enhances sulfur 

mass transfer from the solid to the liquid phase and provides more available surface to 

microorganisms for biofilm development [113]. Sierra-Alvarez et al. [23] quantified the 

increase in denitrification rate normalized to the S0
chem surface at 26.4 mmol NO3

-/m2 d in a 

SLAD column, while Di Capua et al. [24] calculated a size normalized denitrification rate of 

about 1 μg N-NO3
− L-1 d-1 per μm of S0

chem particle size in suspension. 

The use of S0
chem also results in a higher NO2

- accumulation compared to S2-, with potential 

inhibition on denitrification [103]. An important aspect to consider when operating S0-packed 

biofilters is that S0
chem may undergo biological disproportionation into SO4

2- and H2S due to 

anaerobic conditions (absence of free and molecular oxygen) potentially occurring under low 

NO3
- loading rates [109]. In full scale SLAD reactors (Fig. 2), S0

chem disproportionation may 

result in considerable H2S emissions into the environment as well as clogging and head loss 

downstream due to colloidal S0 precipitation [114]. Pre-deaeration (Fig. 2) can mitigate bed 

clogging as it avoids the N2 supersaturation and reduces aerobic growth in the sulfur bed. 

Similarly, effluent recirculation (Fig. 2) can reduce bed clogging as it increases the upflow 

water velocity and, thus, the S0
chem solubility [115].

Fig. 2.
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3.2.2 Biogenic S0

Biogenic S0 (S0
bio) is largely produced as a waste product during biological H2S removal 

from natural gas or industrial waste streams, e.g. wastewater from metal refineries, flue-gases 

from coal-fired power plants and biogas from anaerobic digestion [117]. The process is 

carried out by a community of Thiobacillus or Acidithiobacillus bacteria that partially oxidize 

the H2S to S0 particles of approximately 0.1-1 μm, which are stabilized by organic matter and 

form aggregates [118]. S0
bio can also be produced under anaerobic denitrifying conditions 

under low N/S ratios and high sulfide loadings, as described in Section 3.1. The 

accumulation of S0
bio in bioreactors is responsible for pipe blockage and secondary pollution 

and, thus, S0
bio isolation is required [119]. Plain sedimentation is the cheapest method to 

isolate S0
bio, although flocculation, filtration, extraction and flotation have shown higher 

efficiency due to the colloidal properties of S0
bio particles [120].

The S0
bio particles produced by chemotrophic bacteria are composed of a core of 

orthorhombic S0 rings covered by a layer of long-chain polymers (i.e. polythionates, 

polysulfides and proteins) with hydrophilic properties, which disturb the particle aggregation 

and increase their dispersion in solution [121]. This particular structure provides a higher 

SSA, solubility and colloidal stability compared to S0
chem particles. These properties enhance 

the S0 oxidation rates especially in suspension and have been primarily exploited to enhance 

metal bioleaching from contaminated sediments [117].

In a recent study, Di Capua et al. [24] investigated the potential of S0
bio produced by 

Acidithiobacillus bacteria to sustain AuDen by a suspended culture of T. denitrificans in 

batch tests. Results showed that 1.7-fold faster NO3
- removal and 3-fold higher SO4

2- 

production were achieved with S0
bio compared to S0

chem powder. These results were attributed 

to the particle structure of S0
bio, which enhanced S0

bio bioavailability to microorganisms. 

Unlike S0
chem, S0

bio is suitable for suspended-growth denitrifying bioreactors as it forms 
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colloidal dispersions due to its hydrophilic properties. As a waste and non-toxic product, S0
bio 

is also a more convenient and eco-friendly choice as an electron donor than other RISCs. 

However, the use of S0
bio for denitrification may result in high NO2

- accumulation [24], 

which limits its application to high-strength NO3
- contaminated wastewaters and demands an 

accurate control of the NO2
- concentrations in the effluent.

Although the use of S0
bio can improve the rates of S0-based denitrification with suspended 

cultures, much higher denitrification rates were obtained with more soluble RISCs, i.e. S2O3
2- 

and S2-. Solid/liquid mass transfer thus has an important role in determining the 

denitrification rate also with S0
bio. It is possible that the increase of the denitrification rate 

observed with S0
bio mainly relies on the oxidation of the sulfur-containing polymers adsorbed 

on the surface of S8 crystals. Polysulfides and polythionates (e.g. tetrathionate S4O6
2-) are in 

fact intermediates in the oxidation of RISCs by chemolithotrophic and photoautotrophic 

bacteria and represent a pool of linear bioavailable sulfur utilized in both oxidative and 

reductive sulfur metabolism [122]. Further studies are required to elucidate the effect of 

oxidative processes on the structure of S0
bio particles and on the fate of both core and 

superficial sulfur compounds.

3.3 Thiosulfate

S2O3
2- is usually discharged in industrial effluents as a product of sulfide oxidation. 

Concentrations as high as 3 g S2O3
2- L-1 are produced during the processing of natural gas 

from offshore installations by the oxidation of the H2S present in the natural gas through a 

caustic oxidation process [123]. S2O3
2- is also used in the mining industry as an alternative 

lixiviant to cyanide for gold leaching and can co-occur with NO3
- in mining effluents [124].

Anoxic thiosulfate oxidation with NO3
- as electron acceptor (Table 1) has been recently 

investigated in biofilm reactors under different operating conditions. S2O3
2- showed no 
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inhibitory effects on AuDen up to 2.2 g L-1 [24] and can be successfully used as electron 

donor for the removal of high NO3
- concentrations. Autotrophic denitrifiers and denitrifying 

biofilms cultivated on S2O3
2- demonstrated outstanding performance, robustness and 

resiliency. Complete thiosulfate-driven denitrification and denitritation were performed in 

FBRs at S2O3
2- loading rates as high as 600 and 228 mg L-1 h-1, respectively [83]. Di Capua et 

al. [28,30] demonstrated that high-rate thiosulfate-driven denitrification in a continuous FBR 

was feasible at pH and temperatures as low as 4.75 and 3°C, respectively. Concentrations of 

free and EDTA-complexed nickel as high as 200 and 100 mg L-1 were tolerated by a T. 

denitrificans-dominated FBR biofilm [29], higher than those tolerated by FBR-cultivated 

heterotrophic denitrifiers [125]. Pethkar and Patnikar [126] cultivated a T. thioparus culture 

that tolerated 350 g L-1 silver while oxidizing the S2O3
2- contained in photofilm processing 

wastewater to sulfate and elemental sulfur. Khanongnuch et al. [127] showed that the 

efficiency of anoxic S2O3
2- oxidation with NO3

- as electron acceptor in a FBR recovered to 

80% within 3 days after long-term biofilm cultivation under severe NO3
- starvation (N/S ratio 

of 0.1). However, SO4
2- production limits the use of high concentrations of S2O3

2- since 

11.067 mg SO4
2- L-1 are produced by the reduction of 1 mg N-NO3

- L-1, which is 1.4 and 2.0 

times higher than the sulfate produced using S0 and H2S as electron donors, respectively.

3.4 Pyrite

Pyrite is an ubiquitous mineral in the terrestrial crust and represents a major sink within the 

global biogeochemical cycles of sulfur and iron [128]. The aerobic oxidation of pyrite-

bearing rocks by chemolithotrophic bacteria can generate an enormous amount of sulfuric 

acid and is responsible for serious environmental issues, especially in mining areas where 

mined rocks exposed to oxygen and rainwater generate an extremely acidic surface runoff 

known as acid mine drainage.
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Although pyrite is considered stable under anoxic conditions [129], pyrite-driven 

denitrification emerged as a dominant pathway in NO3
- removal from groundwater even in 

the presence of organic matter. Jørgensen et al. [18] showed that 50% of NO3
- removal from 

pyrite-bearing groundwater sediments could be ascribed to anoxic pyrite oxidation. As a 

result, pyrite-driven denitrification can control nitrate concentrations in groundwater and 

protect shallow aquifers from anthropogenic nitrate contamination. The complete anoxic 

nitrate-dependent pyrite oxidation (Table 1) results from the following two reactions [130]:

5 FeS2 + 14 NO3
- + 4 H+ → 5 Fe2+ + 7 N2 + 10 SO4

2− + 2 H2O                (5)

2 NO3
- + 10 Fe2+ + 12 H+ → N2 + 10 Fe3+ + 6 H2O                        (6)

Partial NO3
- reduction to NO2

- may also occur as follows [38]:

2 FeS2 + 15 NO3
-
 + 7 H2O → 2 Fe(OH)3 + 15 NO2

- + 4 SO4
2−

 + 8 H+          (7)

The reduction of 1 mg N-NO3
- L-1 by pyrite-driven denitrification produces 4.61 mg SO4

2- L-1 

and consumes 1.19 mg L-1 as CaCO3 of alkalinity, which are 41% and 65% lower than the 

values obtained by S0-based denitrification (Table 1). Moreover, the SO4
2- concentration in 

pyritic aquifers has often been found much lower than the stoichiometric amount [131,132]. 

This may be related to the occurrence of side processes such as the partial oxidation of the 

sulfur moiety of FeS2 to S0 [132].

Pyrite is insoluble in water and commonly applied as granular medium in biofilter columns to 

allow the formation of a denitrifying biofilm [17]. Kong et al. [13] compared AuDen with S0 

and FeS2 in two double stage (aerobic/anoxic) biofilters performing the removal of organics, 

total nitrogen and phosphorus. Despite a 9% lower NO3
- removal, the biofilter containing 

pyrite showed a higher ability to maintain the pH and produced 44% less SO4
2- than the 

biofilter packed with S0. From this point of view, denitrification with FeS2 is potentially more 

feasible than S0-based denitrification for the treatment of nitrate-contaminated groundwater. 
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However, the potential release of toxic metals entrapped in the pyrite minerals might limit the 

use of FeS2 for denitrification of drinking water. Pu et al. [133] observed that acid 

pretreatment of pyrite improved the rate of AuDen, probably due to the removal of iron and 

sulfur impurities (potentially toxic to microorganisms) as well as to the roughening of the 

pyrite surface, which facilitates microbial attachment and biofilm formation. In addition, the 

produced Fe(OH)3 might help in the sequestration of toxic metals [95].

Huang et al. [95] recommend the use of FeS over both FeS2 and S0 to support AuDen, as FeS 

was more efficient than FeS2 as electron donor and releases less free sulfide than S0. 

According to Brunet and Garcia-Gil [134], high free sulfide levels might disrupt 

denitrification by driving part of the electron flow from S2− to NH4
+  and induce dissimilatory 

nitrate reduction to ammonium (DNRA).

The limited acid production by pyrite-based denitrification makes the use of limestone in 

biofilters unnecessary and thus results in cost savings. Moreover, pyrite can be used to 

control pH in basic environments (pH > 7.4), since it is generally oxidized producing 

Fe(OH)2 precipitates which buffer the pH of the system [135]:

FeS2 (s) + 18 OH- (aq) → Fe(OH)2 (s) + 2 SO4
2- (aq) + 14 e- + 8 H2O (aq)                    (8)

Due to this property, FeS2 addition is effective in limiting the pH increase during in situ 

groundwater denitrification with organic supplementation [136] and Fe0-assisted 

hydrogenotrophic denitrification [135]. 

3.5 Thiocyanate

Thiocyanate in water can be formed biologically during cyanide detoxification [137] or 

chemically, e.g. during gold cyanidation as a result of the interaction of free cyanide with 

various RISCs present in the ore [138]. The possible industrial uses of SCN- include the 

production of insecticides and herbicides as well as chemical synthesis [35]. 
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SCN- can be used as an electron donor by sulfur-oxidizing neutrophilic bacteria both under 

aerobic and anaerobic conditions [35]. De Kruyff et al. [139] firstly reported that anaerobic 

growth of certain Thiobacillus species on SCN- is possible by using NO3
- as electron 

acceptor. In particular, T. denitrificans is able of complete denitrification with SCN- as 

energy source.

Thiocyanate-driven denitrification consumes acidity and produces NH3, SO4
2- and N2 (Table 

1). Besides T. denitrificans, the ability to grow on SCN- by complete denitrification was 

observed in a few haloalkaliphilic and halophilic bacterial species belonging to the genus 

Thialkalivibrio and Thiohalomonas [35,66]. Bacterial growth on SCN- was observed to be 

3.3-fold slower than on S2O3
2- under both aerobic and anaerobic conditions [35]. 

Nevertheless, the ability of certain denitrifiers to utilize SCN- as secondary energy source 

may result in a competitive advantage over other sulfur-oxidizing bacteria when more 

effective sulfur-containing electron donors, such as S2O3
2- and H2S, are limited or not 

available.

Thiocyanate-driven denitrification could be potentially advantageous for the treatment of 

effluents from mining activities, in which SCN-, NO3
- and acidity often co-occur [4,138]. 

Although the reported thiocyanate-utilizing bacteria are alkaliphiles or neutrophiles [35,66], 

Broman et al. [19] showed that thiocyanate-driven denitrification is feasible at pH and 

temperatures as low as 3.5 and 8°C in an anaerobic continuous culture reactor dominated by 

Thiobacillus. On the other hand, biodegradable but potentially toxic compounds may inhibit 

SCN- biodegradation. Sahariah and Chakraborty [140] reported that SCN- removal via NO3
- 

reduction significantly dropped in an anoxic moving bed biofilm reactor (MBBR) after 

increasing the phenol concentration from 350 to 500 mg L-1. 

NH4
+ accumulation has been observed during anoxic SCN- oxidation in the presence of NO3

-. 

Broman et al. [19] reported that NH4
+ was produced in an anoxic bioreactor fed with SCN- 
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and NO3
- as a result of two potential pathways: 1) biological denitrification via SCN- 

oxidation to CNO- and 2) abiotic CNO- degradation to CO2 and NH4
+. A decrease in 

temperature from 20°C to 8°C and pH from 8-8.5 to 3.5 significantly decreases both NH4
+ 

production and SCN- oxidation [19].

3.6 Sulfite

SO3
2- occurs in nature from chemical or biological reactions involving inorganic and organic 

sulfur compounds as well as from the anaerobic mineralization of organic matter by 

dissimilatory sulfate reduction [141]. SO3
2- is a strong reductant and rapidly reacts with 

oxygen, especially in the presence of transition metal catalysts such as Fe2+ and Cu2+ [142]. 

Despite its high reactivity and potential toxicity, sulfite can be oxidized by microorganisms 

belonging to a large and phylogenetically very diverse group of bacteria and archaea able to 

use RISCs for their chemotrophic or phototrophic growth [143]. The microbial oxidation of 

SO3
2- to SO4

2- can occur through a direct or indirect pathway transferring 2 electrons per 

atom of sulfur [22]. Because SO3
2- is an intermediate in the oxidation pathway of other 

RISCs, a wide variety of sulfur-oxidizing bacteria possess an enzymatic system for sulfite 

oxidation. 

Although there is evidence that SO3
2- can serve as electron donor for denitrification, very 

little research has been conducted on this topic. Adams et al. [144] were the first to report the 

feasibility of sulfite-mediated denitrification. In their study, a pure culture of T. denitrificans 

could reduce NO3
- to gaseous nitrogen products by using SO3

2- as electron donor, which was 

the most effective compound for gas production except sulfide. The highest rates of sulfite-

based denitrification were observed at a pH of 8.5.

SO3
2- supplementation to activated sludge systems or denitrifying biofilters could be carried 

out via dissolution of salts as sodium sulfite (Na2SO3) or bubbling sulfur dioxide (SO2), 

which dissolves in water forming HSO3
- and SO3

2-. As SO3
2- rapidly reacts with oxygen, care 
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must be taken to avoid abiotic oxidation of SO3
2- stocks. Similarly, SO3

2- overdosing should 

be avoided as it will demand for downstream oxygen and chlorine. On the other hand, excess 

SO3
2- can be easily removed by air stripping. According to Sabba et al. [22], a potential 

configuration to implement sulfite-based denitrification could be a MBfR to which sulfur 

dioxide (SO2) is supplied by means of a hollow fiber membrane with a denitrifying biofilm 

on the exterior. This configuration would allow a nearly 100% gas utilization efficiency by 

retaining the gas within the biofilm and serving as a substrate for denitrification.

The potential application of sulfite as supplemental electron donor for biological 

denitrification would address certain challenges due to the anti-microbial properties of SO3
2-. 

While S2O3
2- can be self-inhibitory at high concentrations, little is known about SO3

2- toxicity 

on dominant microorganisms in activated sludge systems (e.g. nitrifying and denitrifying 

bacteria) and the inhibitory thresholds have not yet been identified [22]. Lai et al. [145] 

showed that 0.5 mM SO3
2- increased phosphate uptake and intracellular polyphosphate 

accumulation in activated sludge by 17%, probably due to an increased abundance of 

chemolithotrophic sulfur oxidizers in the sludge biomass or to a stress-response in 

polyphosphate-accumulating bacteria as a result of SO3
2- addition [146]. Interestingly, this 

effect was not observed with other RISCs. The selection for sulfite-oxidizing microorganisms 

might also impact the settling properties of the activated sludge [22] and requires further 

investigation.

4 Hydrogen gas

H2 is mainly produced by reformation of hydrocarbon fuels (e.g. natural gas, oil and coal) and 

water electrolysis, but it can be also biologically produced via dark or photo fermentation 

[147]. H2 is one of the most thermodynamically favorable electron donors for denitrification 

[148] and its high diffusivity through biofilms promotes NO3
- removal in attached-growth 
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systems. Moreover, H2 is easy to remove by air stripping due to its low solubility in water 

(0.182% vH2/vH2O at 20°C and 1 atm) [81]. On the other hand, the relatively high cost, low 

solubility and hazardous handling and storage limit the use of H2 in full-scale plants.

H2 can be used as electron donor by different types of microorganisms, depending on the 

redox potential of the system [77]. ORP values below -250 mV allow the use of H2 by 

methanogenic, sulfate-reducing and homoacetogenic bacteria, whereas ORP values higher 

than -50 mV favor denitrification. Proteobacteria such as Paracoccus denitrificans (Table 2) 

have been widely reported to perform H2-driven denitrification [84,149–151], along with 

Flavobacteria [152] and Sphingobacteria [84]. Pure cultures of Ralstonia metallidurans 

[52,153] and Rhodocyclus sp. [56] have also been used to perform hydrogenotrophic 

denitrification in biofilm reactors. The genera Pseudomonas [45] and Acinetobacter [154] 

have been reported to dominate mixed cultures of hydrogenotrophic denitrifiers.

Optimal pH values for hydrogenotrophic denitrifiers are in the range of 7.6-8.6 [77,155–157]. 

Lower pH values may result in inorganic carbon limitation, whereas higher values may 

inhibit the hydrogenotrophic activity [77,158]. An increase in hardness and alkalinity can be 

detrimental for the process as it can result in pH values exceeding the inhibitory threshold 

and lead to carbonate precipitation which, in turn, may limit H2 and NO3
- mass transfer to the 

biomass. An alkalinity concentration of 1.1 g NaHCO3 L-1 was reported as an optimal 

condition for the process [156]. As hydrogenotrophic denitrification consumes acidity, it can 

be advantageous for the treatment of slightly acidic waters if sufficient inorganic carbon is 

present. Optimal temperatures for hydrogenotrophic denitrifiers are between 25 and 35°C, as 

severe NO2
- accumulation was observed at 25°C and temperatures above 35°C resulted in 

low denitrification rates [159]. 
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4.1 Direct H2 supply

H2 can be delivered directly to bioreactors by bubbling via gas permeable membranes or 

undergo gas/liquid absorption in an external tank (Fig. 2) prior to being delivered in the 

liquid phase to the bioreactor [17]. Alternatively, H2 can be electrolytically produced directly 

in the bioreactor [81]. An efficient H2 utilization is fundamental to achieve high 

denitrification rates and reduce the costs related to hydrogen supply. H2 concentrations above 

0.2 mg L-1 should be maintained in the bioreactor, since lower concentrations can lead to 

NO2
- accumulation [53]. 

4.2 Fe0-assisted hydrogenotrophic denitrification

An alternative strategy for H2 production is the anaerobic zero-valent iron (Fe0 or ZVI) 

corrosion. Fe0 is thermodynamically unstable in water and produces cathodic hydrogen under 

anaerobic conditions (Eq. 9). If NO3
− is present, Fe0 stimulates the chemical reduction of 

NO3
− to NH4

+ (Eq. 10), N2 (Eq. 11) or NO2
- (Eq. 12). All three reactions consume acidity 

and the ratios among the nitrogenous products depend on chemical (e.g. pH) and structural 

(e.g. particle size) factors [36,160]. 

Fe0 + 2 H2O → H2 + Fe2+ + 2 OH−                                                       (9)

4 Fe0 + NO3
− + 7 H2O → 4 Fe2+ + NH4

+ + 10 OH−                                       (10)

5 Fe0 + 2 NO3
− + 6 H2O → 5 Fe2+ + N2 + 12 OH−                                       (11)

Fe0 + NO3
− + 2 H+ → Fe2+ + NO2

- + H2O                                              (12)

Abiotic NO3
- and NO2

- reduction has been observed at pH values ranging from 2 to 11 with 

increasing rates at decreasing pH values [160]. In particular, negligible reduction rates were 

observed at pH ≥ 5 [161]. This can be mainly attributed to H+ limitation and precipitation of 

iron oxides forming a physical barrier on reactive Fe0 sites [160]. The Fe0 particle size also 

influences the rate and efficiency of abiotic NO3
- reduction. Choe et al. [36] showed that 
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complete abiotic Fe0-assisted denitrification is possible by using chemically synthesized 

nanoscale Fe0 (particle size 1-100 nm). In contrast, the use of larger Fe0 particles commonly 

results in a mixture of NH4
+ and N2 as end-products [162,163].

Eq. 11 describes the combined anoxic Fe0 corrosion and biological hydrogenotrophic 

denitrification, which is thermodynamically more feasible than the abiotic NO3
- reduction to 

NH4
+ with Fe0 described by Eq. 10 [164]. As NH4

+ is a pollutant, Fe0-assisted 

hydrogenotrophic denitrification with N2 as the end product is preferable (Eq. 11). However, 

the abiotic reduction of NO3
- to NH4

+ may occur in parallel with biological denitrification, 

resulting in a substantial production of NH4
+. In order to minimize NH4

+ production, Till et 

al. [164] separated Fe0 from NO3
− and a pure culture of Paracoccus denitrificans in a dual-

flask apparatus where H2 could diffuse from one flask to another (Fig. 3). This configuration 

resulted in the complete removal of 25 mg N-NO3
- L-1 within 5-7 days at pH values from 5 to 

9. Biswas and Bose [163] observed that decreasing the concentration of the Fe0 particles 

reduced the abiotic NH4
+ production. On the other hand, lower Fe0 concentrations may also 

limit the hydrogenotrophic denitrification rates and an increase of the HRT of the bioreactors 

may be necessary for complete denitrification.

Fig. 3.

Anaerobic iron corrosion (Eq. 9) and both abiotic (Eq. 10) and biological (Eq. 11) Fe0-

assisted NO3
- reduction produce alkalinity and may increase the pH of the system. 

Hydrogenotrophic activity is inhibited at a pH of 10 or higher [164]. Thus, it is necessary to 

buffer the system against a large pH increase. pH buffering can be accomplished through CO2 

addition, which provides a supplementary carbon source for hydrogenotrophic denitrifiers. 

The use of Fe0 sources with a low SSA (e.g. steel wool) is advantageous as they promote 

more favorable conditions for denitrifiers by limiting the pH increase due to iron corrosion 

and the abiotic NO3
- reduction to NH4

+ [163].
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The combination of both abiotic and biotic Fe0 oxidation has potential advantages for 

denitrification. If oxygen is present, the aerobic Fe0 corrosion can rapidly induce anoxic 

conditions which are favorable for denitrification. Additionally, Fe0 may favor microbial 

activity by removing potential inhibitors such as Cr(VI) [165]. In turn, bacteria can degrade 

the byproducts of the abiotic transformations involving Fe0, e.g. dichloromethane produced 

by carbon tetrachloride hydrogenolysis with Fe0 [166].

5 Ferrous iron

Ferrous iron acts as electron donor in many chemical and biological processes with free 

oxygen as electron acceptor [167]. However, biological and abiotic Fe2+ oxidation occur also 

under anoxic conditions [168], although the abiotic NO3
- reduction via Fe2+ oxidation is not 

prevalent in typical natural environments [169].

In the last 20 years, many denitrifying microorganisms using Fe2+ as electron donor at 

circumneutral pH have been identified (Table 2). Straub et al. [37] showed that denitrifying 

strains grown on aromatic substrates and NO3
- as well as Thiobacillus denitrificans and 

Pseudomonas stutzeri can oxidize Fe2+ as sole or supplemental electron donor in the presence 

of acetate, whereas Thiomicrosprira denitrificans and Paracoccus denitrificans were unable 

of Fe2+-mediated denitrification. Nielsen and Nielsen [20] showed that NO3
- was reduced 

concomitantly with Fe2+ oxidation in a wastewater treatment plant performing chemical 

phosphorus removal with FeCl3. According to the authors, the alternation of aerobic, anoxic 

and anaerobic conditions as well as a short sludge retention time (4-10 days) promoted 

AuDen linked to Fe2+ oxidation. A significant pH dependency was also observed, the Fe2+ 

oxidation rate at pH 8 being about four times higher than at pH 6. 

The iron biochemistry is strongly influenced by the redox potential of the Fe2+/Fe3+ couple, 

which depends on the solution pH and presence of complexing agents. At circumneutral pH, 
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the FeCO3/Fe(OH)3 redox potential is sufficiently low (+200 mV) to enable the use of NO3
- 

and NO2
- as electron acceptors instead of O2. However, the low redox differential between 

electron donor and acceptor (+230 mV) limits the amount of energy available for the anoxic 

metabolism [170]. As a result, the denitrification rates obtained using Fe2+ as electron donor 

(Table 1) are generally lower than those obtained with other organic and inorganic electron 

donors. Devlin et al. [171] observed a slower NO3
- removal with Fe2+ compared to acetate, H2 

and S0. Additionally, Baeseman et al. [79] reported that the addition of both Fe2+ and Fe3+ in 

sediments from AMD-impacted streams decreased the denitrification rate, most likely due to 

iron complexation with organic matter which reduced the bioavailability of organic carbon. 

6 Arsenite

Groundwater contamination by arsenic is a serious issue worldwide and particularly in 

Bangladesh, India and Vietnam [172–174]. The main sources of arsenic in aquatic 

environments are the oxidation of As-bearing rocks [88] and arsenic release caused by 

anthropogenic activities [21]. Arsenic is present in nature as arsenate (As5+) or arsenite 

(As3+), with As3+ being more toxic (100 times), mobile and bioavailable than As5+ [175]. The 

main mechanism of immobilizing arsenic is by adsorption onto a solid phase, e.g. clay 

minerals [176]. Since As5+ can form stronger bonds than As3+ to clay and minerals with 

aluminum oxides [177–179], the conversion of As3+ to As5+ is highly desirable to achieve 

arsenic immobilization [180,181].

Arsenic removal processes such as coagulation, filtration, adsorption and reverse osmosis 

usually require a pre-oxidation step, as As3+ is thermodynamically stable and non-ionic 

(H3AsO3, pKa=9.22) in most natural environments [182]. As3+ can be oxidized chemically 

using potent oxidants, such as ozone, chlorine or hydrogen peroxide. However, the use of 

chemicals results in additional pollution and higher treatment costs [183]. 
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Biological As3+ oxidation has been identified as a cost-effective method for arsenic removal 

from As-contaminated waters [183,184]. Many studies on arsenic oxidation focused on 

heterotrophic applications, which require the addition of organic substrates [185]. Recently, 

chemolithotrophic oxidizers able to fix CO2 coupled to As3+ oxidation to As5+ have been 

isolated and classified according to their ecology, phylogenetic relationship and physiological 

characteristics [186–189]. Microorganisms able to oxidize As3+ under anoxic conditions in 

the presence of NO3
- [21,39,190] or selenate (SeO4

2-) [191] prevail in As-contaminated lakes 

[190,192], soils [39] as well as sludge and sediments not previously exposed to arsenic [21]. 

Microbial oxidation of As3+ can occur under anoxic conditions as long as the oxidant has a 

higher redox potential than the reductant. Denitrification linked to As3+ oxidation to As5+ 

(Table 1) is feasible as the redox potential of the As5+/As3+ couple is +139 V, while that for 

NO3
-/N2 is 747 mV, which equates to a ∆G°’ of -117.3 kJ/mol As3+ for complete 

denitrification [21].

Arsenite-driven denitrification is of high interest for public health and economy, since it can 

simultaneously remove arsenic and nitrate and increase drinking water availability in those 

areas of the world affected by severe arsenic contamination of groundwater. However, only a 

few lab-scale applications have been operated so far. In continuous reactors, arsenite-driven 

denitrification is a stable and efficient process over long-term periods [86,193]. However, 

As3+ concentrations in the range of 3.5-5 mM are reported to completely inhibit the activity 

of autotrophic denitrifiers [21]. As a result, the As3+ concentration is the main limitation 

affecting the arsenite-driven denitrification rates. The use of As3+ as complementary electron 

donor by the addition of a primary organic or inorganic energy source for denitrifiers is a 

potential solution to overcome this limitation and achieve a satisfactory combined arsenic and 

nitrate removal.
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7 Manganese

Manganese in excess is removed from drinking water as it alters water quality and causes 

operational issues to water distribution systems. Insoluble manganese species impart turbidity 

and dark color to drinking water and form deposits in plumbing and water-using appliances, 

resulting in a negative economic outcome. As a result, the simultaneous removal of Mn2+ and 

NO3
- from drinking water is of great interest as the excess of both compounds is undesirable.

Mn2+ has been tested for the first time as electron donor for AuDen in batch experiments 

performed by Su et al. [194]. Bacteria belonging to the genera Acinetobacter and 

Pseudomonas exhibited efficient AuDen ability using Mn2+ as energy source, resulting in 

denitrification rates as high as 3.12 mg N-NO3
- L-1 h and NO3

- removal efficiencies of 77% in 

a MBBR with a 40% filling ratio [26]. Response surface methodology (RSM) experiments 

revealed that the highest rates of Mn2+-based denitrification by Acinetobacter sp. SZ28 can be 

achieved at a Mn2+ concentration of 143.6 mg L-1, a C/N ratio of 6.8, an initial pH of 5.17 and 

a temperature of 34.3°C [194]. Lower rates were obtained with the same Acinetobacter strain 

using S2- as electron donor, where growth on Fe2+ resulted in faster NO3
- removal [69].

Based on preliminary research, Mn2+-based denitrification appears as a promising process for 

the treatment of circumneutral or slightly acidic wastewaters contaminated by NO3
- and 

Mn2+, e.g. groundwater [195] and acidic mine effluents [4]. However, excessive manganese 

exposure affects protein and other macromolecular stability and was shown to repress the 

genes in the anaerobic (e.g. NO3
- and NO2

-) respiratory pathways of E. coli cells [196]. 

Further research is needed to determine manganese toxic thresholds for autotrophic 

denitrifiers and provide more specific kinetic and stoichiometric information on Mn2+-based 

denitrification, i.e. specific growth rates of NO3
- and NO2

- reducers, specific Mn2+ utilization 

rate, half-saturation constants, biomass yields and substrate inhibition thresholds.
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8 Selection of the electron donor

The selection of the substrate to be used as electron donor for AuDen should be based on the 

evaluation of a wide range of parameters, including substrate bioavailability to 

microorganisms, microbial affinity and energetic yield, which determine the rate and 

efficiency of denitrification as well as process cost and effluent water quality. 

Table 4 lists the specific substrate utilization (SSU) values calculated for all inorganic 

electron donors used for denitrification. Two organic compounds (ethanol and acetic acid) are 

also included for comparison. H2 shows a 6- and 9-fold lower SSU than ethanol and acetic 

acid, respectively, and from 5- to 15-fold lower SSU than RISCs, resulting in a cost-

competitive energy source despite its expensive price. S0
bio is 6 times less efficient than H2 

for denitrification. However, as a waste product, S0
bio is inexpensive and its use as electron 

donor results in a lower overall cost. 

This section provides guidelines for the selection of a suitable electron donor for AuDen. 

Selection criteria focus on electron donor kinetics, potential application in bioreactors, 

environmental impact and cost. A schematic overview of the advantages and drawbacks 

related to the use of each inorganic compound is provided in Table 5.

Table 4.

8.1 Kinetics and potential application

The extremely low aqueous solubility and dissolution rate of S0 (Section 3.1.2), H2 (Section 

3.2) and FeS2 (Section 3.4) severely limit their availability to denitrifying microorganisms 

and the denitrification kinetics. As a result, biofilm systems are recommended for S0-based, 

pyrite-driven and hydrogenotrophic denitrification as they allow a direct contact between 

electron donor and microorganisms [17]. The use of biofilm-coated gas-permeable 

membranes can further enhance H2 dissolution by establishing counter fluxes of H2 and NO3
- 
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[199]. Similarly, biofilm development on S0 granules enhances sulfur dissolution by 

utilization of surface-bound or extracellular enzymes hydrolyzing S0 to more soluble forms, 

i.e. polysulfides. However, the hydrophobic nature and the low SSA of S0 limit sulfur 

dispersion in solution and biofilm contact. SSA also regulates the H2 generation rate and 

NO3
- removal rates with ZVI, although pH was observed as the most important factor 

affecting denitrification kinetics of ZVI-assisted denitrification [160]. The slow 

denitrification rates observed with ZVI can be balanced using ZVI powder at acidic pH 

values, although the choice of the ZVI source and particle size should also take into account 

the potential abiotic conversion of NO3
- to NH4

+ (Fig. 3). 

The H2S in untreated biogas from anaerobic digestion might be directly used in biofilters, e.g. 

biotricking filters (BTFs), to remove NO3
- from wastewater [200]. In these bioreactors, gas-

liquid mass transfer and contact surface play a major role in determining denitrification 

kinetics. As a result, BTFs are usually operated with the gas and liquid phases (containing the 

electron donor and acceptor, respectively) flowing counter-currently. Complete oxidation of 

H2S to SO4
2- occurs if excess nitrate is available, while nitrate-limiting and stoichiometric 

conditions result in the production of S0
bio [201], which can be recovered and effectively 

reused. Gas-permeable membranes are not recommended for H2S delivery into a denitrifying 

bioreactor as S0
bio precipitation would increase the cleaning frequency and maintenance costs.

S0
bio has hydrophilic properties and forms colloidal dispersions in water, resulting in higher 

bioavailability and denitrification rates with suspended cultures compared to S0
chem

 [24]. 

Nevertheless, 4.4-fold higher denitrification rates have been observed with S2O3
2-, which has 

been confirmed as the most effective electron donor among RISCs due to its high solubility, 

bioavailability, energetic yield and substrate inhibition threshold [24,103,112]. Biofilm 

systems fed with S2O3
2- maintained high denitrification rates even under extreme conditions 

such as acidic pH (< 5), psychrophilic temperatures (3°C) and high heavy metal 
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concentrations (up to 200 mg Ni L-1) [28–30]. H2S is also characterized by high 

bioavailability and energetic yield, but its toxicity and gas-liquid mass transfer limitation can 

detrimentally affect the denitrification efficiency especially when treating high nitrogen 

loads. 

Although the potential of SO3
2- to serve as electron donor for denitrification has been 

revealed [22], further research is needed at bench and pilot scale to collect kinetic and 

stoichiometric information as well as investigate SO3
2- inhibition on sulfur-oxidizing 

denitrifiers and other microbial populations (e.g. nitrifiers) potentially co-occurring in the 

purification basins. The use of other inorganic compounds as electron donors results in low 

denitrification rates and, in the case of AsO3
3- and SCN-, potential toxicity on denitrifiers at 

relatively low concentrations, which limit their use for AuDen.

8.2 Environmental impact

H2 is the cleanest electron donor for denitrification, since no undesirable compounds are 

formed and hydrogenotrophic denitrifiers have low biomass yields. However, RISCs are 

preferred over H2 in large-scale bioreactor applications due to their low cost and ease of use 

[115]. The main drawback of using RISCs as electron donors for denitrification is SO4
2- 

production. As discussed in Section 3.1, S2O3
2- oxidation produces more SO4

2- than other 

RISCs, followed by S0 and H2S. Although no adverse effects of SO4
2-on human health have 

been demonstrated, it can significantly alter the organoleptic properties of drinking water. For 

this reason, the EU (Council Directive 98/83/EC) and US EPA have set the water quality 

standard for SO4
2- concentration in drinking water to 250 mg L-1. Denitrification with S0 and 

S2O3
2- can also result in severe water acidification if not enough buffer is provided. On the 

other hand, the use of limestone as an inexpensive buffer increases the hardness and induces 

precipitation of calcium phosphate salts, which may limit phosphorus bioavailability and 

create operational issues downstream [92]. The addition of organics as supplemental electron 
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donors to RISCs can significantly reduce both SO4
2- production and alkalinity consumption 

[110], although it arises concerns about byproduct formation and requires a more accurate 

quality control of the reactor effluents.

Denitrification coupled to SCN- or As3+ removal is a potent means of water detoxification. 

Anoxic SCN- oxidation results in the destruction of the cyanide molecules and production of 

innocuous compounds (Table 1). Similarly, As3+ oxidation to As5+ strongly reduces arsenic 

toxicity since As(V) can be easily immobilized on a solid matrix such as activated alumina 

(AA) or titanium dioxide (TiO2) and thus removed from the water phase [21]. 

The use of ZVI and S0
bio for denitrification is environmentally friendly as both electron 

donors are non-toxic waste products from the steel industry and biological desulfurization, 

respectively. The reuse of biological and industrial waste for denitrification embraces the 

principles of circular economy and would represent progress towards the realization of a 

zero-waste water treatment cycle [202]. Denitrification coupled to S2O3
2- oxidation is 

particularly advantageous for the treatment of mining wastewater as residual S2O3
2- can be 

simultaneously removed with NO3
- in effluents from gold leaching. Similarly, the combined 

removal of Mn2+ and NO3
- is advantageous for the treatment of drinking water as excess 

manganese is responsible for aesthetic and operational issues.

8.3 Cost

Table 4 compares the costs of all described inorganic compounds and those of widely used 

organic electron donors for heterotrophic denitrification, i.e. ethanol and acetate. The use of 

inorganic compounds as energy source for denitrification eliminates the need of external 

organics, avoids secondary carbon contamination and reduces the cost of sludge handling due 

to a decreased biomass production (Table 1). Autotrophic denitrification often requires the 
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supplementation of an inorganic electron donor. Excess electron donor should be avoided to 

reduce process cost and prevent secondary pollution.

H2 is among the most expensive electron donors for AuDen. However, the low H2 

requirements for denitrification (only 0.41 kg H2 are used per kg N-NO3
-), coupled to the use 

of gas-permeable membranes allowing nearly 100% H2 utilization, significantly reduce the 

cost of H2 supply. Additionally, H2 production has become more and more cost-competitive 

in the last years. According to James et al. [197], technologies integrating steam reforming 

and water electrolysis, e.g. reformed-electrolyzed-purifier (REP) systems, are the most 

economically viable for H2 production, resulting in a cost below 3 USD/kg H2. Nevertheless, 

membrane operation and cleaning can significantly increase the cost of H2 utilization 

depending on wastewater strength and, therefore, a cost analysis is recommended especially 

for full scale applications.

Despite its higher applicability, S2O3
2- is about 6 times more expensive than S2- and 

chemically produced S0. Other RISCs such as residual H2S in biogas and S0
bio originating 

from biogas cleaning and flue gas desulfurization are costless as well as iron scraps or filings 

from the metallurgical industry. SO3
2- can be cost-effectively produced in scrubbers removing 

SO2 from exhaust flue gases and originate from S0 combustion. SCN- and As3+ are potentially 

toxic compounds, with the latter featuring a high specific utilization (Table 4). Therefore, the 

use of these compounds for denitrification should be considered only if already present in 

nitrate-contaminated water. 

Table 5.

9 Conclusions

Autotrophic denitrification can be carried out with a wide variety of inorganic compounds. 

The selection of the most suitable electron donor should be based on kinetics, cost, 
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availability, applicability, environmental sustainability and potential toxicity as general 

criteria. Wastewater characteristics such as pH, temperature and chemical composition are 

also highly relevant in the choice of the most suitable denitrification process. The availability 

of potential electron donors among waste products (hydrogen sulfide, biogenic sulfur and 

zero-valent iron), toxic compounds (thiocyanate and arsenite) and potential contaminants 

(sulfite and manganese) in ground and waste water should be exploited in order to combine 

denitrification with detoxification. Despite safety concerns, H2 can be considered the most 

promising electron donor due to its fast kinetics, low biomass yield, eco-sustainability and 

reasonable price. RISCs are a good alternative to H2, especially as an electron supplement for 

mixotrophic denitrification, which limits the effluent sulfate concentration and are suitable to 

treat a wide range of nitrate-contaminated waters. Implementation and scaling of novel 

denitrification bioprocesses are critical to compare AuDen-based systems to other existing 

technologies and unravel operational issues and costs on a real scale. Future research should 

also provide kinetic and stoichiometric characterization of novel electron donors (e.g. SO3
2-, 

AsO3
2- and Mn2+) and investigate the efficiency of mixotrophic denitrification with diverse 

microbial communities and bioreactor configurations.
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Tables and Figures

Table 1 – Stoichiometry of denitrification reactions with organic and inorganic electron 

donors. Cellular yields are provided based on reaction stoichiometry.

Table 2 – Physiology of various identified autotrophic denitrifying Proteobacteria.

Table 3 – Denitrification performance of continuous bioreactors using different inorganic 

electron donors. 

Table 4 – Price, utilization and cost of inorganic electron donors for autotrophic 

denitrification.

Table 5 – Benefits (+) and drawbacks (-) related to the use of inorganic electron donors for 

autotrophic denitrification.

Figure 1 – Complete denitrification pathway with the reductase enzymes and accepted 

electron equivalents for each step. NaR = nitrate reductase, NiR = nitrite reductase; NoR = 

nitric oxide reductase; NoS = nitrous oxide reductase.

Figure 2 – Full-scale applications of sulfur-limestone autotrophic denitrification (SLAD) 

[114,115] and hydrogenotrophic denitrification [116] for groundwater and wastewater 

treatment.

Figure 3 – Concept of Fe0-assisted hydrogenotrophic denitrification as described by Till et al. 

[164]. The abiotic NO3
- reduction to NH4

+ can be reduced by separating the Fe0 from NO3
- 

and denitrifying bacteria into two anoxic compartments and allowing the cathodic H2 to flow 

from one compartment to the other.
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Table 1

n.a. = not available.
a growth yield obtained for a pure culture of Paracoccus denitrificans by Strohm et al. [41].
b calculated as g proteins g (N-NO3

-)-1 for the bacterium Thialkalivibrio thiocyanodenitrificans.

Reaction Biomass yield 
(g cells/g N-NO3

-) Reference

CH3COOH + 1.18 NO3
- + 1.18 H+ → 0.12 C5H7O2N + 1.4 CO2 + 2.5 H2O + 0.53 N2 0.82

CH3OH + 0.926 NO3
- + 0.926 H+ → 0.060 C5H7O2N + 0.703 CO2 + 2.26 H2O + 0.432 N2 0.52

[32]

H2 + 0.355 NO3
- + 0.049 CO2 + 0.355 H+ → 0.010 C5H7O2N + 0.172 N2 + 1.143 H2O 0.23, 0.51a [25]

S0 + 0.876 NO3
- + 0.343 H2O + 0.379 HCO3

- + 0.023 CO2 + 0.080 NH4
+ 

→ 0.080 C5H7O2N + 0.824 H+ + 0.44 N2 + SO4
2- 0.74

HS- + 1.23 NO3
- + 0.573 H+ +0.438 HCO3

- + 0.027 CO2 + 0.093 NH4
+ 

→ 0.093 C5H7O2N + 0.866 H2O + 0.614 N2 + SO4
2- 0.61

S2O3
2- + 1.24 NO3

- + 0.45 HCO3
- + 0.09 NH4

+ + 0.11 H2O
→ 0.09 C5H7O2N + 0.40 H+ + 0.62 N2 + 2 SO4

2- 0.59

[33,34]

SCN- + 1.6 NO3
- + 0.2 H2O + 1.6 H+ + HCO3

- → SO4
2- + NH3 + 2 CO2 + 0.8 N2 0.19b [35]

Fe0 + 0.4 NO3
− + 1.2 H2O → Fe2+ + 0.2 N2 + 2.4 OH− n.a. [36]

Fe2+ + 0.2 NO3
- + 2.4 H2O → Fe(OH)3 + 0.1 N2 + 1.8 H+ n.a. [37]

FeS2 + 3 NO3
- + 2 H2O → Fe(OH)3 + 1.5 N2 + 2 SO4

2− + H+ n.a. [38]
H3AsO3 + 0.4 NO3

- → 1.6 H+ + HAsO4
2- + 0.2 N2 + 0.2 H2O n.a. [39]

Mn2+ + 0.4 NO3
- + 0.8 H2O → MnO2 + 0.2 N2 + 1.6 H+ n.a. [40]
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Table 2

Species Class of 
Proteobacteria Isolation site Growth 

pH
Growth 
T (°C) Electron donor Electron acceptor Denitrification 

products References

Paracoccus denitrificans α soil, activated sludge 6.5-8.5 25-37 H2, S2O3
2−, HS−, 

Organics O2,  NO3
− N2, N2O [42]

Paracoccus 
ferrooxidans α denitrifying bioreactor 5-8.5 10-45

H2, S2O3
2, SCN-, 

[Fe(II)EDTA]2-, 
Organics

O2, NO2
−, NO3

−, N2O, 
[Fe(II)EDTA·NO]2- N2 [43]

Paracoccus
pantotrophus α

denitrifying, sulfide-
oxidizing effluent 

treatment plant

6.5–
10.5 15-42 H2, S2O3

2−, HS−, 
Organics O2,  NO3

− n.a. [44]

Ochrobactrum anthropi α

soil, denitrifying 
reactor, blood, 

urogenital tract, 
respiratory tract, eyes

7-8 
(opt.) 7-40 H2, Organics O2,  NO3

− N2 [45,46]

Azospirillum brasilense α soil and grass roots in 
tropical areas

7-8 
(opt.) 37 (opt.) H2, Organics O2, NO2

−, NO3
−, N2O N2 [47]

Bradyrhizobium 
japonicum α root tips of soy bean 

plants 4-9.5
27.7-
35.2 
(opt.)

H2, Organics O2, NO2
−, NO3

−, N2O N2, NO2
-, N2O [48,49]

Thiobacillus
denitrificans β

pond, brackish mud, 
soil, marine sediment, 

sewage lagoon, 
digestion tank

6.8–7.4 28-32 HS−, S0 , S2O3
2−, 

Fe2+, FeS2
O2,  NO3

−, NO2
− N2, NO2

-, N2O [18,37,50]

Ralstonia metallidurans β

sludge of a zinc 
decantation tank, gold 
grains, metal factory, 

sediments

7 (opt.) 4-41, 30 
(opt.) H2, organics, O2,  NO2

−NO3
− N2, NO2

- [51–53]

Thiobacillus thiophilus β oil-contaminated 
sediment 6.3–8.7 -2-30 S2O3

2− O2,  NO3
− N2 [54]

Rhodocyclus sp. β sewage-lagoon, 
drinking water aquifer 6.5-7.5 30 (opt.) H2, organics O2,  NO3

− N2, NO2
- [55,56]

Azospira oryzae β swine waste lagoons 
grass roots, rice

6.5 
(opt.) 37 (opt.) Fe2+, organics O2,  NO3

−, ClO3
−, 

ClO4
−, SeO42–, SeO3

2– N2 [57,58]

Acidovorax BoFeN1 β lake sediments 6-9 4-37 Fe2+, organics NO2
−, NO3

−, N2O N2, NO2
- [59,60]
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Pseudogulbenkiania
sp. strain 2002 β freshwater lake 

sediments 6.75-8 15-40 Fe2+, organics O2, NO2
−, NO3

−, N2O N2 [61]

Thioalkalivibrio
denitrificans γ soda lake sediment 6–10.5 30 (opt.) S2O32−, polysulfide O2, N2O N2 [62,63]

Thialkalivibrio
nitratireducens γ hypersaline soda lake 

sediment 8–10.5 30 (opt.) HS−, S2O3
2−, 

polysulfide O2,  NO3
− NO2

- [64]

Thiohalomonas
nitratireducens γ sediments of 

hypersaline lakes 8 30 (opt.) S2O3
2− O2, NO3

− NO2
- [65]

Thiohalomonas
denitrificans γ sediments of 

hypersaline lakes 6.5–8.2 30 (opt.) HS−, S2O3
2− O2, NO3

−, NO2
− N2, NO2

-, N2O [64]

Thioalkalivibrio
thiocyanodenitrificans γ hypersaline soda lake

sediment 8–10.5 30 (opt.) S2O3
2− NO2

− N2, N2O [35]

Thiohalophilus
thiocyanoxidans γ sediments of 

hypersaline lakes 6.5–8.2 30 (opt.) S2O3
2− NO3

− N2, NO2
-, N2O [66]

Thioalkalispira
microaerophila γ sediments of 

hypersaline lakes 8–10.4 30 (opt.) HS− , S2O3
2− O2, NO3

− (no growth) NO2
- [67]

Thiohalorhabdus
denitrificans γ

sediments of 
hypersaline inland 

lakes
6.5–8.2 33–35 

(opt.) S2O3
2− O2,  NO3

− NO2
-, N2O [68]

Acinetobacter sp. SZ28 γ oligotrophic reservoir 6 (opt.) 30 (opt.) Mn2+, Fe2+, S2- NO3
−, NO2

− n.a. [69]

Alkalilimnicola ehrlichi 
strain MLHE-1 γ stratified soda lake

7.3-10
9.3 

(opt.)

13-40
30 (opt.)

As3+, H2, S2-, 
S2O3

2- NO3
-, O2 NO2

- [70]

Sulfurimonas
denitrificans ε estuarine mud 7 (opt.) 22 (opt.) HS− , S2O3

2− NO3
−, NO2

− N2, NO2
-, N2O [71]

Thiomicrospira CVO ε oil field 5.5–8.5 5–35 HS−, S0 , S2O3
2− O2, NO3

−, NO2
− N2, NO2

-, N2O [72]

Sulfurimonas
paralvinellae ε hydrothermal vent 

polychaetes 5.4–8.6 4–35 HS−, S0 , S2O3
2− O2, NO3

−, NO2
− N2, NO2

-, N2O [71]

n.a. = not available.
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Table 3 

n.a. = not available.
a only values associated to denitrification efficiencies above 90% and nitrate-limiting conditions (except b) are reported.

Electron 
donor Bioreactor system Influent type Temperature a 

(°C) pH a
Nitrogen loading rate a 

(g N-NO3
- L-1 d-1)

Denitrification 
efficiency (%) Reference

H2
membrane biofilm 

reactor synthetic groundwater n.a 9 0.96–1.2 93 (average) [84]

H2 series of biofilters contaminated drinking 
water 27 6.8 1.97–6.2 >97.5 [90]

S0 packed-bed reactor synthetic wastewater 35 n.a. 1.64–2.46 >95 [91]

S0 fluidized bed 
reactor

sanitary landfill 
leachate 20 7.2–8.2 2.68 >98 [92]

S2- packed-bed reactor simulated nitrified 
domestic sewage 30±1 8.9–9.0 0.05 98.5 (average) [93]

S2-
completely mixed
activated sludge 

reactor
synthetic wastewater 30 7.5 0.09–0.74 >98 [94]

S2O3
2- fluidized bed 

reactor synthetic wastewater 30 7 0.28–3.25 100 [83]

FeS packed-bed reactor contaminated drinking 
water n.a. ~7.8 0.13 >95 [95]

Fe2+ up-flow anaerobic 
sludge blanket synthetic wastewater 30±1 6-6.6 0.041-0.117 >99 [85]

SCN- continuous stirred-
tank reactor synthetic wastewater 21 8–8.5 1.2 b >90 [19]
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Table 4

Electron donor
Price a

(USD/kg e- donor)
Specific substrate utilization b

(kg e- donor/kg N-NO3
-)

Cost
(USD/kg N-NO3

-)
Methanol (CH3OH) 0.7-0.9 2.5 1.8-2.3

Acetic acid (CH3COOH) 2.2 3.6 7.9
Hydrogen (H2) 2.6–5.1 0.4 1.1–2.1

Elemental sulfur (S0
chem) 0.1 2.6 0.26

Biogenic sulfur (S0
bio) 0 2.6 0

Sulfide (S2-) 0.13 1.9 0.25
Thiosulfate (S2O3

2-) 0.21–0.26 c 6.5 1.4–1.7
Ferrous iron (Fe2+) 0.30 19.9 6.0

Zero-valent iron (Fe0) 0 10.0 0
Pyrite (FeS2) 0.4 2.9 1.2

Sulfite (SO3
2-) 0.18 n.a. n.a.

Manganese (Mn2+) 0.20–0.21 d 9.8 2.0-2.1
Thiocyanate (SCN-) 0 2.6 0

Arsenite (As3+) 0 21.9 0
n.a. = not available.
a the price of H2 is based on the information reported by James et al. [197]. The price of organics is provided by Park and Yoo [11]. The price of S0, 
S2- and Fe2+ is provided by Zhu and Getting [198]. The price of SO3

2- is as reported by Sabba et al. [22]. The price of SCN- is based on a survey of 
chemical suppliers on US market. Fe0, SCN-, As3+ and S0

bio were assumed free of cost being waste products and/or contaminants.
b calculated according to the equations listed in Table 1.
c based on the price of Na2S2O3·5H2O provided by ICIS (https://www.icis.com/).
d average price of manganese metallurgical ore (46-48% Mn content) based on a survey on the US market in 2017.

https://www.icis.com/
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Table 5

Electron donor Kinetics Cost a Handling b Availability Applicability c Sustainability Toxicity d
Hydrogen (H2) + - - +/- + + +

Elemental sulfur (S0) +/- + + + +/- +/- +
Biogenic sulfur (S0

bio) +/- + + + +/- + +
Sulfide (S2-) +/- + + +/- + - -

Hydrogen sulfide (H2S) - + - - +/- + -
Thiosulfate (S2O3

2-) + - + +/- + +/- +
Sulfite (SO3

2-) +/- +/- + +/- + +/- +/-
Thiocyanate (SCN-) - + - - - + -
Ferrous iron (Fe2+) - - + +/- +/- - +

Zero-valent iron (Fe0) - + + + +/- + +
Pyrite (FeS2) - +/- + + +/- +/- +

Arsenite (As3+) - + - - - + -
Manganese (Mn2+) - +/- + +/- +/- +/- +

a arsenite and thiocyanate are considered inexpensive when already present in the influent water; evaluation on manganese and sulfite is based exclusively on their price.
b both safety and ease of handling are considered.
c electron donor applicability to different reactor configurations and NO3

- contaminated water types is considered.
d potential toxicity to both humans and microorganisms is considered.
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Figure 1
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Figure 2
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Figure 3

Graphical abstract
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Highlights

 Twelve electron donors for autotrophic denitrification are critically reviewed.

 Biochemical aspects and microbiology of autotrophic denitrification are discussed.

 Novel insights on the use of inorganic compounds for denitrification are presented.

 Applications, cost and environmental impact of inorganic compounds are compared.

 Criteria and guidelines for electron donor selection are provided. 


