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The presence of the H2S pathway in skeletal muscle (SKM) has recently been established. SKM expresses the three constitutive
H2S-generating enzymes in animals and humans, and it actively produces H2S. The main, recognized molecular targets of H2S,
that is, potassium channels and PDEs, have been evaluated in SKM physiology in order to hypothesize a role for H2S signalling.
SKM dysfunctions, including muscular dystrophy and malignant hyperthermia, have also been evaluated as conditions in which
the H2S and transsulfuration pathways have been suggested to be involved. The intrinsic complexity of themolecular mechanisms
involved in excitation-contraction (E-C) coupling together with the scarcity of preclinical models of SKM-related disorders have
hampered any advances in the knowledge of SKM function. Here, we have addressed the role of the H2S pathway in E-C coupling
and the relative importance of cystathionine β-synthase, cistathionine γ-lyase and 3-mercaptopyruvate sulfurtransferase in SKM
diseases.
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MPST, 3-mercaptopyruvate sulfurtransferase; CBS, cystathionine β-synthase; CSE, cystathionine γ-lyase; DMD, duchenne
muscular dystrophy; E-C, excitation-contraction; Hcy, homocysteine; HHcy, hyperhomocysteinaemia; KATP, potassium
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Introduction
The function of skeletal muscle (SKM) is governed by a process
known as excitation-contraction (E-C) coupling. This physiologi-
cal phenomenon has intrigued many scientists since the XVIII
century; however, only in the past 50 years have the molecular
mechanisms involved, some structural components and the se-
quence of events required formuscle contraction been identified.

In the striatedmuscle, Ca2+ release and uptake can be consid-
ered as the ‘keypoint’of E-C coupling (Eshima et al.,2014).Wedo
not yet have a clear understanding of the molecular interactions
that allow the E-C coupling signal; however, a macromolecular
protein complex defined as a ‘calcium release unit’has been iden-
tified (Dulhunty, 2006; Bellinger et al., 2008). Skeletal isoforms of
the dihydropyridine receptor, L-type Ca2+ channel
(Cav1.1) and ryanodine 1 receptor (RyR1) constitute the main
structures of the ‘calcium release unit’, and their physical interac-
tion is an essential requirement for E-C coupling in SKM
(Dulhunty et al., 2002). However, several other proteins are in-
volved in the skeletal E-C coupling such as calmodulin, calstabin,
A-kinase anchor protein, cAMP-dependent PKA, Ca2+/calmodu-
lin-dependent protein kinase II and PDE4D3 (Bellinger et al.,
2008; Arias-Calderon et al., 2016). Dystrophin and syntrophin
are also involved in themolecularmachinery of E-C coupling. In-
deed, their malfunctioning, due to an erroneous assembly, has
been hypothesized as a cause of muscle fibre necrosis – one of
the histological features typical of muscular dystrophies (Finkel
et al., 2010; Flanigan, 2014). Among the proteins involved in
E-C coupling, RyR1 is probably the most studied; three mamma-
lian genes, encoding the following different isoforms, have been
identified: SKM RyR1, cardiac muscle ryanodine receptor (RyR2)
and RyR3 that is not tissue-specific, but instead is widely
expressed in the body (Lai et al., 1988Meissneret al., 1988; for de-
tails on RyRmolecular structure, see Zalk et al., 2015). Membrane
depolarization triggers RyR1 openingwith the consequent exit of
Ca2+ ions from the sarcoplasmatic reticulum to the cytosol in-
creasing the intracellular Ca2+ concentration from 10�7 to
10�5 M. This event leads to conformational changes that culmi-
nate inmuscle contraction. In addition to cytosolic Ca2+ concen-
tration, many regulatory factors have been identified and/or
suggested asmodulatorsofRyRactivity, amongwhich is the redox
status of the receptor. Indeed,within each subunit of the RyRmo-
lecular structure, there are 80–100 L-cysteine residues, and al-
most 20 of them are sensitive to chemical modification such as
sulphydryl oxidation, S-nitrosylation or alkylation that can pro-
mote either activation or inhibition of RyR activity (Dulhunty
et al., 2000; Pessah and Feng, 2000). However, although all these
studies strongly suggest that hyperreactive sulfhydryl moieties
are an essential biochemical component of a transmembrane re-
dox sensor in vitro, howmuch this phenomenon could influence
Ca2+ regulation in vivo and if its contributionvaries betweenphys-
iological and pathological conditions remains, as yet, unknown.

Hydrogen sulfide (H2S) signal
transduction and potential molecular
targets in SKM
H2S is the latest endogenous gasotransmitter to be discov-
ered, and it is produced in several tissues and organ systems

in animals and humans. It can be derived by both enzymatic
and non-enzymatic pathways, although the non-enzymatic
source accounts for only a minor portion of the H2S gener-
ated in the body. In mammals, H2S biosynthesis occurs in
the cytosol and/or the mitochondria (see Wallace and Wang,
2015), and it is provided by different enzymes widely
expressed throughout the body (Table 1). Cystathionine
β-synthase (CBS) was the first H2S-generating enzyme to
be discovered and is the best characterized. CBS protein is
considered the main source of H2S in the CNS (Abe and
Kimura, 1996; Eto and Kimura, 2002; Miles and Kraus,
2004); however, it is also abundantly expressed in peripheral
tissues (Hosoki et al., 1997; Fiorucci et al., 2006; Szabo et al.,
2013; Zhang et al., 2013; Bucci et al., 2014; Vellecco et al.,
2016). Cystathionine γ-lyase (CSE or CGL or CTH) is con-
sidered the main H2S-generating enzyme in the vasculature.
As with CBS, CSE expression has been found in many loca-
tions in the body (Zhao et al., 2001; Fiorucci et al., 2006; Bucci
et al., 2012; Vellecco et al., 2016; Cirino et al., 2017). CBS and
CSE are both pyridoxal-5-phosphate dependent enzymes,
and they use the amino acid L-cysteine as a substrate (Kabil
and Banerjee, 2014; Kimura, 2014). Both proteins are in-
volved in different reactions of the trans sulfuration pathway,
some of which do not produce H2S (Kabil and Banerjee,
2014). 3-Mercaptopyruvate sulfurtransferase (MPST)
is the third H2S-generating enzyme; it is pyridoxal-5-
phosphate-independent and needs 3-mercaptopyruvate as a
substrate. MPST has been found in vasculature and in smooth
muscle component of several organs (Nagahara et al., 1998;
Shibuya et al., 2009; Modis et al., 2013; Vellecco et al.,
2016). The discovery of H2S as endogenous signalling mole-
cule, and the localization of the enzymatic machinery re-
sponsible for its biosynthesis throughout the body, has
prompted scientists to investigate the existence of an H2S
pathway in SKM and to evaluate its role in both physiological
and pathological conditions. Not much literature is available
on this specific topic. Nevertheless, some studies have shown
that SKM expresses the three constitutive enzymes responsi-
ble for H2S biosynthesis in rats (Chen et al., 2010; Du et al.,
2013) and in humans (Islam et al., 2015; Vellecco et al.,
2016). In terms of relative expression, the amount of these
three proteins in rat SKM is significantly less compared to
the amounts in the liver and kidneys (Du et al., 2013). Con-
versely, the amounts of H2S-generating enzymes in human
SKM is comparable with those observed in the liver and kid-
neys (Islam et al., 2015). In particular, by using fluorescent
immunohistochemistry methods, Du et al. have found a dif-
ferent sub-localization of the enzymes within the rat muscle
fibre. Indeed, CBS and MPST are mainly expressed in the
endomysium and perimysium of SKM, whilst CSE is localized
in the cytosol of the muscle fibre cells (Du et al., 2013). How-
ever, the relative roles of each enzyme in muscle physiology
and/or pathology has yet to be demonstrated. Unexpectedly,
it has been shown that mouse SKM lacks all three enzymes
(Chen et al., 2010; Veeranki and Tyagi, 2015). Indeed,
Veeranki et al. have shown that mouse SKM expresses methy-
lenetetrahydrofolate reductase, an enzyme that participates
in the re-methylation of homocysteine into methionine
(see Figure 1), but it does not express CSE, CBS or MPST and,
consequently, has a reduced L-cysteine and H2S content.
The authors hypothesized that the lack of these enzymes
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makes mouse SKM prone to hyperhomocysteinaemia
(HHcy)-induced myopathy (Veeranki and Tyagi, 2015). How-
ever, further studies are needed to clarify this issue.

Activation of potassium channels
Being a gas, H2S travels freely across cell membranes activat-
ing various molecular targets in a receptor-independent

manner. This characteristic allows this gasotransmitter to be
considered as a mediator in many processes in both physio-
logical and pathological conditions (Fiorucci et al., 2006;
Lowicka and Beltowski, 2007; Szabo, 2007; Li et al., 2011;
Cirino et al., 2017; Wallace and Wang, 2015). Among the
known cellular targets of H2S, potassium channels have been
the first to be discovered. Activation of ATP-sensitive

Table 1
Localization of H2S-generating enzymes

Enzymes Tissues References

CBS Brainh, m, r Martin et al., 2009; Linden et al., 2008; Bronowicka-Adamska et al., 2017

Gastrointestinal tract h, m, r Martin et al., 2009; Linden et al., 2008

Heartm, r Testai et al., 2016; Nandi and Mishra, 2017

Kidneym, r Ahmad et al., 2016; Du et al., 2013

Liverh, m, r Ahmad et al., 2016; Du et al., 2013; Martin et al., 2009

Lungh, m, r Ahmad et al., 2016; Martin et al., 2009; Szczesny et al., 2016

Pancreasm, r Ahmad et al., 2016; Yusuf et al., 2005

Placentah, m, r Hu et al., 2017; Patel et al., 2009; Sonne et al., 2013

Skeletalmuscle h, r Vellecco et al., 2016; Du et al., 2013

Spleenm d’Emmanuele di Villa Bianca et al., 2009; Mitidieri et al., 2016; Zhang et al., 2016

Uro-genital tracth, m, r Brancaleone et al., 2014

Vasculaturem, r Bucci et al., 2014; Bucci et al., 2012

CSE Brainh, m, r Martin et al., 2009; Linden et al., 2008; Bronowicka-Adamska et al., 2017

Gastrointestinal tracth, r, m Martin et al., 2009; Linden et al., 2008

Heartm, r Yang et al., 2008; Testai et al., 2016

Kidneym, r Yang et al., 2008; Du et al., 2013

Liverh, m, r Yang et al., 2008; Du et al., 2013; Martin et al., 2009

Lungh,m, r Ahmad et al., 2016; Chen et al., 2009; Szczesny et al., 2016

Pancreasm, r Yang et al., 2008; Yusuf et al., 2005

Placentah, r Hu et al., 2017; Patel et al., 2009

Skeletal muscleh, r Vellecco et al., 2016; Du et al., 2013

Spleenm Brancaleone et al., 2014

Uro-genital tracth, m, r d’Emmanuele di Villa Bianca et al., 2009; Mitidieri et al., 2016; Zhao et al., 2016

Vasculatureh, m, r Bucci et al., 2014; Bucci et al., 2012; Renga et al., 2015

MPST Brainh, m, r Tomita et al., 2016; Zhao et al., 2013; Bronowicka-Adamska et al., 2017

Gastrointestinal tractm, r Tomita et al., 2016; Magierowski et al., 2017

Heartm, r Tomita et al., 2016; Testai et al., 2016

Kidneym, r Tomita et al., 2016; Du et al., 2013

Liverh, m, r Tomita et al., 2016; Du et al., 2013; Li et al., 2017

Lungh, m Tomita et al., 2016; Szczesny et al., 2016

Pancreasm Tomita et al., 2016

Placentah Hu et al., 2017

Skeletal muscleh, r Vellecco et al., 2016; Du et al., 2013

Spleenm Tomita et al., 2016

Thymusm Tomita et al., 2016

Thyroidm Tomita et al., 2016

Vasculatureh, m, r Shibuya et al., 2009; Bucci et al., 2014; Kuo et al., 2016

Uro-genital tractm Aydinoglu et al., 2017

Tissue localization of H2S-generating enzymes (h = human; m =mouse; r = rat). The three enzymes involved in H2S biosynthesis are widely distributed in
tissues of human (h), rat (r) and mouse (m). CBS, cystathionine β-synthase; CSE, cystathionine γ-lyase; MPST, 3-mercaptopyruvate sulfurtransferase.
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potassium (KATP) channels (Zhao et al., 2001; Tang et al.,
2005; Distrutti et al., 2006; Dawe et al., 2008; Jiang et al.,
2010; Medeiros et al., 2012; Fitzgerald et al., 2014), small-
and intermediate-conductance calcium-activated potas-
sium channels (SKCa channels and IKCa channels, respec-
tively) (Tang et al., 2013, Mustafa et al., 2011; Telezhkin
et al., 2010; Li et al., 2010) and, more recently, voltage-de-
pendent potassium (KV7) channels (Martelli et al.,
2013; Hedegaard et al., 2014) account for different biological
functions of H2S in the cardiovascular, nervous, respiratory,
gastrointestinal and endocrine systems. The activation of
H2S-stimulated KATP channels has been demonstrated by
using a whole-cell patch-clamp technique and a mutagenesis
approach: in colonic smooth muscle cells. H2S specifically S-
sulfhydrates the sulfonylurea receptor 1 (SUR1) and SUR2B
subunits of KATP channels leading to an increased KATP chan-
nel current (Jiang et al., 2010). A similar mechanism of S-
sulphydration of KATP channels has also been shown in vas-
cular smooth muscle cells where the increased amplitude of
the KATP channel current leads to hyperpolarization (Tang
et al., 2005; Mustafa et al., 2009). In mouse SKM sarcolemma,
KATP channels are very highly expressed (Flagg et al., 2010;
MacIntosh et al., 2012), and, despite the fact that their
physiological function in SKM is not so clearly defined as in
cardiac tissue, KATP channel activation has been suggested
to be involved in the prevention of calcium overload and
preservation of myofibre integrity during exercise, as well as
recovery from muscle fatigue, rather than in normal muscle
contractility and excitability (Matar et al., 2000; MacIntosh

et al., 2012). Since H2S is actively produced in human
SKM, and is detectable in nanomolar range (Vellecco et al.,
2016), it is feasible that H2S could modulate the activation
of KATP channels during muscle activity. As demonstrated in
smooth muscles, it is possible that H2S induces KATP channel
activation through a mechanism involving S-sulfhydration.
In this context, it is interesting to note that in patients
susceptible to malignant hyperthermia (MHS), a syndrome
characterized by a diffused hyper-contractility of SKM
induced by volatile anaesthetics, the content of H2S in the
vastus muscle is ~10-fold higher compared to healthy sub-
jects. The hyper-contractility in halothane-induced MHS is
significantly reduced by glibenclamide, a selective blocker of
KATP channels (Vellecco et al., 2016). This finding suggests
that the increased amount of H2S detected in MHS subjects
contributes to the anomalous contraction elicited by volatile
anaesthetics. This hypothesis is corroborated by the finding
that the mechanism of action of volatile anaesthetics in-
volves the activation of several channels, including KATP

channels (Yoo et al., 2006; Matchett et al., 2009). So it is
feasible to speculate that in SKM of MHS subjects, there is a
constitutive hyper-activation of KATP channels due to in-
creased levels of H2S. When these subjects are challenged
with volatile anaesthetics, a state of ‘over-activation’ of KATP

channels takes place, contributing to the characteristic SKM
hyper-contractility of MHS subjects.

Other H2S molecular targets with a recognized role in the
function of SKM are the sub-class of voltage-dependent po-
tassium Kv7 channels. It is known that Kv7 channels are

Figure 1
Simplified scheme of transsulfuration pathway. The mammalians introduce the aminoacid methionine with the diet. The methionine could be
converted into homocysteine and back to methionine. Homocysteine acts as a substrate leading to the synthesis of three major final products:
H2S, taurine and glutathione. CAT, cysteine aminotransferase; CDO cysteine dioxygenase; CSAD, cysteine sulfonic acid decarboxylase; CSE, cys-
tathionine γ-lyase; HDD, hypotaurine dyhydrogenase; MPST, 3-mercaptopyruvate sulfur transferase; MTHFR, methylenetetrahydrofolate
reductase.
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involved in resting membrane potential and electrical excit-
ability control in many cell types included SKM (Miceli
et al., 2008; Roura-Ferrer et al., 2008). In particular, it has been
shown that in mouse C2C12 cells, Kv7.4 channels have a cru-
cial role in the induction and/or maintenance of the differen-
tiated state in skeletal myotubes (Iannotti et al., 2013). The
same group also demonstrated that Kv7 channels regulate
the response of SKM to myotoxic stimuli, suggesting that
Kv7 channel modulators have potential as new therapeutic
agents for myopathies (Iannotti et al., 2010). Recently,
Martelli et al. have added Kv7 channels as new molecular tar-
gets for H2S (Martelli et al., 2013). In particular, they showed
that, in isolated mouse aorta, the vasorelaxing effect of NaHS
(used as an exogenous source of H2S) is significantly inhibited
by XE-991, a selective Kv7 channel blocker. In addition, ex-
posure of human aortic smooth muscle cells to NaHS pro-
motes membrane hyperpolarization to a similar extent to
that observed for the selective Kv7 channel opener
retigabine, and this effect was significantly antagonized
by both selective blockers of Kv7 and KATP channels (Martelli
et al., 2013). All these data could suggest a role for a H2S/Kv7
interaction in SKM function.

Phosphodiesterase inhibition
It has been demonstrated that in the vascular system, H2S acts
as an endogenous non-selective inhibitor of the activity of
PDEs (Bucci et al., 2010; Bucci et al., 2012; Coletta et al.,
2012). PDEs are a class of metalophosphohydrolases that, by
hydrolyzing the cyclic nucleotides (cGMP and cAMP), regu-
late their physiological levels. H2S, by inhibiting the activity
of PDEs, slows down the degradation rate of cyclic nucleo-
tides modulating the transduction of downstream signals
that involve cAMP and cGMP as second messengers. Within
the vasculature, inhibition of PDE5, with the consequent
increase in cGMP, is one of the main mechanisms of
H2S-induced vasorelaxation (Bucci et al., 2010). In SKM, dif-
ferent PDE isoforms have been found: PDE4(B,C,D), PDE7A
and PDE8B, which selectively hydrolyze cAMP; PDE5A,
which selectively hydrolyzes cGMP; and PDE11, which hy-
drolyzes both cyclic nucleotydes (Nio et al., 2017; Tetsi et al.,
2017). However, much more information is available on

cAMP metabolism compared to cGMP in SKM (Stapleton
et al., 2014; Nio et al., 2017). Nevertheless, it has been
shown that in mdx mice, the most widely used murine
model of duchenne muscular dystrophy (DMD), treatment
with the selective PDE5 inhibitor sildenafil reverses the
cardiac dysfunction (Adamo et al., 2010) and reduces respira-
tory muscle weakness and fibrosis (Percival et al., 2012),
which are typical features of DMD. More recently, Nio et al.
have shown that the treatment of mdx mice with
piclamilast, a PDE4-selective inhibitor, also displays an
antifibrotic effect and the combination therapy of
piclamilast and sildenafil further increases the antifibrotic
effect observed (Nio et al., 2017). The evidence that, in
SKM, H2S is actively produced and different isoforms of
PDEs are constitutively expressed allows us to speculate that
H2S, by inhibiting the activity of PDEs, could also modulate
the level of cyclic nucleotides in SKM (see Figure 2).

Potential role of CBS and/or CSE in SKM
dysfunctions
It is well established that the lack/impairment of CBS activity
is the most common cause of hyperhomocysteinaemia
(HHcy; for review see Morris et al., 2017). HHcy represents a
risk factor for several human diseases, and patients with
HHcymanifest some characteristic features (early thrombotic
events and cognitive decline) including SKM dysfunctions.
As CBS is a H2S-generating enzyme, a deficiency in CBS pro-
vides a clear link between hydrogen sulfide and the patho-
physiology of SKM. Indeed, several studies have correlated
HHcy with SKM dysfunction. In 1976, Kanwar et al. showed
that the SKM of patients with homocystinuria is character-
ized by anomalous collagen deposits in the basal lamina,
which was associated with a disrupted Z-line (Kanwar et al.,
1976). This finding has been recently confirmed in a preclin-
ical setting where chronic administration of homocysteine to
rats caused a reduction in the viability of SKM cells and pro-
duced an energy imbalance (Kolling et al., 2013). Also, some
neurological pathologies that induce muscle degeneration,
such as amyotrophic lateral sclerosis and multiple sclerosis,

Figure 2
Potential targets of hydrogen sulfide (H2S) in SKM. Different recognized, molecular targets of H2S that are expressed physiologically in SKM: ATP-
sensitive potassium (KATP) and voltage dependent (KV7) channels. Several PDEs that are potential targets for H2S are also reported. Solid line: ac-
tivation; dotted line: inhibition.
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have been correlated with high levels of homocysteine in
plasma and cerebrospinal fluids (Valentino et al., 2010;
Zoccolella et al., 2012). Themolecular mechanisms of the del-
eterious action of homocysteine on SKM have not yet been
clearly defined. It has been hypothesized that the availability
of homocysteine in the muscle fibre is reduced due to the fact
that it competes with the L-cysteine transporters (Veeranki
and Tyagi, 2015). Such a reduction in L-cysteine content
not only affects the amount of H2S generated locally but also
promotes oxidative stress, since L-cysteine is the precursor
not only of H2S but also of glutathione and taurine, two of
the main endogenous antioxidants (Stipanuk, 2004;
Veeranki and Tyagi, 2015). This mechanism has been shown
to be present in a preclinical rat model of HHcy where an in-
crease in ROS production was found to be associated with re-
duced glutathione levels (Kolling et al., 2013). Similarly, a
significant decrease in H2S content in muscle fibre, together
with a decrease in SOD1 expression, is present in a rat model
of SKM ischaemia–reperfusion (I-R) injury (Du et al., 2013).
These findings are associated with an increase in ROS (H2O2

and O2
�) and malondialdehyde (MDA) production leading to

severe necrosis, as revealed by histopathological analysis of
the gastrocnemiusmuscle. It is noteworthy that pretreatment
with NaHS decreases MDA content, reduces hydrogen perox-
ide and superoxide anion levels, but increases SOD activity
and protein expression thereby protecting the SKM from ox-
idative stress (Du et al., 2013). This latter finding strongly sug-
gests that: (i) being an antioxidant molecule, H2S exerts a
protective effect on SKMmaintaining the physiological levels
of oxidative products; (ii) the impairment of the endogenous
production of H2S in SKM induces a disequilibrium in redox
status with a consequent increase in ROS production that
damages muscle fibres. The oxidative stress is further wors-
ened by the reduction in SOD expression induced by I-R in-
jury; and (iii) the exogenous administration of H2S not only
regains the redox status but also restores SOD expression with
the final effect of protecting SKM from oxidizing agents. In
line with this view, it has been hypothesized that that a dys-
regulation of H2S metabolism is involved in chronic fatigue
syndrome, also called myalgic encephalomyelitis (Dix Lemle,
2009). This is a very debilitating disease with an unknown
aetiology and heterogeneous symptoms in terms of intensity,
appearance and duration that makes diagnosis difficult
(Collatz et al., 2016). Post-exertional malaise, muscle and
joint pain, difficulties with short-term memory, un-
refreshing sleep, sore throat and headaches are some of a pat-
tern of symptoms of this syndrome, often associated with
dysregulation of body temperature and blood pressure
(Collatz et al., 2016). It has been suggested that a systemic
dysfunction of H2S metabolism is the main cause of chronic
fatigue syndrome. Such a dysregulation could explain the
pattern of symptoms, apparently unconnected, typical of
chronic fatigue syndrome (Dix Lemle, 2009).

A role of altered levels of H2S in SKM has been also present
in SKM bundles harvested from MHS patients. In particular,
molecular analysis shows that the main source of H2S in
MHS patients is CBS that results strongly over-expressed, in
terms of both protein and mRNA, compared to MHN. These
evidence suggest that CBS-derived H2S is the main source of
the ‘pathological’ high levels of H2S in MHS subjects
(Vellecco et al., 2016).

Another clue as to the role of H2S signalling in SKM func-
tion arises from the study by Ishii et al. (2010). In this study,
CSE�/� mice were generated as an animal model of
cystathioninemia/cystathioninuria, a known autosomal re-
cessive inborn error with increased plasma/urinary levels of
cystathionine, with no pathological phenotype (Mudd
et al., 2001). The study shows that by feeding CSE�/� mice a
low cysteine diet from 3 weeks old, an acute myopathy
occurs, which is associated with a reduced concentration of
glutathione in SKM and the liver. In more detail, once the
low L-cysteine diet starts, the mice promptly lose weight
whilst WT mice and CSE�/� mice fed a standard diet keep
growing. Then, the mice display a paralysis of their lower
extremities and severe atrophy in the abdominal regions,
the trapezius and rectus femoris muscles. Thereafter, the mice
become lame, paralysed in the upper extremities and finally
die. Histological analysis of femur SKM sections of CSE�/�

mice fed the low L-cysteine content revealed the intracellular
accumulation of the autophagosomal marker LC3 and
p62/sequestosome-1 in skeletal myofibres, suggesting en-
hanced autophagy leading to myopathic muscle loss
(Masiero et al., 2009). These findings strongly suggest a piv-
otal role for CSE in the development and function of SKM
even though the exact contribution of this enzyme to the on-
set of myopathy is unknown.

Conclusions
Considering the enormous advances in life sciences made in
recent decades, it is surprising, at least at first sight, how
much there is still to clarify as regards SKM function. There
are several hurdles to overcome: (i) SKM dysfunction ranges
from generic muscle weakness and soreness to severe myopa-
thy, muscle wasting and cachexia. Often, these signs are not
directly correlated with a specific SKM disease, that is, muscu-
lar dystrophy, but rather constitute one symptom of a more
complex syndrome that does not necessarily originate from
SKM; (ii) despite the fact that many studies have been de-
voted to clarifying the molecular mechanisms involved in
E-C coupling in vitro, the real impact of these mechanisms
are very difficult to assess in vivo because of the intrinsic com-
plexity of this phenomenon; and (iii) the information
gleaned from animal models of muscle diseases does not al-
ways translate to human pathology. In addition, for many
SKM human pathologies, a suitable animal model is still
lacking.

An interesting speculation that suggests a relevant role for
the involvement of the L-cysteine/CSE-CBS/H2S pathway in
the physiopathology of SKM relies on two findings that have
been discussed within this review: (i) the lack of CSE genes,
coupled with a low cysteine diet, induces an acute myopathy
characterized by paralysis of the lower extremities and severe
atrophy (Ishii et al., 2010); (ii) in human subjects susceptible
to malignant hyperthermia, there is a hyper-contractility of
SKM accompanied by an increased local production of H2S
coupled with an overexpression of CBS (Vellecco et al.,
2016). Therefore, whilst a lack of CSE and the low availability
of L-cysteine causes an impairment of the function of SKM,
an increase in CBS expression and consequent enhanced pro-
duction of hydrogen sulfide leads to muscle hyper-reactivity.
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From this point of view, it appears clear that the murine
model of DMD, that is, mdx mice, displays some similarities
to CSE �/� mice fed a low cysteine content diet. Indeed, slow
and progressive muscle weakness coupled with muscle de-
generation are some of the features of mdx mice (Willmann
et al., 2009; Manning and O’Malley, 2015; McGreevy et al.,
2015). This hypothesis is further supported by the study of
Terrill et al. where it has been reported that the treatment of
adult mdx mice with an L-cysteine precursor reduces the
dystropathology and oxidative stress in these mice (Terrill
et al., 2013). Therefore, it is hypothesized that low levels of
H2S (plasma or tissue levels) are an index of reduced SKM
performance, whilst high levels are an index of hyper-
contractility/susceptibility. In conclusion, there is much to
do in order to understand the role of hydrogen sulfide in
the physiopathology of SKM. However, the nature of this
gasotransmitter makes it an ideal player in the physiology
of SKM, as among its targets there are channels and enzymes
that are known to play an important role in the homeostasis
of SKM.

Nomenclature of targets and ligands
Key protein targets and ligands in this article are hyperlinked to
corresponding entries in http://www.guidetopharmacology.org,
the common portal for data from IUPHAR/BPS Guide to PHAR-
MACOLOGY (Harding et al., 2018), and are permanently ar-
chived in the Concise Guide to PHARMACOLOGY 2017/18
(Alexander et al., 2017a,b).
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