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Abstract
Orexin A (OXA) and neuropeptide Y (NPY) are two hypothalamic neuropeptides involved in the

regulation of feeding behavior and food intake in all vertebrates. Accumulating evidences document

that they undergo age-related modifications, with consequences on metabolism, sleep/wake disor-

ders and progression of neurodegenerations. The present study addressed the age related changes

in expression and distribution of orexin A (its precursor is also known as hypocretin—HCRT) and

NPY, and their regulation by food intake in the short-lived vertebrate model Nothobranchius furzeri.

Our experiments, conducted on male specimens, show that: (a) HCRT and OXA and NPY mRNA and

protein are localized in neurons of diencephalon and optic tectum, as well as in numerous fibers pro-

jecting through the entire neuroaxis, and are colocalized in specific nuclei; (b) in course of aging,

HCRT and NPY expressing neurons are localized also in telencephalon and rhombencephalon;

(c) HCRT expressing neurons increased slightly in the diencephalic area of old animals and in fasted

animals, whereas NPY increased sharply; (d) central HCRT levels are not regulated neither in course

of aging nor by food intake; and (e) central NPY levels are augmented in course of aging, and regu-

lated by food intake only in young. These findings represent a great novelty in the study of central

orexinergic and NPY-ergic systems in vertebrates', demonstrating an uncommon and unprecedented

described regulation of these two orexigenic neuropeptides.
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1 | INTRODUCTION

The role of orexinergic and NPY-ergic systems during vertebrates

aging has been widely studied in mammals (Botelho & Cavadas, 2015;

Nixon et al., 2015). We propose to employ a non mammalian model

species, excellent for brain aging studies (Baumgart et al., 2014;

Cellerino, Valenzano, & Reichard, 2016; Cellerino et al., 2016;

D'Angelo et al., 2016b): Nothobranchius furzeri, considered the

shortest-lived vertebrate ever described under laboratory conditions

(Valdesalici & Cellerino, 2003). Despite the relatively short lifespan,

this fish shows many molecular, cellular, and physiological aging phe-

notypes that are shared with many other organisms, including humans

(Cellerino et al., 2016). Remarkably, the lifespan of N. furzeri can be

experimentally manipulated by changes in nutrients, drugs, tempera-

ture, and social conditions (Terzibasi et al., 2009; Valenzano, Terzibasi,

Cattaneo, Domenici, & Cellerino, 2006; Valenzano et al., 2006), as well

as genetic modifications (Harel et al., 2015).

Orexin A (OXA) and neuropeptide Y (NPY) are two neuropeptides

primarily involved in the regulation of feeding behavior and food

intake in all vertebrates (Tachibana & Tsutsui, 2016; Volkoff, 2016). In

addition, they orchestrate several physiological processes such as

arousal, whole-body energy metabolism, reward seeking, autonomic

function, sexual behavior, and ventilatory control (Pedrazzini, 2004;

de Lecea & Huerta, 2014). Studies on the molecular regulation of

orexin and NPY hypothalamic neurons confirm that they also interact

in the control of energy homeostasis (Waterson & Horvath, 2015).

OXA is composed of 33 amino acids with an amino (N)-terminal

pyroglutamyl residue, two intra-chain disulphide bonds and carboxy

(C)-terminal amidation, produced from a precursor polypeptide, prepro-

orexin, also known as hypocretin (HCRT), through usual proteolytic pro-

cessing presumably by prohormone convertases (Sakurai et al., 1998;

Tsujino & Sakurai, 2013). OXA has potent effects on the food intake reg-

ulation in mammals (Messina et al., 2014) and fish (D'Angelo et al.,

2016a; Matsuda et al., 2012a).

NPY was originally isolated from porcine brain extracts (Tatemoto

et al., 1982), and is abundantly expressed within the brain. It is one of

the most potent orexigenic agents in mammals (Loh et al., 2015) and

fish (Ronnestad et al., 2017).

The primary structure of OXA and NPY is conserved among mam-

malian (Tsujino & Sakurai, 2013) and fish species (Alvarez & Sutcliffe,

2002; Cerdá-Reverter & Larhammar, 2000). Particularly in fish, the

genetic and molecular structures, the anatomical localization, and the

orexigenic function of OXA and NPY have been abundantly investigated

(Cerdá-Reverter & Canosa, 2009; Volkoff, 2016). Neuroanatomical stud-

ies have demonstrated a wider distribution of the two neuropeptides, not

restricted to the hypothalamus, as in mammals (Ronnestad et al., 2017).

Accumulating evidences suggest that the orexinergic and

NPY-ergic systems are involved in aging and lifespan determination.

Clear age-related reductions in the orexin system of animal models

have been reported in the hypothalamus and other brain regions

(Brownell & Conti, 2010; Kessler et al., 2011; Sawai, et al., 2010). Such

deregulation affects body weight, food intake, sleep patterns (Nixon

et al., 2015), and could contribute to progression of age-related

pathologies, such as Parkinson's disease (Wienecke et al., 2012) and

Alzheimer's disease (Slats et al., 2013). Therefore, orexin system rep-

resents a promising target for pharmacological therapies (Duarte-

Neves, de Almeida, & Cavadas, 2016; Tsuneki et al., 2016). Previous

studies suggest that NPY system is also linked to the aging process;

however, its role has not been completely clarified. In aged rodents,

and in brain samples from individuals with neurodegenerative disease,

levels of NPY and NPY receptors decreased in several brain areas

(Botelho & Cavadas, 2015). NPY contributes to various age-related

mechanisms, for example, NPY induces autophagy in the hypothala-

mus (Botelho & Cavadas, 2015), and could be critical for the beneficial

effects of caloric restriction on aging (Minor et al., 2011).

To better analyze the age-related changes of orexin and NPY in

N. furzeri, we conducted experiments in specimens of 5, 12, and

27 weeks old specimens (at sexual maturity, adult, and old stages,

respectively), and (a) identified orexin and NPY containing neurons in the

diencephalon and midbrain by immunohistochemistry; (b) studied the

morphological rearrangement of neuronal expression pattern observed

outside diencephalic areas in course of aging by in situ hybridization;

(c) assessed that short-term fasting is a metabolic stimulus to trigger neu-

ronal activity; (d) evaluated the unchanged central levels of HCRT in

course of aging and by food intake; and (e) assessed the overexpression

of NPY, paralleled by an augmented number of positive neurons, in

course of aging and by food intake only in young animals. These findings

shed light on new aspects of orexinergic and NPY-ergic systems regula-

tion in the brain of vertebrates during aging.

2 | MATERIALS AND METHODS

2.1 | Animal experiments and fasting

Fish housing and care followed specific standard operating procedures

for breeding MZM-0410 strain (median lifespan 40 weeks) (Baumgart

et al., 2016). Animals were kept constantly at 26 �C and 12 hr of light/-

dark cycles. At the age of 3 weeks post-hatching (wph), young fish were

moved to single-housed tanks with low water flow. Salinity was main-

tained always between 2.5 and 3 mS, and parameters such as pH and

mineral content were daily checked to avoid discrepancies between

experimental groups. Fish were fed manually and, within 2 hr, uneaten

food was removed from the tank to avoid dropping of water parame-

ters. Young fry, from hatching to 20 dph were fed only with Artemia

salina twice per day. From 21 dph to 34 dph, fish were fed twice a day

with A. salina and once with Chironomus plumosus (bloodworm larvae).

This proteic boost is necessary to complete the sexual maturity. At the

35 dph, fish are considered young adults and they were fed just once

per day with C. plumosus for the rest of their life.

At time points of 5, 12, and 27 wph, animals from the same hatch

were divided into experimental and control groups. Experimental

groups underwent fasting for 96 hr. Fasted and control animals were

euthanized with a bath of 1 g/L tricaine methane-sulfonate (MS-222,

Tricaine-S®, in buffered solution, according to AVMA Guidelines for

the Euthanasia of Animals, 2013) at room temperature (RT; 26 �C). To

avoid effects of circadian rhythms and feeding, animals were always

euthanized at 10 a.m., 3 hr after the light phase was began. The whole

head and/or brains were dissected and processed according to the

2 MONTESANO ET AL.



experimental protocols. In addition, the diencephalon (including the

inferior lobe of hypothalamus) was microdissected, upon removing tel-

encephalon, mesencephalon, and rhombencephalon. A total number

of 84 male specimens were employed: of these 51 were used for RNA

extraction and 33 for morphological and western blotting analyses. All

experiments were approved by the Italian Competent Authority

(authorization number 277/2017-PR).

2.2 | Protein isolation and western blotting

Ribosomal protein S6, a structural component of the ribosome,

becomes phosphorylated in neurons activated by a wide range of

stimuli, including fasting (Knight et al., 2012), and can be used as a tag

to enable the capture of mRNA from activated cells. As the phosphor-

ylation sites on S6 are evolutionarily conserved (Meyuhas, 2008), this

approach is used to study a range of species, including those that are

not amenable to genetic modification (Knight et al., 2012). We, there-

fore, evaluated the distribution of pRPS6 in the diencephalic region of

N. furzeri to confirm that 96 hr of fasting was a sufficient stimulus to

activate neurons. Western blotting analysis was conducted to evalu-

ate the expression of endogenous levels of total S6 ribosomal protein

independent of phosphorylation (Cell Signaling Technology Cat#

2217, RRID:AB_331355) and phosphorylated ribosomal protein S6

(pRPS6) (Cell Signaling Technology Cat# 4858, RRID:AB_916156) pro-

tein expression in the brain of three animals of each experimental

group: control animals at 5 and 27 wph, and after 96 hr of fasting at

5 wph. Antibodies are listed in Table 1. The whole brain was dissected

on ice and treated with 200 μl of lysis buffer, homogenized by ceramic

(zirconium oxide) beads 5× for 1 min in the Tissue Lyser II at 30 Hz.

The homogenate was centrifuged at 13.500× g for 15 min and the

supernatant was retained. The protein concentration was determined

using Bicinchoninic acid (BCA) Protein Assay (Thermo Fisher Scientific

Cat# PA1-23227, RRID:AB_558906) and the absorbance spectrum

at 560 nm (GloMax®-Multi+Microplate Multimode Reader with

Instinct®). Protein aliquots were diluted in loading buffer to have

1 mg/ml of protein and then heated at 95 �C for 10 min. Proteins and

molecular weight markers were loaded in 5% stacking and 15% resolv-

ing acrylamide gel (30% Acylamide Sigma-Aldrich®, cat. A3699). The

gel was casted in Mini-Protean II chambers (Biorad®), filled with the

migration buffer, and run 30 min at 80 V first, followed by 1 hr at

120 V. Wet blotting was performed using nitrocellulose membranes

(0.2 μm pore size, Biorad®) for 30 min at 100 V, immersed in transfer

buffer. To check for success of the transfer, membranes were stained

with Ponceau Red. The membranes were blocked with 5% nonfat milk

for 1 hr at 4 �C under agitation. The membranes were incubated with

the primary antibody, diluted in blocking solution, overnight at 4 �C,

under agitation. The membranes were successively incubated with

horseradish peroxidase (HRP)-conjugated secondary antibodies,

diluted in Tris-buffered saline with Tween (TBS-T), for 1 hr at room

temperature (RT) under agitation. The protein was detected, develop-

ing by the chemiluminescent system (Clarity™ Western ECL Substrate

BioRad, cat.170-5060), after a reaction of 5 min at RT. For reprobing

the membranes, Restore™ western blot stripping buffer (Thermo

Fisher Scientific Cat# PA5-21059, RRID:AB_11153941) was used

10 min at 26 �C. Western blots were repeated in triplicates and every

experiment was followed by a negative control in which the step of

the primary incubation was skipped.

2.3 | Morphological Experiments #1:
Immunohistochemistry

The immunohistochemistry (IHC) protocols have been used and

described in detail previously (de Girolamo & Lucini, 2011). Experi-

ments were conducted either on frozen or paraffin embedded sec-

tions of four adult animals (12 wph), and the used antibodies are

listed in Table 1. For paraffin sections, the whole head of adult control

animals was dissected and fixed in Bouin's fluid overnight at RT, pro-

gressively dehydrated in ascending gradient of ethanol and then

transferred to the organic solvent xylene. The brain was embedded in

low-melting-temperature paraffin and sectioned in 7 μm thickness.

After dewaxing in xylene and rehydrating in progressively diluted alco-

hols, serial sections were treated with 3% H2O2 for 20 min, washed

with PBS, and incubated in a humid chamber for 24 hr at 4 �C with

each primary antibody diluted with PBS containing 0.2% Triton

X-100, 0.1% BSA, and 4% NGS.

Different treatment was carried out depending on the primary anti-

body in use: incubation with rabbit antibody was followed by incubation

with EnVision reagent, containing the secondary antibody (Dako Cat#

K4003, RRID:AB_2630375), for 30 min at RT. Sections incubated with

antibodies raised in goat were then incubated with anti-goat secondary

antibody biotinylated and treated with the avidin–biotin-based peroxi-

dase system (Vectastain ELITE ABC kit, Vector Laboratories, Burlingame,

USA, Cat# PK-6100, RRID:AB_2336819). The immunoreactive sites

were visualized using a freshly prepared solution of 10 mg of 3,30-

diaminobenzidine tetrahydrochloride (DAB, Sigma-Aldrich, #D5905) in

15 ml of a 0.5 M Tris buffer, pH 7.6, containing 1.5 ml of 0.03% H2O2.

After a series of alcohol and xylene, slides were sealed with quick-

hardening mounting medium (Eukitt, Sigma Aldrich, 03989). Images

were analyzed by using Leica DC300 F camera attached to a Leica

microscope DM RA2 (Leica Camera AG). Postproduction was analyzed

by Adobe Photoshop software.

For the immunofluorescence, after incubation with the primary anti-

sera, the sections were washed several times and incubated with two

fluorochrome-conjugated secondary antibodies diluted in 1× PBS for

1 hr at RT, with Alexa 488- (Molecular Probes Cat# A-11055, RRID:AB

142672) and Alexa 568- (Thermo Fisher Scientific Cat# A10042, RRID:

AB_2534017) conjugated secondary antibodies (1:500). The slides were

thoroughly washed and mounted with glycerol/PBS (1:1). Imaging was

performed by a camera attached to a Zeiss ApoTome.2 microscope (Carl

Zeiss, Jena, Germany) and postproduction was analyzed by Zeiss Zen

2 Blue and Adobe Photoshop software.

The specificity of each immunohistochemical reaction was checked

in repeated trials as follows: (a) substitution of either primary or second-

ary antibodies by PBS or nonimmune serum and (b) preabsorption of

primary antibodies with antigenic peptides (up to 5 mg/ml antiserum in

the final dilution). Only for the orexin-A antibody AB3704, the specific

inhibition peptide was not available. Sections of mouse hypothalamus

were used for positive controls (Cristino et al., 2013).
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2.4 | Morphological Experiments #2: In situ
hybridization

Dissected brains of the following were used: 4 adult animals (12 wph,

control), 4 animals (5 wph, control), 4 animals (27 wph, control), 4 ani-

mals (5 wph, fasted animals - FA), and 4 animals (27 wph, FA).

Brains were dissected and fixed in 4% RNAse-free paraformalde-

hyde at 4 �C for 24 hr, and then treated with 20% sucrose for 12 hr

and 30% sucrose overnight at 4 �C. They were embedded in cryo-

embedding-medium (O.C.T. tissue tek Richard-Allan Scientific™ Neg-

50™, #6502) and kept at −80 �C. Cryostat sectioning was performed

in coronal orientation of 8 μm thickness. To generate the probes, a

pool of RNA, extracted from MZM-0410 brain, was used to synthe-

size cDNA as template for the following reactions. Oligonucleotide

primers were designed using Primer3 software (HCRT: _fw ATC AGA

TGA CTG CCC TCC AT; _rv GGT AAT ACG ACT CAC TAT AGG AGT

TCA CTG CTC CCC AGT TG. NPY: _fw GAA AGC CAC TGG GAC

AAA TC; _rv GGT AAT ACG ACT CAC TAT AGG GCC CCA TCT CCG

TTT TCT AT). Each reverse primer contained a T7-promotor sequence

to allow direct in vitro transcription. The primers were dissolved to a

final concentration of 10 pM. A standard PCR was run to amplify the

target region, using an annealing temperature of 60 �C. An analytical

1% agarose gel was casted to check for the expected length of the

amplicon. Preparative 1% agarose gel was used to cut out the band of

interest and DNA was cleaned by use of Illustra GFX PCR DNA and

Gel Band Purification Kit (GE Healthcare Life Science, 28-9034-70),

following the manufacture protocol. A total of 300 ng of the products

were sequenced and aligned by the Molecular Evolutionary Genetics

Analysis (MEGA6) software to validate the expected sequence of the

amplicon (Table 2).

RNA labeling with Digoxigenin-11-dUTP by in vitro transcription

with T7 polymerase was carried out with DIG RNA labeling mix

(Roche, 11277073910) following the manufacturer's protocol, using

200 ng of PCR product as template. After lithium-chloride precipita-

tion, the concentration of RNA was quantified with a NanoDrop 1000

(PeqLab, Erlangen, Germany). Dot blot was performed to guarantee

the proper DIG incorporation into the newly synthesized transcript

according to the protocol by Zimmerman et al. (2013). In addition, to

verify the length of the transcript, it was checked on a denaturing 4%

Urea-TBE polyacrylamide gel. The protocol used for the ISH on cryo-

sections was performed according to Tozzini et al., (2012), and the

hybridization temperature was 55 �C (temperature set according to

GC content). Staining of the probes were developed with Fast Red

TABLE 1 Antibodies list used for western blot, immunohistochemistry and immunofluorescence methods

Antibody Dilution WB Dilution IHC-IF Catalogue code Antigenic peptide

Anti-rabbit neuropeptide Y polyclonal,
synthetic peptide within residues
1 to the C-terminus of pig
neuropeptide Y

– 1:1,000 P 1:100 FoFr Abcam Cat# ab30914, RRID:
AB_1566510

Pig neuropeptide Y peptide
(Abcam Cat# ab32971)

Anti-goat orexin A polyclonal, peptide
mapping at the C-terminus of
human orexin-A

– 1:500 P 1:10 FoFr Santa Cruz Biotechnology Cat#
sc-8,070, RRID:AB_653610

Santa Cruz Biotechnology Cat#
sc-8070p

Anti-rabbit orexin A polyclonal,
synthetic peptide corresponding to
the C-terminal portion of the bovine
orexin-A peptide

– 1:200 P Millipore Cat# AB3704, RRID:
AB_91545

Not available

Anti-rabbit phospho-S6 ribosomal
protein monoclonal, monoclonal
antibody produced by immunizing
animals with a synthetic
phosphopeptide corresponding to
residues surrounding Ser235 and
Ser236 of human ribosomal protein
S6

1:2,000 1:1,000 FoFr Cell Signaling Technology Cat#
4858, RRID:AB_916156

Phospho-S6 ribosomal protein
(Ser235/236) blocking
peptide (Cell Signaling
Technology Cat #1220)

Anti-rabbit S6 ribosomal protein
monoclonal, monoclonal antibody
produced by immunizing animals
with a synthetic peptide
corresponding to residues of human
S6 ribosomal protein

1:1,000 – Cell Signaling Technology Cat#
2217, RRID:AB_331355

S6 ribosomal protein blocking
peptide (Cell Signaling
Technology Cat #1155)

Anti-biotin, HRP-linked 1:1,000 – Cell Signaling Technology Cat#
7075, RRID:AB_10696897

Anti-rabbit IgG, HRP-linked 1:2,000 – Cell Signaling Technology Cat#
7074, RRID:AB_2099233

Goat anti-rabbit (H + L), Alexa Fluor®

488 conjugate
– 1:1,000 FoFr Molecular Probes Cat# A-11008,

RRID:AB_143165

Biotinylated rabbit anti-goat (H + L) – 1:200 P Vector Laboratories Cat# BA-
5000, RRID:AB_2336126

Donkey anti-goat (H + L), Alexa Fluor®

488 conjugate
– 1:500 FoFr Molecular Probes Cat# A-11055,

RRID:AB_142672

Donkey anti-rabbit IgG (H + L), Alexa
Fluor 568

1:500 FoFr Thermo Fisher Scientific Cat#
A10042, RRID:AB_2534017

P stands for paraffin and FoFr for frozen sections.
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solution (Roche Tablets; 1 in 2 ml Tris–HCl 0.1 M, pH = 8.2). Nuclei

were stained with DAPI mounting medium (IBSC, cat # AR-6501-01)

before sealing with coverslips.

2.5 | Morphological Experiments #3: Combined in
situ hybridization and immunofluorescence

To verify that NPY expressing neurons were activated by fasting stim-

ulus, sections were processed for immunostaining against pRPS6 just

after hybridization with the NPY probe. After Fast Red solution, sec-

tions were washed in PBS, incubated first with normal goat serum

blocking solution (NGS, Thermo Fisher Scientific Cat# 01-6201, RRID:

AB_2532945) for 2 hr at RT, and then with pRPS6 primary antibody

overnight at 4 �C. After washing in RNAse free PBS, sections were

incubated with fluorochrome-conjugated secondary antibody for 1 hr

at RT and nuclei were stained with DAPI mounting medium before

sealing with coverslips. Imaging acquisition and analysis was per-

formed as described in the immunofluorescence. Micrographs were

saved in TIFF format and adjusted for light and contrast before cell

counting. Cell count was carried out manually by using an open source

image-processing program (ImageJ). Only cells with distinguishable

nucleus were taking into account. Autofluorescent erythrocytes were

excluded from the counting. Erythrocytes could be unambiguously

identified based on typical nucleated morphology (nucleus diameter ≤

0.09 pixels, at 20×). Thus, all positive cells with nucleus diameter ≤

0.09 pixels (at 20×) were not considered, in order to avoid inclusion

of erythrocytes into the count. The graphical analysis was produced

by GraphPad Prism and Adobe Illustrator.

2.6 | HCRT and NPY mRNAs expression in
hypothalamus and whole brain of N. furzeri

To verify whether levels of HCRT and NPY are altered by fasting, the

analysis of their mRNAs expression was carried out in the dissected

hypothalamus of young (5 wph) and old (27 wph) N. furzeri in fasted

or fed state (n = 5 per group, n = 20 in total).

We then analyzed the expression levels of HCRT and NPYmRNAs in

the whole brain of in total 31 animals at 5 wph (n = 6), 12 wph (n = 6),

and 27 wph (n = 19), because the neuroanatomical experiments revealed

a wide distribution throughout the neuroaxis. The whole brain was dis-

sected on ice and RNA was extracted as described in Baumgart et al.

(2014). Real-time PCR was performed with the CFX384 (Biorad) and the

Quantitect PCR system (Qiagen). Steps were processed as recommended

by the manufacturer. Forward and reverse primers were always located

in two different exons (HCRT: _fw TGA CTG CCC TCC ATA AAA GC;

_rv GCT GAG ACA GCA GCA ACA TC. NPY: _fw CAG CCC TGA GAC

ACT ACA TCA; _rv CTG CTC TCC TTC AGC AGC A.). A cDNA pool was

serially diluted (from 80 to 2.5 ng per reaction) and used to create stan-

dard as well as melting curves and to calculate amplification efficiencies

for each primer pair prior use for quantification. All reactions were per-

formed in triplicates and negative (water) as well as genomic (without

reverse transcriptase) controls were always included. Fold changes

described the difference in expression level between young and old age

animals normalized to TATA-box binding protein (TBP: _fw CGG TTG

GAG GGT TTA GTC CT; _rv GCA AGA CGA TTC TGG GTT TG). TBP

was chosen as normalizer, since our RNA-seq data (Baumgart et al.,

2014) show no significant aging associated expression changes in the

brain of the analyzed strain between 5 and 27 wph. Primers were

designed based on the N. furzeri transcriptome browser (https://gen100.

imb-jena.de/EST2UNI/nfintb/). Expression levels were calculated by

delta CT method relative to TBP, and fold changes are calculated relative

to 5 wph controls. Statistical analysis of real-time data was done by

unpaired two-tailed t test and ANOVA posttest for linear trend

(GraphPad Prism 7). We have corrected all p-values for multiple compari-

sons using Bonferroni's method.

3 | RESULTS

3.1 | Localization of HCRT and OXA, NPY mRNA
and protein in the diencephalon/midbrain of adult
male animals

To study the neuronal orexinergic and NPY-ergic systems in more

detail, we performed IHC with antibodies raised against mammalian

OXA and NPY, whose conservation degree is shown in Figure 1, and

in situ hybridization to evaluate the localization of HCRT and NPY

mRNAs expressing neurons. The experiments were conducted on

adult animals (12 wph) kept under standard conditions, suppressed

before the morning feeding. The results are semiquantitatively sum-

marized in Table 3. Drawings of the brain of N. furzeri (D'Angelo,

2013) recapitulate schematically the neuroanatomical distribution of

orexin and NPY in the diencephalon/midbrain (Figures 2 and 3).

OXA immunoreactive and HCRT mRNA expressing neurons were

detected in: ventral telencephalon, magnocellular part of the preoptic

nucleus, cortical nucleus, central pretectal nucleus, ventral accessory

optic nucleus, anterior and ventro-medial and lateral thalamic nuclei,

and in proximity of the ventricle, lateral, anterior and caudal part of

TABLE 2 Nucleotides sequences

HCRT (404 nts)

ATCAGATGACTGCCCTCCATAAAAGCCTGAAGATGACGTGGAGCCCCTCCAAGATCCAGAAAGCTGCTAGGATGGACACAACGCACAAGAAAGCCCTGGTGTTCGTTTT

GATGTTGCTGCTGTCTCAGCTGGATTGTAACGCCCAAATTGTGTCTGAGTGCTGCAGACAGCCTCCTCACTCCTGCCGCCTCTATGTCTTACTGTGCCGTTCTGG

CAGCAATAGCATGGGGGGAACAATTGTAGAAGATGCAGCTGCTGGGATCCTCACGCTGGGTAAACGGGACGAGAATGAGTATCGCTTGCAGAGCCGACTCCACCAGC
TTCTTCACAGCTCCAGGAACCAAGCAGCAGGGATCCTGACGATGGGGAGGAGGACCACTGGGCCAACTGGGGAGCAGTGAACT.

NPY (513 nts)

ATCAGATGACTGCCCTCCATAAAAGCCTGAAGATGACGTGGAGCCCCTCCAAGATCCAGAAAGCTGCTAGGATGGACACAACGCACAAGAAAGCCCTGGTGTTCGTTTTGAT

GTTGCTGCTGTCTCAGCTGGATTGTAACGCCCAAATTGTGTCTGAGTGCTGCAGACAGCCTCCTCACTCCTGCCGCCTCTATGTCTTACTGTGCCGTTCTGGCAGCA
ATAGCATGGGGGGAACAATTGTAGAAGATGCAGCTGCTGGGATCCTCACGCTGGGTAAACGGGACGAGAATGAGTATCGCTTGCAGAGCCGACTCCACCA

GCTTCTTCACAGCTCCAGGAACCAAGCAGCAGGGATCCTGACGATGGGGAGGAGGACCACTGGGCCAACTGGGGAGCAGTGAACT.
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FIGURE 1 (a) NPY and HCRT intron/exon gene structure of N. furzeri and alignment of transcripts from other fish species (downloaded and

modified from http://nfingb.leibniz-fli.de/, transcript information for the other fish species can be found at http://www.ensembl.org/). (b) NPY
protein sequence alignments in different vertebrate species: N. furzeri; Oryzias latipes (medaka); Carassius auratus (goldfish) and Mus musculus
(mouse). Asterisks mark conserved amino acids (alignment was done with Clustal Omega http://www.ebi.ac.uk/Tools/msa/clustalo/).
(c) HCRT/Prepro-orexin protein sequence alignments in different vertebrate species: N. furzeri; Oryzias latipes (medaka); Carassius auratus
(goldfish) andMus musculus (mouse). Asterisks mark conserved amino acids (alignment was done with Clustal omega http://www.ebi.ac.
uk/Tools/msa/clustalo/) [Color figure can be viewed at wileyonlinelibrary.com]
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dorsal hypothalamus, paraventricular organ, inferior lobe of the hypo-

thalamus (Figure 4a,e,e1,d) and hypothalamic recess, and in addition in

cells of periventricular gray zone, lining the deep white and gray zone.

OXA immunoreactive fibers were widespread and projecting through-

out the whole brain (Figure 4a,b).

NPY immunoreactive and NPY mRNA expressing neurons were

seen in: ventro-lateral (Figure 5a,b) part of the telencephalon, cortical

nucleus (Figure 5c), ventral accessory optic nucleus (Figure 5c), ventro-

lateral thalamic nucleus (Figure 5e,f), along the margin of the ventral

hypothalamus (Figure 5c,d,d1), in proximity of the ventricle (Figure 5c,d),

dorsal part of hypothalamus (Figure 5e,f), central pretectal nucleus, peri-

ventricular nucleus of posterior tuberculum, anterior and posterior parts

of tuberal nucleus; medial and lateral parts of inferior lobe of hypothala-

mus (Figure 5g,h,h1), and in addition in cells of periventricular gray zone

(Figure 5e,f1). Moreover, NPY immunopositive fibers were detected in

the whole telencephalon (Figure 5a), in pretectal nucleus, around peri-

ventricular nucleus of posterior tuberculum; in anterior and posterior

parts of tuberal nucleus; in central zone of the optic tectum (Figure 5c),

and widely distributed along the neuroaxis.

We also conducted experiments of double immunofluorescence

to evaluate if OXA and NPY are codistributed in neurons. Colocaliza-

tion was detected in some neurons of the cortical nucleus (Figure 6a),

ventro-lateral thalamic nucleus and dorsal hypothalamus (Figure 6b,c),

and inferior lobe of hypothalamus (Figure 6d).

TABLE 3 Semiquantitative analysis of NPY protein and mRNA, OXA, and HCRT distribution in the diencephalic regions of adult (12 wph) N.

furzeri

Neuroendocrine regions

NPY OXA HCRT

Protein mRNA Protein mRNA

Neurons Fibers Neurons Neurons Fibers Neurons

Telencephalon

Central zone of dorsal telencephalon (Dc) ++ +++

Dorso-lateral zone of dorsal telencephalon (Dld) ++ ++

Latero-lateral zone of dorsal telencephalon (Dll) ++ ++

Ventro-lateral zone of dorsal telencephalon (Dlv) ++ +++

Medial zone of dorsal telencephalon (Dm) ++ ++

Ventral telencephalon (Vv) ++ ++ ++ ++ ++

Ventro-lateral telencephalon (Vl) ++ ++

Preoptic area

Suprachiasmatic nucleus (SC) ++ ++ ++

Preoptic nucleus, parvocellular part (PPp) ++ ++

Preoptic nucleus, magnocellular part (PM) ++ ++ + ++

Tuberal hypothalamus

Dorsal hypothalamus (Hd) + ++ ++ ++ +++

Ventral hypothalamus (Hv) ++ ++ ++ +++

Caudal hypothalamus (Hc) ++

Lateral hypothalamus (Hl) ++ + ++

Anterior tuberal nucleus (TNa) + ++

Posterior tuberal nucleus (TNp) +

Periventricular nucleus of posterior tuberculum (TPp) ++ + + +

Preglomerular nucleus (PG) ++ + ++ +

Glomerular nucleus (NG) +++ ++ + +++ + +

Hypothalamic recess (rec) ++ + ++ ++ +++ +

Nucleus of posterior recess (NRP) ++ ++

Inferior lobe of hypothalamus (DIL) +++ ++ ++ +++ ++ ++

Posterior tubercle

Paraventricular organ (PVO) ++ + ++ ++ +

Thalamus

Ventro-medial thalamic nucleus (VM) ++ ++ +

Ventro-lateral thalamic nucleus (VL) ++ ++ +

Central pretectal nucleus (CPN) + ++ ++ + ++

Dorsal periventricular pretectal nucleus (PPd) ++

Superficial pretectal nucleus (SPN) ++

Cortical nucleus (NC) +++ ++ +++ ++

Ventral accessory optic nucleus (VAO) ++ ++ ++ ++

+ = few; ++ = moderately dense; +++ = very dense.
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FIGURE 2 Schematic drawings of transversal sections of N. furzeri brain (D'Angelo, 2013), specifically referred to diencephalon/midbrain. Each

section documents on the right side the abbreviated names of nuclei, and on the left side the pattern of HCRT expression in neurons (empty
triangles), and OXA distribution in neurons (black triangles) and fibers (black dots)
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FIGURE 3 Schematic drawings of transversal sections of N. furzeri brain (D'Angelo, 2013), specifically referred to diencephalon/midbrain.

Each section documents on the right side the abbreviated names of nuclei, and on the left side the pattern of NPY mRNA expression in
neurons (empty triangles), and NPY distribution in neurons (black triangles) and fibers (black dots)
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3.2 | HCRT and NPY mRNAs expressing neurons in
the diencephalon upon aging and fasting

After describing the neuroanatomical localization of OXA immunoreac-

tive and HCRT mRNA expressing neurons, NPY immunoreactive and

HCRT mRNA expressing neurons, we studied the pattern of expression

of HCRT and NPY mRNAs in the hypothalamic areas of N. furzeri, at

5 and 27 wph, and upon 96 hr of fasting in subjects at 5 and 27 wph.

HCRTmRNA signal was seen in the dorsal hypothalamus (Figure 7a–

d) in all four analyzed conditions. In old control animals, HCRT mRNA sig-

nal was also seen in the ventro-medial thalamic nucleus; central pretectal

FIGURE 4 Transversal section of OXA immunohistochemical distribution and HCRT in situ hybridization in the diencephalon and midbrain of

N. furzeri. (a) Immunoreactivity (IR) in neurons of PM, CN, VM, and widespread positive fibers of ON projecting toward OT. (b) HCRT expressing
neurons in the anterior part of OT and in neurons of NC. (c) IR in fibers of the most superficial layers of OT and in some positive neurons of PGZ.
(d) HCRT expressing neurons in the PGZ of OT, more numerous at the margin between PGZ and the DWGZ of OT. (e) IR in neurons of DIL. (e1)
High magnification of neurons in (e). (f) HCRT expressing neurons in the DIL [Color figure can be viewed at wileyonlinelibrary.com]
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FIGURE 5 Transversal section of NPY immunohistochemical distribution and NPY mRNA in situ hybridization in the diencephalon and midbrain

of N. furzeri. (a) Overview of the caudal telencephalon, showing IR in neurons of Vv and in widespread fibers over the posterior portions of
telencephalic hemispheres (Vl, Dld, Dll, Dm, Dc), PPa, and ON. (b) Overview of the caudal telencephalon, showing NPY mRNA expressing neurons
in Vv. (c) IR in neurons of NC, VAO, VL, Hd, Hv, and positive fibers in the OT and ON. (d) NPY mRNA expressing neurons in Hd and Hv. (d1) High
magnification of NPY mRNA expressing cells along the ventricle. (e) Overview of diencephalon/midbrain, showing IR in neurons of VL, Hl, Hv, DIL
and in some cells of PGZ, and widespread fibers in the caudal part of diencephalon and OT. (e1) High magnification of IR in neurons and fibers of
VL. (f) NPY mRNA expressing neurons in VL and Hl. (f1) NPY mRNA expressing cells of PGZ. (g) IR in neurons of DIL. (g1) High magnification of
neurons in the rectangle of (g). (h) NPY mRNA expressing neurons in the midbrain tegmentum, in cells at the margin between OT and midbrain
tegmentum, and in neurons of rec and DIL. (h1) High magnification of rectangle in (h) [Color figure can be viewed at wileyonlinelibrary.com]
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nucleus (Figure 7b); inferior lobe of hypothalamus. Upon fasting, in young

animals HCRT mRNA probe signal increased sharply, revealing intense

positivity in the diencephalon (Figure 7c).

NPY mRNA signal was seen in the ventro-lateral and ventro-

medial thalamic nuclei in all four analyzed conditions (Figure 7e–h). In

control animals at 5 wph, NPY mRNA positive neurons were detected

in suprachiasmatic nucleus, parvocellular, and magnocellular part of

preoptic nucleus; preglomerular nucleus; anterior tuberal nucleus

(Figure 7e). In control animals at 5 wph, NPY mRNA was observed in:

paraventricular organ (Figure 7f); nucleus of posterior recess; around

the glomerular nucleus; dorsal (Figure 7f), ventral (Figure 7f), lateral

(Figure 7g) and caudal hypothalamus; inferior lobe of hypothalamus.

In FA at 5 wph, NPY mRNA expressing neurons were seen in the dor-

sal, ventral (Figure 7g), lateral (Figure 7g), and caudal hypothalamus;

inferior lobe of hypothalamus, in proximity of the ventricle (Figure 6g).

In FA at 27 wph, intense staining was seen in the whole hypothalamic

region, and superficial and central pretectal nuclei (Figure 6h). Nota-

bly, either in course of aging and upon fasting in young animals, NPY

mRNA expressing neurons were numerous. We, therefore, investi-

gated the localization of nuclei responsible for this overexpression by

studying also the anatomical distribution of the neuronal activity

marker pRPS6 (Jennings et al., 2013) throughout these regions. In old

animals, the number of positive pRPS6 neurons decreased signifi-

cantly in old control (Figure 7f), and very few NPY positive neurons

were coexpressed with pRPS6 (Figure 7f). As expected, 96 hr of fast-

ing determined a neuronal activation, displayed by the increased num-

ber of pRPS6 positive neurons in the brain of young (Figure 7g) but

not old animals (Figure 7h).

3.3 | HCRT and NPY mRNAs expressing neurons in
non diencephalic regions of old N. furzeri

The wider distribution of NPY in the diencephalic region of aged ani-

mals prompted us to question whether NPY could be also expressed

outside diencephalon. HCRT positive neurons were seen in the rostral

part of dorsal telencephalon (Figure 8a) and dorso-medial, dorso-

lateral and dorso-ventral portions of the telencephalic hemispheres

(Figure 8b) in the periventricular gray zone of the optic tectum. NPY

mRNAs synthesizing neurons were observed in the dorsal accessory

optic nucleus (Figure 8c), in the periventricular gray zone of the optic

tectum (Figure 8d) and in the semicircular torus.

3.4 | Age related changes of HCRT and NPY

After having described the distribution of HCRT and NPY in the young

and old N. furzeri brain, we analyzed age-dependent regulation of

these peptides by qPCR in whole brains. For this aim, we compared

the three selected time-points 5 wph (young, sexual maturity),

12 wph (adult), and 27 wph (old) with previous RNA-seq results

obtained at the same age steps in different animals (Baumgart et al.,

2014). HCRT expression was not found by qPCR and RNA-seq to be

statistically significant regulated reduced in the brain of old subjects

(Figure 9a,b) to 50% of the young level while HRCT expression of the

adult animals was reduced to 36% of the young levels (qPCR: F

(1,29) = 5.69, p = 0.0952; RNA-seq: F(1,12) = 3.136, p = 0.408,

ANOVA posttest for linear trend with Bonferroni's correction).

NPY expression levels increased progressively from young, to

adult and old animals (Figure 9c). Indeed, the mean expression level in

the old subjects was 1.78 times higher than in the young subjects. The

expression level of the adult fish was 1.31 times higher than in the

young. The expression level of the adult fish was 0.73 times lower

than the old (F(1,28) = 27.62, p = 0.0004, ANOVA posttest for linear

trend with Bonferroni's correction). NPY expression levels were much

higher than HCRT (~40 reads per kilobase of transcript, per million

[RPKM] in young animals) and age-dependent upregulation of NPY

was detected also by RNA-seq (F(1,12), p = 0.0012, ANOVA posttest

for linear trend with Bonferroni's correction) (Figure 9d).

3.5 | Age-related regulation of HCRT and NPY by
food intake

In order to test whether these orexigenic peptides in N. furzeri are reg-

ulated by food intake in young (5 wph) and old (27 wph) specimens,

we carried out experiments of fasting, the most used paradigm to

evaluate energy homeostasis regulatory process. We, therefore, com-

pared the expression of HCRT and NPY in control animals and

FA. Since both peptides are expressed also outside of the hypothala-

mus, we performed qPCR on dissected diencephalon. A statistically

significant upregulation of NPY, but not of HCRT, was detected only in

young animals (Figure 10a,b) HCRT: t(8) = 1.342, p = 1.299; NPY: t

(8) = 4.278, p = 0.0162 two-tailed, unpaired t test with Bonferroni's

correction).

We then identified a number of diencephalic nuclei, where expres-

sion of NPY could be detected only in old subjects and investigated the

localization of nuclei responsible for this NPY upregulation by counting

cells expressing NPY or expressing the neuronal activity marker pRPS6

(Figure 10c) (Jennings et al., 2013). In young FA (Figure 10d), a prominent

upregulation of NPY was detected in 17 diencephalic nuclei out of

19, namely in the DIL, dorsal, ventral, caudal hypothalamus, and several

additional nuclei (SC, PPp, SPN, CN, CPN, PG, NG, rec, PVO, A). In old

animals (Figure 10e), NPY upregulation was observed in eight nuclei,

namely in the DIL, dorsal, ventral, caudal hypothalamus, and other nuclei

(PPp, PPd, VAO, TP, rec, PVO). Remarkably, pRPS6 immunoreactive cells

were scarcely detectable in old specimens, upon fasting, with the excep-

tion of very few positive neurons in the SC and DIL (Figure 10e). How-

ever, western blot analysis (Figure 10c) on total brain extracts revealed

brain-wide upregulation of pRPS6.

FIGURE 6 Double immunofluorescence of OXA (red) and NPY (green) in the diencephalon/midbrain of N. furzeri. (a) Codistribution in neurons of

NC. (a1,a2) Single immunostaining of OXA and NPY. (b) Copresence in some neurons of Hd and VL and in some fibers of ON. (b1,b2) Single
immunostaining of OXA and NPY. (c) Colocalization in some neurons of VL, Hd and NC. (b1,b2) Single immunostaining of OXA and NPY.
(d) Codistribution in neurons displaced in the central part and in the peripheral area of DIL. (d1,d2) Single immunostaining of OXA and NPY [Color
figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

4.1 | Neuroanatomical organization of orexinergic
and NPY-ergic neurons

Orexin and NPY containing neurons were widely distributed in the dien-

cephalon/midbrain of adult N. furzeri, kept under standard conditions.

OXA and NPY positive neuronal projections were observed throughout

the brain, from telencephalon to brainstem, as reported in the brain of

different vertebrate species (Peyron et al., 1998; Shibahara et al., 1999;

Kaslin et al., 2004; Huesa et al., 2005; Nakamachi et al., 2006;

Nixon & Smale, 2007; Kojima et al., 2009; Matsuda et al., 2012a;

Matsuda, et al., 2012b; Miranda et al., 2013; Volkoff, 2016). OXA neu-

ronal projections were not observed in the cerebellum, as documen-

ted in rat (Nambu et al., 1999). Remarkably, neurons expressing HCRT

and NPY mRNAs were mainly localized in the hypothalamic areas, and

along the third ventricle. Overall, in N. furzeri, the distribution of OXA-

and NPY-ir cell bodies matched that of HCRT and NPY-mRNAs

expressing cells. Our morphological analyses are in agreement to what

has been documented in several fish species (Volkoff, 2016), and

different to mammals (de Lecea et al., 1998; Sakurai et al., 1998). Of

relevance, HCRT expressing neurons in zebrafish (Kaslin et al., 2004)

FIGURE 7 HCRT and colocalization of NPY mRNAs/pRPS6 expressing neurons in the diencephalon of N. furzeri, upon aging and fasting. On the

top schematic drawing depicting the diencephalon/midrain where the probes signal was intensely detected. HCRT mRNA in control animals: (a) At
5 wph, few intensely stained neurons in Hd; (b) At 27 wph, markedly few stained neurons in Hd, and slight signal probes in numerous neurons in
the most caudal diencephalic nuclei (arrow); HCRT mRNA in Fa. (c) At 5 wph, markedly few stained neurons in Hd, in numerous neurons in VM
and PG, and signal probe over the most caudal diencephalic region; (d) At 27 wph, few stained neurons in Hd. NPY mRNA(red)/pRPS6(green)
protein (used as marker of activated neurons) in control animals. (e) At 5 wph, few NPY mRNA neurons in the diencephalic region, and activated
neurons in Hd and TNa; (f) At 27 wph, numerous NPY mRNA positive neurons, in PVO, Hd, Hl and Hv. Very few activated neurons in PVO and
Hd, and only 2–3 costained neurons in Hd; NPY mRNA(red)/pRPS6(green) protein (used as marker of activated neurons) in FA: (g) At 5 wph, NPY
mRNA and pRPS6 in several neurons of the hypothalamus (Hv, Hl), without colocalization; (h) At 27 wph, NPY mRNA labeling in neurons of SPN
and around vot. Any immunostaining was detected against pRPS6. Nuclei are counterstained with DAPI [Color figure can be viewed at
wileyonlinelibrary.com]

14 MONTESANO ET AL.

http://wileyonlinelibrary.com


are restricted to few hypothalamic nuclei. Overall, the wide distribu-

tion of positive OXA and NPY projections in the brain of N. furzeri

prompted us to hypothesize that the two neuropeptides may orches-

trate multiple functions, including those in relation with visceral organs

(Brothers & Wahlestedt, 2010; Inutsuka & Yamanaka, 2013). For

example, the evidence of OXA immunoreactivity reported in the diges-

tive system of different teleostean species (D'Angelo et al., 2016a;

Volkoff, 2016) suggests a signaling between central hypothalamic

nuclei and peripheral enteroendocrine cells, and discoveries of such

networks and messengers provide new biological insights on how to

manipulate appetite-satiety pathways and thus their involvement in

the regulation of energy homeostasis. More interestingly, both orexi-

nergic and NPY-ergic neurons were located in proximity of the ventri-

cle where the blood brain barrier is more permissive. Indeed, these

neurons are more sensitive to peripheral chemical (e.g., glucose) or

endocrine (e.g., gastrointestinal hormones) factors circulating in the

blood (Volkoff, 2016). These observations suggest the involvement of

orexin and NPY neurons in the circuitry of appetite control.

Our results displayed that OXA and NPY were colocalized in

some neurons of few diencephalic areas. On the other hand, anatomi-

cal studies conducted in other fish species (Volkoff, 2016) and mam-

mals (Sakurai, 2014) displayed that orexin and NPY neurons belong to

two different sets of hypothalamic neurons, although they act syner-

gistically (Sakurai, 2014; Volkoff & Peter, 2006). These observations

shed light on possible way of interaction of the orexinergic and NPY-

ergic neurons in N. furzeri, as components of a hypothalamic circuitry,

integrating aspects of feeding behavior.

4.2 | Age-associated regulation of HCRT and NPY in
the brain of N. furzeri

Our data show that HCRT is not significantly regulated in the brain of

N. furzeri during aging. These observations represent a great novelty

in the study of vertebrates orexin system, which is characterized by

an age related decline (Nixon et al., 2015), paralleled by physiological

alterations in body weight regulation, sleep and locomotor activity

during aging (Nixon et al., 2015). We detected slight HCRT decreased

levels between young and adult animals, which may mirror the explo-

sive growth of N. furzeri (Cellerino et al., 2016) to reach the sexual

maturity (between 3 and 5 weeks). Similarly, in humans the greater

loss occurs during maturation (Hunt et al., 2015).

On the other hand, NPY is remarkably overexpressed in the whole

brain, during aging, confirming that the quantitative data matched the

morphological observations. For instance, NPY positive neurons in the

inferior lobe of hypothalamus were much more numerous in old sub-

jects than in young. However, such enhancement of NPY does not fit

FIGURE 8 HCRT and NPY mRNAs expressing neurons outside

diencephalon/midbrain in animals at 27 wph. Widespread expression
of HCRT mRNA: (a) in the rostral part of dorsal telencephalon; (b) in Dl
and Dm of telencephalon. NPY mRNA signal (c) in neurons of DAO;
(d) in cells of the PGZ. Nuclei are counterstained with DAPI [Color
figure can be viewed at wileyonlinelibrary.com]

FIGURE 9 Age related changes of HCRT and NPY in the whole brain

of N. furzeri, in subjects at 5 wph (young, sexual maturity), 12 wph
(adult) and 27 wph (old). (a) Age-dependent regulation of HCRT levels
by qPCR. HCRT expression is not statistically significant regulated in
the brain of adult and old animals (F(1,29) = 5.69, p = 0.0952 ANOVA
posttest for linear trend with Bonferroni's correction). (b) Age-
dependent regulation of HCRT levels by RNA-seq. HCRT expression is
not statistically significant regulated in the brain of adult and old
animals (F(1,12) = 3.136, p = 0.408). (c) Age-dependent regulation of
NPY levels by qPCR. NPY expression levels increased progressively
from young, to adult and old animals (F(1,28) = 27.62, p = 0.0004,
ANOVA posttest for linear trend with Bonferroni's correction).
(d) Age-dependent upregulation of NPY levels by RNA-seq. NPY
expression levels increased progressively from young, to adult and old
animals (F(1,12), p = 0.0012, ANOVA posttest for linear trend with
Bonferroni´s correction). Fold changes were calculated for each
animal relative to the mean expression level of the young controls.
TBP was used as housekeeping gene
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with the hyperphagic phenotype (de Luca et al., 2005), because old

animals tend to eat much less than adult and young. Transgenic mouse

model of NPY overexpression and a model of conditionally overex-

pressed NPY (Thiele, Marsh, Ste Marie, Bernstein, & Palmiter, 1998)

exhibited no major phenotypes related to food intake or body weight.

The levels of NPY gene expression are generally elevated in several

models of animal obesity, such as in diet-induced obesity (Guan et al.,

1998), leptin-deficient ob/ob mice (Kesterson, Huszar, Lynch,

Simerly, & Cone, 1997), as well as in the obese state, as shown in the

Zucker rat (Dryden et al., 1995), and upon pharmacological treatments

that enhance feeding (Li and Ritter, 2004). Postmortem analysis in

N. furzeri (Di Cicco, Tozzini, Rossi, & Cellerino, 2011) reported liver

fatty degeneration up to steatosis as main degenerative lesion. Such

lesions could be the consequence of the natural feeding habits

(Cellerino et al., 2016), characterized by ingestion of high quantity of

fatty food, as well as the spontaneous aging process. However, these

lesions indicate a clear age related failure of energy homeostasis, and

could contribute to the NPY overexpression. Interestingly, in old ani-

mals we observed a much wider pattern of NPY mRNA expressing

neurons than in young. In the brain of old animals, we observed

FIGURE 10 Age related regulation of HCRT and NPY by food intake in the dissected diencephalon of N. furzeri, in subjects at 5 wph (young,

sexual maturity) and 27 wph (old). (a) Expression levels of HCRT in control and FA at 5 wph were not significant (t(8) = 1.342, p = 1.299, two-
tailed, unpaired t test with Bonferroni's correction). (b) Expression levels of NPY were statistically significant in FA at 5 wph but not at 27 wph (t
(8) = 4.278, p = 0.0162 two-tailed, unpaired t test with Bonferroni´s correction). (c) Western blot analysis on total brain extracts of subjects at
5 wph (young, sexual maturity) and 27 wph (old), against pRPS6 and RPS6 antibodies, revealed bands of ~30 kDa. (d) Counting cells expressing
NPY or pRPS6, the neuronal activity marker, in identified diencephalic nuclei of control and FA at 5 wph: NPY upregulation in 17 nuclei out of 19.
pRPS6 immunoreactive cells were more numerous in FA than in controls. In SC, PPp, CPN, and PG, pRPS6 immunoreactive cells were more
numerous than NPY expressing neurons. (e) Counting cells expressing NPY or pRPS6, in identified diencephalic nuclei of control and FA at
27 wph. NPY upregulation in eight nuclei of FA. pRPS6 immunoreactivity was detected only in SC and DIL of FA
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positivity in nondiencephalic areas, such as optic tectum and tegmen-

tum, and surprisingly positive NPY cells were overall numerous in all

diencephalic nuclei of old control group, and very few or absent in the

same nuclei of FA. This observation made us consider that NPY con-

curs to regulate the brain aging process of N. furzeri, other than the

appetite control. Future experiments are mandatory to unravel the

regulation of NPY in the brain of N. furzeri in course of aging.

4.3 | Different age related regulation of orexin and
NPY by food intake

The increased number of pRPS6 positive cells confirmed that fasting

activates neurons (Knight et al., 2012) in the diencephalon of

N. furzeri, with the highest peak detected in young animals. Of the

two neuropeptides, only NPY is significantly increased upon fasting in

young animals. The increased HCRT levels, although not statistically

significant, overlap with the pattern of HCRT synthesizing neurons

observed in the diencephalic region. In goldfish, short-term fasting

induced increased HCRT and NPY levels (Nakamachi et al., 2006),

whereas in other fish species (zebrafish, winter flounder, and coho

salmon) (MacDonald & Volkoff, 2010; Novak et al., 2005; Silverstein

et al., 1998) long-term fasting (14 days) was associated with a signifi-

cant increase in HCRT and NPY. Indeed, fish in general demonstrate a

remarkable adaptation to starvation, both in controlled experiments

and in their natural habitat (McCue, 2010), and we suspect an adap-

tive mechanism of orexin regulation in N. furzeri. Future experiments

can help to better elucidate whether HCRT in N. furzeri is regulated by

longer term fasting.

However, short-term fasting does not regulate the expression

levels of the two neuropeptides in the diencephalon of old animals.

Unchanged levels of HCRT are in good agreement with the measure-

ments carried out either in the whole brain of old animals and in the

dissected diencephalon of young animals. A key observation is repre-

sented by unregulated levels of NPY in the dissected diencephalon of

old FA. Arguably, longer period of starvation is necessary to activate

the molecular regulation of food intake in the hypothalamus of old

organisms with physiological low metabolic rates.

Overall, the achieved results show that HCRT expression is regu-

lated by food intake neither in young N. furzeri nor in aged, whereas

NPY is regulated by food intake in young but not in old. This repre-

sents an opportunity to unravel age-related mechanisms involving

NPY-ergic system, and identify potential treatment targets in the aged

central nervous system of vertebrates.

ACKNOWLEDGMENTS

This work was supported by grant from the University of Naples Fed-

erico II (DR/2017/409—Project F.I.A.T.). We thank Sabine Matz for

the technical work, and Antonio Calamo for the imaging assistance.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

AUTHOR CONTRIBUTIONS

A.M., M.B., A.C., P.d.G., and L.D.A. designed research; A.M., M.B., and

E.T.T. performed research; M.B., C.L., L.C., and L.A. analyzed data;

A.C., L.D.A., and P.d.G. wrote the paper.

ORCID

Carla Lucini https://orcid.org/0000-0003-2216-6338

Livia D'Angelo https://orcid.org/0000-0001-5050-642X

REFERENCES

Alvarez, C. E., & Sutcliffe, J. G. (2002). Hypocretin is an early member of
the incretin gene family. Neuroscience Letters, 324(3), 169–172.

Baumgart, M., Groth, M., Priebe, S., Savino, A., Testa, G., Dix, A., …
Cellerino, A. (2014). RNA-seq of the aging brain in the short-lived fish
N. furzeri—conserved pathways and novel genes associated with neu-
rogenesis. Aging Cell, 13(6), 965–974.

Baumgart, M., Priebe, S., Groth, M., Hartmann, N., Menzel, U., Pandolfini,
L., … Cellerino, A. (2016). Longitudinal RNA-seq analysis of vertebrate
aging identifies mitochondrial complex i as a small-molecule-sensitive
modifier of lifespan. Cell Systems, 2(2), 122–132.

Botelho, M., & Cavadas, C. (2015). Neuropeptide Y: An anti-aging player?
Trends in Neurosciences, 38(11), 701–711.

Brothers, S. P., & Wahlestedt, C. (2010). Therapeutic potential of neuropep-
tide Y (NPY) receptor ligands. EMBO Molecular Medicine, 2(11), 429–439.

Brownell, S. E., & Conti, B. (2010). Age- and gender-specific changes of
hypocretin immunopositive neurons in C57Bl/6 mice. Neuroscience
Letters, 472(1), 29–32.

Cellerino, A., Valenzano, D. R., & Reichard, M. (2016). From the bush to
the bench: The annual Nothobranchius fishes as a new model system
in biology. Biological Reviews, 91(2), 511–533.

Cerdá-Reverter, J. M., & Canosa, L. F. (2009). Neuroendocrine systems of
the fish brain. In N. J. Bernier, G. J. Van der Kraak, A. P. Farrell, &
C. J. Brauner (Eds.), Fish neuroendocrinology (pp. 3–74). Amsterdam,
Netherlands: Elsevier.

Cerdá-Reverter, J. M., & Larhammar, D. (2000). Neuropeptide Y family of
peptides: Structure, anatomical expression, function, and molecular
evolution. Biochemistry and Cell Biology—Biochimie et Biologie Cellulaire,
78(3), 371–392.

Cristino, L., Busetto, G., Imperatore, R., Ferrandino, I., Palomba, L.,
Silvestri, C., … Di Marzo, V. (2013). Obesity-driven synaptic remodeling
affects endocannabinoid control of orexinergic neurons. Proceedings of
the National Academy of Sciences of the United States of America, 110
(24), E2229–E2238.

D'Angelo, L. (2013). Brain atlas of an emerging teleostean model: Notho-
branchius furzeri. Anatomical Record—Advances in Integrative Anatomy
and Evolutionary Biology, 296(4), 681–691.

D'Angelo, L., Castaldo, L., De Girolamo, P., Lucini, C., Paolucci, M.,
Pelagalli, A., … Arcamone, N. (2016a). Orexins and receptor OX2R in
the gastroenteric apparatus of two teleostean species: Dicentrarchus
labrax and Carassius auratus. Anatomical Record—Advances in Integrative
Anatomy and Evolutionary Biology, 299(8), 1121–1129.

D'Angelo, L., Lossi, L., Merighi, A., & de Girolamo, P. (2016b). Anatomical fea-
tures for the adequate choice of experimental animal models in biomedi-
cine: I. Fishes. Annals of Anatomy—Anatomischer Anzeiger, 205, 75–84.

de Girolamo, P., & Lucini, C. (2011). Neuropeptide localization in nonmam-
malian vertebrates. Methods in Molecular Biology, 789, 37–56.

de Lecea, L., & Huerta, R. (2014). Hypocretin (orexin) regulation of sleep-
to-wake transitions. Frontiers in Pharmacology, 5, 16.

De Lecea, L., Kilduff, T. S., Peyron, C., Gao, X. B., Foye, P. E., Danielson,
P. E., … Sutcliffe, J. G. (1998). The hypocretins: Hypothalamus-specific
peptides with neuroexcitatory activity. Proceedings of the National
Academy of Sciences of the United States of America, 95(1), 322–327.

de Luca, C., Kowalski, T. J., Zhang, Y. Y., Elmquist, J. K., Lee, C.,
Kilimann, M. W., … Chua, S. C. (2005). Complete rescue of obesity, diabe-
tes, and infertility in db/db mice by neuron-specific LEPR-B transgenes.
Journal of Clinical Investigation, 115(12), 3484–3493.

MONTESANO ET AL. 17

https://orcid.org/0000-0003-2216-6338
https://orcid.org/0000-0003-2216-6338
https://orcid.org/0000-0001-5050-642X
https://orcid.org/0000-0001-5050-642X


Di Cicco, E., Tozzini, E. T., Rossi, G., & Cellerino, A. (2011). The short-lived
annual fish Nothobranchius furzeri shows a typical teleost aging process
reinforced by high incidence of age-dependent neoplasias. Experimen-
tal Gerontology, 46(4), 249–256.

Dryden, S., Pickavance, L., Frankish, H. M., & Williams, G. (1995). Increased
neuropeptide Y secretion in the hypothalamic paraventricular nucleus
of obese (fa/fa) Zucker rats. Brain Research, 690(2), 185–188.

Duarte-Neves, J., de Almeida, L. P., & Cavadas, C. (2016). Neuropeptide Y
(NPY) as a therapeutic target for neurodegenerative diseases. Neurobi-
ology of Disease, 95, 210–224.

Guan, X. M., Yu, H., Trumbauer, M., Frazier, E., Van der Ploeg, L. H. T., &
Chen, H. (1998). Induction of neuropeptide Y expression in dorsomedial
hypothalamus of diet-induced obese mice. Neuroreport, 9(15), 3415–3419.

Harel, I., Benayoun, B. A., Machado, B., Singh, P. P., Hu, C. K., Pech, M. F.,
… Brunet, A. (2015). A platform for rapid exploration of aging and dis-
eases in a naturally short-lived vertebrate. Cell, 160(5), 1013–1026.

Huesa, G., van den Pol, A. N., & Finger, T. E. (2005). Differential distribu-
tion of hypocretin (orexin) and melanin-concentrating hormone in the
goldfish brain. Journal of Comparative Neurology, 492(3), 380–381.

Hunt, N. J., Rodriguez, M. L., Waters, K. A., & Machaalani, R. (2015).
Changes in orexin (hypocretin) neuronal expression with normal aging
in the human hypothalamus. Neurobiology of Aging, 36(1), 292–300.

Inutsuka, A., & Yamanaka, A. (2013). The regulation of sleep and wakeful-
ness by the hypothalamic neuropeptide orexin/hypocretin. Nagoya
Journal of Medical Science, 75(1–2), 29–36.

Jennings, J. H., Rizzi, G., Stamatakis, A. M., Ung, R. L., & Stuber, G. D.
(2013). The inhibitory circuit architecture of the lateral hypothalamus
orchestrates feeding. Science, 341(6153), 1517–1521.

Kaslin, J., Nystedt, J. M., Ostergard, M., Peitsaro, N., & Panula, P. (2004). The
orexin/hypocretin system in zebrafish is connected to the aminergic and
cholinergic systems. Journal of Neuroscience, 24(11), 2678–2689.

Kessler, B. A., Stanley, E. M., Frederick-Duus, D., & Fadel, J. (2011). Age-
related loss of orexin/hypocretin neurons. Neuroscience, 178, 82–88.

Kesterson, R. A., Huszar, D., Lynch, C. A., Simerly, R. B., & Cone, R. D.
(1997). Induction of neuropeptide Y gene expression in the dorsal
medial hypothalamic nucleus in two models of the Agouti obesity syn-
drome. Molecular Endocrinology, 11(5), 630–637.

Knight, Z. A., Tan, K., Birsoy, K., Schmidth, S., Garrison, J. L., Wysocki, R. W.,
… Friedman, J. M. (2012). Molecular profiling of activated neurons by
phosphorylated ribosome capture. Cell, 151, 1126–1137.

Kojima, K., Kamijo, M., Kageyama, H., Uchiyama, M., Shioda, S., & Matsuda, K.
(2009). Neuronal relationship between orexin-A- and neuropeptide Y-
induced orexigenic actions in goldfish. Neuropeptides, 43(2), 63–71.

Li, A. J., & Ritter, S. (2004). Glucoprivation increases expression of neuro-
peptide Y mRNA in hindbrain neurons that innervate the hypothala-
mus. European journal of neuroscience. 19(8), 2147–2154.

Loh, K., Herzog, H., & Shi, Y. C. (2015). Regulation of energy homeostasis
by the NPY system. Trends in Endocrinology and Metabolism, 26(3),
125–35.

MacDonald, E. E., & Volkoff, H. (2010). Molecular cloning and characteri-
zation of preproorexin in winter skate (Leucoraja ocellata). General and
Comparative Endocrinology, 169(3), 192–196.

Matsuda, K., Azuma, M., & Kang, K. S. (2012a). Orexin system in teleost
fish. Vitamins and Hormones, 89, 341.

Matsuda, K., Sakashita, A., Yokobori, E., & Azuma, M. (2012b). Neuroendo-
crine control of feeding behavior and psychomotor activity by neuro-
peptideY in fish. Neuropeptides, 46(6), 275–283.

McCue, M. D. (2010). Starvation physiology: reviewing the different strate-
gies animals use to survive a common challenge. Comparative Biochem-
istry and Physiology Part A: Molecular & Integrative Physiology, 156(1),
1–18.

Messina, G., Dalia, C., Tafuri, D., Monda, V., Palmieri, F., Dato, A., …
Monda, M. (2014). Orexin-A controls sympathetic activity and eating
behavior. Frontiers in Psychology, 5, 997.

Meyuhas, O. (2008). Physiological roles of ribosomal protein S6: one of its
kind. International Review of Cell and Molecular Biology, 268, 1–37.

Minor, R. K., Lopez, M., Younts, C. M., Jones, B., Pearson, K. J.,
Anson, R. M., … de Cabo, R. (2011). The arcuate nucleus and neuropep-
tide Y contribute to the antitumorigenic effect of calorie restriction.
Aging Cell, 10(3), 483–492.

Miranda, B., Esposito, V., de Girolamo, P., Sharp, P. J., Wilson, P. W., &
Dunn, I. C. (2013). Orexin in the chicken hypothalamus: Immunocyto-
chemical localisation and comparison of mRNA concentrations during the
day and night, and after chronic food restriction. Brain Research, 1513,
34–40.

Nakamachi, T., Matsuda, K., Maruyama, K., Miura, T., Uchiyama, M.,
Funaha shi, H., … Shioda, S. (2006). Regulation by orexin of feeding
behaviour and locomotor activity in the goldfish. Journal of Neuroendo-
crinology, 18(4), 290–297.

Nambu, T., Sakurai, T., Mizukami, K., Hosoya, Y., Yanagisawa, M., &
Goto, K. (1999). Distribution of orexin neurons in the adult rat brain.
Brain Research, 827(1–2), 243–260.

Nixon, J. P., Mavanji, V., Butterick, T. A., Billington, C. J., Kotz, C. M., &
Teske, J. A. (2015). Sleep disorders, obesity, and aging: The role of
orexin. Ageing Research Reviews, 20, 63–73.

Nixon, J. P., & Smale, L. (2007). A comparative analysis of the distribution
of immunoreactive orexin A and B in the brains of nocturnal and diur-
nal rodents. Behavioral and Brain Functions, 3, 28.

Novak, C. M., Jiang, X. L., Wang, C. F., Teske, J. A., Kotz, C. M., &
Levine, J. A. (2005). Caloric restriction and physical activity in zebrafish
(Danio rerio). Neuroscience Letters, 383(1–2), 99–104.

Pedrazzini, T. (2004). Importance of NPYY1 receptor-mediated pathways:
Assessment using NPYY1 receptor knockouts. Neuropeptides, 38(4),
267–275.

Peyron, C., Tighe, D. K., van den Pol, A. N., de Lecea, L., Heller, H. C.,
Sutcliffe, J. G., & Kilduff, T. S. (1998). Neurons containing hypocretin
(orexin) project to multiple neuronal systems. Journal of Neuroscience,
18(23), 9996–10015.

Rønnestad, I., Gomes, A. S., Murashita, K., Angotzi, R., Jönsson, E., &
Volkoff, H. (2017). Appetite-Controlling Endocrine Systems in Teleosts.
Front Endocrinol (Lausanne), 8, 73.

Sakurai, T. (2014). The role of orexin in motivated behaviours. Nature
Reviews Neuroscience, 15(11), 719–731.

Sakurai, T., Amemiya, A., Ishii, M., Matsuzaki, I., Chemelli, R. M., Tanaka, H.,
… Yanagisawa, M. (1998). Orexins and orexin receptors: A family of
hypothalamic neuropeptides and G protein-coupled receptors that reg-
ulate feeding behavior. Cell, 92(4), 573–585.

Sawai, N., Ueta, Y., Nakazato, M., & Ozawa, H. (2010). Developmental and
aging change of orexin-A and -B immunoreactive neurons in the male
rat hypothalamus. Neuroscience Letters, 468(1), 51–55.

Shibahara, M., Sakurai, T., Nambu, T., Takenouchi, T., Iwaasa, H.,
Egashira, S. I., … Goto, K. (1999). Structure, tissue distribution, and phar-
macological characterization of Xenopus orexins. Peptides, 20(10),
1169–1176.

Silverstein, J. T., Breininger, J., Baskin, D. G., & Plisetskaya, E. M. (1998).
Neuropeptide Y-like gene expression in the salmon brain increases
with fasting. General and Comparative Endocrinology, 110(2), 157–165.

Slats, D., Claassen, J. A., Verbeek, M. M., & Overeem, S. (2013). Reciprocal
interactions between sleep, circadian rhythms and Alzheimer's disease:
focus on the role of hypocretin and melatonin. Ageing research reviews,
12(1), 188–200.

Tachibana, T., & Tsutsui, K. (2016). Neuropeptide control of feeding behavior
in birds and its difference with mammals. Frontiers in Neuroscience,
10, 485.

Terzibasi, E., Lefrancois, C., Domenici, P., Hartmann, N., Graf, M., &
Cellerino, A. (2009). Effects of dietary restriction on mortality and age-
related phenotypes in the short-lived fish Nothobranchius furzeri. Aging
Cell, 8(2), 88–99.

Thiele, T. E., Marsh, D. J., Ste Marie, L., Bernstein, I. L., & Palmiter, R. D.
(1998). Ethanol consumption and resistance are inversely related to
neuropeptide Y levels. Nature, 396(6709), 366–369.

Tozzini, E. T., Baumgart, M., Battistoni, G., & Cellerino, A. (2012). Adult
neurogenesis in the short-lived teleost Nothobranchius furzeri: Localiza-
tion of neurogenic niches, molecular characterization and effects of
aging. Aging Cell, 11(2), 241–251.

Tsujino, N., & Sakurai, T. (2013). Role of orexin in modulating arousal, feed-
ing, and motivation. Frontiers in Behavioral Neuroscience, 7, 28.

Tsuneki, H., Sasaoka, T., & Sakurai, T. (2016). Sleep control, GPCRs, and
glucose metabolism. Trends in Endocrinology and Metabolism, 27(9),
633–642.

18 MONTESANO ET AL.



Valdesalici, S., & Cellerino, A. (2003). Extremely short lifespan in the annual
fish Nothobranchius furzeri. Proceedings of the Royal Society B—Biological
Sciences, 270, S189–S191.

Valenzano, D. R., Terzibasi, E., Cattaneo, A., Domenici, L., & Cellerino, A.
(2006). Temperature affects longevity and age-related locomotor and
cognitive decay in the short-lived fish Nothobranchius furzeri. Aging Cell,
5(3), 275–278.

Volkoff, H. (2016). The neuroendocrine regulation of food intake in fish: A
review of current knowledge. Frontiers in Neuroscience, 10, 540.

Volkoff, H., & Peter, R. E. (2006). Feeding behavior of fish and its control.
Zebrafish, 3(2), 131–140.

Waterson, M. J., & Horvath, T. L. (2015). Neuronal regulation of energy
homeostasis: Beyond the hypothalamus and feeding. Cell Metabolism,
22(6), 962–970.

Wienecke, M., Werth, E., Poryazova, R., Baumann-Vogel, H., Bassetti, C. L.,
Weller, M., Waldvogel, D., Storch, A., & Baumann, C. R. (2012).

Progressive dopamine and hypocretin deficiencies in Parkinson's dis-
ease: is there an impact on sleep and wakefulness? Journal of Sleep
Research, 21(6), 710–717.

Zimmerman, S. G., Peters, N. C., Altaras, A. E., & Berg, C. A. (2013). Opti-
mized RNA ISH, RNA FISH and protein-RNA double labeling (IF/FISH)
in Drosophila ovaries. Nature Protocols, 8(11), 2158–2179.

How to cite this article: Montesano A, Baumgart M, Avallone L,

et al. Age-related central regulation of orexin and NPY in the

short-lived African killifish Nothobranchius furzeri. J Comp Neurol.

2019;1–19. https://doi.org/10.1002/cne.24638

MONTESANO ET AL. 19

https://doi.org/10.1002/cne.24638

	 Age-related central regulation of orexin and NPY in the short-lived African killifish Nothobranchius furzeri
	1  INTRODUCTION
	2  MATERIALS AND METHODS
	2.1  Animal experiments and fasting
	2.2  Protein isolation and western blotting
	2.3  Morphological Experiments #1: Immunohistochemistry
	2.4  Morphological Experiments #2: In situ hybridization
	2.5  Morphological Experiments #3: Combined in situ hybridization and immunofluorescence
	2.6  HCRT and NPY mRNAs expression in hypothalamus and whole brain of N. furzeri

	3  RESULTS
	3.1  Localization of HCRT and OXA, NPY mRNA and protein in the diencephalon/midbrain of adult male animals
	3.2  HCRT and NPY mRNAs expressing neurons in the diencephalon upon aging and fasting
	3.3  HCRT and NPY mRNAs expressing neurons in non diencephalic regions of old N. furzeri
	3.4  Age related changes of HCRT and NPY
	3.5  Age-related regulation of HCRT and NPY by food intake

	4  DISCUSSION
	4.1  Neuroanatomical organization of orexinergic and NPY-ergic neurons
	4.2  Age-associated regulation of HCRT and NPY in the brain of N. furzeri
	4.3  Different age related regulation of orexin and NPY by food intake

	4.3  ACKNOWLEDGMENTS
	  CONFLICT OF INTEREST
	  AUTHOR CONTRIBUTIONS
	  REFERENCES


